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Abstract: In the past many research studies have focused on the thiazolidine-4-one scaffold, due to the
important biological effects associated with its heterocycle. This scaffold is present in the structure
of many synthetic compounds, which showed significant biological effects such as antimicrobial,
antifungal, antioxidant, anti-inflammatory, analgesic, antidiabetic effects. It was also identified in
natural compounds, such as actithiazic acid, isolated from Streptomyces strains. Starting from this
scaffold new xanthine derivatives have been synthetized and evaluated for their antibacterial and
antifungal effects. The antibacterial action was investigated against Gram positive (Staphyloccoccus aureus
ATCC 25923, Sarcina lutea ATCC 9341) and Gram negative (Escherichia coli ATCC 25922) bacterial
strains. The antifungal potential was investigated against Candida spp. (Candida albicans ATCC 10231,
Candida glabrata ATCC MYA 2950, Candida parapsilosis ATCC 22019). In order to improve the antimicrobial
activity, the most active xanthine derivatives with thiazolidine-4-one scaffold (XTDs: 6c, 6e, 6f, 6k) were
included in a chitosan based polymeric matrix (CS). The developed polymeric systems (CS-XTDs) were
characterized in terms of morphological (aspect, particle size), physic-chemical properties (swelling
degree), antibacterial and antifungal activities, toxicity, and biological functions (bioactive compounds
loading, entrapment efficiency). The presence of xanthine-thiazolidine-4-one derivatives into the chitosan
matrix was confirmed using Fourier transform infrared (FT-IR) analysis. The size of developed polymeric
systems, CS-XTDs, ranged between 614 µm and 855 µm, in a dry state. The XTDs were encapsulated into
the chitosan matrix with very good loading efficiency, the highest entrapment efficiency being recorded
for CS-6k, which ranged between 87.86 ± 1.25% and 93.91 ± 1.41%, depending of the concentration
of 6k. The CS-XTDs systems showed an improved antimicrobial effect with respect to the corresponding
XTDs. Good results were obtained for CS-6f, for which the effects on Staphylococcus aureus ATCC
25923 (21.2 ± 0.43 mm) and Sarcina lutea ATCC 9341 (25.1 ± 0.28 mm) were comparable with those
of ciprofloxacin (25.1 ± 0.08 mm/25.0 ± 0.1 mm), which were used as the control. The CS-6f showed
a notable antifungal effect, especially on Candida parapsilosis ATCC 22019 (18.4± 0.42 mm), the effect being
comparable to those of nystatin (20.1± 0.09 mm), used as the control. Based on the obtained results these
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polymeric systems, consisting of thiazolidine-4-one derivatives loaded with chitosan microparticles, could
have important applications in the food field as multifunctional (antimicrobial, antifungal, antioxidant)
packaging materials.

Keywords: thiazolidine-4-one scaffold; chitosan; polymeric systems; antibacterial activity

1. Introduction

In the last time the xanthine scaffold was widely investigated based on its high biological potential.
Some of the most important derivatives are caffeine, theophyline, theobromine, and paraxanthine [1]. These
compounds are known for important biological effects such as bronchodilator, diuretic, anti-inflammatory
and lipolytic [2,3]. New biological active molecules with a xanthine structure have been developed and
evaluated for potential applications in asthma [4], diabetes mellitus [5], cancer [6], microbial infections [7]
and neurodegenerative diseases such as Parkinson [8] and Alzheimer [2].

In the medicinal chemistry the thiazolidine heterocycle is also known as an important scaffold that is
used to modulate the classical structures in order to improve their biological effects and to induce other
new ones. For the first time this structure was identified as an actithiazic acid, a natural compound isolated
from Streptomyces spp., which showed high and specific action against Mycobacterium tuberculosis [9]. Later,
many thiazolidine derivatives were synthesized and evaluated for their antimicrobial effect [10–12]. It was
shown that the antimicrobial effects are in close correlation with the nature and position of substituents on
the heterocycle. For example, the presence of arylazo, phenylhydrazono or sulfamoylphenylazo on the
heterocycle was associated with improved antimicrobial effects [13].

In a previous study the researchers focused their studies on micro and nanotechnology as new
strategies for increasing solubility, improving the biological properties, and decreasing the toxicity
of the drugs. Some of the most important applications are in the regenerative medicine or tissue
engineering area, as biosensors or as controlled drug release systems. The polymeric systems such
as nano and microparticels are largely used as drug delivery systems due to their small particle size
and large surface area [14]. Lately, chitosan, a natural polymer derived from chitin, has attracted the
interest of many researchers due to its important and specific properties, such as biocompatibility,
biodegradability, and reduced toxicity [15]. This biopolymer is considered the largest biomaterial after
cellulose, having important applications in both the pharmaceutical and the food industry [16,17]. It is
a linear policationic polysaccharide, copolymer of D-glucosamine and N-acetyl-D-glucosamine linked
in 1-4 positions [16]. The amino groups on chitosan allow it to react with varied types of reagents to
introduce different functional groups to chitosan. This polymer has important biological effects such
as antimicrobial [18,19], antidiabetic [20–22], antitumor [23], antioxidant [24,25], anti-inflammatory [24],
antiulceros [26], and not least, hypocholesterolemic [27]. The antimicrobial effect is the result of the
interaction between the negatively charged bacterial cell membranes and the positively charged amino
groups of chitosan, being directly proportional to the molecular weight and inversely proportional to the
pH value. The studies showed also that Gram-positive bacterial strains are more susceptible to chitosan
than Gram-negative ones [28].

Referring to the food industry, it is known that the packaging components have an important role
for preservation of food as well as for environment protection, in a previous study the researchers
focused on the use of renewable material and on the development of active packaging in order to
increase the quality and safety of food [29]. The embedded food technology based on antimicrobial
agents represents nowadays a challenge for researchers being strengthened also by the few marked
products [30]. To obtain active packaging the antimicrobial agents could be included in the polymer
matrix or the polymer surface could be covered with different antimicrobial agents [31,32]. Knowing
that the microbial growth occurs mainly on the food surface, this new strategy involves slow diffusion
of the antimicrobial agent from the package material, such as polymer films [33]. The controlled release
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packaging is a new approach for the food industry. The literature reported various packaging systems
based on chitosan or embedded chitosan with different antimicrobial agents [34–37]. The studies
highlight the important role chitosan plays as a plasticizer and it is frequently used in different
composite systems with potential application in the food industry in order to increase the mechanical
strength of the developed structure [37].

In this study we report the preparation, physic-chemical characterization, and biological evaluation of
new polymeric systems based on chitosan, which have been loaded with new xanthine derivatives with
a thiazolidine-4-one scaffold. Based on the unique properties of chitosan (biodegradability, biocompatibility)
and of the biological effects of xanthine derivatives with a thiazolidine-4-one scaffold, the developed
polymeric systems could have important applications in the food industry as active packaging materials
and also in the medical field.

2. Materials and Methods

2.1. Materials

Chitosan (CS, molecular weight 190–310 kDa, 75–85% deacetylation degree), pentasodium
tripolyphosphate (TPP), disodium hydrogen phosphate, sodium dihydrogen phosphate, hydrochloric
acid 37%, acetic acid (min. 99,8%, p.a. ACS reagent), dimethyl sulfoxide (DMSO, p.a., ACS regent),
Mueller–Hinton agar medium (Oxoid), Sabouraud agar medium were purchased from Sigma Aldrich.
Xanthine derivatives with thiazolidine-4-one scaffold (XTDs: 6c, 6e, 6f, 6k) have been synthesized by
our research group and were reported in a previous paper [38]. Bacterial strains (Staphyloccoccus aureus
ATCC 25923, Sarcina lutea ATCC 9341, Escherichia coli ATCC 25922) and yeast strains (Candida albicans
ATCC 10231, Candida glabrata ATCC MYA 2950, Candida parapsilosis ATCC 22019) were obtained
from the Department of Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi,
Romania. Ampicillin (30 µg/disc), ciprofloxacin (25 µg/disc) and nystatin (100 µg/disc) were used
as positive controls for antibacterial and antifungal activity respectively. Swiss mice were purchased
from the Biobase of “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania.

2.2. Development of New Polymeric Systems Based on Chitosan

2.2.1. Preparation of Chitosan Microparticles

Chitosan microparticles were prepared by the ionic gelation method. Briefly, chitosan (CS, 1.2–1.7 g)
was dispersed in 100 mL of acetic acid 1% (v/v) and the mixture was left under stirring overnight. 3 mL
of chitosan solution were dropped, using a syringe needle (26 G; 0.45 mm × 16 mm), into 20 mL of TPP
(2%–3%), under light stirring and the mixture was left at room temperature, under stirring for 4–8 h in
order to achieve an efficient reticulation. After 24 h the formed chitosan beads were separated from the
TPP solution, washed three times with distillated water, and air-dried at room temperature.

2.2.2. Preparation of Chitosan Microparticles Loaded with Xanthine Derivatives with
Thiazolidine-4-One Scaffold (CS-XTDs)

The xanthine derivatives with thiazolidine-4-one scaffold (XTDs: 6c, 6e, 6f, 6k) were loaded into
chitosan microparticles by the ionic gelation method [5]. Briefly, different amounts of XTD (9 mg, 12 mg,
15 mg) were dissolved in 0.3 mL of DMSO and mixed with 3 mL of chitosan solution (1.2%–1.7%, v/v)
in order to obtain three different concentrations (3 mg/mL; 4 mg/mL, 5 mg/mL) for each derivative (6c, 6e,
6f, 6k). The resulted mixtures were dropped, using a syringe needle (26 G; 0.45 mm× 16 mm), into 20 mL
of TPP (2%–3%), under light stirring and the mixture was left at room temperature, under stirring for 4–8 h
to achieve an efficient reticulation. After 24 h the formed chitosan loaded beads (CS-XTDs) were separated
fromTPP solution, washed with distillated water three times, and air-dried at room temperature.
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2.3. Characterization of Chitosan Microparticles Loaded with Xanthine Derivatives with Thiazolidine-4-one
Scaffold (CS-XTDs)

2.3.1. Particle Size and Morphology

The CS-XTDs microparticle size (in wet and dry state) was measured using a Leica DM750
microscope (Wetzlar, Germany) equipped with a video model ICC50 W0366. The values were recorded
with 10× objective by LAS EZ program. The morphology of the microparticles was studied using
a scanning electronic microscope (SEM), Vega II SBH model, produced by the Tescan Company (Brno,
Czech Republic). All measurements were performed in triplicate and the results are expressed as mean
size ± standard deviation.

2.3.2. Swelling Degree (SD)

The swelling studies were carried out using distilled water and simulated gastric fluid (SGF,
pH 2.2) at 37 ◦C (in a thermostated water bath) according to the literature references [5,39]. Briefly,
an exact amount of CS-XTDs microparticles was immersed into the media. At different times
microparticles were removed from media (water and SGF respectively), dried quickly with filter
paper, and weighted (W1). At the end of the study the microparticles were dried again and weighted
(W2). All tests were carried out in triplicate and the results are expressed as mean SD ± standard
deviation. The analysis of Variance (ANOVA) was used to analyze the experimental data. Statistical
significance was set to p value ≤ 0.05.

The swelling degree (SD) at different times was calculated using the following formula:

SD (%) = W1 −W2/W2 × 100 (1)

where: W1—the weight of the swollen CS-XTDs microparticles; W2—the weight of the dried
CS-XTDs microparticles.

2.3.3. Drug Loading and Entrapment Efficiency

The loading efficiency of XTDs (6c, 6e, 6f, 6k) into the chitosan matrix was analyzed using a GBC
Cintra 2010 UV-VIS spectrophotometer (Madrid, Spain) equipped with Cintral Software, according
to the literature references [40] with slight modifications. The content of the XTDs into TPP solution
was evaluated spectrophotometrically at different wavelengths, corresponding to each derivative,
as follows: λ = 276 nm for 6k, λ = 277 nm for 6c and 6e, λ = 280 nm for 6f. The recorded values were
used to calculate the non-loaded and loaded amount of each XTD. A standard curve for each XTD
with a specific correlation coefficient (y = 21.23x − 0.0112; R2 = 1 for 6c, y = 27.606x − 0.0151; R2 = 1
for 6e, y = 28.89x + 0.0219; R2 = 0.9996 for 6f, y = 20.914x + 0.0406; R2 = 1 for 6k) was used.

The drug loading (DL) was calculated using the following formula [40]:

DL(%) =
W3

W1
× 100% (2)

where: W1 = the amount of CS-XTD microparticles, after drying (mg); W3 = the amount of XTD loaded
into the chitosan matrix (mg).

The entrapment efficiency (EE) was calculated using the following formula [41]:

EE(%) =
W3

W2
× 100% (3)

where: W2 = the mount of XTD used in study (mg); W3 = the amount of XTD loaded into chitosan
matrix(mg).

All tests were performed in triplicate and the results are expressed as mean DL/EE ±
standard deviation.
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2.3.4. In Vitro Release

In vitro release of XTDs from polymeric system based chitosan (CS-XTDs: CS-6c, CS-6e, CS-6f,
CS-6k) was performed using simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid
(SIF, pH 6.8), according to the literature references, with slight modifications [42–44]. The polymeric
systems (CS-XTDs) were firstly placed in SGF for two hand then were moved to SIF. Briefly, a weighed
amount of CS-XTDs microparticles was placed in a flask with 2 mL of media and incubated at 37 ±
0.1 ◦C under stirring (100 rpm). Every 30 min, a sample of 1.8 mL was collected from the media and
replaced with an equal volume (1.8 mL) of fresh media. The concentration of the XTDs in the solution
was evaluated spectrophotometrically at the specific wavelengths, corresponding to each derivative,
using the standard curve previously obtained.

The Drug release (DR) was calculated using the following formula [42]:

DR(%) =
C1

C0
× 100% (4)

where: C1 = concentration of the XTD (mg/mL) in the release media at different times; C0 = concentration
of the XTD (mg/mL) in the CS-XTD microparticles.

All tests were performed in triplicate and the results are expressed as mean DR± standard deviation.

2.3.5. Fourier Transform Infrared (FTIR) Spectroscopy

FT-IR spectra of chitosan, XTDs (6c, 6e, 6f, 6k) and of CS-XTDs (CS-6c, CS-6e, CS-6f, CS-6k) were
recorded using ABB-MB3000 FT-IR MIRacleTM Single Bounce ATR (Zürich, Switzerland) at a resolution
of 4 cm−1, after 16 scans, in the 4000–650 cm−1 range and processed with the Horizon MBTM FT-IR
Software (Horizon MB 3.1.29.5, LabCognition GmbH & Co. KG, Cologne, Germany).

2.4. Biological Evaluation

2.4.1. Acute Toxicity Assay

The acute toxicity of the XTDs (6c, 6e, 6f, 6k) was evaluated by determining the lethal dose
of 50 (LD50). The Swiss mice (22–35 g) were housed in polyethylene cages, at constant conditions:
temperature of 24± 2 ◦C, humidity of 40–70%, and cycle of 12 h light and 12 h dark. The acclimatization
of the animals to laboratory conditions was performed 7 days before the experiment, receiving standard
food and water ad libitum. The animals were kept fasting for 24 h before starting the experiment.
Each group (six mice/group) received XTDs, orally (p.o.), as suspensions in Tween 80 in doses ranging
between 1500–6500 mg/kg b.w. The survival rate was determined at 1 day, 2 days, 3 days, 7 days,
and 14 days after administration.

The lethal dose 50 (LD50) was determined by the Karber method using the following formula [45,46]:

LD50 = LD100 −
Σ(a× b)

n
(5)

where: a = the difference between two successive doses of the XTDs; b = the arithmetic average of the
mice died from two successive series; n = the number of animals from each group; LD100 = the 100%
lethal dose.

This study was performed according to the ethics guidelines on laboratory animal studies (Law
no. 206/May 27, 2004, EU/2010/63-CE86/609/EEC) and with agreement (no 17826/2016) of the Ethics
Committee for Animal Research of “Grigore T. Popa” University of Medicine and Pharmacy Iasi.

2.4.2. Antibacterial/Antifungal Tests

The antibacterial and antifungal activity of XTDs and CS-XTDs3 (5 mg/mL) were evaluated using
the agar disc diffusion and broth micro-dilution methods.
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The Agar Disc Diffusion Method.

Antibacterial and antifungal activity of XTDs and CS-XTDs, expressed as the diameter of
inhibition area, were evaluated using the standard disk diffusion assay according to literature
reference [47] with slight modifications. Prior to the test, the bacterial and yeast strains were diluted in
NaCl (0.9 %) in order to achieve a turbidity equivalent of 106 CFU/mL (McFarland standard no 5).
The suspensions were diluted 1:10 in Mueller Hinton agar (bacteria) and Sabouraud agar (yeasts)
and then spread on sterile Petri plates (25 mL/Petri plate). Sterile stainless steel cylinders (10 mm
height and 5 mm internal diameter) were placed on the agar surface in Petri dishes. In each cylinder
200 µL of XTDs, solutions in DMSO (20 mg/mL) and an equivalent concentration of CS-XTDs were
added. Commercial discs containing ampicillin (25 µg/disc), ciprofloxacin (30 µg/disc), and nystatin
(100 µg/disc) were used as a positive control. DMSO was used as a negative control. The plates were
incubated for 24 h at 37 ◦C (bacteria) and for 48 h at 24 ◦C (yeasts). After incubation the diameters of
inhibition were measured. All tests were performed in triplicate and the results are expressed as mean
diameter ± standard deviation.

The Broth Micro-Dilution Method.

The minimum inhibitory concentration (MIC) and the minimum bactericidal/fungicidal
concentration (MBC/MFC) of XTD were determined using the standard two-fold dilution method
standardized by [47], with slight modifications. The strains were inoculated in the specific agar medium
and incubated at 37 ◦C for 24 h for bacteria, respectively 48 h at 24 ◦C for Candida strains. After the
incubation, the culture media were diluted in order to obtain a final concentration of 106 CFU/mL. In a
96-well microplate, different dilutions were prepared from the stock solution of the XTDs (20 mg/mL),
in order to obtain a volume of 100 µL in each well with final concentrations in the range of 10 mg/mL,
5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.625 mg/mL, 0.312 mg/mL, 0.156 mg/mL, 0.078 mg/mL, 0.039
mg/mL, 0.0195 mg/mL, 0.009 mg/mL, and 0.0048 mg/mL. A volume of 100 µL strain suspension
was inoculated onto the wells and the microplates were incubated for 24 h at 37 ◦C (bacterial strains)
and at 24 ◦C for (fungal strains). The MIC value was established as the lowest concentration, which
determined the visual inhibition of the strain’s growth. For MBC/MFC determination, 1 µl from each
visually complete inhibition was transferred onto a plate with solid media and incubated for 24 h at
37 ◦C (bacterial strains) and at 24 ◦C for (fungal strains). The MBC/MFC values were considered the
lowest concentration, which killed 99.9% of the tested strains. All tests were performed in triplicate.

3. Results and Discussions

The synthesis of new xanthine derivatives with thiazolidine-4-one scaffold (6a–k) (Figure 1)
were presented in our previous paper [38]. Some of these compounds showed good antioxidant
effects in terms of the antiradical scavenging effect (DPPH, ABTS) and phosphomolybdenum reducing
antioxidant power [38]. In this study the compounds were evaluated for antibacterial and antifungal
effects and the most active of them were formulated as new polymeric systems based on chitosan in
order to increase their biological effects.
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3.1. New Polymeric Systems Based on Chitosan

The chitosan microparticles could be prepared using chemical and physical methods. The chemical
method is based on the covalent bond formation between the functional groups of chitosan while the
physical process involves electrostatic hydrophobic interactions or hydrogen bonds formation in the
polymer matrix [48,49]. It is considered that the last type of polymeric system seems to have increased
biocompatibility and are more tolerated than the chemical ones [50,51]. The most used physical method
is ionic gelation, which is based on the ionic complexes formation between positively charged amino
groups and anions such as sulphate, citrate, and phosphate. The most used cross-linking agent is
pentasodiumtripolyphosphate, which interacts with the amino groups of chitosan by electrostatic
forces [52].

Four XTDs (6c, 6e, 6f, 6k) were selected based on their biological effects and were inglobated
into a polymeric matrix based on chitosan using the ionic gelation method. In order to optimize
the preparation procedure of chitosan microparticles loaded with xanthine derivatives with
thiazolidine-4-one scaffold (CS-XTDs) different parameters were applied: chitosan concentration
(1.2%–1.7%), TPP concentration (2%–3%), and reticulation time (4–8 h). The most stable CS-XTDs
systems were obtained using the following parameters: CS concentration of 1.7%, TPP concentration
of 2%, and reticulation for 8 h. Using three concentrations (3 mg/mL, 4 mg/mL, 5 mg/mL) for
each XTD, twelve CS-XTD systems were developed and characterized. The mass ration between CS,
TPP, and XTD, based on the concentration of used XTD (9 mg, 12 mg, 15 mg) was as follows:5.7:44:1,
4.25:33:1 and 3.4:27:1.

3.1.1. Particle Size and Morphology

The size of the CS-XTDs ranged between 858–953 µm (wet state) and 611–855 µm (dry state) and
it was higher than CS (825 µm—wet state; 611 µm—dry state), thus confirming the loading process
(Table 1). The data showed that the size increases with the concentration of the compounds and are in
good agreement with similar data presented in the literature [53].

Table 1. Microparticles size of CS and CS-XTDs (CS-6c, CS-6e, CS-6f, CS-6k) at different concentrations.

CS/CS-XTDs Size in Wet
State (µm)

Size in Dry
State (µm) CS-XTDs Size in Wet

State (µm)
Size in Dry
State (µm)

CS-6c1 904 ± 4.2 638 ± 3.1 CS-6f1 887 ± 2.1 614 ± 3.1
CS-6c2 897 ± 7.2 762 ± 2.5 CS-6f2 921 ± 4.0 675 ± 5.0
CS-6c3 951 ± 3.1 855 ± 2.1 CS-6f3 947 ± 3.2 751 ± 6.4
CS-6e1 858 ± 3.1 632 ± 3.5 CS-6k1 929 ± 6.0 639 ± 7.0
CS-6e2 923 ± 3.5 634 ± 4.7 CS-6k2 912 ± 5.0 688 ± 4.0
CS-6e3 953 ± 2.9 646 ± 4.0 CS-6k3 918 ± 2.1 728 ± 4.7

CS 825 ± 3.5 611 ± 3.1 - - -
1 = 3 mg/mL, 2 = 4 mg/mL, 3 = 5 mg/mL.

The SEM showed that chitosan microparticles (CS) have a spherical and regular shape, regular
outline and a slightly rough surface. Upon loading of XTD, a deformation of microparticles was
observed, which is intensified by the increasing concentration described in other studies [5]. The most
intense deformation was observed in the case of CS-6c3 (5 mg/mL), for which the spherical shape is
lost and pronounced flattening was recorded (Figure 2).

The results showed that a higher concentration of the cross-linking agent was associated with
decreased stability of microparticles during the gelation process. Also, it was highlighted that the
deformation of CS-XTDs microparticles during the air-drying process was directly proportional to
the concentration of the TPP solution, which resulted in strongly flattened microparticles being
obtained for a value of 3% TPP. The reticulation time is also an important parameter for the stability
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of microparticles; increasing the time was associated with the increased stability of the developed
polymeric systems [54,55].
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Figure 2. Scanning electron microscope (SEM) images for CS and CS-XTDs microparticles (a: CS,
b: CS-6c1, c: CS-6c2, d: CS-6c3, e: CS-6e1, f: CS-6e2, g: CS-6e3, h: CS-6f1, i: CS-6f2, j: CS-6f3, k: CS-6k1,
l: CS-6k2, m: CS-6k3); 1 = 3 mg/mL, 2 = 4 mg/mL, 3 = 5 mg/mL.
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3.1.2. Swelling Degree (SD)

The swelling degree is an important parameter in the release of the drug from the polymer matrix,
having an important influence on the drug’s bioavailability. The results for CS-XTDs systems recorded
in distilled water and simulated gastric fluid (SGF, pH 2.2) are presented in Figures 3–6. For distilled
water, the swelling degree values of CS-XTDs was comparable with that of CS. The CS-XTDs absorbed
the highest amount of water in the first 10 mins of the experiment, with the SD (%) value ranging
around 150% (Figures 3 and 4). This phenomenon could be explained by the cross-linking agent which,
by dissolution in aqueous medium, released the amino groups of chitosan, increasing the hydrophilic
character of the polymer matrix.

The thermodynamic equilibrium state was reached after different times depending on the structure
of XTDs loaded into the polymer matrix. At the end of the experiment the swelling degree values
ranged between 190 ± 2.6 (CS-6e3) and 206 ± 2.9 (CS-6k1). In similar conditions the recorded value for
CS was 209 ± 3.5 (Table 2).
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Table 2. Swelling degree of CS and CS-XTD at thermodynamic equilibrium state.

CS-XTDs SD (%) CS-XTDs SD (%) CS-XTDs SD (%) CS-XTDs SD (%)

CS-6c1 200 ± 2.7 * CS-6e1 205 ± 3.6 CS-6f1 205 ± 4.5 CS-6k1 206 ± 2.9
CS-6c2 195 ± 2.2 * CS-6e2 201 ± 1.7 * CS-6f2 197 ± 3.6 * CS-6k2 196 ± 5.2 *
CS-6c3 190 ± 4.1 * CS-6e3 190 ± 2.6 * CS-6f3 178 ± 3.1 * CS-6k3 189 ± 3.1 *

CS 209 ± 3.5 - - - - - -

* significant different (p < 0.05) in reference with CS; 1 = 3 mg/mL, 2 = 4 mg/mL, 3 = 5 mg/mL.

The analysis of the SD results recorded in SGF highlighted that the SD of CS-XTDs was lower
than of CS (375%) (Figures 5 and 6); the results could be explained based on the hydrophobic character
of the XTD loaded into the polymer matrix, a character which results in decreasing the chitosan
matrix permeability and thus the swelling degree. The presence of functional groups such as halogen
(6c) or methyl (6k), attached to the aromatic ring of the thiazolidine-4-one scaffold increases the
hydrophobic character of the XTD. Our observation is in agreement with other literature data [56].
A high absorption degree (over 300%) at the beginning of the experiment was observed, after which
it decreased in intensity. For CS the thermodynamic equilibrium state was reached after 2 h and
maintained until the end of the experiment. In similar conditions, for CS-XTDs the thermodynamic
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equilibrium state was reached after 40 min–2 h, depending on the kind of XTD loaded into the
polymer matrix, which could result in a shorter period.

3.1.3. Drug Loading and Entrapment Efficiency

The results obtained for drug loading (DL) and entrapment efficiency (EE) parameters are
presented in Figure 7 (CS-6c, CS-6e) and Figure 8 (CS-6f, CD-6k). The study highlighted that the
entrapment efficiency ranged between 63.71% (CS-6e1) and 93.91% (CS-6k3) and is directly proportional
to the concentration. The highest entrapment efficiency, at all three concentrations (3 mg/mL, 4 mg/mL,
5 mg/mL), was recorded for CS-6k, the values being: 87.86 ± 1.25% (3 mg/mL), 91.58 ± 0.55%
(4 mg/mL) and 93.91 ± 1.41% (5 mg/mL). These results could be explained based on the structure of
the XTD (6k), which has hydrophobic methyl group at para position of the aromatic ring. The XTD with
hydrophilic methoxy group attached at the ortho (6e) and para (6f) position on the aromatic ring have
showed lower values of entrapment efficiency.

1 

 

 

 

 

Figure 7. The Entrapment efficiency (EE%) and Drug loading (DL%) for CS–6c andCS-6e (1 = 3 mg/mL,
2 = 4 mg/mL, 3 = 5 mg/mL).

1 

 

 

 

 

Figure 8. The Entrapment efficiency (EE%) and Drug loading (DL%) for CS–6f and CS-6k (1= 3 mg/mL,
2 = 4 mg/mL, 3 = 5 mg/mL).

Concerning the DL of XTDs into the polymeric matrix, it was noted that this parameter increases
with the concentration. The obtained values ranged between 10.04 ± 0.49% (CS-6e1) and 22.02 ± 0.74%
(CS-6k3). As a previous parameter, the highest values were obtained for derivative 6k, which has a methyl
group at the para position of the aromatic ring as follows: 14.32± 1.12% (CS-6k1), 18.90 ± 0.67% (CS-6k2),
and 22.02 ± 0.74% (CS-6k3). A good correlation was also observed between DL and EE values, which
proves the accuracy of the study. Thus, it has been demonstrated that the optimal CS-XTD formulation
was obtained for 5 mg/mL of XTD.
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3.1.4. In Vitro Drug Release

The literature describes two methods for releasing the drugs from the polymer matrix: by direct
and indirect diffusion, the last one being based on the dissolution of the drug into the matrix, followed
by the release through membrane pores. In turn, the membrane permeability is influenced by the
method used to prepare the polymeric systems, by the morphology of microparticles, and not least by
the chemistry structure of the drug. The oral route is the most used for drug administration. After the
absorption of drugs through gastric or intestinal mucosa, it will pass to the blood system and then
will arrive at the site of action. Normally, the gastric pH ranges between 1 and 1.5 and will contain
99% water and only 1% different organic or inorganic substances, while the small intestine has a pH,
which ranges between 4.8 to 8.2.

In the SGF, the drug release from CS-XTD was ranging between 51.34% and 98.42%, while the
drug release in SFI was lower, being around 5%, excepting the CS-6k for which the drug release in SIF
was 17% (Figures 9 and 10). The lowest cumulative release was observed for CS-6f (CS-6f1 = 58.10%,
CS-6f2 = 51.34%, CS-6f3 = 54.52%), while the highest values were recorded for CS-6c (CS-6c1 = 98.42%,
CS-6c2 =89.92%, CS-6c3 = 97.44%).
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2 = 4 mg/mL, 3 = 5 mg/mL).

3.1.5. FTIR Analysis

The confirmation of the loading process was performed by highlighting in FTIR spectra the
CS-XTDs of the specific functional groups of the components of the polymeric matrix: CS, XTDs,
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and TPP. The FTIR spectra of CS-XTDs (CS-6c, CS-6e, CS-6f and CS-6k) at different concentrations in
reference with the FTIR spectra of CS and XTDs (6c, 6e, 6f and 6k) are presented in Figure 11.
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Figure 11. The Fourier transform infrared (FTIR) spectra of CS, XTDs (6c, 6e, 6f, 6k) and CS-XTDs
(CS-6c, CS-6e, CS-6f, CS-6k) (1 = 3 mg/mL, 2 = 4 mg/mL, 3 = 5 mg/mL).

In acetic acid solution, chitosan has a pKa of 6.3 and a polycationic structure with positively
charged amino groups. In water, TPP dissociates to form both hydroxyl and phosphoric ions. In the
crosslinking process the cationic amino groups of chitosan react with negatively charged TPP to form
ionic complexes by electrostatic bonds. A secondary mechanism based on hydrogen-hydrogen bonds
between the hydroxyl groups of CS and of TPP is also possible [50]. The XTDs are physically and
uniformly dispersed into the polymer matrix. The concentration of CS and XTDs are very important
parameters, because they influence the physic-chemical properties of the CS-XTD systems [49].

The specific vibrations of functional groups of CS have been identified in the following regions:
3362–3285 cm−1 (OH, NH), 2981–2872 cm−1, 1431–1414 cm−1 and 1377–1375 cm−1 (–CH2–CH3),
1661–1647 cm−1 (C=O), 1267–1250 cm−1 (C–N), 1034–1026 cm−1 (C–O–C). The presence of XTDs (6c,
6e, 6f and 6k) into the polymer matrix was confirmed by identification of the specific absorption bands:
NH bond (3362–3285 cm−1), thiazolidine-4-one ring: 2981–2872 cm−1 (–CH2–), 1724–1711 cm−1 (C=O)
and 671–660 cm−1 (C–S), aromatic ring: 3362–3285 cm−1, 810–746 cm−1 (=C–H), 1558–1549 cm−1 and
1494–1452 cm−1 (C=C), amide group, which are overlapping with valence vibrations of the same
group in the chitosan structure, and not the substituents on the aromatic ring at 1063–1059 cm−1 (C–O
from –OCH3 in case of 6e and 6f), 822–818 cm−1 (–Cl in case of 6c) and 1377–1375 cm−1 (–CH3 in
case of 6e, 6f and 6k). The reticulation agent, TPP, was identified by specific absorption bands in the
1151–1149 cm−1 region (P=O) and the 895–893 cm−1 region (P–O–P).

3.2. Biological Evaluation

3.2.1. Toxicity Degree

The toxicological screening highlighted that all tested XTDs (6c, 6e, 6f, 6k) have a low toxicity,
with the following LD50 values: 2125 mg/kg bw (6c), 1687.5 mg/kg bw (6e), 1937.5 mg/kg bw (6f) and
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1312.5 mg/kg bw (6k). These compounds proved to be less toxic than theophylline, which is used as
a starting reagent in their synthesis (LD50 = 332 mg/kg bw) [57] and supports the favorable influence
of thiazolidine-4-one scaffold upon the chemical modulation of xanthine structure.

3.2.2. Antibacterial/Antifungal Study

The data presented in Table 3 showed that XTDs (6a–k) and CS-XTDs3 (CS-6c3, CS-6e3, CS-6f3,
CS-6k3) are active on both bacterial and fungal strains, the diameter of the inhibition area being in
correlation with structure of the XTD and also with bacterial and yeasts strains, respectively.

Table 3. Antibacterial/antifungal inhibition area (mm) of XTDs (6a–k) and CS-XTDs.

Sample
Diameter of Inhibition Area*(mm)

Bacterial Strains Yeasts Strains

SA SL EC CA CG CP

6a 15.2 ± 0.23 20.1 ± 0.17 12.2 ± 0.35 11.1 ± 0.36 12.2 ± 0.22 12.2 ± 0.24
6b 15.3 ± 0.40 19.1 ± 0.28 11.1 ± 0.23 10.1 ± 0.21 10.8 ± 0.37 10.3 ± 0.31
6c 14.9 ± 0.21 19.0 ± 0.13 10.4 ± 0.15 15.2 ± 0.21 12.1 ± 0.42 11.2 ± 0.24
6d 17.1 ± 0.24 18.1 ± 0.42 11.2 ± 0.47 10.0 ± 0.11 11.0 ± 0.46 11.3 ± 0.32
6e 14.0 ± 0.38 18.8 ± 0.29 11.1 ± 0.14 10.1 ± 0.28 10.9 ± 0.26 14.2 ± 0.12
6f 15.0 ± 0.50 20.1 ± 0.43 11.2 ± 0.35 12.1 ± 0.07 10.0 ± 0.06 15.2 ± 0.11
6g 15.5 ± 0.27 20.0 ± 0.31 12.1 ± 0.26 11.3 ± 0.23 16.1 ± 0.28 15.4 ± 0.31
6h 15.4 ± 0.34 19.2 ± 0.09 12.0 ± 0.06 15.2 ± 0.26 19.1 ± 0.17 12.0 ± 0.14
6i 15.4 ± 0.25 19.1 ± 0.11 12.1 ± 0.04 12.5 ± 0.10 15.0 ± 0.24 12.1 ± 0.23
6j 15.2 ± 0.14 19.1 ± 0.17 12.2± 0.26 12.2 ± 0.26 15.3 ± 0.09 12.1 ± 0.24
6k 14.3 ± 0.19 17.8 ± 0.23 11.0 ± 0.31 10.3 ± 0.23 13.2 ± 0.11 11.0 ± 0.13

CS-6c3 16.4 ± 0.41 21.0 ± 0.23 12.3 ± 0.21 17.4 ± 0.29 14.3 ± 0.38 13.2 ± 0.31
CS-6e3 15.2 ± 0.23 20.4 ± 0.21 13.4 ± 0.25 12.5 ± 0.21 12.6 ± 0.21 15.4 ± 0.26
CS-6f3 21.2 ± 0.43 25.1 ± 0.28 14.7 ± 0.38 16.7 ± 0.42 12.3 ± 0.51 18.4 ± 0.42
CS-6k3 17.1 ± 0.32 22.4 ± 0.18 15.2 ± 0.18 14.6 ± 0.21 16.3 ± 0.38 17.2 ± 0.35

CS 12 ± 0.35 11 ± 0.26 9 ± 0.41 - - -
Ca 25.1 ± 0.08 25.0 ± 0.1 28.9 ± 0.18 - - -
Ab 27.1 ± 0.12 31.8 ± 0.15 21.0 ± 0.21 - - -
Nc - - - 20.1 ± 0.11 21.0 ± 0.14 20.1 ± 0.09

* mean values (n = 3) ± standard deviation. SA = Staphylococcus aureus ATCC 25923; SL = Sarcina lutea ATCC 9341;
EC = Escherichia coli ATCC 25922; CA = Candida albicans ATCC 10231; CG = Candida glabrata ATCC MYA 2950; 3 = 5
mg/mL; CP = Candida parapsilosis ATCC 22019; Ca= Ciprofloxacin (30 µg/disc); Ab = Ampicillin (25 µg/disc); Nc =
Nystatin (100 µg/disc).

Referring to the XTDs it was noted the most active compound on Staphylococcus aureus ATCC 25923
was 6d, for which the diameter of the inhibition area was 17.1 ± 0.24 mm. The compounds 6a, 6f and 6g
showed improved antibacterial effects on Sarcina lutea ATCC 9341, their effect (6a: 20.1 ± 0.17 mm, 6f:
20.1± 0.43 mm, 6g: 20.0± 0.31 mm) being higher than the effect of CS and comparable with ciprofloxacin
(25.0 ± 0.1 mm). The effect of XTDs on Gram negative bacterial strain Escherichia coli ATCC 25922 was
reduced in reference to Gram positive bacterial strains (Staphylococcus aureus, Sarcina lutea), the diameter
of the inhibition area ranging between 10.4 mm and 12.2 mm.

Appreciable antifungal effects were noted for compounds 6c and 6h on Candida albicans ATCC
10231 (15.2 ± 0.21 mm and 15.2 ± 0.26 mm respectively), for 6h and 6g on Candida glabrata ATCC MYA
2950 (19.1 ± 0.17 mm and 16.1 ± 0.28 mm respectively) and for 6f and 6g on Candida parapsilosis ATCC
22019 (15.2 ± 0.11 mm and 15.4 ± 0.31 mm respectively).

As we expected, the loading of the XTDs into the polymer matrix based on chitosan was associated
with increasing the antimicrobial effects, all CS-XTD systems (CS-6c, CS-e, CS-6f, CS-6k) show improved
antibacterial and antifungal effects in reference to corresponding XTD (6c, 6e, 6f, 6k) (Table 3).

The antibacterial effect of 6d was confirmed by the broth micro-dilution assay, for which the minimum
inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 0.3125 mg/mL and
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10 mg/mL, respectively (Table 4). The similar results were obtained also for 6a. It was also noted that,
in most cases, the value of MBC was 10 mg/mL, higher than the value of MIC, which means that the
compounds act, especially, by the inhibition of microbial growth that can then act as bactericidal agents.

Table 4. Antimicrobial activity expressed as MIC and MBC values (mg/mL) of XTDs (6a–k).

Sample
Staphylococcus Aureus

ATCC 25923
Escherichia Coli ATCC

25922
Candida Albicans ATCC

90028

MIC * MBC * MIC * MBC * MIC * MBC *

6a 0.625 10 1.25 1.25 1.25 1.25
6b 2.5 10 2.5 2.5 1.25 1.25
6c 2.5 10 1.25 1.25 1.25 2.5
6d 0.3125 10 1.25 2.5 2.5 2.5
6e 1.25 10 1.25 1.25 1.25 2.5
6f 0.625 10 1.25 2.5 2.5 2.5
6g 0.625 10 1.25 2.5 2.5 2.5
6h 1.25 5 2.5 2.5 2.5 2.5
6i 0.625 10 2.5 2.5 2.5 2.5
6j 0.625 10 1.25 2.5 2.5 2.5
6k 1.25 10 0.625 2.5 0.625 1.25
A 1 1 2 1 2 1 4 1 - -
N - - - - 8 1 16 1

* mean values (n = 3) ± standard deviation; 1 µg/mL.

4. Conclusions

In this study new polymeric systems based on chitosan (CS) loaded with new xanthine derivatives
with thiazolidine-4-one scaffold (XTDs) were developed and characterized. The success of the loading
process was proved by highlighting in FTIR spectra of the CS-XTDs of the specific functional groups of
XTD. The optimized polymeric systems were evaluated in terms of particle size, morphology, swelling
degree, drug loading and entrapment efficiency. The results demonstrated a good swelling degree for
CS-XTDs and the entrapment efficiency of the XTD into polymer matrix was between 63% and 94%.
In the simulated biological fluids (SGF, SIF), an increased cumulative release, between 54.52% and
97.44% was observed. The data supports also improved antimicrobial effects for CS-XTDs in reference
with XTDs. Based on the obtained results the developed polymeric systems could have important
applications in the food field as active multifunctional (antimicrobial, antifungal) packaging materials
and in medical and pharmaceutical fields.
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Abbreviations

ABTS 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)
bw Body weight
CFU Colony Forming Unit
CS Chitosan
CS-XTDs Chitosan microparticles loaded with xanthine derivatives with thiazolidine-4-one scaffold
DL Drug loading
DMSO Dimethyl sulfoxide
DPPH 2,2-diphenyl-1-picryl-hydrazyl-hydrate
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DR Drug release
EE Entrapment efficiency
FT-IR Fourier transform infrared
LD50 Lethal dose 50
MBC Minimum bactericidal concentration
MFC Minimum fungicidal concentration
MIC Minimum inhibitory concentration
SD Swelling degree
SEM Scanning electron microscopy
SGF Simulated gastric fluid
SIF Simulated intestinal fluid
TPP Pentasodium tripolyphosphate
XTDs Xanthine derivatives with thiazolidine-4-one scaffold
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