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Abstract 

Cardiovascular diseases, including myocarditis and myocardial infarction (MI), pose substantial health risks due to their life-
threatening nature. This article delves into the complexities of distinguishing these conditions, as they share symptoms and 
diagnostic challenges. It underscores the vital role of advanced imaging techniques, such as cardiac magnetic resonance imaging 
(CMR), and emphasizes the emerging importance of artificial intelligence (AI), particularly the innovative DOC-Net+ 
architecture, in refining precision. 

Through a comprehensive exploration of the EMIDEC challenge, which combines clinical data with MRI insights, this study 
highlights AI's potential to enhance diagnosis accuracy. Notably, our implementation of both the DOC-NET and DOC-NET+ 
architectures yielded promising classification results, achieving 97% and 98% accuracy, respectively, on our newly established 
dataset. 
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1. Introduction 

Due to their potentially life-threatening nature, cardiovascular diseases pose a significant public health hazard. This 
category encompasses a wide range of illnesses that affect the anatomy, function, or electrical activity of the heart. 
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From congenital defects to acquired disorders, cardiac illnesses have a profound impact on individuals of all ages, 
leading to severe health consequences and notably high mortality rates [1]. Among these conditions, Myocarditis and 
Myocardial Infarction (MI) stand out as two distinct cardiac diseases, often presenting with overlapping symptoms, 
similar test findings, diagnostic imaging limitations, and the need to consider timing and clinical context. These 
complexities further challenge their differentiation. 

Myocarditis refers to the myocardium inflammation, often caused by viral infections or autoimmune processes [2]. 
In recent times, there have been concerns regarding myocarditis related to the coronavirus disease pandemic 2019 
(COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its occurrence, either 
independently or in conjunction with COVID-19, has raised alarms within the medical community due to its potential 
impact on cardiac function and heightened risk of severe outcomes [3,4]. Conversely, MI, also recognized as a critical 
manifestation of coronary artery disease (CAD), occurs when the coronary arteries are obstructed, leading to 
insufficient blood supply. This condition is further categorized into two types: ST-elevation MI (STE-MI) and non-
ST-elevation MI (NSTE-MI), both falling under the spectrum of acute coronary syndrome (ACS) [5]. 

Efficiently distinguishing between myocarditis and MI hinges on factors like patient history, risk elements, and 
symptom timing. Myocarditis is often linked to viral infections or autoimmunity, indicating inflammation, whereas 
MI is correlated with conditions like hypertension and smoking, associated with atherosclerosis. These distinctions 
become challenging in cases with incomplete patient histories, necessitating heightened investigative efforts. Given 
the common symptoms as chest pain, breathlessness, and fatigue, a refined exploratory approach is essential. The 
application of endomyocardial biopsy (EMB) proves valuable, directly assessing heart tissue. However, due to its 
invasiveness and potential for false negatives, EMB is selectively employed [6]. Although cardiac troponin, marker 
tests, ECG, and echocardiography provide initial insights, their limitations call for additional techniques [7-11]. This 
is where tools like cardiac magnetic resonance imaging (CMR) or coronary angiography significantly contribute to 
elevating diagnostic accuracy [12]. 

CMR plays a vital role in distinguishing between various disorders due to its unique sequencing methodologies. It 
can assess ventricular function, identify features associated with inflammation and oedema, and detect pathological 
anomalies, including scar tissue, by utilizing different sequences, particularly the Late Gadolinium Enhancement 
imaging (LGE) which utilizes a gadolinium-based contrast agent [13]. The utilization of CMR is significantly 
enhanced by the application of the Lake Louise Criteria (LLC), initially established in 2009 [14]. These criteria require 
the presence of at least two qualifications for a positive diagnosis, including oedema on T2-weighted imaging, 
hyperaemia on T1-weighted images, and fibrosis apparent through LGE, thereby improving clinical acuity. 

However, successful interpretation of CMR images in complex scenarios requires an understanding of specific 
patterns and anomalies. In myocarditis, the delayed enhancement (DE) pattern often presents as a patchy or multifocal 
distribution throughout the myocardium, indicating localized inflammatory infiltrates and areas of myocyte damage. 
Conversely, MI exhibits a distinct pattern characterized by transmural enhancement extending from the endocardium 
to the epicardium. This transmural pattern encompasses the entire infarcted area, indicative of irreversible damage 
caused by coronary artery occlusion [15]. Distinguishing between myocarditis and MI based solely on small tissue 
feature changes can be challenging, as LGE patterns may be indeterminate or atypical. Additionally, image quality 
and artifacts, such as patient motion or metallic implants, can compromise clarity, making it difficult to visualize 
specific structures and measure tissue attributes. Furthermore, discrepancies in CMR procedures and approaches 
across different centres can further contribute to these challenges [16,17]. 

In recognition of the limitations discussed earlier, the EMIDEC challenge [18] emerged as a response to these 
quests. This challenge was conducted as part of the STACOM workshop, in conjunction with MICCAI 2020. The 
primary objective of the challenge was to leverage a combination of clinical physiological data and delayed 
enhancement magnetic resonance imaging (DE-MRI) to address the classification task. This initiative highlighted the 
increasing importance of artificial intelligence (AI) in cardiac imaging, aiming to enhance diagnostic accuracy and 
expedite the differentiation process [19]. 

The paper aims to present a state-of-the-art analysis of studies conducted within the context of the EMIDEC 
challenge. It will explore existing research and advancements in this field. Additionally, this work will introduce a 
novel database specifically created for this study, detailing the data collection procedure and the various imaging 
techniques employed. In addition, a thorough examination of the state-of-the-art will inform the selection of a specific 
technique for leveraging our new dataset. 

The paper is structured as follows: 
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Section 2 provides an EMIDEC challenge overview and state-of-the-art studies in the domain. 
Section 3 introduces the study's database, discussing its creation and protocol selection. 
Section 4 presents experiment results and in-depth findings. 
Finally, Section 5 concludes by summarizing key insights and suggesting future research directions. 
 

2. EMIDEC Background 
2.1. EMIDEC Database 

 
The EMIDEC challenge Dataset [18] comprises a comprehensive collection of delayed Enhancement (DE-MRI) 

scans and associated clinical information from 100 individuals. This dataset was created from real clinical exams 
acquired at the University Hospital of Dijon (France) and made available during the MICCAI 2020 conference. It 
includes DE-MRI images in the short-axis orientation, covering the left ventricle from the base to the apex, along with 
ground truth contours of the myocardium and diseased areas. Each DE-MRI examination typically consists of seven 
slices. The DE-MRI acquisitions were conducted using 1.5 T and 3 T magnets as part of a standard cardiovascular 
exam.  In addition to the imaging, a text file containing 12 clinical details was provided, encompassing information 
such as sex, age, smoking habits, overweight status, hypertension, diabetes, family history of coronary artery disease, 
ECG, Killip max, troponin, ejection fraction, and NTproBNP. The dataset exhibits an asymmetric distribution, with 
approximately one-third of the cases classified as normal and the remaining two-thirds as pathological, representing 
real-world conditions observed in MRI departments. 

However, it's imperative to recognize that the EMIDEC dataset is underpinned by a retrospective study design. 
Moreover, the acquisition of MR images adheres to a conventional cardiovascular examination protocol, potentially 
confining the applicability of the findings. Furthermore, it's noteworthy that the dataset exclusively encompasses DE-
MRI scans in the short-axis orientation, a feature that might curtail a comprehensive evaluation of the myocardium's 
condition. 

 
2.2. EMIDEC related Works 

 
These studies can be broadly categorized into two primary domains: distinguishing between myocarditis and MI 

and differentiating normal cases from abnormal ones. In a notable study, Shi et al. employed a 3D Convolutional 
Neural Network (CNN) to predict the infarction area and calculate its volume. By integrating this information with 
other clinical parameters, they achieved promising results using a random forest model [20]. In another approach, 
Girum et al. proposed a two-stage framework employing separate neural networks to segment anatomical structures 
and pathological areas. Their method showed favourable accuracy by incorporating DE-MRI data and utilizing a 
cascaded support vector machine (SVM) [21]. Building upon these findings, Ivantsits et al. extended the research by 
combining deep learning (DL) and classical machine learning techniques (ML). Their approach yielded impressive 
accuracy in the classification task, showcasing the potential of these combined methodologies [22]. In 2023, Atallah 
et al. introduced AutoMyIn, an automated diagnostic tool for diagnosing MI. By training multiple lightweight CNNs 
using textural-based information from DE-MRI, they utilized the GLCM method with different grey levels [24]. 
Similarly, in the same year, Rahman et al. conducted a groundbreaking study focusing on classifying patients in the 
emergency department based solely on clinical information [25]. Their approach aimed to differentiate between 
myocarditis, MI, and other patient conditions using DE-MRI as the reference standard. 

Lourenço et al.'s work was particularly attractive, achieving 100% accuracy. They employed Clinic-NET, a 4-layer 
fully connected neural network (FCNN), to achieve excellent classification performance using clinical parameters. By 
further enhancing their results through the incorporation of DE-MRI images processed with 3D convolutional layers, 
they demonstrated the effectiveness of their approach called DOC-NET [23]. 

 Table 1 contains a summary of these results, including major findings, and limitations.  

TABLE I.  EMIDEC DATA IN RECENT STUDIES: FINDINGS AND LIMITATIONS 



 

All the studies faced challenges related to employing a relatively small dataset and the inability to cross-reference 
their methods with various datasets. These limitations underscored the necessity for additional validation. Encouraged 
by the remarkable performance exhibited by Lourenço et al.'s DOC-NET+ model, which achieved a flawless 100% 
accuracy in the EMIDEC challenge, we have opted to integrate this approach into our investigation. However, to 
ensure a precise alignment of the model with our research objectives, we have proactively taken steps to curate a 
tailored database. The following paragraph will provide in-depth insights into this database, explaining its construction 
process and relevance to our study pursuits. 

3. Material and Methods  
3.1. Database of interest 

 
Through a fruitful collaboration with the Military Hospital of Tunis, we have successfully created a comprehensive 

and invaluable database of cardiac imaging. Our meticulous collection process utilized a 1.5T General Electric (GE) 
MRI Scanner, ensuring the acquisition of consistently high-quality images. 

To capture a wide range of cardiac assessment aspects, we employed a variety of customized imaging techniques. 
Cine sequence images were collected across multiple planes, including long and short axis views, enabling a dynamic 
assessment of heart activity and accurate measurement of ventricular volumes. This approach allows for reliable 
monitoring of ventricular parameters and real-time observation of the heart's movement. Parameters were carefully 
considered to optimize both temporal and spatial resolution, as well as image contrast and clarity. The settings used 
were as follows: repetition time (TR) of 3.4 ms, echo time (TE) of 1.3 ms, flip angle (FA) of 50⁰, Field of View (FOV) 
ranging from 320-340 mm, matrix size of 256x144, and slice thickness of 8 mm. 

Assessing the properties of the myocardium is of paramount importance in detecting, enhancing visibility, and 
understanding cardiac diseases. In our dataset, we employed two advanced techniques: phase-sensitive inversion 
recovery (PSIR) and late gadolinium enhancement (LGE). PSIR leverages the phase information of the acquired 
images to enhance visibility and improve scar tissue detection. LGE, on the other hand, requires the administration of 
a gadolinium-based contrast agent (Dotarem 0.2 mmol/kg body weight) and the acquisition of images using an 
inversion-recovery gradient-echo approach. This method reveals specific locations in the heart where the contrast 
agent accumulates selectively, offering crucial diagnostic insights into the number and distribution of tissue defects. 

The inversion time (TI) was carefully and repeatedly adjusted to precisely nullify the myocardium, enabling 
optimal visualization of enhanced areas. This recurrent approach guarantees accurate capture of contrast uptake and 
dispersion, increasing the dataset's diagnostic value. The imaging parameters used for LGE imaging were as follows: 
TR = 10.5 ms, TE = 5.4 ms, FA of 30°, FOV of 350x262 mm², a matrix size of 256x162, a slice thickness of 6 mm, a 
receiver bandwidth (BW) of 140 Hz/px, and a GRAPPA acceleration factor of 2. 

Our dataset is exceptionally rich, encompassing a diverse range of cases, including various forms and 

Authors, Reference  Accuracy Results Limitations 

Shi et al. [20] 95.3% 
-very small Dataset  
-Extracted only spatial features. 
-Used only one type of feature extracted from one CNN. 

Girum et al.[21] 
80% (clinical parameters) 

93.3% (DE-CMR) 

- Limited generalizability to diverse datasets and real-world scenarios. 
- Dependency on clinical information availability and quality. 
- Potential interpretability and computational requirements challenges. 

Ivantsits et al. [22] 96% 

-very small Dataset 
-Extracted only spatial features. 
-Used only one type of feature extracted from the classical feature extraction 
method. 

Lorenco  et al. [23] 

Clinic-NET : 85% 
DOC-NET : 95% 

DOC-NET+ :100% 
Clinic-NET+: 100% 

-very small Dataset 
-Extracted only spatial features. 
-Used only one type of feature extracted from one CNN. 
 

Rahman et al. [25] 
Oversampling and Stacking: >97% 

Light Gradient and Boosting Machine: >96%. 
- The results may not be applicable to other populations or diseases. 
 

Attalah et al. [24] 

Accuracy: 98% 
Sensitivity: 99% 
Specificity: 96% 
Precision: 96% 

- Small training/validation samples that are not sufficient for deep learning of 
many hyperparameters. 
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manifestations of myocarditis and MI. These conditions present themselves in different stages and patterns, adding 
complexity and interest. Additionally, we have obtained longitudinal follow-up data for select patients, allowing for 
detailed observation and analysis of disease progression or stability over time. The diverse nature and complexity of 
the included cases make our dataset ideal for training and evaluating machine learning models. Exposure to a wide 
spectrum of scenarios enhances the model's ability to learn and generalize. Samples from our database are depicted in 
Figure 1, illustrating the contrast enhancement (blue arrow). 

 

Fig. 1. Cine, PSIR and LGE samples for a 24 YO Pathological male subject. 

3.2. DOC-NET and DOC-NET+ 

In our research, we were inspired by the architecture proposed by Lourenço et al. [23], which goes by the names 
DOC-NET and its enhanced successor DOC-NET+. These two DL neural networks were designed to capitalize on 
the potential of patient clinical data and DE-CMR images for the automated prediction of myocardial illnesses.  

DOC-NET is an amalgamation of features extracted from DE-CMR images and metadata, resulting in a robust 
classification framework. Its image feature extraction design encompasses seven distinct layers: beginning with 3D 
convolutions employing 3x3x3 kernels and a stride of 2, spanning various channel counts (4, 8, 16, 32, 64, 16, 8). 
The subsequent layers incorporate instance layer-normalization, a 20% dropout probability, and the Parametric 
Rectified Linear Unit (PReLU) activation. The resultant image feature vector is flattened into an 8-element array 
and seamlessly combined with a 12-variable metadata set. This combined vector serves as the input to a fully 
connected neural network akin to Clinic-Net. The sizes of the three fully connected layers within DOC-NET are 
meticulously adjusted to match the updated input size: fc1 = 33, fc2 = 50, and fc3 = 16. 
Evolved from its precursor, DOC-NET+, emerges as an upgraded version enriched with insights from DE-CMR. 
These insights are manifested as volumetric representations of segmentation labels, derived from meticulous manual 
segmentations or an innovative segmentation neural network. 

4. Results and Discussion  

In our classification task, we have chosen to adopt the DOC-NET+ architecture based on the exceptional 
performance reported by Lourenço et al. in the EMIDEC challenge [23]. To ensure a rigorous result, we have 
replicated the conditions of the challenge, using the same image numbers and patient distribution as the original 
dataset (normal patients is 33 and patients pathological is 67). 

Table 2 contains the comprehensive findings of the accuracy rates achieved by both configurations. Furthermore, 
we will present a detailed comparison of our results with the EMIDEC database outcomes, providing for a better 
understanding of the effectiveness and generalizability of those protocols. 

TABLE II.  COMPARATIVE TABLE . 

Protocol 
Accuracy (same image number and patient distribution) 

EMIDEC dataset Our new Dataset 

DOC-NET 95% 97% 



Protocol 
Accuracy (same image number and patient distribution) 

EMIDEC dataset Our new Dataset 

DOC-NET+ 100% 98% 

                   Accuracy (Increasing patients’ number and images) 

DOC-NET+ --- 91% 

 

The deployment of both the DOC-NET and DOC-NET+ layouts in our study initially produced outstanding 
results, highlighting their potential for precise classification. DOC-NET achieved a commendable 97% accuracy. 
This achievement was largely due to our initial focus on typical myocarditis and MI images, which the model found 
reasonably easy to learn and categorize consistently. However, as our dataset expanded to encompass a greater 
number of patients and a diverse array of diseases in various forms and stages, the model's accuracy encountered 
challenges. The accuracy diminished to 91% as the dataset complexity increased. This decline highlights the 
influence of dataset characteristics on the model's ability to generalize effectively. To delve further into the factors 
contributing to this decrease in performance, we identified specific instances where the model struggled to correctly 
identify pathology. By analyzing these cases, we aim to gain insights into limitations and potential weaknesses when 
dealing with challenging scenarios. In the upcoming Figure 2, we will provide a comprehensive overview of these 
complex cases, offering visual examples and discussing potential reasons for misclassification. 

 
                               

 
 
 
 
 
 
 

                                             
          (a)                                                 (b)                  

                                                                       Fig. 2. New Database examples of misclassified images. 

When patients exhibit multiple disorders simultaneously, the model often faces difficulties and a potential 
reduction in accuracy. This may stem from the model's limitations in distinguishing and precisely identifying 
conditions that overlap or coexist. 

For example, in the case of one patient (a), the LGE images displayed a contrast pattern suggestive of ischemic 
cardiomyopathy (IDM) (indicated by the red arrow). However, it remains uncertain why the model failed to 
accurately predict this condition in that specific instance. The presence of a confounding factor, such as no reflow, 
could conceivably influence the model's predictions, and contribute to the observed discrepancy. 

Furthermore, the model's struggle to accurately predict the specific image could also be attributed to the intricate 
and variable nature of the myocarditis pattern. Myocarditis often presents a multifocal distribution, which poses a 
challenging task for the model's classification capabilities, as evidenced in case (b). 

5. Conclusion  

Finally, this study undertook a complete examination of the EMIDEC Challenge's state-of-the-art. We developed 
a large database of CMR images using a 1.5T GE MRI scanner, which allowed us to gain deep insights into heart 
tissue and irregularities. Implementing advanced DOC-NET and DOC-NET+ architectures, we achieved promising 
classification results. DOC-NET reached 97% accuracy on our new dataset, while DOC-NET+ achieved 98%. 
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However, with the inclusion of more complex cases, DOC-NET+'s accuracy decreased to 91%. Our analysis of 
misclassified images highlighted limitations, especially in complex cases. 

Future work will focus on refining algorithms to handle diverse data sources and incorporating additional heart 
function parameters for improved predictions. We'll also explore more sensitive parametric approaches for enhanced 
cardiac issue forecasting. 
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