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COLOR FUNDUS IMAGE ENHANCEMENT – A DEEP 

LEARNING BASED DESKTOP APP FOR EARLIER 

SCREENING OF DIABETIC RETINOPATHY USING REAL-

TIME HANDHELD FUNDUS CAMERA  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract— Diabetic retinopathy (DR) is a common 

complication of diabetes that affects the blood vessels in the 

retina. It is a leading cause of vision loss worldwide. Early 

detection and intervention are crucial in preventing irreversible 

damage to the eyes. In this study, we propose a computer-aided 

diagnosis (CAD) system for the early detection of DR. Using a 

portable non-mydriatic fundus camera, we captured retinal 

images and applied deblurring and contrast enhancement 

techniques to improve image quality. We employed fine-tuning 

and transfer learning, specifically utilizing DenseNet-121, to 

detect DR from our private dataset. Additionally, two large 

datasets, APTOS and EyePACS, were used to train and evaluate 

different transfer learning DNN models. We found that the 

DenseNet-121 network achieves better results of accuracy with 

97.3856 and 90.9000 respectively for APTOS and EyePACS 

datasets. The denseNet-121 is also used to detect DR from our 

private dataset and gives a higher accuracy of 98.6111. This 

work has designed a deep learning-based Desktop app, which 

captures and processes the fundus images for earlier screening 

of DR in remote medical centers or areas with limited access to 

Table-top fundus cameras and ophthalmologists. 

Keywords— A deep learning based Desktop app, earlier 

screening of DR, real-time eye diagnosis, handheld fundus 

camera. 

I. INTRODUCTION 

According to the WHO (World Health Organization), at least 

2.2 billion people worldwide suffer from visual impairment. 

Age-related macular degeneration, cataracts, diabetic 

retinopathy, and glaucoma are some of the main reasons. The 

International Diabetes Federation (IDF) estimated that in 

2019 there were 463 million diabetics worldwide, and that 

number is expected to rise to 700 million by 2025. Diabetic 

Retinopathy is a complication, considered to be a 

consequence of diabetes [1]. 

The top three regions where diabetic retinopathy (DR) 

prevalence is reported to be the highest are: Africa (35.9%, 

i.e., 6.99 million), Middle East and North Africa (32.9%, i.e., 

18.07 million) and North America and Caribbean (33.3%, 

i.e., 15.89 million). DR is one of the main causes of blindness 

and visual impairment in adults aged 50 and over. The higher 

rate of untreated eye diseases in low-income areas further 

exacerbates the DR related problem. Additionally, with 

population growth and the aging of the population, the risk of 

more people suffering from such visual impairment also 

increases. 

It is therefore essential to conduct screening, that will help in 

early diagnosis of DR, which is easier during the initial stage 

of the condition called Non-Proliferative Diabetic 

Retinopathy. However, this screening often requires 

expensive equipment which is available only in 

ophthalmology centers. Moreover, scheduling routine 

preventative checkups with an ophthalmologist are 

challenging in rural locations, further hindering the early 

identification of DR. Therefore, the screening needs to be 

accessible, calling for an automated system Computer Aided 

Diagnosis (CAD), which is mobile, has low cost and is easy 

to use by oculist, orthoptist, nurse.  

Such a system must ensure the acquisition of patient fundus 

images in "real time" using portable retinal cameras (non-

mydriatic fundus camera) connected either to Desktops or 

smartphones, which will provide the screening results, 

thereby assisting in early diagnosis of DR. Once the diagnosis 

results are established during the consultation, in-depth 
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examination by ophthalmologists takes place at a remote 

ophthalmology site [2]. 

The research presented in this article is part of a project that 

aims to designing and developing an automatic system to 

assist in early detection and diagnosis of ocular pathologies, 

using fundus images of the eye captured by portable retinal 

cameras. The target system - once ready - could be deployed 

on pilot sites as part of tele-ophthalmology networks. One 

such deployment is aimed towards the Fez region of 

Morocco, with a current diabetic patient count of 1.5 million 

and is expected to increase to 2.6 million by 2030 [Reference: 

Ipos Health Care]. As per Moroccan Society of 

Ophthalmology, the main cause of blindness is DR, affecting 

50% of type 2 diabetes patients. However, lesions that can be 

detected on fundus imaging are caused by the early stages of 

DR. Early detection enables the provision of preventative 

treatment with the objective of halting DR development, 

thereby reducing the risks of irreparable eye damage. 

Our target system developed as a tele-ophthalmology-based 

application (Fig.1), will constitute a novel approach of 

providing itinerant visual care in rural areas of Fez and its 

region (Rural Eye Care), connected to a pilot site at the 

Tertiary Ophthalmology Center and Vision Center at Omar 

Drissi Hospital, CHU HASAN II, Fez. This will eventually 

help to overcome the serious dearth of ophthalmologists. 

There are currently only 330 ophthalmologists, working in 

the public sector, whereas more than 80 % of the private 

sector's ophthalmologists are centered on the Casablanca-

Kenitra axis [3]. 

Our designed system will contribute towards providing the 

health-care solutions at the doorsteps of the patients; easing 

the workload of ophthalmologists and unavailability or 

shortage of expensive ophthalmology devices needed for 

visual exploration assessments. The accuracy of the diagnosis 

is dependent on both: quality of the acquired retinal images 

and robustness of the early diagnosis assistance application. 

The images acquired by portable retinal cameras may have 

limitations such as blurred or noisy images marred by specific 

artefacts, making them both challenging to interpret 

(analyzable on observation by ophthalmologists) and 

potentially degrading the robustness of the automatic system 

for early detection and diagnosis of DR. 

This work has the following contributions: 

1. We conduct a comprehensive and comparative study 

of techniques for enhancing fundus images captured 

by portable retinal cameras. We evaluate each of 

these noise reduction and contrast enhancement 

techniques, using the image quality evaluation 

metrics (PNSR, SSIM, RCEF). This evaluation 

enabled us to build different improvement chains, 

comparatively evaluate them, and then exploit the 

most relevant one in the pre-treatment step- 

upstream of the automatic system of aid in early 

detection of DR. This study has resulted in a 

software framework ensures the acquisition of 

quality and interpretable images. 

2. Our proposed CAD system relies on a Fine-Tuning 

model of deep transfer learning-based models for 

DR detection. A private image database of patients 

from the ophthalmology department of the Omar 

Drissi Hospital, CHU HASAN II, Fez, as well as 

public fundus image databases such as APTOS and 

EyePACS are used. We evaluate our system using 

several metrics such as accuracy, precision, 

sensitivity, specificity and, F1-score. The images 

from the private database are acquired in real time 

by the oDocs nun IR portable camera, thereby 

making our study more applicable on real subjects.  

3. We designed an automated software application 

capable of operating from a Desktop, which assists 

in early diagnosis of DR.  

The rest of the paper is organized as follows. Section II 

reviews the existing efforts on earlier screening of DR from 

Fig. 1 : The Teleophthalmology Process of Our Innovative Approach providing itinerant visual care in rural areas connected to a pilot site 



retinal images using handheld portable non-mydriatic fundus 

camera. Section III details our comparative study and 

analysis of fundus image enhancing methods. Section IV 

describes the development of deep transfer learning models 

for Early Diabetic Retinopathy Screening (i.e., Non-

Proliferative Diabetic Retinopathy), including: the used 

datasets, data preparation & training, creating the DNN 

model for earlier DR screening, performance results & 

discussion, and software framework implementation as 

Desktop app. Finally, we conclude in Section V. 

II. RELATED WORK 

There are several levels of severity associated with the 

disease of DR. The main levels can be categorized in either 

non-proliferative (NPDR) or proliferative DR with 

Proliferative DR (PDR) being the advanced stage. NPDR is 

further categorized into three stages: mild, moderate, and 

severe [1]. For the purpose of DR detection, numerous 

computer-based techniques have been developed and 

reported in the literature.  More recently, researchers have 

started using deep learning techniques for DR detection as 

deep learning algorithms - particularly transfer learning 

approach - have demonstrated promising results for image 

processing tasks. 

The DR detection phases can be divided into two categories: 

binary classification, i.e., detecting the presence or absence 

of DR, and categorization into five stages. These types of 

image classification tasks can be grouped into conventional 

image processing techniques  that use deep learning 

mechanisms such as deep convolutional neural networks 

(DCNNs) [4]. The diagnosis of ocular diseases frequently 

involves the use of a fundus camera, which has shown 

effective and efficient results when employed for screening 

retinal diseases such as DR [5]. The portability of a handheld 

fundus camera might render it an alternate tool for cost-

effective DR screening. Additionally, it is also a suitable 

option for teleophthalmology consultations in cases when 

they are not readily accessible. Currently, digital tablets and 

smartphones are being utilized to collect the patient's ocular 

images, which might be shared with the ophthalmologist for 

further medical evaluation and diagnosis [6] [7]. Many 

computer-aided diagnosis methods for early screening, 

detection & grading of DR have been developed. Researchers 

have recently used deep learning models for DR detection, 

due to their success in image processing tasks. E.g., in [8] the 

authors have implemented a CNN using standard trainable 

and non-linear layers, for classification. Transfer learning 

techniques offer great advantages in achieving high 

performance while reducing training time, memory 

requirements, and network design efforts [9]. One of the 

contributions, of this work [9], is the overview of DL 

algorithms applications to classification-based studies in DR 

detection, by using fundus imaging. We focused on the 

efforts carried out between 2016 and 2021. We observed that 

most of the papers we surveyed were focused on the transfer 

learning DCNN models for DR detection and grading  [10]. 

To address the challenging goal of earlier screening and 

detection of the ocular diseases like DR, the use of handled 

and portable fundus cameras has become crucial to the 

development of Tele-ophthalmology enhancing DR 

screening. In this study [11], the Optomed Aurora portable 

fundus camera outperformed the standard table-top fundus 

camera, in terms of sensitivity and specificity for DR 
screening. In this work [12], three portable fundus cameras: 

iNview, Peek Retina and Pictor Plus, are compared for their 
sensitivity and specificity in detecting ocular diseases like 

DR. These fundus cameras demonstrated good results and 

effectively detected DR, when used for tele-ophthalmology 

retinal screening consultations. T.W. Rogers [13] uses a 

handheld portable fundus camera - Pictor Plus, Volk Optical 

Inc., USA - and performs DR grading using deep learning 

system, Pegasus (AI software, Visulytix Ltd., UK), which 

resulted in 89.4% and 94.3% detection rates, for RDR and 

PDR AUROC curves, respectively. The conducted study was 

a part of the Mexican Advanced Imaging Laboratory for 

Ocular Research (MAILOR) cohort. 

The work presented in this article aims to deploy a 

telemedicine network for ocular diseases. Our ultimate 

objective is to design and develop a Desktop/smartphone 

based mobile platform, which employs sophisticated Deep 

Learning models and portable retinal cameras for screening 

and early diagnosis of ocular pathologies such as DR. In this 

endeavor, we are collaborating with the Ophthalmology 

Center and Vision Center at Omar Drissi Hospital, CHU 

HASAN II, Fez [14] [15]. Other than DR, our proposed 

approach has potential uses in other eye-related diseases, one 

can relate to our work on Glaucoma  [16] and AMD (age-

related macular degeneration) [17]. 

III. COMPARATIVE STUDY AND ANALYSIS OF FUNDUS 

IMAGE ENHANCEMENT TECHNIQUES 

Retinal image fundus suffers a lot from contrast problems 

such as noise and intensity inhomogeneity (low-contrast, 

low-saturation).  These various artefacts observed make up 

an impact on the quality of the images acquired particularly 

by handled and portable fundus camera. Retinal images 

preprocessing becomes a primary crucial step in the detection 

and classification of retinal diseases, such DR [5]. The 

application of enhancement techniques to retinal images 

proves invaluable in mitigating noise, enhancing brightness, 

and refining image contrast. By employing mathematical 

methods, it becomes feasible to augment the initial image 

quality and information content. This improvement confers 

significant advantages in recognizing distinctive features and 

facilitating subsequent image analysis, enabling 

ophthalmologists to achieve early detection of retinal 

pathologies, particularly RD. The comprehensive framework 

proposed for enhancing retinal images is visually illustrated 

in Figure 2.  

This Framework has a few important steps to enhance retinal 

fundus images. To begin, we capture the retinal image, 

followed by resizing to optimize dimensions. Resizing is 

employed to decrease processing time. Subsequently, the 

image is divided into its distinct color components (red, 

green, blue). Focusing on the green channel is crucial because 

it harbors the most intricate details in the image's colors [5]. 

Afterward, image enhancement occurs by employing various 

filters. Additionally, combinations of smoothing and 

sharpening filters are applied in sequences to further refine 

the enhanced image. Finally, we evaluate the effectiveness of 

the process using metrics such as PSNR, SSIM, and RCEF. 

These metrics offer insights into the quality of the final image 

and gauge the performance of each step in the process. 



A. Capture of Retinal fundus image by handled camera 

    The oDocs Nun IR retinal camera is a non-mydriatic 

device with several key features that make it suitable for early 

detection of DR. It offers high-quality imaging capabilities 

with a resolution of 2880 x 2160 pixels, allowing for precise 

analysis of retinal images. The camera provides a wide field 

of view (FOV) ranging from 45 to 55 degrees, enabling a 

panoramic view of the retina. It also includes a manual 

focusing function, allowing users to adjust the image 

sharpness within a range of -20D to +20D. The oDocs Nun 

IR camera is compatible with Android smartphones, 

providing flexibility and mobility in its usage. 

The private dataset used for the early detection of DR was 

collected in collaboration with the Department of 

Ophthalmology at Omar Drissi Hospital (CHU HASAN II) 

in Fez, Morocco. The dataset consists of fundus images 

obtained using the oDocs Nun IR camera, specifically from 

individuals diagnosed with DR. It encompasses a wide 

spectrum of image qualities. Figure 3 presents a diverse 

selection of fundus images from our privately collected 

database, exhibiting notable high-quality attributes such as 

precise details, minimal noise, and enhanced contrast. These 

qualities contribute to a clear visualization of the retinal 

structures.  

Conversely, the dataset also comprises images of lower 

quality, characterized by blurriness, noise, and inadequate 

contrast enhancement. Consequently, additional image 

processing techniques are required to ensure accurate 

analysis and interpretation. 

B. Proposed flowchart of comparative study and analysis of 

enhancement techniques 

    Image quality improvement methods are used to make 

images better by reducing unwanted disturbances, making 

important parts more visible, and enhancing overall picture 

quality. One way to enhance image quality is by making 

differences between dark and light areas more noticeable. 

This can be done using tools called filters to be identified as 

a low image processing. There are many types of filters that 

can be used to make images look better, like ones that make 

the image softer, sharpen its details, or highlight its edges. 

This article presents eleven simple filters that can enhance the 

quality of retinal images, as indicated in article [18]. These 

filters have proven to be reliable in improving the clarity of 

blood vessels in the images. Before applying these filters, the 

images undergo some initial preprocessing steps, such as 

resizing and focusing on the 'green' components. These green 

components contain the most detailed information regarding 

the image's colors. The introduced filters consist of the 

median filter (MF), the non-local means filter (NLM), the 

Gaussian filter (GF), HE, contrast-limited histogram 

equalization (CLAHE), bottom hat filter (BHF), bilateral 

filter (BF). These filters are described with their respective 

mathematical formulas, and the resulting images they 

produce are illustrated in Table I. 

In the context of the 11-filter array, let us explore the Median 

Filter and CLAHE as illustrative instances. The median filter 

is a noise reduction technique that preserves edges by 

replacing pixels with the median value of their neighbors. 

This is particularly useful for retinal images as it helps 

eliminate noise-induced extreme values. On the other hand, 

the CLAHE filter enhances contrast by adjusting pixel values 

according to local regions. This method is effective for 

highlighting important details like blood vessels, though its 

careful application is necessary to avoid noise amplification. 

Both filters contribute significantly to improving the quality 

and analyzability of retinal images. 

Fig. 2: Block diagram for retinal image enhancement. 

  

(a) (b) 

  

(c) (d) 

(a) (b) 

(c) (d) 

Fig. 3: Example of Image Clarity (a), Blurriness (b), Contrast (c), and 

Brightness Variation (d) from private dataset. 



TABLE I.  FILTERS WITH THEIR MATHEMATICAL EXPRESSIONS AND 

OUTPUT IMAGES 

 

We implemented and evaluated the enhanced median filter 

(IMF), as well as median filter combined with an average 

filter (MMF) [19]. It is observed that the MMF gives better 

results in terms of PSNR, SSIM, RCEF, which allows us to 

use it to improve image quality like other filters [20]. 

C. Image enhancement chains and image quality 

Evaluation   

1) Enhancement chains:  

    The best improvement results obtained for the filters are 

chosen to build preprocessing chains. A chain comprising 

various stages: denoising, contrast enhancement and applying 

adaptative gamma correction. Among the more effective 

filters obtained: MF, GF, BF, NLM, and CLAHE. MF, GF, 

BF, and NLM function as smoothing filters, while CLAHE 

serves as the sharpening filter. This leads to a combination of 

smoothing and sharpening filters. Adaptative Gamma 

Correction is a technique that adjusts the intensity values of 

pixels in an image based on a gamma correction curve. 

According to this formula, for an 8-bit image of size m × n 

pixels, the gamma correction transforms the intensity value 

of the pixel at each spatial position (x, y) according to the 

following expression: 
                        𝐼𝑔𝑎𝑚(𝑥, 𝑦) =  𝐼(𝑥, 𝑦)γ                                       (1) 

Where Igam (x, y) represents the gamma-corrected intensity 

of the image I (x, y), and γ represents different gamma values 

that control the type of mapping. When γ is set to a value          

γ > 1, the dark regions of the original image become brighter 

in the gamma-corrected intensity image. Conversely, when γ 

is set to a value γ < 1, the bright regions of the original image 

become darker in the gamma-corrected intensity image [20]. 

It is important to note that the gamma value is adaptive for 

each image, which means that each image has its own gamma 

value based on its intensity characteristics. 
2) Performance metrics: 

 The performance of the image processing algorithms or 

enhancement filters can be evaluated by various quantitative 

measures. The metrics such as peak signal-to-noise ratio 

(PSNR), root mean square error (RMSE) and structural 

similarity index measure (SSIM) are used to find which 

image enhancement techniques give better results. PSNR is 

the most commonly used metric for image enhancement 

techniques and is given by: 

𝑃𝑁𝑆𝑅 = 10log10

2552

1
𝑀𝑁

 ∑ [𝑔𝑖𝑗 − 𝑓𝑖𝑗]
2

𝑖𝑗

 𝑑𝐵                           (2) 

   Where f and g are the original and the enhanced images and 

M and N are the row and column pixels in the image, 

respectively. The highest PSNR value gives better 

performance. The change in the structural similarity between 

the original and enhanced images is measured by SSIM and 

is given by: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐2)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
          (3) 

Where 𝜇𝑥 and  𝜇𝑦 are the average of x and y, respectively; 

𝜎𝑥
2, 𝜎𝑦

2 and 𝜎𝑥𝑦  are the variance and covariance of x and y; 

and 𝑐1 and 𝑐2 are variables. The values range from −1 to 1; if 

the value is exactly one it is considered to be of perfect 

structure similarity and if the value is lower, then there is no 

structural similarity. The dynamic range of histogram is 

measured using RCEF and is given by: 

                               RCEF =

σB
2

μB
⁄

σA
2

μA
⁄

                                           (4) 

Where 𝜎𝐴  and 𝜎𝐵  are the standard deviation of the original 

and enhanced image, and μA  and μB  are the mean of the 

original and enhanced image, respectively. For better 

enhancement, RCEF should be greater than 1. 
3) Image quality Evaluation: 

The table II of filter chains clearly shows that the PSNR value 

is high for GF + CLAHE+AGC, the SSIM value close to 1 

for MMF + CLAHE+AGC and the RCEF value is better for 

NLM + CLAHE+AGC. These findings suggest that the 

selected best-performing combination could be a valuable 

asset in early detection for retinopathy (No RD, RD) cases. 

Figure 4 showcases the outcomes of the best optimal 

preprocessing blockchain, yielding the respective output 

images for (a) and (b), denoted as (a’) and (b’) in the 

sequence. The processing chain involves the application of a 

Gaussian Filter followed by merging channels. The Gaussian 

Filter helps in reducing noise and smoothing the images, 

while the merging channels operation combines the different 

color channels to create the final enhanced output. This 

procedure aims to enhance the quality of retinal images, 

enabling improved analysis and interpretation for various 

applications. 

Filters Mathematical expressions Output images 

MF 

 

𝐠(𝐱, 𝐲) = 𝐦𝐞𝐝𝐢𝐚𝐧{𝐟(𝐧, 𝐦)} 

 

 

 

GF 
𝐆(𝐱, 𝐲) =

𝟏

𝟐𝛑𝛔𝟐
𝐞−

(𝐱𝟐+𝐲𝟐)
𝟐𝛔

⁄
 

 

 

 

BF 

𝐈 =
𝟏

𝐰𝐏

∑ 𝐈(𝐱𝐢)𝐟𝐢(‖𝐈(𝐱𝐢)
𝐗𝐢

− 𝐈(𝐱)‖) 

 

 

NLM 

𝐍𝐋𝐌(𝐱) = (
𝟏

𝐙(𝐱)
) ∗ ∑(𝐰(𝐱, 𝐲)

∗ 𝐟(𝐲)) 

 

 

CLAHE 

𝐠 = [𝐠𝐦𝐚𝐱 − 𝐠𝐦𝐢𝐧] ∗ 𝐩(𝐟) + 𝐠𝐦𝐢𝐧 

 

 

 



 
TABLE II.   PERFORMANCE EVALUATION OF IMAGE QUALITY USING 

PSNR, SSIM, AND RCEF METRICS 

IV. FINE-TUNING OF DEEP TRANSFER LEARNING MODELS 

FOR EARLER SCREENING OF DIABETIC RETINOPATHY 

Diabetic retinopathy (DR) is a prevalent ocular pathology 

observed in individuals with diabetes. It is a progressive 

complication that can lead to vision impairments and, in 

severe cases, total blindness. However, timely detection and 

appropriate treatment can potentially slow down or even 

arrest the progression of the disease. As a result, early 

screening for DR plays a crucial role in the effective 

management of diabetic patients. By identifying DR at its 

early stages, healthcare professionals can intervene promptly, 

implement suitable interventions, and optimize patient 

outcomes [21]. 

The early screening for DR involves two distinct stages: non-

proliferative DR (NPDR) and proliferative DR (PDR). NPDR 

represents the initial stage of the disease, characterized by 

retinal lesions such as microaneurysms, haemorrhages, and 

exudates, as shown in (Fig5. b). Although these lesions might 

not immediately lead to significant vision loss, they serve as 

early indicators of the disease’s presence. On the other hand, 

PDR corresponds the advanced stage, characterized by the 

formation of new abnormal blood vessels in the retina. These 

vessels are often fragile and can result in hemorrhages, retinal 

deformations, and deterioration of vision. The progression of 

PDR can be rapid, necessitating urgent medical intervention 

to avert permanent vision loss. Therefore, regular fundus 

examinations of the eye are essential for detecting both stages 

of diabetic retinopathy. During these inspections, an 

ophthalmologist assesses the retina using tools such as an 

ophthalmoscope or a retinal camera. The acquired images 

enable the visualization of characteristic DR lesions and  

facilitate the determination of the disease stage [22]. In this 

study, a combination of the three non-proliferative diabetic 

retinopathy (NPDR) stages (minime, moderate, severe) and 

the PDR into a single class named "DR" is considered, while 

keeping the "No DR" class separate. Figure 5 shows the 

original images (a), (c) and (e) from the private database, 

APTOS and EyePACS respectively, and the corresponding 

results of the optimal preprocessing blocks (b), (d) and (f) 

used in this research. 

A. Datasets, data preparation and training 

The growing requirement for model validation and training 
has prompted research groups to create their exclusive  
databases, now made accessible to the general public [23]. 
Particularly, the APTOS and EyePACS open-access dataset 
have garnered significant recognition for their availability of 
high-resolution fundus images. In contrast, a privately-owned 
dataset is employed to assess the effectiveness of developed 
diabetic retinopathy detection system. 

1) Public Datasets  

• APTOS  

The APTOS 2019 Blindness Detection dataset proves to be a 

valuable resource for researchers and practitioners in the field 

of diabetic retinopathy (DR). This dataset encompasses a 

Blockchain SSIM PSNR RCEF 

CH 1 MF+CLAHE+ACG 0,9804 33,2531 1,03774 

CH 2 GF+CLAHE+ACG 0,9803 33,2850 1,03767 

CH 3 BF+CLAHE+ACG 0,9803 33,2317 1,03783 

CH 4 NLM+CLAHE+ACG 0,9804 33,2096 1,03819 

CH 5 MMF+CLAHE+ACG 0,9804 33,2641 1,03768 

Fig. 4 : The best enhancement chain involves Gaussian Filter, CLAHE and Gamma correction  to improve retinal image quality (a) 

and (b) original images, (a’) and (b’) are the output resuls corresponding to (a) and (b) respectively. 

(a) 

(c) 

(e) 

Fig. 5: Example images of dataset (a) and (b) private dataset, (c) and (d) 

APTOS dataset, (e) and (f) EyePACS dataset. 

(b) 

(d) 

(f) 



collection of fundus images effectively portraying the five 

distinct stages of DR. Each image is thoroughly labelled with 

a severity level, which spans the spectrum from 0 to 4. These 

severity levels correspond to specific categories: label 0 

signifies the absence of DR, label 1 indicates mild DR, label 

2 represents moderate DR, label 3 denotes severe DR, and 

label 4 is indicative proliferative DR. In total, the dataset 

consists of 3,662 retinal images. Among these, 1,805 images 

are meticulously classified as exhibiting no DR, 370 images 

labelled as mild DR, 999 images classified as moderate DR, 

193 images identified as severe DR, and 295 embody the 

characteristics of proliferative DR. The fundus images’ 

resolution within this dataset maintains a high standard at 

3216×2136 pixels, ensuring a repository of visual with 

remarkable quality, optimally suited for analysis and 

evaluation endeavours [24]. 

• EyePACS 

The EyePACS dataset, similar to the APTOS dataset, 

provides an extensive compilation of fundus images 

capturing the complete spectrum of DR progression across its 

five stages. Comprising a total of 35,126 retina images, with 

each image corresponding to both the left and right eyes. 

These images boast dimensions of 3888×2951 pixels, 

ensuring high-resolution visual data for analysis and research 

purposes. Within the EyePACS dataset, the images are 

meticulously categorized according to the five DR stages. 

Specifically, there are 25,810 images labeled as having 0 DR 

(no DR), 2,443 images classified as mild DR, 5,292 images 

portraying moderate DR, 873 images indicating severe DR, 

and 708 images showcasing proliferative DR. For the training 

process of the proposed model, a random selection strategy is 

adopted, choosing 1,534 images from the no DR stage and 

2,764 images from the DR stage [27]. 

2) Private Dataset  

The collected private dataset encompasses 1319 labelled 

images representing the five stages of diabetic retinopathy 

(DR), where a medical specialist undertook the task of 

assigning these labels. This dataset will serve as the 

foundation for this classification study, where the objective is 

devising a novel approach to accurately categorize the five 

stages of DR. It is worth noting that the medical specialist’s 

labelling for each DR stage adhere to the established 

international standards. Within the dataset, there are 256 

images denoting the absence of DR, 381 images with minime 

non-proliferative diabetic retinopathy (NPDR), 335 images 

with moderate NPDR, 253 images capturing severe NPDR, 

and finally, 94 images showcasing proliferative diabetic 

retinopathy (PDR). The images were captured employing the 

oDocs nun IR device, renowned for its exceptional spatial 

resolution of 2880 x 2160 pixels accompanied by a field of 

view (FOV) ranging from 45 to 55 degrees. 

3) Data Augmentation & Data splitting 

    In designed approach, a highly effective preprocessing 

pipeline was utilized, as detailed in the previous section, 

leading to promising outcomes. The pipeline involved 

resizing input images to dimensions of 224x224 pixels. 

Subsequently, a range of data augmentation techniques were 

applied to enrich the dataset. These techniques encompassed 

vertical and horizontal flipping, rotation at various angles, 

and adjustments to brightness and color settings. It is worth 

noting that the implementation of data augmentation 

considered a balanced factor for each stage to mitigate class 

imbalance between the "NO DR" and "DR" classes. By 

incorporating these augmentation methods and maintaining 

balance across classes, the aim was to introduce heightened 

diversity and variability within the training data.  

Table III outlines the distribution and number of images for 

each dataset, along with the count of images before and after 

data augmentation. 

Several studies have employed various proportions to divide 

datasets into training, validation, and test sets. Furthermore, 

a common approach allocates 80% of the data for training, 

10% for validation, and the remaining 10% for testing [25]. 

Alternatively, some studies have chosen to assign 75% of the 

data for training, with the remaining portion divided between 

validation and testing. In the specific case under 

consideration, a distribution of 75% for training, 15% for 

validation, and 10% for testing has been selected across all 

three datasets, based on the quantity of images in each 

dataset. The test set quantities for the privately-owned 

dataset, APTOS, and EyePACS are 720, 918, and 2000 

images, respectively. The allocation of data into different 

subsets—namely, training, validation, and testing sets holds 

significant importance in optimizing the learning process and 

assessing model performance and generalization capabilities. 

In this context, the distribution of data emphasizes allocating 

a larger portion to the training set, which facilitates more 

effective learning by exposing the model to a diverse range 

of examples. This distribution strategy strikes a balance 

between maximizing the training data available to the model 

for effective learning and guaranteeing sufficient data for 

rigorous evaluation of performance and generalization 

potential. 
TABLE III.  DATASET DESTRIBUTION BEFORE AND AFTER DATA 

AUGMENTATION 

B.  Designing DNN model for earlier screening of DR 

 In order to develop a deep neural network (DNN) model for 

the early detection of diabetic retinopathy, an approach 

employing transfer learning with three unique architectures is 

proposed (Fig. 6): DenseNet-121, Inception-v3, and 

MobileNetV2. The primary objective of this study is to 

accurately classify two stages of diabetic retinopathy: the 

presence or absence of DR. Through transfer learning with 

these three architectures, the extensive knowledge and 

insights gained from large-scale image datasets are leveraged. 

This approach substantially improves the ability to 

differentiate the initial phases of diabetic retinopathy, 

specifically the minimal and moderate DR stages, effectively 

leveraging the valuable information encapsulated within the 

pre-trained models. 

The developed architectures undergo training for 200 epochs 

using the RMSProp optimization algorithm and the Binary 

Cross-Entropy (BCE) loss function. The learning rate is set 

to 0.001, and a fixed batch size of 64 is used for training and 

32 for validation. To mitigate the risk of overfitting, the early 

stopping technique is incorporated, wherein training is halted 

after 50 epochs if there is no improvement in validation 

Dataset 

Before data 

augmentation  

After 

 data augmentation 
Initial 

dataset 

Dataset 

Selected 
Dataset used 

Private 1321 1321 7200 

APTOS 3662 2880 9566 

EyePACS 35126 4290 20000 



accuracy. Furthermore, a dropout layer is introduced to the 

model to further address overfitting concerns. The validation 

accuracy is evaluated at each epoch, and the model with the 

highest validation accuracy is saved using the model 

checkpoint functionality of the Keras callback mechanism. 

C. Performance results and discussion 

• Implementation Framework 

The outlined experimentation in this study was conducted on 

a computer system featuring an NVIDIA Corporation 

GP102GL [Quadro P6000]. The computer was equipped with 

an Intel (R) Xeon(R) Gold 6240R, 20 core with 2,40 GHz, 

and boasted a substantial RAM capacity of 377GB. The 

implementation of the models was performed using various 

software packages, including Python 3.10.9 and deep 

learning libraries such as Keras with 3.10.9, Keras avec 

Tensorflow, OpenCV, Scikit-Learn were utilized in 

conjunction with the aforementioned libraries for the 

experimentations. 

• Evaluation Metrics 

Performance evaluations relies on five commonly used 

metrics, namely accuracy, sensitivity, specificity, precision, 

and F1-score, as shown in equations (5), (6), (7), (8), and (9), 

respectively. These metrics provide insights into different 

aspects of the classification model’s performance.  

Accuracy measures the proportion of correctly classified 

samples out of the total. It is calculated by dividing the sum 

of true positives and true negatives by the total number of 

samples. Sensitivity quantifies the proportion of actual 

positives correctly identified, while specificity assesses the 

proportion of actual negatives correctly identified. Precision 

evaluates the proportion of predicted positives that are truly 

positive. To provide a balanced measure considering both 

precision and sensitivity, the F1 score is used. The F1 score 

is calculated as the harmonic mean of precision and 

sensitivity, offering a comprehensive evaluation of the 

model's performance in identifying and predicting positive 

samples. 

• Results and discussion 

Fine-tuning involves adjusting the weights of a pre-trained 

model on a specific task using a smaller and task-specific 

dataset. The idea is to take a model already trained on a 

general task and adapt it to the specific features of the desired 

early detection. 

The classification results underwent testing using the 

collected private dataset and two public datasets, specifically  

APTOS and EyePACS, to evaluate the system's performance. 

 

Table IV presents the better performance achieved by 

DenseNet-121 across the three datasets. With an accuracy of 

98.6111%, sensitivity of 98.3333%, specificity of 

100.0000%, precision of 98.8827%, and an F1-score of 

70.0389%, DenseNet-121 demonstrates its superior 

predictive capabilities. Notably, on the APTOS and 

EyePACS datasets, it achieves accuracy of 97.3856% and 

90.9000%, respectively. These results highlight the 

effectiveness of DenseNet-121 in accurately classifying 

diabetic retinopathy.  

Table V summarizes the training and validation accuracy for 

each DNN architecture across the three databases. The  

findings clearly demonstrates that the DenseNet-121 model 

showcased improved classification performance, exhibiting 

superior results in both the training and validation stages. The 

assessment encompassed experimentation with the 

DenseNet-121, Inception-v3, and MobileNetV2 models to 

evaluate their performance. Among these models, DenseNet-

121 consistently demonstrated superior predictive 

capabilities across all three datasets. 

Fig. 6 : The flowchart of the proposed system DNN model for earlier screening of DR 

Accuracy =
TP + TN 

TP + FP + TN + FN
                   (5) 

Sensitivity =
TP 

TP + FN
                                  (6) 

Specificity =
TN

TN + FP 
                                   (7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇P + 𝐹𝑃
                                   (8) 

F1 − Score = 2 ∗
Precision ∗ sensitivity

Precision + sensitivity
           (9) 



Furthermore, Figure 7 visually depicts the accuracy and loss 

during the training and validation stages of the diabetic 

retinopathy grading for the Private, APTOS, and EyePACS 

datasets. The consistent high accuracy and decreasing loss 

observed in the training and validation curves further validate 

the robustness and generalization capabilities of DenseNet-

121. 
TABLE IV.   COMPARATIVE ANALYSIS OF PERFORMANCE METRICS 

FOR THREE ARCHITECTURES ON PRIVATE, APTOS, AND EYEPACS 

DATASETS 

TABLE V.   TRAINING AND VALIDATION RESULTS COMPARISON OF 

THE THREE ARCHITECTURES 

 The confusion matrix is a valuable tool that provides crucial 

insights into the performance of a model, enabling the 

evaluation of its accuracy in classifying instances of DR and 

No DR. The assessment of classification results for the DR 

and No DR categories was conducted across three distinct 

datasets using the confusion matrix. Figure 8 illustrates the 

confusion matrix for each dataset, highlighting the consistent 

superior performance of the DenseNet-121 architecture. 

Considering these findings, DenseNet-121 has been chosen 

as the preferred architecture due to its outstanding predictive 

capabilities.  

D. Software Framework implementation as labtop app 

The DenseNet-121 model, which has demonstrated superior 

performance in the performed evaluations, is implemented 

within a desktop application. This application is intended to 

function as a comprehensive tool for early diagnosis 

assistance of DR. The user interface, however, is developed 

using the programming language JavaScript. These 

frameworks have been chosen to enable the seamless 

integration of the DenseNet-121 model into the application, 

enabling efficient image processing and automatic DR 

diagnosis. Real-time image acquisition will be supported by 

the application, utilizing the oDocs nun IR camera connected 

to the Desktop. The camera is capable of capturing high-

quality fundus images, allowing for accurate analysis and 

diagnosis. Additionally, the incorporation of image 

enhancement techniques is planned to enhance the quality 

and clarity of the fundus images, ensuring optimal diagnostic 

accuracy. 

Furthermore, our vision extends beyond the diagnosis of DR 

alone. Once the system is established and validated for DR 

Dataset 

Test 

Prediction 

Architecture 

DenseNet-

121 
MobileNetv2 

Inception-

v3 
Evaluation 

Metrics 

Private 

      Acc 

       Sen 

       Spe 

        Pre 

    F1-score 

98.6111 

 98.3333 

 100.0000 

 98.8827 

 70.0389 

96.1111 

94.7222 

99.7222 
97.4286 

69.9029 

96.5278 

94.7222 

99.7222 
98.2709 

66.9767 

APTOS 

      Acc 

       Sen 

       Spe 

        Pre 

   F1-score 

97.3856 

 97.0982 

 100.0000 

 97.5336 

 65.7856 

97.4946 

 96.4286 

 100.0000 
 98.4055 

 70.2194 

98.0392 

 97.7679 

 99.7872 
 98.2063 

 67.9818 

EyePACS 

      Acc 

       Sen 

       Spe 

        Pre 

F1-score 

90.9000 

 93.9000 

 99.4000 

 88.5849 

 69.3722 

87.8500 

85.3000 

98.9000 
89.8841 

70.0035 

89.1400 

88.1000 

98.9080 
89.8980 

68.3761 

Dataset 
DenseNet-121 MobileNetv2 Inception-v3 

Traini

ng 

Validati

on 

Traini

ng 

Validati

on 

Traini

ng 

Validati

on 

Private 99.81 99.37 99.07 98.12 98.88 98.42 

APTOS 98.91 98.81 98.68 98.51 98.61 98.61 

EyePA

CS 
94.06 93.92 94.54 92.16 91.30 91.43 

(a) 

(b) 

(c) 

Fig. 7 : Accuracy and Loss in Training and validation for DenseNet-121 

architecture on (a) private dataset (b) APTOS dataset and (c) EyePACS dataset 

(c) 

(a) (b) 

Fig. 8 : Confusion matrix of DenseNet-121architecture on the (a) 

Private, (b) APTOS, and (c) EyePACS dataset 



detection, the system is generalized and expands its 

capabilities to detect other ocular pathologies such as 

glaucoma, age-related macular degeneration (AMD), and 

more. This will involve training the model on diverse datasets 

specific to each pathology, thus enabling clinicians to use the 

application as a versatile tool for multiple ocular conditions. 

V. CONCLUSION 

In this paper, we have developed a fine tuning and transfer 

learning-based deep convolutional neural network, for earlier 

screening of Diabetic Retinopathy.  Our CNN is trained to 

effectively detect the DR at an earlier stage (Non-

Proliferative Diabetic Retinopathy). The largest publicly 

available datasets of fundus images - APTOS and EyePACS 

datasets - were used to train and evaluate several transfer 

learning DCNN models. Our results show that the DenseNet-

121 model generated the highest performance measures.    

In this study, we built a private dataset from the image fundus 

of several patients, that were treated at the Eye Care Center 

of hospital Omar Drissi, CHU HASAN II, Fez, Morocco. The 

dataset is called the Diabetic Retinopathy Image Dataset and 

is used to detect DR in the image fundus, by employing the 

most effective DCNN model, DenseNet-121. A deep 

learning-based Desktop/smartphone app has been developed 

using a handled fundus camera. The developed app uses 
DCNN model (DenseNet-121) to classify the presence or 

absence of diabetic retinopathy (Non-Proliferative Diabetic 
Retinopathy, which is the early stage of DR), facilitating the 

earlier screening in remote medical facilities, or regions with 

limited access to resources such as ophthalmologists and 

Table-top fundus cameras. 
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