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Parametrizations, weights, and optimal prediction: Part 1
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We consider the problem of the annual mean temperature prediction. The years taken into account and the corresponding annual mean temperatures are denoted by 0, . . . , n and t 0 , . . ., t n , respectively. We propose to predict the temperature t n+1 using the data t 0 , . . ., t n . For each 0 ≤ l ≤ n and each parametrization Θ (l) of the Euclidean space R l+1 we construct a list of weights for the data {t 0 , . . . , t l } based on the rows of Θ (l) which are correlated with the constant trend. Using these weights we define a list of predictors of t l+1 from the data t 0 , . . ., t l . We analyse how the parametrization affects the prediction, and provide three optimality criteria for the selection of weights and parametrization. We illustrate our results for the annual mean temperature of France and Morocco.
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For each 0 ≤ l ≤ n and each parametrization Θ (l) = (θ (l) ji : i, j = 0, . . . , l) of the Euclidean space R l+1 we construct a list of weights for the data {t 0 , . . . , t l } based on the row θ (l) j of Θ (l) which is correlated with the constant trend {1 (l) } ⊤ = (1, . . . , 1), i.e., θ (l) j 1 (l) = 0. We analyze how the parametrization Θ (l) affects the prediction. We also propose a list of criteria for selecting optimal parametrization and weights. We illustrate our results for the annual mean temperature of France and Morocco.

The present paper is the first part of a list of works in preparation. These works are directly related to [START_REF] Dermoune | Estimation of noisy cubic spline using a natural basis[END_REF], [START_REF] Dermoune | Parametrizations, fixed and random effects[END_REF] and [START_REF] Dermoune | General Linear mixed model and signal extraction problem with constraint[END_REF], see also [START_REF] Dermoune | A consistent estimator of the smoothing parameter in the Hodrick-Prescott filter[END_REF], [START_REF] Dermoune | Multivariate Extension of the Hodrick-Prescott Filter-Optimality and Characterization[END_REF], [START_REF] Dermoune | FastICA algorithm: Five criteria for the optimal choice of the nonlinearity function[END_REF].

with i = 0, . . . , l.

If s(i) oscillates around some constant c, then j / ∈I(l) θ

(l)

j s (l) b (l)
ij oscillates around 0. Hence the component j∈I(l) θ (l) j s (l) b (l) ij seems to be the bulk component of s(i), and j / ∈I(l) θ (l)

j s (l) b (l)
ij its residual component. Roughly speaking, the most important coordinates are those correlated with the constant trend 1 (l) , i.e., (θ (l) j : j ∈ I(l)).

3 Conservative rows and selection criteria

Conservative rows

The row p = (p 0 , . . . , p l ) ∈ R l+1 is conservative if

l i=0 p i = 1.
If p i ≥ 0 for all i, then p is a probability distribution on the set {0, . . . , l}. The set of conservative rows is denoted by

M 1 ({0, . . . , l}) = {p ∈ R l+1 : l i=0 p i = 1}.
The mean and the variance of s (l) w.r.t. to p are defined respectively by

m 1 (p) = ps (l) = l i=0 p i s(i), var(p) = l i=0 p i |s(i) -m 1 (p)| 2 .
We have the famous equality

l i=0 p i x 2 i = m 2 1 (p) + var(p).
Observe also as in the probabilistic case, the minimizer

arg min{ l i=0 p i |s(i) -a| 2 : a ∈ R} = m 1 (p),
and the error

min{ l i=0 p i |s(i) -a| 2 : a ∈ R} = var(p).

Selection criterion

The set P contains a finite number of parametrizations of the Euclidean spaces (R 2 , . . . , R n+1 ). An element of P is a parametrization Θ := (Θ (1) , . . . , Θ (n) ) of the Euclidean spaces (R 2 , . . . , R n+1 ).

Let us give for each 1 ≤ l ≤ n and each parametrization Θ (l) a finite subset W (Θ (l) ) of the set of conservative rows M 1 ({0, . . . , l}). We get the subset W (Θ) := W (Θ (1) )×. . .×W (Θ (n) ) of M 1 ({0, 1})×. . .×M 1 ({0, . . . , n}).

A selection criterion S picks a unique element

SW (Θ) = (SW (Θ (1) ), . . . , SW (Θ (n) )) ∈ M 1 ({0, 1}) × . . . × M 1 ({0, . . . , n})
from the set W (Θ).

Prediction cost

We propose for each l = 1, . . . , n, SW (Θ (l) )s (l) as a prediction of s(l + 1). The cost of these predictors for q = 1, 2, +∞, and L < n fixed, is measured by

Cost(SW (Θ), q) = n-1 l=L |s(l + 1) -SW (Θ (l) )s (l) | q n -L , q = 1, 2, := max{|s(l + 1) -SW (Θ (l) )s (l) | : L ≤ l ≤ n -1}, q = +∞.
Let S be a finite set of selection criteria. The optimal selection criterion S * W (Θ * , q) is the minimizer S * W (Θ * , q) = arg min{Cost(SW (Θ), q) : Θ ∈ P, S ∈ S}.

In this work we consider the sets

W (Θ (l) ) = θ (l) j θ (l) j 1 (l) : 0 ≤ j ≤ l, θ (l) 
j 1 (l) = 0 , with l = 1, . . . , n. We recall that I(l) = {0 ≤ j ≤ l : θ (l) j 1 (l) = 0}. Observe that for each parametrization Θ (l) , the set I(l) is not empty.

For simplicity we denote for each selection criterion S S(Θ (l) ) := SW (Θ (l) ), l = 1, . . . , n.

Now, we are going to define our selection criteria.

The selection criterion S u

Let I(l) = {j(0), . . . , j(card(I(l)) -1)} be the elements of the set I(l) with j(0) < . . . < j(card(I(l)) -1). We define for each u ≤ n fixed the selection criterion

S u (Θ (l) ) = θ (l) j(min(u,card(I(l))-1)) θ (l)
j(min(u,card(I(l))-1)) 1 (l) .

If u = 0, then S 0 (Θ (l) ) = θ (l) j(0) θ (l) j(0) 1 (l)
.

If u = n, then S n (Θ (l) ) = θ (l) j(card(I(l))-1) θ (l) j(card(I(l))-1) 1 (l)
.

3.5

The winning conservative rows S u(q,Θ) (Θ)

Given Θ and q = 1, 2, +∞, the optimal selection criterion among (S u : u = 0, . . . , n) is given by the minimizer u(q, Θ) = arg min{Cost(S u (Θ), q) : u = 0, . . . , n}.

Hence S u(q,Θ) (Θ) is the optimal conservative rows among the set (S u (Θ) : u = 0, . . . , n) of conservative rows.

The selection criterion S mean

For 1 ≤ l ≤ n, we consider the selection criterion

S mean (Θ (l) ) = j∈I(l) θ (l) j card(I(l))θ (l) j 1 (l)
.

Observe that for the canonical parametrization Θ (l) = (δ j i : 0 ≤ i, j ≤ l), we have

S mean (Θ (l) ) = ( 1 l + 1 , . . . , 1 l + 1
).

3.7

The winning conservative rows S 1,q (Θ)

Given Θ and q = 1, 2, +∞, the optimal conservative rows among S u(q,Θ) (Θ) and S mean (Θ) is the minimizer S 1,q (Θ) := arg min{Cost(S u(q,Θ) (Θ), q), Cost(S mean (Θ), q)}.

The selection criterion S utail1

For a fixed u ≤ n the set

J 1 (l, u) = arg max{ l i=min(u,l) θ (l) ji θ (l) j 1 (l) : j ∈ I(l)}
may be not a singleton. It furnishes the selection criterion

S tail1 (Θ (l) ) = j∈J 1 (l,u) θ (l) j card(J 1 (l, u))θ (l) j 1 (l) .
As a simple example, if Θ (l) is the canonical parametrization and u = n, then

J 1 (l, n) = l. If u = n -1, then J 1 (l, n -1) = l for l ≤ n -1, and J 1 (n, n -1) = {n -1, n}.
3.9 The winning conservative rows S u(q,Θ)tail1 (Θ)

The optimal selection criterion among (S utail1 : u = 0, . . . , n) is the minimizer of S u(q,Θ)tail1 = arg min{Cost(Θ, S utail1 (Θ), q) : u = 0, . . . , n}.

3.10

The winning conservative rows S 2,q (Θ)

The winner for each q = 1, 2, +∞ fixed, among S u(q,Θ)tail1 (Θ) and S 1,q (Θ) is the minimizer S 2,q (Θ) := arg min{Cost(S u(q,Θ)tail1 (Θ), q), Cost(S 1,q (Θ), q)}.

The selection criterion S utail2

For a fixed u ≤ n the set

J 2 (l, u) = arg max{max{ θ (l) ji θ (l) j 1 (l) : min(u, l) ≤ i ≤ l} : j ∈ I(l)},
may be not a singleton. It furnishes the selection criterion

S tail2 (Θ (l) ) = j∈J 2 (l,u) θ (l) j card(J 2 (l, u))θ (l) j 1 (l)
.

3.12 The winning conservative rows S u(q,Θ)tail2 (Θ)

The optimal selection criterion among (S utail2 : u = 0, . . . , n) is the minimizer of S u(q,Θ)tail2 = arg min{Cost(S utail2 (Θ), q) : u = 0, . . . , n}.

3.13

The winning conservative rows S 3,q (Θ)

The winner for each q = 1, 2, +∞ fixed, among S u(q,Θ)tail2 (Θ) and S 2,q (Θ) is the minimizer S 3,q (Θ) := arg min{Cost(S u(q,Θ)tail2 (Θ), q), Cost(S 2,q (Θ), q)}.

The selection criterion S maxcor

The set

J 3 (l) = arg max{ |θ (l) j 1 (l) | √ l + 1 θ (l) j : j ∈ I(l)}
of the coordinates θ (l) j highly correlated with the constant trend 1 (l) , furnishes the selection criterion

S maxcor (Θ (l) ) = j∈J 3 (l) θ (l) j card(J 3 (l))θ (l) j 1 (l) .
3.15 The winning conservative rows S 4,q (Θ)

The winner for each q = 1, 2, +∞ fixed, among S maxcor (Θ) and S 3,q (Θ) is the minimizer S 4,q (Θ) := arg min{Cost(S maxcor (Θ), q), Cost(S 3,q (Θ), q)}.

The selection criterion S qnearU

We consider the set

J 4 (l, q) = arg min{ θ (l) j θ (1) j 1 (l) -( 1 l + 1 , . . . , 1 l + 1 ) q : j ∈ I(l)} of the nearest conservative rows θ (l) j θ (1) 
j 1 (l) to the uniform conservative row ( 1 l+1 , . . . , 1 l+1 ), and the corresponding selection criterion

S qnearU (Θ (l) ) = j∈J 4 (l,q) θ (l) j card(J 4 (l, q))θ (l) j 1 (l)
.

Here • q denotes the l(q)-norm with q = 1, 2, +∞.

3.17 The winning conservative rows S q(Θ)nearU (Θ)

For each q = 1, 2, +∞ fixed let us denote by q(Θ) = arg min{Cost(S q 1 nearU (Θ), q) : q 1 = 1, 2, +∞}, and then we obtain the winning conservative rows S q(Θ)nearU (Θ) among the three conservative rows (S q 1 nearU (Θ) : q 1 = 1, 2, +∞).

3.18

The winning conservative rows S 5,q (Θ)

For each q = 1, 2, +∞ fixed, the winner among S q(Θ)nearU (Θ) and S 4,q (Θ) is the minimizer S 5,q (Θ) := arg min{Cost(S q(Θ)nearU (Θ), q), Cost(S 4,q (Θ), q)}.

The selection criterion S uvar

For each j ∈ I(l) the variance of the data s (l) w.r.t. to the conservative row θ (l) j θ (l) j 1 (l) is denoted by var(l, j). We define the one-to-one map σ (l) from {0, . . . , card(I(l)) -1} to I(l) as follows. The integer σ (l) (0) is the first element of arg min{var(l, j) : j ∈ I(l)}.

By induction for k < card(I(l)) -1 the integer σ (l) (k + 1) is the first element of arg min{var(l, j) : j ∈ I(l) \ {σ (l) (0), . . . , σ (l) (k)}}.

We define for a fixed u ≤ n the index j(l, u) = σ (l) (min(u, card(I(l)) -1)), and the selection criterion

S uvar (Θ (l) ) = θ (l) j(l,u) θ (l) j(l,u) 1 (l)
.

If u = n, then j(l, n) = σ (l) (card(I(l))-1) is the index of the largest variance. If u = 0, then j(l, 0) = σ (l) (0) is the index of the smallest variance.

3.20

The winning conservative rows S u(q,Θ)var (Θ)

The optimal selection criterion among (S uvar : u = 0, . . . , n) is the minimizer of S u(q,Θ)var = arg min{Cost(Θ, S uvar (Θ), q) : u = 0, . . . , n}.

3.21

The winning conservative sequence S 6,q (Θ)

The winner for each q = 1, 2, +∞ fixed, among S u(q,Θ)var (Θ) and S 5,q (Θ) is the minimizer

3.23

The winning conservative rows S u(q,Θ)v(q,Θ)f d (Θ)

Given Θ and q = 1, 2, +∞, the optimal conservatrice sequence S u(q,Θ)v(q,Θ)f d (Θ) among (S uvf d (Θ) : u, v = 0, . . . , n) is given by the minimizer (u(q, Θ), v(q, Θ)) = arg min{Cost(S uvf d (Θ), q) : u, v = 0, . . . , n}.

3.24

The winning conservative rows S 7,q (Θ)

Given Θ and q = 1, 2, +∞, the optimal conservative rows S 7,q (Θ) among S u(q,Θ)v(q,Θ)fd (Θ) and S 6,q (Θ) is the minimizer arg min{Cost(S u(q,Θ)v(q,Θ)fd (Θ), q, L), Cost(S 6,q (Θ), q)}.

4 The winning conservative rows S 7 (Θ(q))

We constructed for q = 1, 2, +∞ fixed and each parametrization Θ the optimal conservative rows S 7,q (Θ). Assume that we have a finite set P of parametrizations. The minimizer Θ * (q) of the map Θ → Cost(S 7,q (Θ), q)

furnishes the optimal selection criterion S 7 (Θ(q)) := S 7,q (Θ(q)).

Application to parametrizations given by the energy of the spline

We identify for the integer l ≥ 1 the space R l+1 with the space of the natural cubic splines S 3,nat (0, . . . , l) having the knots 0, . . . , l. Let us denote S 3 (0, . . . , l) the set of cubic splines having the knots 0, . . . , l. We recall that an element s ∈ S 3 is a C 2 map on [0, l] and is a polynomial of degree three on each interval [i, i + 1) for i = 0,. . . , l -1. More precisely, let

p 0 = s(0), . . . , p l = s(l), q 0 = s ′ (0), . . . , q l = s ′ (l), u 0 = s ′′ (0), . . . , u l = s ′′ (l), v 0 = s ′′′ (0+), . . . , v l-1 = s ′′′ (l -1+)
be respectively the values of s and its derivatives up to order three on the knots. We have for i = 0, . . . , l -1,

s(t) = p i + q i (t -i) + (t -i) 2 u i /2 + (t -i) 3 v i /6, t ∈ [i, i + 1).
The following constraint guarantees the hypothesis that s is C 2 :

p i + q i + u i /2 + v i /6 = p i+1 , (5.1) 
q i + u i + v i /2 = q i+1 , (5.2) 
v i = s (3) (t i ) = u i+1 -u i .
(

It is well known [START_REF] Deboor | A Practical Guide to Spline[END_REF] that S 3 (0, . . . , l) has the dimension l + 3, see also [START_REF] Craven | Smoothing noisy data with spline functions[END_REF] and [START_REF] Wahba | Spline models for observational data[END_REF]. Hence an element s ∈ S 3 (0, . . . , l) is completely defined by l + 3 independent parameters. Moreover, the set of natural cubic splines S 3,nat (0, . . . , l) is the set of cubic spline s with s ′′ (0) = s ′′ (l) = 0. Hence the dimension of S 3,nat (0, . . . , l) is equal to l + 1. Now we are ready to define our parametrizations of R l+1 . There exist for each l fixed a unique non symmetric matrix M (l) and a unique symmetric matrix S (l) such that

l 0 |s(t)| 2 dt = {s (l) } ⊤ M (l) s (l) = {s (l) } ⊤ S (l) s (l) ,
for all s ∈ S 3,nat (0, . . . , l).

We consider the following six parametrization matrices 

Θ (l) = M (l) , {M (l) } ⊤ , {M (l) } -1 , {{M (l) } -1 } ⊤ , S (l) , {S (l) } -1 .

Real data application

In the temperature prediction problem we are interested in the annual mean temperature observed in France and Morocco from 1901 to 2015. Data s (n) = (s(0), . . . , s(n)) ⊤ with n = 114 respectively for France and Morocco are presented in Figure (3). Observe that s(n) denotes the temperature of the year n + 1. 

Predictors

Our set of parametrizations P contains

M = (M (l) : l = 1, . . . , n), M ⊤ = ({M (l) } ⊤ : l = 1, . . . , n), M -1 = ({M (l) } -1 : l = 1, . . . , n), {M -1 } ⊤ = ({{M (l) } -1 } ⊤ : l = 1, . . . , n), S = (S (l) : l = 1, . . . , n), S -1 = ({S (l) } -1 : l = 1, . . . , n).
Table [START_REF] Craven | Smoothing noisy data with spline functions[END_REF] shows that for each q = 1, 2, +∞ and the lag L = 4 the optimal parametrization Θ(q) = M -1 for both France and Morocco, but the optimal conservative rows S 7 (Θ(q)) do not coincide. The optimal conservative rows S 7 (Θ (114) (q)) are plotted in Figures [START_REF] Dermoune | Multivariate Extension of the Hodrick-Prescott Filter-Optimality and Characterization[END_REF] and [START_REF] Dermoune | Estimation of noisy cubic spline using a natural basis[END_REF]. The predictors of the temperature s(114) (the temperature at the year 2015) and the true temperature is given in Table [START_REF] Deboor | A Practical Guide to Spline[END_REF]. The predictors of the temperature s(115) (the temperature at the year 2016) is given in Table [START_REF] Dermoune | A consistent estimator of the smoothing parameter in the Hodrick-Prescott filter[END_REF]. Splines of the true temperature and its optimal predictors are represented in Figure [START_REF] Dermoune | Parametrizations, fixed and random effects[END_REF]. M -1 M -1 M -1 S 7 (Θ(q)) S utail1 (u = 73) S utail2 (u = 41) cost 0.6183125 0.6027288 1.917094

Country France q 1 2 ∞ Θ(q) M -1 M -1 M -1
Table 1: The optimal choice Θ(q) and S 7 (Θ(q)). The best prediction of s(114) using the optimal parametrization Θ(q) = M -1 and the optimal conservative rows S 7 (Θ(q)). n) and its optimal predictors, with n = 114.

Country

Conclusion.

Having a time series s(0), . . ., s(n) with values in R, we showed how to predict the value s(n + 1) from each parametrization of the set R n+1 . We also provided optimality criteria to select the best predictor. This work can be extended to time series s(i) ∈ K with K is any field or vector space.
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 12 Figure 1: Represantation of the basis B (l) = M (l) with l = 7.
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 3 Figure 3: Annual mean temperatures in France and Morocco from 1901 to 2015

  S 7 (Θ(q)) S utail2 (u = 86) S uvf d (u = 93, v = 5) S uvf d (u = 81, v = 8)
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 6 Figure6: The splines of s(n) and its optimal predictors, with n = 114.
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The best prediction of s(115) (the temperature at the year 2016) using the optimal parametrization Θ(q) = M -1 and the optimal conservative rows S 7 (Θ(q)). The optimal conservative row S 7 (Θ (114) (q)), q = 1, 2, ∞ for France.