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Interpolation and prediction have been useful approaches in modeling data in many areas of applications. The aim of this paper is the prediction of the next value of a time series (time series forecasting) using the techniques in interpolation of the spatial data, for the two approaches kernel interpolation and kriging. We are interested in finding some sufficient conditions for the kernels and provide a detailed analyse of the prediction using kernel interpolation. Finally, we provide a natural idea to select a good kernel among a given family of kernels using only the data. We illustrate our results by application to the data set on the mean annual temperature of France and Morocco recorded for a period of 115 years (1901 to 2015).

Introduction

Interpolation and prediction have been useful approaches in modelling data in many areas of applications such as the prediction of the meteorological variables, surface reconstruction and Interpolation of spatial data [START_REF] Scheuerer | Interpolation of spatial data-a stochastic or a deterministic problem[END_REF] among many more. For more details see [START_REF] Chilès | How to adapt kriging to non-classical problems: three case studies[END_REF], [START_REF] Chilès | Geostatistics, Modeling Spatial Uncertainty[END_REF], [START_REF] Wendland | Scattered data approximation[END_REF] and [START_REF] Mardikis | Comparison of interpolation methods for the prediction of reference evapotranspiration-an application in greece[END_REF]. In this work we extend the results of Scheuerer [START_REF] Scheuerer | Interpolation of spatial data-a stochastic or a deterministic problem[END_REF] to the linear prediction approach of time series. We also cite the work of Dermoune et all [START_REF] Dermoune | Moustaaid. Parametrizations, weights, and optimal prediction[END_REF] where the parametrizations and the cubic spline were used as a model of prediction and we extend this results to the kernel interpolation framework.

Interpolation of spatial data is a very general mathematical problem and it's precise mathematical formulation as defined in [START_REF] Scheuerer | Interpolation of spatial data-a stochastic or a deterministic problem[END_REF] is to reconstruct a function f : T → R with T is is a domain in R d , based on its values at a finite set of data points X = {x 1 , . . . , x n } ⊂ T , the values f (x 1 ), . . . , f (x n ) assumed to be known. But, in our case we are interested in the time series forecasting problem we have T = {x 1 , . . . , x n , x n+1 } represent the time and the time series is f (x 1 ), . . . , f (x n ) with the unknown value is f (x n+1 ). In other words, we want to predict effectively the value f (x n+1 ) using the known values f (x 1 ), . . ., f (x n ). From [START_REF] Scheuerer | Interpolation of spatial data-a stochastic or a deterministic problem[END_REF] we have that both approaches kernel interpolation and kriging have the same approximant for the interpolation of spatial data problem, even with the different model assumption, a general overview in both approaches can be fond in [START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF].

Linear prediction and kernel interpolation

Let R {x 1 ,...,x n+1 } be the Hilbert space of real functions on {x 1 , . . . , x n+1 } with inner product (., .) and norm N (.). The dual of R {x 1 ,...,x n+1 } is spanned by the point evaluation linear forms δ x : f → f (x), x ∈ {x 1 , . . . , x n+1 }, that is (R {x 1 ,...,x n+1 } ) * = (δ x 1 , . . . , δ x n+1 ).

Moreover, the dual norm N * is defined by

(N * (µ)) 2 = sup{|µ(f )| 2 : N (f ) ≤ 1},
for all µ ∈ (R {x 1 ,...,x n+1 } ) * . Now, for any function f ∈ R {x 1 ,...,x n+1 } and any sequence of real numbers (w 1 , . . . , w n ), we define the linear prediction of f

(x n+1 ) f (x n+1 ) = n i=1 w i f (x i ),
with the error

Err n (f ) := |f (x n+1 ) - n i=1 w i f (x i )|,
and the worst error in the unit ball w.r.t. the norm N (.)

Werr(f ) := sup{|f (x n+1 ) - n i=1 w i f (x i )| 2 : N (f ) ≤ 1} = (N * (δ x n+1 - n i=1 w i δ x i )) 2 . (1)
In the rest oh this paper, we endow the vector space R {x 1 ,...,x n+1 } with the scalar inner product

(f, f ) = (f, f ) K -1 = n+1 i=1 n+1 j=1 f (x i )f (x j )k (-1) (x i , x j ) = f K -1 f , with f = (f (x 1 ), . . . , f (x n+1 )) and K = [k(x i , x j ) : i, j = 1, . . . , n + 1]
is a fixed (n + 1) × (n + 1) symmetric positive definite matrix, with k (-1) (x i , x j ) denotes the (i, j) entry of K -1 . The norm defined by K is given by N (f ) = K -1/2 f , with • denotes the Euclidean norm.

Min-max prediction and kernel interpolation Definition (Min-max prediction). A linear prediction f

* (x n+1 ) of f (x n+1 ) is called min- max if f * (x n+1 ) = n i=1 w * i f (x i ), (2) 
where (w * 1 , ..., w * n ) are given by the minimization of the Werr(f ) 1.

The following result give us the optimal weights associate to the min-max prediction w.r.t. to the norm K -1/2 • . Proposition 2.2. The the worst error in the unit ball, Werr(f ), w.r.t. to the norm K -1/2 • is equals

Werr(f ) = δ x n+1 - n i=1 w i δ x i ) 2 K 1/2 (3)
where • K 1/2 denotes the dual norm defined by the dual scalar inner product

(δ x i , δ x j ) K = k(x i , x j ), i, j = 1, . . . , n + 1.
Proof. From the general theory of reproducing kernel Hilbert spaces,see [START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF][START_REF] Scheuerer | Interpolation of spatial data-a stochastic or a deterministic problem[END_REF], we have sup

K -1/2 f ≤1 {|f (x n+1 ) - n i=1 w i f (x i )| 2 } = sup K -1/2 f ≤1 {[K -1/2 f ] [K 1/2 (-w 1 , . . . , -w n , 1) (-w 1 , . . . , -w n , 1)K 1/2 ][K -1/2 f ]} = the largest eigenvalue of [K 1/2 (-w 1 , . . . , -w n , 1) (-w 1 , . . . , -w n , 1)K 1/2 ] = K 1/2 (-w 1 , . . . , -w n , 1) 2 = (-w 1 , . . . , -w n , 1)K(-w 1 , . . . , -w n , 1) = δ x n+1 - n i=1 w i δ x i ) 2 K 1/2 .
Corollary 2.3. The optimal weights of the min-max linear prediction of f (x n+1 ) are given by

w * = (w * 1 , . . . , w * n ) = [k(x n+1 , x 1 ), . . . , k(x n+1 , x n )][k(x i , x j ) : i, j = 1, . . . , n] -1 . ( 4 
)
Proof. The optimal weights are given by the minimization

arg min{ δ x n+1 - n i=1 w i δ x i 2 K 1/2 : w 1 , . . . , w n ∈ R}, (5) 
which is the solution of the system n j=1

w j k(x i , x j ) = k(x n+1 , x i ), i = 1, . . . , n, (6) 
it follows easily that w * is given by 4.

Remarks 2.4.

1) The worst case linear prediction error in the ball with the radius r > 0 w.r.t. to the norm

K -1/2 • is equal to sup K -1/2 f ≤r {|f (x n+1 ) - n i=1 w i f (x i )| 2 } = r 2 (-w 1 , . . . , -w n , 1)K(-w 1 , . . . , -w n , 1) ,
as a result the optimal weights (4) do not depend on the radius of the ball.

2) The prediction using the spline interpolating w.r.t. the norm K -1/2 • (see, e.g., [START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF]) defined by the minimizer :

S(f ) = arg min{ K -1/2 f : f (x 1 ), . . . , f (x n ) are fixed},
coincide with the prediction [START_REF] Dermoune | Moustaaid. Parametrizations, weights, and optimal prediction[END_REF].

3) The min-max prediction ( 2) is equal to

f * (x n+1 ) = n j=1 α * j k(x n+1 , x j ), (7) 
where α * j , j = 1, ..., n is the solution of the system

n j=1 α * j k(x i , x j ) = f (x i ), i = 1, . . . , n, (8) 
Now, we turn to the interpolation of the function f at the set {x 1 , . . . , x n } using span(k 1 , . . . , k n ) where k j denotes the j-th column of the matrices K. Then the interpolation of the function f equals

I(f ) = n j=1 α * j k j
with the weights α * are given by [START_REF] Mardikis | Comparison of interpolation methods for the prediction of reference evapotranspiration-an application in greece[END_REF]. The following Proposition gives the error of interpolation.

Proposition 2.5 (Interpolation error ). The error of interpolation, IErr, is given by

IErr(f ) := f (x n+1 ) -f * (x n+1 ) = [k (-1) n+1 f ][k(x n+1 , x n+1 ) - n i=1 w * i k(x i , x n+1 )]. (9) 
Proof. First, observe that we can write the coordinates of f in the basis K as

f = n+1 j=1 [k (-1) j f ]k j .
with k (-1) j denotes the j-th row of K -1 . Therefore

I(f ) = n+1 j=1 [k (-1) j f ]I(k j ) = n j=1 [k (-1) j f ]k j + [k (-1) n+1 f ]I(k n+1 ),
because the interpolation of k j is exact for j = 1, . . . , n. Thus,

f -I(f ) = [K -1 n+1 f ](k n+1 -I(k n+1 )) = [k (-1) n+1 f ](0, . . . , 0, [k(x n+1 , x n+1 ) - n i=1 w * i k(x i , x n+1 )]) ,
which completes the proof.

Min-max linear prediction with constraint

In this section, we consider the optimization (5) under the constraint

n i=1 w i p k (x i ) = p k (x n+1 ), k = 1, . . . , q, (10) 
where p 1 , . . . , p q ∈ R {x 1 ,...,x n+1 } are given. Solve the minimization (5) under the constraint ( 10) is equivalent to solve the system

n j=1 k(x i , x j )w j + q k=1 λ k p k (x i ) = k(x i , x n+1 ), i = 1, . . . , n, n j=1 w j p k (x j ) = p k (x n+1 ), k = 1, . . . , q, (11) 
where λ 1 , . . ., λ q are the Lagrange multiplier. The solution is unique if the homogeneous system

n j=1 k(x i , x j )w j + q k=1 λ k p k (x i ) = 0, i = 1, . . . , n, n j=1 w j p k (x j ) = 0, k = 1, . . . , q,
has a unique solution w 1 = . . . = w n = 0, λ 1 = . . . = λ q = 0. This is equivalent to say that the columns (p k (x 1 ), . . . , p k (x n )) , k = 1, . . . , q, are linearly independent and that K is conditionally positive w.r.t. p 1 , . . ., p q , i.e. the system

n j=1 n j=1 k(x i , x j )w j w i = 0, n i=1 w i p k (x i ) = 0, k = 1, . . . , q,
has a unique solution w 1 = . . . = w n = 0. Observe that this is true if K is definite positive, but it is not necessary. Let w * 1 , . . ., w * n , λ * 1 , . . ., λ * q be the solution of the system [START_REF] Reinsch | Smoothing by spline functions[END_REF]. Then the optimal prediction under the constraint ( 10) is

f * (x n+1 ) = n i=1 w * i f (x i ). (12) 

Constraint's parametrization

Now, let z (1) = (z

(1) 1 , . . . , z (1) 
n ) be a particular solution of the system (10) and z 1 = (z 11 , . . . , z n1 ) , . . ., z n-q = (z 1n-q , . . . , z nn-q ) , n -q independent solutions of the corresponding homogeneous system. Then the general solution of the system (10) has the form

w = z (1) + n-q l=1 wl z l .
Let us consider the basis

B = [p 1 , . . . , p q , n i=1 z i1 k i , . . . , n i=1 z in-q k i , b n+1 ] (13) =: [b 1 , . . . , b n+1 ]
such that the expansion of f in the basis B is given by

f = q l=1 θ l f p l + n-q l=1 θ q+l f b q+l + θ n+1 f b n+1 , with θ n+1 = (-(z (1)
) , 1).

The unknows are the rows θ 1 , . . ., θ n , and the column b n+1 . They are solution of the system

δ(i = j) = q l=1 p l (x i )θ lj + n-q l=1 b q+l (x i )θ (q+l)j + b n+1 (x i )θ (n+1)j i, j = 1, . . . , n + 1. ( 14 
)
The interpolation of any function g at the set {x 1 , . . . , x n } using span(b 1 , . . . , b n ) is given by the map

I(g) = n j=1 β j b j ,
with β is the solution of the system n j=1

β j b j (x i ) = g(x i ), i = 1, . . . , n.
Using similar arguments as in proposition 2.5, we can deduce the following result.

Proposition 2.6. The value

n j=1 z (1) j k(x j , x n+1 ) + I(f - n j=1 z (1) 
j k j )(x n+1 )
coincides with f * (x n+1 ) given by [START_REF] De Boor | A practical guide to splines[END_REF]. In addition, the error is equal to

f (x n+1 ) -f * (x n+1 ) = f (x n+1 ) - n j=1 z (1) 
j k(x j , x n+1 ) -I(f - n j=1 z (1) 
j k j )(x n+1 ) = [b (-1) n+1 (f - n j=1 z (1) 
j k j )][b n+1 (x n+1 ) -I(b n+1 )(x n+1 )].
If K is invertible and p l = k l with l = 1, . . . , n, then θ l = k (-1) l for l = 1, . . . , n, and the basis ( 14) is given by b l = k l with l = 1, . . . , n, and b n+1 =

k n+1 k(x n+1 ,x n+1 )-I(k n+1 )(x n+1 ) .

Constraint's effect on the kernel

From the notations above the general solution of the system (10) has the form

w = z (1) + n-q l=1 wl z l .
As a consequence the quadratic form

δ x n+1 - n i=1 w i δ x i 2 K = µ n+1-q - n-q l=1 wl µ l 2 K, with µ 1 = n i=1 z i1 δ x i , . . ., µ n-q = n i=1 z in-q δ x i , µ n+1-q = δ x n+1 -n i=1 z (1) 
i δ x i , and the entries of the (n + 1 -q) × (n + 1 -q) kernel K are given by

k(l 1 , l 2 ) = (µ l 1 , µ l 2 ) K , l 1 , l 2 = 1, . . . , n + 1 -q.
Observe that K is positive definite if and only if the columns (p k (x 1 ), . . . , p k (x n )) , k = 1, . . . , q, are linearly independent and K is conditionally positive w.r.t. p 1 , . . ., p q . It follows that

sup{|f (x n+1 ) - n i=1 w i f (x i )| 2 : f K-1 f ≤ 1} = µ n+1-q - n-q l=1 wl µ l 2 K,
where f = ( f (1), . . . , f (n + 1 -q)) ∈ R n+1-q are defined by

f (1) = n i=1 z i1 f (x i ), . . . , f (n -q) = n i=1 z in-q f (x i ), f (n + 1 -q) = f (x n+1 ) - n i=1 z (1) i f (x i ).
The map f ∈ R {x 1 ,...,x n+1 } → f K-1 f is a semi kernel having the null space spanned by p 1 , . . ., p q . That being the case, the optimal weights w * are given by w * = arg min{ µ n+1-q -n-q l=1 wl µ l 2 K : w1 , . . . , wn-q ∈ R}, and then predict f (x n+1 ) is equal to

n i=1 z (1) i f (x i ) + n-q l=1 w * l ( n i=1 z il f (x i )).
The latter predictor coincides with [START_REF] De Boor | A practical guide to splines[END_REF]. Moreover, the spline

S( f ) = arg min f (n+1-q) { f K-1 f : f (1), . . . , f (n -q) are fixed} is such that S( f )(n + 1 -q) = f * (x n+1 ) - n i=1 z (1) i f (x i ) with f * (x n+1
) is the optimal prediction under the constraint [START_REF] De Boor | A practical guide to splines[END_REF].

From the expansion of f in the basis B = [b 1 , . . . , b n+1 ] (13), we can conclude the following result.

Proposition 2.7. If the weights w satisfy the constraint [START_REF] Schoenberg | Contributions to the problem of approximation of equidistant data by analytic functions, quart[END_REF], then

|f (x n+1 ) - n i=1 w i f (x i )| 2 = | n+1-q l=1 fl {b q+l (x n+1 ) - n i=1 w i b q+l (x i )}| 2 .
It follows that

sup{|f (x n+1 ) - n i=1 w i f (x i )| 2 : f K-1 f ≤ 1} = (b q+1 (x n+1 ) - n i=1 w i b q+1 (x i ), . . . , b n+1 (x n+1 ) - n i=1 w i b n+1-q (x i )) K-1 (b 1+q (x n+1 ) - n i=1 w i b 1+q (x i ), . . . , b n+1 (x n+1 ) - n i=1 w i b n+1 (x i ))
= (-w 1 , . . . , -w n , 1)R KR (-w 1 , . . . , -w n , 1) = (-w1 , . . . , -wn-q , 1) K(-w1 , . . . , -wn-q , 1)

= µ n+1-q - n-q l=1 wl µ l 2 K,
with the (n + 1)

× (n + 1 -q) matrix R = [b q+1 , . . . , b n+1 ].

Semi-kernel and constraint

Now, conversely we consider a semi-kernel Q on R {x 1 ,...,x n+1 } with the null space spanned by q functions p 1 , . . ., p q and let S(f ) = arg min{Q(f, f ) : f (x 1 ), . . . , f (x n ) are fixed} be the spline defined by the semi-norm Q, and

S(f )(x n+1 ) = n i=1 w * i f (x i ).
We consider a basis B = [b 1 , . . . , b n+1 ] such that b l = p l with l = 1, . . . , q and let (θ 1 , . . . , θ q , u 1 , . . . , u n+1-q ) be the coordinates of f , i.e.

f = q l=1 θ l p l + n+1-q l=1 u l b q+l .
It follows that

Q(f, f ) = n+1-q l 1 =1 n+1-q l 2 =1 u l 1 u l 2 Q(b q+l 1 , b q+l 2 ) = Q 1/2 u 2 ,
and the kernel Q =: [Q l 1 ,l 2 : l 1 , l 2 = 1, . . . , n + 1 -q] is invertible. If the weights w satisfy the constraint (10), then

|f (x n+1 ) - n i=1 w i f (x i )| 2 = | n+1-q l=1 u l {b l (x n+1 ) - n i=1 w i b l (x i )}| 2 , therefore, sup{|f (x n+1 ) - n i=1 w i f (x i )| 2 : Q(f, f ) ≤ 1} = sup{|f (x n+1 ) - n i=1 w i f (x i )| 2 : u Qu ≤ 1} = (b q+1 (x n+1 ) - n i=1 w i b q+1 (x i ), . . . , b n+1 (x n+1 ) - n i=1 w i b n+1-q (x i ))Q -1 (b 1+q (x n+1 ) - n i=1 w i b 1+q (x i ), . . . , b n+1 (x n+1 ) - n i=1 w i b n+1 (x i )) = (-w 1 , . . . , -w n , 1)RQ -1 R (-w 1 , . . . , -w n , 1) ,
where the (n + 1)

× (n + 1 -q) matrix R = [b q+1 , . . . , b n+1 ].

Stochastic approach

The statistical counterpart to the kernel interpolation is known as kriging (see e.g. [START_REF] Scheuerer | Interpolation of spatial data-a stochastic or a deterministic problem[END_REF]). It is based on the modeling assumption that (f (x 1 ), . . . , f (x n ), f (x n+1 )) is a realization of random vector Y x 1 , . . ., Y x n+1 over the same probability space (Ω, F, P). To predict Y x n+1 known Y x 1 , . . ., Y xn we need the mean and the covariance matrix of the random vector (Y x 1 , . . . , Y x n+1 ).

We assume that the mean (m(x 1 ), . . . , m(x n+1 )) (also called the trend) and the covariance function

k(x i , x j ) = cov(Y x i , Y x j ) of the random vector (Y x 1 , . . . , Y x n+1 ) exist. If Y x 1 , .
. ., Y xn are assumed to be known, then the best linear unbiased predictor (BLUP) of Y x n+1 is given by

Ŷx n+1 = n i=1 w * i Y x i ,
where the weights w * i are the solution of the following optimization problem

min{var(Y x n+1 - n i=1 w i Y x i ) : w 1 , . . . , w n ∈ R, n i=1 w i m(x i ) = m(x n+1 )}. ( 15 
)
If the mean function m is modeled as

m(x i ) = q k=1 β k p k (x i ) : i = 1, . . . , n + 1,
and if we consider the weights such that n i=1 w i p l (x i ) = p l (x n+1 ), l = 1, . . . , q, then the optimal predictor

f (x n+1 ) = n i=1 w * i f (x i ) of f (x n+1
) in stochastic sense coincides with the interpolation [START_REF] De Boor | A practical guide to splines[END_REF].

Three kernel selection criteria

Kernel interpolation and prediction approaches are based on the knowledge of a symmetric positive definite matrix K and the trend p 1 , . . ., p q . To apply kernel interpolation it amounts to the assumption that one knows the degree of smoothness of the function f . In the context of partial differential equations, the function f belongs to some Sobolev space. In stochastic approach the covariance matrix and the trend are chosen using the maximum likelihood method or the Bayesian method.

Here we propose three natural criteria to compare two kernels K (1) and K (2) . Known f (x 1 ), . . ., f (x r ), we predict f (x r+1 ) using the kernel [k (l) (i, j) : i, j = 1, . . . , r], and we obtain the predictor f (l) (x r+1 ), with l = 1, 2, and r = 2, . . ., n -1. We propose the following three criteria to measure the performance of the Kernel K (l) :

1) M SP E(l) =:

n-1 j=1 |f (x j+1 )-f (l) (x j+1 )| 2 n-1
. We say that K (1) is better than

K (2) w.r.t. the MSPE criterion if M SP E(1) < M SP E(2). 2) M AXP E(l) =: max{|f (x j+1 ) -f (l) (x j+1 )| : j = 1, . . . , n -1}. We say that K (1) is better than K (2) w.r.t. the MAXPE criterion if M AXP E(1) < M AXP E(2).
3) We say that K (1) is statistically better than K (2) if

n-1 j=1 1 [|f (x j+1 )-f (1) (x j+1 )|<|f (x j+1 )-f 2) (x j+1 )|] n -1 > 1/2.
These criteria were also used in [?].

Application

In the climate change problem we are interested in the mean temperature f (t) at the time t.

The data are the years taken into account t 1 < . . . < t n+1 and the mean temperature f (t 1 ), . . ., f (t n ), and we are interested in the prediction of f (t n+1 ). We recall that arg min{

t n+1 t 1 |g (t)| 2 dt : g(t 1 ) = f (t 1 ), . . . , g(t n+1 ) = f (t n+1 ) are fixed}
is the natural C 2 cubic spline s which interpolates the points (t i , f (t i )), i = 1, . . . , n + 1. See [START_REF] Schoenberg | Contributions to the problem of approximation of equidistant data by analytic functions, quart[END_REF][START_REF] Reinsch | Smoothing by spline functions[END_REF]. We assume that f (t 1 ), . . ., f (t n+1 ) are the values of a natural C 2 cubic spline. We are going to predict f (t n+1 ) using three kernels, and we need some notations.

Kernel and semikernels using cubic splines

Let S = S 3 (t 1 , . . . , t n+1 ) be the set of C 2 cubic splines having the knots

t 1 < • • • < t n+1 .
Note that every element s ∈ S is a C 2 map on [t 1 , t n+1 ] and is a polynomial of degree three on each interval [t i , t i+1 ) for i = 1,. . . , n. More precisely, let

p 1 = s(t 1 ), . . . , p n+1 = s(t n+1 ), q 1 = s (t 1 ), . . . , q n+1 = s (t n+1 ), u 1 = s (t 1 ), . . . , u n+1 = s (t n+1 ), v 1 = s (t 1 +), . . . , v n = s (t n +)
be respectively the values of s and its derivatives up to order three at the knots. We have for every i = 1, . . . , n,

s(t) = p i + q i (t -t i ) + (t -t i ) 2 u i /2 + (t -t i ) 3 v i /6, t ∈ [t i , t i+1 ).
The following constraint for h i = t i+1 -t i , i = 1, . . . , n ensures the hypothesis that s is C 2 :

p i + q i h i + u i h 2 i /2 + v i h 3 i /6 = p i+1 , (16) 
q i + u i h i + v i h 2 i /2 = q i+1 , ( 17 
) v i = s (3) (t i ) = (u i+1 -u i )/h i . ( 18 
)
It is well known (see [?]) that S has the dimension n + 3, and the set of natural spline S nat has the dimension n + 1. Hence an element s ∈ S (respectively s ∈ S nat ) is completely defined by n + 3 (respectively n + 1 parameters) independent parameters. Now we need to parametrize the set S in order to define properly an element s ∈ S. A parametrization of S is a one-to-one linear map ). The subscript notation 002 is justified by the fact that

Θ : s ∈ S → θ ∈ R n+3 .
p 1 = s(t 1 ) = s (0) (t 1 ), p 2 = s(t 2 ) = s (0) (t 2 ), u 1 = s (t 1 ) = s (2) (t 1 ), . . . , u n+1 = s (t n+1 ) = s (2) (t n+1 ).
See [START_REF] Dermoune | Moustaaid. Parametrizations, weights, and optimal prediction[END_REF][START_REF] Dermoune | Parametrizations, fixed and random effects[END_REF][START_REF] Dermoune | Estimation of noisy cubic spline using a natural basis[END_REF] Observe that span(b 002 1 , b 002 2 ) = span(1, t) with the column 1 = (1, . . . , 1) , t = (t 1 , . . . , t n+1 ) . We can show that

t n+1 t 1 |s (t)| 2 dt = n i=1 t i+1 t i |u i + t(u i+1 -u i )/h i | 2 dt = n i=1 (u 2 i + u i u i+1 + u 2 i+1 )h i /3 = (u 2 , . . . , u n )Q(u 2 , . . . , u n ) , (19) 
with Q is a known n -1 × n -1 invertible matrix see [START_REF] Dermoune | Moustaaid. Parametrizations, weights, and optimal prediction[END_REF]. We also recall that

(u 2 , . . . , u n ) = U(p 1 , . . . , p n+1 ) ,
with U is a known n -1 × n + 1 matrix see [START_REF] Dermoune | Moustaaid. Parametrizations, weights, and optimal prediction[END_REF] 

Now we propose the following predictors for f (t n+1 ). 0) We assume that s is Gaussian centred with the covariance matrix

K (0) = (Q (0) ) -1 with Q (0) is defined by t n+1 t 1 |s(t)| 2 dt = s Q (0) s.
1) We consider the spline S(f ) = arg min{(f (t 1 ), . . . , f (t n+1 ))P(f (t 1 ), . . . , f (t n+1 )) : f (t 1 ), . . . , f (t n ) are fixed},(23) defined by the kernel P (21) and the predictor f * (t n+1 ) = S(f )(t n+1 ) of f (t n+1 ). We assume that s is Gaussian with the mean p 1 b 002 1 (t) + p 2 b 002 2 (t) = β 1 1 + β 1 t and the covariance matrix K (1) = RQ -1 R with the kernel Q is given by (20). The predictor f (1) (t n+1 ) of f (t n+1 ) (12) using the kernel K (1) coincides with S(f )(t n+1 ).

2) We assume that s is Gaussian with the mean p 1 b 002 1 (t) + p 2 b 002 2 (t) = β 1 1 + β 1 t and the covariance matrix K (2) = RQR .

Let f (i) (t n+1 ) be the predictor of f (t n+1 ) (12) using the kernel K (i) with i = 0, 1, 2. Using real data, we are going to compare these three predictors.

Real data Application

As application in the climate change area we are interested in the annual mean temperature observed in France and Morocco from 1901 to 2015, the data are presented in Figure 1. We illustrate the importance of the kernel choice by considering the kernels K (0) , K (1) , K (2) . The three kernel selection criteria are presented in Table 1. The mean annual temperature of the year 2015 and 2016 (i.e. f (i) (t n ) and f (i) (t n+1 ), n = 114) are given in Tables (2, 3), as for Figure 2 it shows the splines of the predictors f (0) , f (1) , f (2) and the true temperature. The w * 1 , . . ., w * n of (12) for the kernels K (0) , K (1) , K (2) are presented in Figure 3. K (0) with 0.8288288 for K (1) and 0.8288288 for K (2) and 0.8468468 for K (2) Table 1: The three kernel selection criteria for the kernels K (0) ,K (1) , K (2) using Morroco and France data. 

K (2) K (0) K (1) K ( 

  Defining a parametrization Θ is equivalent to the existence of the basis B = (b 1 , . . . , b n+3 ) of S such that, for all s ∈ S, s = n+3 i=1 θ i b i = Bθ. The parametrization Θ 002 = (p 1 , p 2 , u 1 , . . . , u n+1 ) defines the basis B 002 = (b 002 1 , . . . , b 002 n+3

Figure 1 :

 1 Figure 1: Mean annual temperatures in France and Morocco from 1901 to 2015.

Figure 2 :

 2 Figure 2: The splines of the predictors f (0) , f (1) , f (2) and the true temperature.

  for more details. It follows for s ∈ S nat that

	n	
	s = p 1 b 002 1 + p 2 b 002 2 +	u i b 002 2+i ,
	i=2	
	and then s = (s(t 1 ), . . . , s(t n+1 ) is given by	
	n	
	s = [b 002 1 (t), b 002 2 (t)](p 1 , p 2 ) +	R(u 2 , . . . , u n ) ,
	i=2	
	Here the column b 002 i (t) = (b 002 i (t 1 ), . . . , b 002 i (t n+1 )) , with i = 4, . . . , n + 2, and the n +
	1 × n + 1 matrix	
	R = [b 002 4 (t), . . . , b 002 n+2 (t)].

  . Therefore (u 2 , . . . , u n )Q(u 2 , . . . , u n ) = (p 1 , . . . , p n+1 )U QU(p 1 , . . . , p n+1 ) (20) =: (p 1 , . . . , p n+1 )P(p 1 , . . . , p n+1 ) (21)

Table 2 :

 2 The predictors f (i) (t n ), n = 114 (the mean annual temperature of the year 2015). Prediction 12.91553 12.54049 11.40698 17.86737 18.99740 18.49113

	2)

Table 3 :

 3 The predictors f (i) (t n+1 ), n = 114 (the mean annual temperature of the year 2016).

Remark 5.1. Table 1 shows that the kernel K (0) wins against K (1) and K (2) with respect to the three kernel selection criteria. 12) for the kernels K (0) , K (1) , K (2) .

Concluding remarks

The numerical results shows the three kernel selection criteria are stable, form Table 1 we have that the best kernel among the three kernels is K (0) w.r.t. all the three criteria for both France and Morocco data. Moreover, the representation of the splines (Figure 2) shows that too.

From Table 1 and Figure 2 we have that the kernel K (1) wins against K (2) . Considering the second derivative (u 2 , . . . , u n ) as Gaussian with the covariance matrix Q -1 is a good stochastic modelization, at least is better than the assumption that (u 2 , . . . , u n ) as Gaussian with the covariance matrix Q. Equivalently measuring the worst error in the unit ball using the norm Q 1/2 u is better than the norm Q -1/2 u .