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Data-Driven Methodology for the Investigation of
Riding Dynamics: A Motorcycle Case Study

Mirco Bartolozzi , Abderrahmane Boubezoul , Samir Bouaziz, Giovanni Savino , and Stéphane Espié

Abstract— Powered-Two-Wheelers (PTW) riders’ fatalities are
prevalent on bends outside built-up areas due to the complexity
and instability of their vehicles: countermeasures require a better
understanding of the rider-PTW interaction. Analysing riding
data is effective but becomes challenging when using extensive
datasets; segmenting the riding data would help identify events
of interest, isolate specific manoeuvres and describe the riding
session. Manual segmentation would be time-consuming and
subjective; automation would be beneficial. This work proposed
an automatic, unsupervised tool for segmenting and clustering
signals acquired during a riding session for studying motorcycle
lateral dynamics in-depth. The method only requires measuring
the motorcycle roll angle. An expert rider completed a closed
route using an instrumented motorcycle; the algorithm divided
the time series into segments categorised into clusters relative
to specific riding conditions. Analysing the segmented trial
revealed the effectiveness and usefulness of the approach. Then,
a corner entry manoeuvre was investigated in-depth to observe
each segment’s properties. The method associated each riding
primitive to a cluster and described each manoeuvre through the
segments’ succession. The clusters were unambiguous and easy
to interpret thanks to their dynamics-based nature and minimal
overlap. The algorithm identified the differences between the
three corner entry manoeuvres in the trial. The segmentation
simplified the in-depth corner entry analysis and allowed early
detection of the manoeuvre start. The proposed tool can aid
research on motorcycle dynamics, PTW-rider interaction, and
riding preferences in bends. The segmented time series could
be employed for rider training and pre-crash fall dynamics
reconstruction.

Index Terms— Powered two-wheelers, motorcycle lateral
dynamics, unsupervised clustering and segmentation, time-series,
bend negotiation.

I. INTRODUCTION

POWERED Two Wheeler (PTW) riders face a greater
likelihood of experiencing fatal or severe injuries

compared to other road users. In 2019, the French Road Safety
Observatory (ONISR) accident report indicated that the PTW
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user category had a notably high percentage of injuries (26%)
and fatalities (23%) [1]. Similar situations have been observed
in other countries, and the World Health Organization has
reported that two- and three-wheeled vehicles are involved in
the majority of road fatalities [2]. It is concerning to note
that PTW users account for just 2% of road users in France.
Despite this elevated risk, the market for PTWs has grown
significantly in recent years. The positive shift towards public
transportation in congested urban areas has reinforced this
trend.

The ONISR has released data indicating that 49% of all
PTW user fatalities outside built-up areas occur on bends.
Loss of control on bends, including traffic roundabouts and
intersections, is likely due to the complicated dynamics and
instability of PTWs. When motorcycles lean on bends, the
risk of skidding increases, especially on poorly maintained
road surfaces. In order to develop effective measures to reduce
the risk of fatalities, observing the interaction between riders
and their motorcycles on bends is necessary. By understanding
motorcyclists’ behaviour, road design and operation can be
improved, and new training measures can be developed.
Traffic laws can also be modified, and rider assistance devices
can be created to enhance the safety of PTW users. It is
crucial to precisely understand riders’ behaviour to build active
safety systems that do not impact their balance. In addition,
understanding the interaction between riders and their PTWs
is crucial for creating motorcycle riding simulators that are
widely accepted and do not cause simulator sickness.

To comprehend riding behaviour, Vlahogianni et al. [3] rec-
ommends monitoring, recording, and analysing it. By studying
the collected data, riders’ behaviours during the bend-taking
process can be understood effectively. Precisely identifying
the various manoeuvres executed, their commencement and
termination points, and intermediate stages is necessary to
analyse the dataset thoroughly. Subdividing the time signals in
a succession of distinct phases is called segmentation: having
a segmented dataset allows one to identify events of interest,
describe the characteristics of the riding session, compare
different runs based on the succession of their segments and
their respective lengths, and in general it facilitates the work
of the expert that is studying the data.

Doing so is particularly challenging when aiming to
describe a specific manoeuvre or phenomenon in-depth.
A small error in the time instant could miss the event
considered. Datasets relative to naturalistic riding are trouble-
some, too, as the manoeuvres executed are unknown a priori.
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Moreover, the database is often extensive in this case, and
manual labelling and interpretation would be costly and
possibly unfeasible. For example, Tokey et al. studied the
spatial and temporal dynamics of e-scooters in an urban area:
the study focused on general user behaviour, as manually
segmenting individual trips would not have been possible due
to the high number of trials considered and the granularity
of the riding data used [4]. These aspects make automatic
dataset segmentation extremely valuable, as labelled and
interpreted data can be used to compare and investigate
specific features. More detailed data should aid in predicting
individual mobility [5] and key performance indicators for ride
pooling [6], and individual- and road-section-dependent riding
risk [7].

An automatic segmentation and clustering method could be
used to advance scientific research. For example, research on
riding style would benefit from comparing different riders,
both holistically (e.g. comparing segments length and order
for the same path) and regarding specific phases of the
manoeuvre of interest (e.g. detecting the manoeuvre start to
analyse the earliest phase of corner entry, as was manually
done in Diop et al. [8]). Doing this would also facilitate
comparing different trials for the same rider to scrutinise
average tendencies and behaviour variability when given the
same or different instructions. It would also enable identifying
the rider’s skill level from naturalistic riding instead of less
representative tests in a controlled environment. Concerning
this, Will et al. [9] studied riding style through g-g diagrams
of long naturalistic sessions. Similar studies would benefit
from plotting this diagram limitedly to specific manoeuvres
or some of their phases, and statistical conclusions could
be derived. Other studies on human-machine interaction
could benefit from this. For example, describing motorcycle
manoeuvrability [10] for different manoeuvres would become
possible after automatically identifying those of interest. Some
parametric identification procedures, such as characterising a
motorcycle tyre through riding data [11], would benefit from
finding the manoeuvres needed in a naturalistic riding dataset.

Riding trainers, too, could use such a tool. They could
employ it during training to assess the skill level evolution
or during the license test to compare the candidate to some
reference riders to evaluate them. It could also be used by
race engineers to quickly detect anomalies during a lap or by
insurance experts to reconstruct accidents from black box data.

Different statistical tools or procedures can be designed to
select interesting patterns in the riding episode. Nowadays,
the identification of these patterns is manually achieved
by researchers reviewing the video footage and signal
readings, too, if available. This method is time-consuming and
ineffective in identifying patterns in an extensive database,
such as those collected in naturalistic riding studies. The
alternative is using some proposed methodologies based
on machine-learning techniques. There are two learning
frameworks: supervised learning, where the model requires
labelled training data, and unsupervised learning, which does
not need labels for the data. Labels are the different time
ranges of each segment or event (start and end times) that
an expert could determine.

One of the drawbacks of supervised machine learning
methods is that labelling the data collected during an
experiment, such as detecting critical riding situations,
can be challenging. Researchers review the video footage
recorded during the experiment to manually identify the
start and end times of each critical situation encountered
by the rider during their travels. This extraction task is
time-consuming and tedious. Another issue related to this
labelling phase is that manual labelling tasks can introduce
label errors, particularly in the transition between different
segments.

The methods based on unsupervised learning algorithms aim
to mine the experimental data without preconceived ideas.
Researchers designed and conducted experiments to test a
certain number of hypotheses. For that purpose, the algorithm
will segment the data and create classes of riding behaviours.
The challenge is to give a physical meaning to these classes
to analyse the observed behaviours. The main issue behind
such approaches is converging toward the optimal number of
classes to explain the behaviours of interest.

This article aims to develop an automatic, unsupervised tool
for the in-depth study of motorcycle dynamics and human-
machine interaction. The cost-effective and objective nature
of the approach is evident; however, the following research
questions must be answered concerning the application of the
method to a single trial:

• Is the method general and robust enough to be applied to
different manoeuvres?

• Are the obtained clusters relative to distinct dynamic
conditions, and is it possible to easily and unambiguously
interpret them?

• Are there clear benefits of using this clustering and
segmentation algorithm when studying a manoeuvre in-
depth, like a corner entry manoeuvre?

• Can the method differentiate between analogous manoeu-
vres, like corner entries with different dynamics?

The research questions were not investigated regarding
transferability to different riders or trials of the same
rider. In particular, the article focuses on lateral dynamics,
particularly the lean angle and its derivatives, as the roll is
descriptive of the grip requested, and its evolution may reveal
instabilities.

A. Related Works

Several research studies have been devoted to detecting
driving patterns using unsupervised methods to analyse driving
behaviour and detect risky driving situations in the case of
four-wheeled vehicles. Some approaches rely on segmenting
the Inertial Measurement Unit (IMU) time-series data, then
applying clustering to group the driving primitives into
classes [12]. Another research work addresses this issue by
proposing an approach based on a high-level understanding
of the driving behaviour through decomposing the IMU data
into linear segments and assigning each segment to a convex
optimisation of high-level driving behaviours [13]. Recently,
an unsupervised approach was described in [14]; the proposed
methodology is based on a two-step framework. The first
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step involves applying Bayesian multivariate linear regression
models to segment driving sequences into fragments. The
second step applied extended latent Dirichlet allocation models
to cluster the fragments into multiple descriptive driving
patterns.

The research mentioned above applied a two-step frame-
work: segmentation and clustering steps separately. The main
limitation of doing so is related to the fact that these proposed
methodologies will not consider the sequential aspect of the
vehicle driving process. As a consequence, such approaches
will not detect fine-grained patterns well.

In the case of the PTWs, the literature on the detection of
riding patterns using unsupervised methods is less abundant
compared to four-wheeled vehicles and peculiarly in the
study of the bend-taking manoeuvre. One can cite [15],
where the authors decomposed cornering manoeuvres based on
roll dynamics. The rider’s control strategies were decoupled
into two classes based on the type of manoeuvre primitive:
stationary, and dynamic, to estimate a personal rider skill
score while riding on a winding road. Moreover, recently,
in [8], unsupervised learning methods were used for the global
analysis of the trajectory of a PTW during bend-taking. The
same authors in [16] focused on the curve entry analysis by
developing an unsupervised framework. The first step of the
proposed methodology consists in automatically segmenting
riding sequences to detect the bend entry. Then an extract of
statistical features from the first two segments constituting the
bend entry was used as inputs of a classifier to classify the
riding behaviours.

Due to the limited and very recent emergence of
automatic segmentation methods for PTWs, studies on
handling and manoeuvrability used manual segmentation
to divide the manoeuvres into different phases. Cossalter
and Sadauckas [10] manually segmented the lane change
manoeuvre into five segments based on some signals of
interest’s relative minima and maxima. This approach is
appropriate when dealing with limited repetitions of a specific
manoeuvre. However, it would be unfeasible in the case of a
broader database of more general manoeuvres due to its lack
of generality.

The paper structure follows: Section II describes the trial,
the measuring instruments and the corresponding signals along
with the sign convention, the segmentation algorithm used,
the input signals chosen, and the method used to interpret the
obtained clusters. Section III presents the interpreted clusters
and the segmentation results, first for the entire trial and then
focusing on the corner entry manoeuvre. These results are
discussed in Section IV; a particular focus is given to the
possible transitions between clusters. Possible extensions of
the methods are proposed and justified. Lastly, Section V
summarises the findings and implications and considers this
work’s applications and the subjects that might be interested
in it.

II. METHODS

The methodology, described in this section in more detail,
was the following:

1) An expert rider completed a route closed to traffic on an
instrumented motorcycle, producing a dataset of various
time series.

2) A set of suitable signals linked to the lateral dynamics
was chosen as the basis for the segmentation. The
unsupervised segmentation algorithm used this set to
segment the time series and categorised them into a
chosen number of clusters.

3) The clusters were interpreted, each associated with a
specific state linked to the lateral dynamics.

4) The entire segmented trial was analysed to evaluate
the approach’s usefulness and derive conclusions on its
generality.

5) An in-depth analysis was conducted on a specific corner
entry manoeuvre to observe the properties of each
segment in more detail.

A. Trial Description

The data used in this paper come from a cornering
experiment using a heavily instrumented motorcycle on the La
Ferte Gaucher track [8]. The experiment aimed to understand
how motorcyclists enter a turn, control their path, and exit
using a group of experienced and novice riders. In this paper,
The data of a single trial by a professional trainer of military
riding trainers is used: a 40-year-old man with 19-year-old
riding experience. This choice is based on such a rider’s
high experience and consciousness. Comparing qualitatively
the signals acquired from three consecutive trials of that rider,
significant repeatability in the riding behaviour emerged.

B. Measuring Instruments

The instrumented motorcycle was shown and described in
detail in Diop et al. [8], which was relative to a different test
campaign. Only a subset of those measuring instruments was
used for this article:

• An MTi Xsens IMU provided the accelerations and Euler
angles along the three axes.

• The standard Hall-effect sensor on the rear wheel
measured the longitudinal speed.

• A magnetic sensor (AS5047P by AMS) acquired the
handlebar steering angle.

• Four strain gauges on each handlebar acquired the
longitudinal and vertical force acting on it. These forces
were used to compute the resulting steering torque acting
on the handlebar, considering the inclination of the
steering axis.

• Another IMU (Tea Ergo CAPTIV Motion) was placed
on the top of the helmet to acquire the orientation of the
rider’s head.

C. Signals and Sign Convention

Fig. 1 shows the sign convention used: the x-axis pointed
forwards, the z-axis upward, and consequently, the y-axis
leftward. Therefore, the roll angle φ was positive when the
motorcycle was tilted to the right. A positive yaw angle
ψ indicated an anti-clockwise rotation when the motorcycle
is seen from above. The head relative yaw angle 1ψhead
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Fig. 1. The coordinate system used in this study, showing the positive
directions for roll φ and yaw ψ motions. The positive direction for the steering
angle δ and the steering torque τδ is also shown.

TABLE I
NOTATION OF THE SIGNALS AND THEIR UNITS

was defined as the angle between the rider’s head and the
motorcycle symmetry plane: 1ψhead = ψhead − ψbike. It was
positive when the rider looked at the bike’s left. The reference
frame was non-tilting: the x and y axes belonged to the ground
plane, independent of the pitch and roll angles. The steering
torque τδ and steering angle δ were defined around the steering
axis. Both were positive if pointing upwards. For most
motorcycles and riding conditions, the steering torque that the
rider must apply to manoeuvre has a sign opposite to the yaw
rate. When the yaw rate is positive (anti-clockwise, leftward
corner), the steering torque is generally negative (clockwise):
this phenomenon is referred to as counter-steering. Counter-
steering can also refer to the steering angle during brief
instants on corner entry. In this case, in the previous example,
the steering angle would initially become negative (clockwise)
as the steering torque. The signals used in this work are
summarised in Table I.

D. Unsupervised Segmentation Algorithm

Toeplitz Inverse Covariance-Based Clustering
(TICC) [17] is a model-based clustering technique that
identifies repeated patterns in time series data by segmenting
it into a fixed number of states, K. These states are represented
by clusters and are characterised by a correlation network
called a Markov Random Field (MRF). The MRF describes
the relationships between the different variables within a state
over a window of size w. The algorithm learns each cluster’s

MRF by estimating a sparse Gaussian inverse covariance
(Toeplitz) matrix. Previous research by the authors [18]
has shown that TICC outperforms other clustering methods
like Hidden Markov Model and Gaussian Mixture Model
in identifying riding patterns on simulator data. Each of the
three metrics considered (‘Silhouette’, ‘Calinski-Harabas’,
and ‘Davies-Bouldin’) showed a clear outperformance of the
TICC algorithm.

The TICC approach utilises multivariate time series data
as its input, represented by x = [x1, . . . , xT ], where T is
the number of observations and xi ∈ Rn , with n denoting
the number of input signals. Clustering is conducted on short
sequences of size w ≪ T , with the newly generated sequences
designated as X={X1,. . . ,XT }.

For the purposes of this discussion, P = {P1, . . . , Pk}

represents the point assignments and 2 = {21, . . . ,2K }

denotes the Toeplitz matrices, where 2i ∈ Rnw×nw. The
optimisation problem can be formulated as follows:

argmin
θ∈T ,P

k∑
j=1

[

sparsity︷ ︸︸ ︷∥∥λ ◦2 j
∥∥

1 +

∑
Yi ∈P j

(

log-likelihood︷ ︸︸ ︷
ℓℓ

(
Yi ,2 j

)
+

temporal consistency︷ ︸︸ ︷
β1

{
Yi−1 /∈ P j

}
)] (1)

The TICC algorithm incorporates two key regularisation
parameters, λ and β. The first parameter, λ, governs each
cluster’s sparsity of the Markov Random Field (MRF)
matrices. It shares the same shape as the MRFs (λ ∈

Rnw×nw), but for practical reasons, λ can be reduced to a
single value to streamline the search process. The second
parameter, β, is responsible for enforcing temporal consistency
and continuity between adjacent subsequences. It imposes a
penalty for smoothness, and a higher value of β promotes the
grouping of neighbouring subsequences into the same cluster.

TICC incorporates two additional parameters:
• Window size (w), which specifies the number of

observations within a given subsequence, represented
by X t = [xt−w+1, . . . , xt ], with X t ∈ Rn×w. All
observations within the same subsequence are grouped
together and assigned to the same cluster.

• Number of clusters (K) corresponds to the number of
patterns that need to be identified. This value can be
determined using either the BIC or silhouette score, but
its selection is typically dependent on the application.

The optimisation problem is solved by initially randomising
the Toeplitz matrices, 2, and cluster assignments, P, and then
utilising a variation of the expectation maximisation (EM)
algorithm, which alternates between assigning subsequences
(update P) and updating the clusters’ parameters (Toeplitz
matrices), 2.

E. Input Signals

The segmentation aimed to identify the different cornering
phases using a limited set of easily measurable signals. The
roll angle φ was chosen as one of the input signals for the
algorithm, as it is the primary state related to the lateral
dynamics. It allowed differentiating between low, medium and
high roll angle riding. However, the actual riding condition
was also defined by how fast the roll angle changes: a φ ≈

0 condition could be either a straight riding condition or the
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intermediate, brief section of a change of direction. Therefore,
the roll rate φ̇ was added. Even though these two signals could
identify diverse riding conditions, some short sections with
particular characteristics would have been lumped with others.
Consider a corner entry manoeuvre: the algorithm would
differentiate between straight riding (low roll) and tilting fast
(high roll rate). The roll rate, however, was not generated
instantly: it would reach high values when the roll was already
significantly higher than zero. The intermediate segment would
be partially lumped with the previous straight-riding segment
and, for the remaining part, with the following fast-leaning
segment. The roll acceleration φ̈ was also considered to
detect the manoeuvre start sooner and give more depth to the
analysis. The advantage of using these three signals was that
the roll rate and roll acceleration are the derivatives of the roll
angle. Therefore, the approach allowed an in-depth description
of the lateral dynamics starting from a single signal (the roll
angle).

Using the roll angle directly would produce two different
clusters for the right (φ > 0) and left (φ < 0) corners.
As the corner direction does not influence the symmetrical
rider-motorcycle system’s behaviour, the roll angle’s absolute
value |φ| was used. Similarly, the roll rate sign tells about
the direction (left or right) of the lean velocity; instead,
knowing whether the roll rate increased or decreased the roll
angle was more interesting. The new signal φ̇′

= φ̇ signφ
was defined: when the roll angle and roll rate had the same
sign, the roll increased in absolute value, and φ̇′ > 0. The
opposite held for φ̇′ < 0. Similarly, a new variable was defined
concerning the roll acceleration: φ̈′

= φ̈ signφ. To summarise,
the segmentation algorithm used the following signals:

|φ| , φ̇′
= φ̇ signφ, φ̈′

= φ̈ signφ. (2)

The algorithm based the segmentation only on these signals.
The segments identified were the same for all the signals.
The TICC parameters chosen were: λ = 5 × 10−4, β = 5,
w = 1 and K = 6.

F. Clusters Interpretation Method

The algorithm was unsupervised; therefore, the obtained
clusters had to be interpreted. To this end, the input signals
were plotted in pairs using a scatter plot. A specific colour
represented the data points relative to the same cluster. The
typical input signals values corresponding to each cluster were
derived by looking at the position of its points. Representing
the dispersion along each variable through box plots aided this
process. Each cluster was linked to the manoeuvre type or its
specific phase through the theory of motorcycle dynamics.

III. RESULTS

A. Interpreted Clusters

The three variables used as input to the algorithm
(|φ|, φ̇′, φ̈′) were plotted against each other in pairs (Fig. 2)
to interpret the six different clusters.

Fig. 2a plots φ̇′ against |φ|. Two clusters (blue and orange)
had a zero-median roll rate: the former included data points
with minimal roll, while the latter had a very high roll.

Fig. 2. Scatter plots of the input signals for the segmentation algorithm,
represented in pairs, showing the different clusters for the trial. (a): Roll angle
absolute value and roll rate in lean direction. (b): Roll rate in lean direction
and roll acceleration in lean direction. Clusters are: VR (Vertical Riding);

SC (Steady Cornering); LIF (Lean-In Fast); LOF (Lean-Out Fast);

LIE (Lean-In End); ALD (Accelerating in Lean Direction).

Therefore, the blue cluster was relative to the motorcycle
being vertical, while the steady corners made up the orange
one (Fig. 2b). φ̈′ had a zero median for the blue cluster
but a negative one for the orange cluster: given that φ̈′

=

φ̈ signφ, this means that, on average, during a corner, the roll
acceleration produced a roll rate that tended to reduce the roll
angle. In fact, the absolute value of the roll angle signal had a
negative second derivative (the roll reached a peak, maintained
it for the duration of the corner, and then reduced). Table II
summarises the properties of each cluster: the blue cluster was
named ‘Vertical Riding’ VR and the orange one ‘Steady
Cornering ’ SC .

The green and purple clusters showed symmetrical
behaviour: high φ̇′ values (positive and negative, respectively)
and moderate roll values. Therefore, these clusters described
rapid roll changes: towards higher (φ̇′ > 0) and lower (φ̇′ < 0)
roll angle values, respectively. Therefore, the green cluster was
named ‘Lean-In Fast’ LIF and the purple one ‘Lean-Out
Fast’ LOF .
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TABLE II
THE SIX CLUSTERS WITH THEIR ASSOCIATED COLOURS AND THE COR-

RESPONDING VALUES AND DIRECTIONS OF THE ROLL ANGLE AND ITS
DERIVATIVES. ‘IN’ INDICATES ‘TOWARDS THE LEAN DIRECTION’

‘OUT’ INDICATES ‘AWAY FROM THE LEAN DIRECTION

The red cluster comprised medium to high roll angle values,
with positive, medium φ̇′ values and negative, very high φ̈′

values: the motorcycle was increasing its roll angle (φ̇′ > 0)
at an ever-decreasing rate (φ̈′ < 0). The motorcyclist was
stabilising the motorcycle to the steady-state cornering roll
angle: this red cluster was named Lean-In End LIE . The
cyan cluster regarded low roll angle values, negative and
medium φ̇′ values and high, positive φ̈′ values. The motorcycle
roll accelerated towards the lean direction (φ̈′ < 0) around
the zero roll condition. Consequently, the rider was either
stabilising the motorcycle towards a straight riding condition
(if φ̇′ < 0, therefore decreasing its roll) or destabilising it
to initiate the corner entry (if φ̇′ > 0, therefore increasing
its roll). This cyan cluster was named ‘Accelerating in Lean
Direction’ ALD .

To conclude, each cluster represented one specific lateral
dynamics condition. Three couples of clusters could be
identified, as each cluster had a dual: VR-SC, LIF-LOF, and
LIE-ALD. The three couples were characterised by their roll
angle, roll rate and roll acceleration, respectively.

B. Complete Trial

Fig. 3 showed the motorcycle trajectory during the
trial, divided into segments with the colour indicating the
corresponding cluster. The segments were 27 in total, with four
or five per cluster. The segments corresponding to the straights
belonged to the ‘Vertical Riding’ cluster, and there was a
‘Steady Cornering’ segment for each bend. A VR segment
was linked to the following SC segment (corner entry section)
through either a LIF, LIF→LIE or ALD→LIF→LIE sequence.
Conversely, an SC segment was always linked to the following
VR segment (corner exit section) through a LOF→ALD
sequence. In the case of the chicane, the two SC segments
were always linked by a LOF→LIF→LIE sequence. The last
segment belonged to the VR cluster, despite the slightly curved
trajectory: the low speed (v < 6 m s−1) produced a minimal
roll angle, analogous to that experienced on a straight section.

Fig. 4 shows some relevant time series. In particular, Fig. 4a
depicts the roll angle and its derivatives, from which the
input signals of the segmentation algorithm were derived.
This plot shows an alternative view compared to Fig. 2. The
VR segments were characterised by roll angle values around
zero; on the contrary, the SC segments stood out for their
very high roll values, reaching 33.1 deg. The LIF and LOF

Fig. 3. Trajectory of the trial divided into segments. The colour of each
segment indicates the cluster it belongs to: VR (Vertical Riding); SC

(Steady Cornering); LIF (Lean-In Fast); LOF (Lean-Out Fast); LIE

(Lean-In End); ALD (Accelerating in Lean Direction). The arrow indicates
the direction of travel. Letters A and B delimit the corner entry manoeuvre
analysed.

segments shared high roll rate values (maximum 41.3 deg/s).
Still, while the former had a sign concordant with the roll angle
(lean increasing), the opposite was true for the latter (lean
decreasing). Lastly, the LIE and ALD segments showed the
highest roll accelerations, reaching a maximum of 99.5 deg/s2.

Fig. 4b shows additional signals. The longitudinal speed
v and acceleration ax described the longitudinal dynamics,
which had not been not explicitly considered in the
segmentation algorithm. For most of the trial, the speed was in
the 5 m s−1 to 15 m s−1 range. The highest positive (4.3 m s−2)
and negative (-4.7 m s−2) longitudinal acceleration values were
achieved in the VR segments. The rider reduced the throttle
and braking inputs in the other segments, where there was also
a demand for lateral grip. The steering angle δ was around
zero in the VR segments, except for the first instants (when
the motorcycle was starting from a standstill) and the slow
last segment. Its value was maximum in the SC segments,
especially in the last one. Lastly, the steering torque τδ had a
trend similar to the steering angle but with the sign reversed
due to its generally counter-steering nature.

Requiring longitudinal grip reduced the available lateral grip
and vice-versa. Different riders can combine longitudinal and
lateral dynamics differently, originating g-g diagrams with
different shapes [9]. Fig. 5 shows that, in this case, the g-
g diagram had the ‘Leaf’ shape, typical of more aggressive
riders [9]. The rider used the combined dynamics extensively,
as indicated by the points often far from both axes. He tended
to brake intensely with the motorcycle both vertical and
tilted. In comparison, the reduction in the throttle request
when the motorcycle was leaned was more evident, although
he reached ∼ 2 m s−2 of positive longitudinal acceleration
concurrently with high lateral acceleration values. While
the maximum (positive or negative) longitudinal acceleration
was achieved when the lateral acceleration was tiny, the
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Fig. 4. Time series of relevant signals acquired during the trial. The colour of each segment indicates the cluster to which it belongs. The vertical lines
indicate the beginning and the end of the corner entry manoeuvre analysed in depth. (a): Signals linked to those used in the segmentation algorithm (roll
angle φ, roll rate φ̇, roll acceleration φ̈). (b): Additional signals (speed v, longitudinal acceleration ax , steering angle δ, steering torque τδ).

maximum lateral acceleration corresponded to moderate
decelerations. Therefore, the maximum roll was reached
before the motorcycle speed had reached its minimum. The
LIE cluster had a negative median longitudinal acceleration
and was strictly within the lower half of the graph: the rider
never used the throttle right before reaching the maximum
roll. This fact is primarily true also for the LIF cluster,
which immediately precedes the LIE segments. Compared
to the SC cluster, the points belonging to the LIE cluster
had more negative longitudinal acceleration and lower lateral
acceleration: the rider tilted the motorcycle less but braked
more. The VR cluster had a negative median: the rider used

the brake more than the throttle when the motorcycle was
vertical.

C. Corner Entry Manoeuvre

Fig. 6 shows the corner entry manoeuvre analysed.
In particular, Fig. 6a shows the time series of the roll angle
and its derivatives, along with other significant signals (the
steering angle δ, the steering torque τδ , the longitudinal
acceleration ax , and the head relative yaw angle 1ψhead).
The algorithm divided the manoeuvre into five segments:
in order, VR (Vertical Riding), ALD (Accelerating in Lean
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Fig. 5. g-g diagram, showing the different clusters for the trial. Clusters are:
VR (Vertical Riding); SC (Steady Cornering); LIF (Lean-In Fast);

LOF (Lean-Out Fast); LIE (Lean-In End); ALD (Accelerating in
Lean Direction).

Direction), LIF (Lean-In Fast), LIE (Lean-In End), and SC
(Steady Cornering). As shown in Fig. 6b, during this time,
the motorcycle went from straight riding to cornering slightly
after the corner apex. The behaviour in each segment is now
described:

• VR . Initially, all signals related to the lateral dynamics
fluctuated around zero; the longitudinal acceleration was
small and negative (the rider was slowly reducing his
speed), and the head relative yaw angle was around +10◦

(looking slightly to the left, in the corner direction).
Through the segment, the deceleration progressively
increased up to its manoeuvre maximum. Towards the
end of the segment, various signals moved from zero,
indicating the initiation of the corner entry manoeuvre.
The motorcycle is a causal system in that its response
cannot anticipate the inputs: as the steering torque
is the primary control input for the rider, it can be
employed to detect the manoeuvre initiation instant.
As the steering torque was negative throughout the
following part, the last zero-crossing of the steering
torque (dash-dotted circle in the figure) was considered as
the ‘corner initiation’ instant. The negative sign indicated
a clockwise steering torque, therefore counter-steering,
the curve being anti-clockwise. This torque produced
a tiny, negative (counter-steering) steering angle: the
front wheel became misaligned with respect to the
motorcycle velocity, generating a slip angle on the
front tyre that produced a centripetal force. This force
generated a moment around the centre of gravity of the
motorcycle-rider system, resulting in a negative, leftward
roll acceleration. Over time, this produced a roll rate
barely measurable at the end of the segment. There
was not enough time to vary the roll angle, as it is
the second integral of the roll acceleration. The steering
torque continued to increase, reaching 20 N m, which was
close to the manoeuvre maximum.

• ALD . The steering torque remained high: the roll
angle, which is generally responsible for a significant
part of the reaction torques [19], was still tiny, but the

roll rate was significant, so the applied torque had to
compensate for the roll-related gyroscopic torque. The
counter-steering torque applied by the rider exceeded the
reactive torques, producing an increase in the steering
angle, which was already counter-steering and reached
a local maximum. This steering angle variation made
the motorcycle yaw towards the outside of the corner
(negative, rightward yaw rate). The video (Fig. 6a)
confirmed this phenomenon. Towards the end of the
segment, the roll angle and roll rate became significant:
this increased the reactive torques, which the decreased
applied torque could not overcome. The steering angle
and, consequently, the yaw rate went towards zero while
the roll rate reached its maximum. As the vehicle turned
slightly towards the outside, the rider had to compensate
by looking progressively more to the motorcycle’s
left (Fig. 6b).

• LIF . The roll rate reached its maximum value. The
roll acceleration initially had a sign concordant with the
roll rate (the motorcycle leaned faster and faster) and a
discordant sign in the second part of the segment (the
rider started to reduce the roll rate). In this segment, the
steering angle and yaw rate became positive (towards the
corner inside). This behaviour would continue for the
remainder of the manoeuvre. The rider’s head reached
the maximum yaw angle relative to the motorcycle,
around 27◦.

• LIE . The segment linked the transient corner entry
phase to the steady-state cornering phase identified by
the last segment. The roll acceleration was discordant
with the roll rate: the roll angle approached its maximum
value at a decreasing rate. The motorcycle was reaching
its new equilibrium (cornering): the signals linked to each
other in a steady state (roll angle, yaw rate, steering angle
and torque) showed the same dynamics, converging to
their maximum value. The rider applied approximately
constant steering torque and continued looking toward
the corner inside.

• SC . The rider applied an approximately constant
torque, reaching a new equilibrium: the roll, steering
angle and yaw rate signals became constant, as did the
head relative yaw angle. After reaching the apex, the rider
prepared for the following straight: he reduced the
steering torque (dashed circle) and started to align the
head to the travelling direction. The steering torque went
to zero in around 1 s, inducing a positive (rightward)
roll acceleration responsible for the straightening phase.
The roll angle, yaw rate and steering angle reduced in
amplitude, which remained significant at the end of the
segment.

The longitudinal acceleration was the only signal, among the
previous ones, describing the longitudinal dynamics, which
was not explicitly considered by the segmentation algorithm.
The rider braked progressively more when closer to the corner
apex: this strategy reduced the manoeuvre time for a given
maximum acceleration and jerk and a specific speed decrease
target. Then, as soon as the cornering started (second segment),
the rider started reducing the braking action: the consequent
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Fig. 6. Corner entry manoeuvre analysis. (a) Time series of relevant signals, comprising those linked to the signals used in the segmentation algorithm (roll
angle φ, roll rate φ̇, roll acceleration φ̈) together with additional ones (yaw rate ψ̇ , steering angle δ, steering torque τδ , longitudinal acceleration ax , head
relative yaw angle 1ψhead). (b) Segmented trajectory (left) and properties of each segment (right). The frames at the top show the motorcycle heading and
roll and the yaw of the motorcyclist’s head. The drawings at the centre (rear view) describe the sign of the roll angle and its derivatives. The drawings at the
bottom (top view) describe the sign of the steering angle and steering torque.

reduction of the requested longitudinal adherence increased
the lateral grip. This strategy kept a relatively constant safety
margin to the friction envelope. The longitudinal acceleration

reached zero in the last segment (when the roll angle was
maximum) and became positive (throttle input) when the roll
started decreasing. The leftward 10◦ initial head relative yaw
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Fig. 7. Scatter plot of the steering torque, showing the different clusters for
the corner entry manoeuvre.

angle was justified by the corner being preceded by another
leftward corner: the rider did not completely straighten his
head before aiming at the next bend. Fig. 4b showed that the
steering angle had a similar (and opposite in sign) trend to the
steering torque and tended to lag behind it. This fact is shown
more clearly by Fig. 6a: the segments showed that, while the
steering torque peak was at the end of the first segment (VR),
that of the steering angle was in the following ALD segment.
The steering torque remained counter-steering throughout the
manoeuvre; the steering angle, instead, started to point towards
the inside of the corner at the beginning of the third segment
(LIF). The steering inertia acted as a low-pass filter from the
torque input to the angle output: consequently, the former was
more erratic than the latter.

Manoeuvrability is the response of a motorcycle to the
rider’s input: the effect of the control action becomes more
apparent when the steering torque is shown against the
resulting roll angle, as in Fig. 7. At the beginning of the
manoeuvre (VR), the roll angle and the steering torque were
null. The rider applied a sudden negative (clockwise) steering
torque (dark blue point below the others): the roll did not
have enough time to vary and remained around zero. The
ALD segment began: the roll angle turned negative (leftward,
therefore, the steering torque was counter-steering) while the
rider continued to apply a significant steering torque. φ =5◦

marked the transition to the LIF segment: the rider lowered
the applied torque slightly, as the roll angle allowed the
motorcycle to lean itself (due to the moment arm of the weight
force). The motorcycle tilted quickly, leading to the LIE
segment: the rider increased the steering torque again and
maintained it to reach the desired roll angle (SC segment).
During the corner, the points were located in the lower-left
corner (negative, leftward roll angle and negative, clockwise
steering torque, therefore counter-steering). Towards the corner
end, the rider reduced the applied steering torque to zero: this
sudden variation did not induce an analogous roll reduction,
as the process takes time to produce tangible effects. During
a left corner, the rider must apply a clockwise torque to
equal the resulting external, anti-clockwise torque. As soon
as the applied steering torque reduced, this resultant turned
the steering anti-clockwise: this rotation produced a tyre

Fig. 8. Transitions between equilibrium states (‘Vertical Riding’ and ‘Steady
Cornering’ clusters). The possible VR to SC transitions (corner entry) are
indicated in black, the SC to VR transition (corner exit) is in pink, and the
SC to SC transition (chicane) is in brown. (a): Scatter plot of the roll angle
absolute value and roll rate in the lean direction. (b): Conceptual scheme of
the transitions.

lateral force in the centripetal direction that automatically
straightened the bike. In this case, the rider applied a small
positive torque to speed up the straightening process.

IV. DISCUSSION

A. Transitions Between Clusters

The clustering results (Fig. 2) showed that, concerning
lateral dynamics, riding a motorcycle consists of frequent
transitions between two states of equilibrium: ‘Vertical Riding’
(VR) and ‘Steady Cornering’ (SC). By definition, both
are relative to zero roll rate and roll acceleration but are
distinguished by their very different roll angle values. Fig. 8
shows the five transitions that occurred.
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When approaching a corner, the rider went from VR to
SC to VR, following an anti-clockwise1 circle in the (|φ| , φ̇′)
diagram. However, the transition from VR to SC happened in
three distinct ways:

• VR→LIF→SC (black, solid arrow). It was the case of
the first corner (Fig. 3). The large corner radius allowed
a gentle entry: the roll rate remained moderate (Fig. 4a),
and the roll acceleration was very low, preventing the
presence of‘Accelerating in Lean Direction’ (ALD) or
‘Lean-In end’ (LIE) segments.

• VR→LIF→LIE→SC (black, dash-dotted arrow). It was
the case in the fourth corner. Similarly to the previous
case, the initial part of the corner entry was very gradual,
with a modest φ̈ value, so the VR and LIF segments were
not separated by an ALD segment. However, the final
corner entry phase was more abrupt: the roll acceleration
reached high values, introducing a LIE segment before
the SC.

• VR→ALD→LIF→LIE→SC (black, dashed arrow).
It was the case in the third corner. The first and
last phases of the corner entry were both quick,
producing significant roll acceleration values: these were
characteristic of the ALD and LIE segments, which
appeared around the LIF segment.

The difference in roll rate and roll acceleration values that pro-
duced the VR→LIF→SC or the VR→ALD→LIF→LIE→SC
corner entry sequence was clear from Fig. 4a, comparing the
entry in the first (8-12 s) and third (18-21 s) corners. For the
latter, the maximum roll was slightly higher and was reached
in a shorter time: this increased the frequency of the roll signal,
increasing the roll rate and, even more so, the roll acceleration,
which are proportional to the frequency and the frequency
squared, respectively.

When going from cornering to straight riding, the transition
was SC→LOF→ALD→VR (pink, solid line) in all three
cases. This happened because the initial phase was always
gradual, with modest roll acceleration, probably a rider safety
choice considering the high initial roll angles. This graduality
caused a direct SC→LOF transition, followed by an ALD
segment, indicating that the final part of the manoeuvre was
more abrupt than the beginning.

While an SC segment, among others, always connected
two VR segments, the opposite did not hold: it was
possible to move from one SC state to another without
passing through a VR segment. This case was seen in the
section between the first two corners: the transition was
SC→LOF→LIF→LIE→SC (brown, solid arrows).

Fig. 8a shows all the transition paths between the
two equilibrium states (VR and SC). The chicane was
particularly interesting: a negative φ̇′ was generated, which
reduced the initially high roll angle. However, the state
continued towards the lower left corner instead of converging
to the origin (VR). When |φ| reached zero, φ changed
sign, and so did φ̇′: the points emerged from the lower
right corner and converged towards SC, explaining the
SC→LOF→LIF→LIE→SC transition. Fig. 8b conceptualises

1As φ̇′ > 0 indicated increasing roll and the opposite for φ̇′ < 0.

these transitions: all those between two specific clusters were
unidirectional, except for that between VR and ALD, which
happened both ways. This result was coherent with what was
found in Section III-A: the ALD cluster can either indicate a
stabilising (ALD to VR) or destabilising action (VR to ALD),
depending on the sign of the roll rate in lean direction φ̇′.

B. Results Discussion

The results positively answered the research questions,
which were investigated concerning a single run of a
professional riding trainer without specifically investigating
transferability to other rides or riders. The method proved
robust in describing the dynamics of different manoeuvres,
like the entry and exit of corners of different radii, speed and
frequencies, a change of direction and the straight sections
connecting them. The algorithm divided the lateral dynamics
into elementary primitives, each corresponding to a cluster
with peculiar statistics regarding the three input signals.

By plotting the input signals in pairs (Fig. 2), it was possible
to associate each with a corresponding lateral dynamics state.
There was negligible overlap in the (φ̇′, |φ|) diagram (Fig. 2a),
making the clusters distinct and easy to interpret. The higher
overlap in the (φ̇′, φ̈′) due to the VR and SC clusters is justified
by the theory: riding straight and in a steady corner are both
steady-state conditions, so the two derivatives must go to zero
in both cases. These aspects made the clusters unambiguous
and easy to interpret.

The case study presented also showed the method’s
usefulness on two levels. At the trial level, it was possible
to examine different manoeuvres by comparing the types
and order of the segments that make up each. For the
trial considered, each of the three corner entry manoeuvres
comprised a different number of segments, from three to
five, albeit the order of the segments present did not change,
as expected. This result showed that, due to the different
corner geometry and possibly rider choice, different corner
entry manoeuvres could have different dynamics, as confirmed
by the time signals (Fig. 4). Instead, the three corner exits
followed the same pattern. This lower variability on corner exit
compared to corner entry should be investigated further on a
higher number of trials and for different riders. Detecting this
pattern by looking at the non-segmented time signals would
have been difficult, even for an expert conducting a manual
segmentation or creating the reference for the supervised
segmentation. The segmentation and clustering process made
some aspects more evident. Fig. 2b showed that φ̇′ and φ̈′

had a higher variance in the SC cluster compared to the
VR one: keeping an approximately constant roll was harder
when cornering than during straight riding, requiring more
corrections that reflected on the variance. Even though this
result was expected, the method made it straightforward to
compare the variances of each signal in these two distinct
riding conditions. The ALD segment is relative to high
roll-acceleration values. As cornering with a high roll and
producing a high roll acceleration are both demanding, the
rider produced high roll accelerations only when the roll angle
was small (Fig. 2a). Fig. 3 confirmed that this happened only
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at the beginning or at the end of a Vertical Riding segment,
where the rider was perturbing and stabilising the motorcycle,
respectively.

On the manoeuvre level, the segmentation simplified the
in-depth corner entry analysis. Each segment was relative to
a distinct manoeuvre phase, as Fig. 6 showed through the
time signals, the GPS trajectory and a video frame for each
segment. The roll acceleration signal was included among the
input signals mainly to detect the manoeuvre start early: the
goal was achieved, as the corner entry was detected when
the roll angle was still around 0.5◦. In fact, in that instant,
the roll acceleration was already 45 ◦ s−2. This approach
was chosen not to use the rider commands (as the steering
torque) as inputs to the algorithm. Measuring the roll and its
derivatives is particularly straightforward, making the method
more general and easier to apply. Still, the manoeuvre start was
promptly detected: Fig. 7 shows that the ALD segment started
with the second data point of those having a steering torque
significantly different from zero. Using the steering torque as
input could make the detection almost instantaneous. Future
work could also consider using solely rider inputs (throttle,
brake, and steering torque) instead of the resulting motorcycle
motion (the roll angle, its derivatives, and the longitudinal
acceleration).

The input signals were all relative to lateral dynamics, so the
longitudinal motion did not directly influence the results.
Therefore, while the input signals fluctuated around zero in
the VR segments (Fig. 4a), Fig. 4b showed that the speed
and the longitudinal acceleration had very diverse values. For
example, in the first segment, the longitudinal acceleration
changed quickly from +4.4 m s−2 to −3.6 m s−2, and the
speed grew from zero to around 10 m s−1: in fact, as long
as the longitudinal dynamics did not influence the lateral
dynamics, and in particular, the roll angle and its derivatives,
it did not affect the segmentation. This consideration extended
to all the other signals: for example, Fig. 4b showed that in the
last segment, the steering angle δ was slightly negative and not
zero, as in the other VR segments. This result was expected,
as the last part of the trial had a slight curvature, requiring a
small steering rotation. However, as the speed was very low,
the roll required was tiny, and the algorithm correctly classified
it as a VR segment based on the roll angle and its derivatives.
For this reason, the blue cluster was called ‘Vertical Riding’
and not ‘Riding Straight’. This work focused on the lateral
dynamics: in case the longitudinal dynamics were also of
interest, they could be easily included in the segmentation
algorithm by adding the longitudinal acceleration to the input
variables, accounting for an appropriate number of additional
clusters. K (Number of clusters) could be increased from six
to eight to include the ‘Vertical Accelerating’ and ‘Vertical
Braking’ clusters.

A corner entry manoeuvre is analogous to the first half
of a lane change. Cossalter and Sadauckas [10] investigated
the latter in-depth, dividing it into different phases through a
manual segmentation that considered all the signals measured.
He identified three points of interest in the first half of the lane
change: the manoeuvre start (‘1’: φ̇ ̸= 0, and ψ̇ ̸= 0 towards
the outside of the corner); starting to turn towards the corner

(‘2’: ψ̇ = 0 again); reaching the maximum roll (‘3’: φ̇ =

0 H⇒ φ = φmax). Therefore, the corner entry consisted
of two segments: I=1→2 (yawing towards the outside) and
II=2→3 (increasing the roll while yawing towards the inside).
Despite the fact of using an automatic, unsupervised algorithm
and only using the roll angle and its derivatives for the
segmentation, this work expanded Cossalter’s segmentation.
The I segment corresponds to the ALD segment; the II segment
equals the concatenation of the LIF and LIE segments.
As the LIF and LIE segments have significantly different roll
acceleration, steering angle and yaw rate values, they allow
describing this corner entry phase with more detail than the
single II segment, which lumps together sections with diverse
behaviour. Therefore, the manoeuvre that Cossalter divided
into two phases was described through three segments, each
with a clear physical meaning and statistical characteristics:
the method performed a more granular subdivision than the
one proposed by a previous article studying the manoeuvre
in-depth through manual segmentation.

The proposed unsupervised methodology is based on the
TICC algorithm, which simultaneously segments and clusters
data according to their correlation. This specificity gives this
algorithm many advantages compared to other algorithms
based on a methodology where segmentation and clustering
are performed separately. The superiority of this algorithm
concerning riding-pattern identification emerged clearly in
a previous article; therefore, the current work focused on
defining suitable signals to describe steady-state and transient
lateral dynamics manoeuvres, proposing methodologies for
interpreting the clusters obtained (scatterplots and boxplots),
and showing the detailed description of motorcycle behaviour
in a proposed case-study. First, this algorithm is adapted to
consider the temporal characteristics of riding series data.
Therefore, this approach could help understand the behaviour
in a more fine-grained manner. The second advantage is related
to the fact that the algorithm allows a better interpretation of
the clusters obtained through the study of the MRF matrix,
which is, in the case considered, a great help in explaining
the way riders initiate the curve. Interpreting the clusters
is required of the user and must be simple and intuitive,
as the typical user of such a tool will be an expert in
vehicle dynamics, traffic behaviour or a driving instructor,
who, in general, will not have knowledge of machine learning.

This work aimed to investigate the proposed segmentation
algorithm’s results and use them to draw conclusions about
in-depth aspects of lateral dynamics. The novelty of the work
consisted in adapting the TICC algorithm to the problem of
motorcycle lateral (tilting) dynamics and proposing a general
approach that leverages graphical representations to quickly
interpret the clusters, which are not based on pre-conceived
ideas and allow describing the riding task as the concatenation
of segments. The methodology is modular, easy to implement,
and generalisable to studying the driving behaviour of one or
more riders. For conciseness and space constraints, the work
used the riding data of a professional riding trainer: this made
the riding actions repeatable and sensible. The ‘Leaf’ shape
of the g-g diagram was coherent with this type of experienced
rider riding in a controlled environment. A future study should
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compare different trials of the same rider, possibly subject
to different instructions, and riders with different experience
levels. This is a typical application of the algorithm proposed
in this work: a researcher has designed and carried out an
experiment to verify a certain number of hypotheses; for that
purpose, they will segment and use the clusters to verify them.
Employing the method in a diverse naturalistic session would
make it possible to assess its robustness and validity further.

V. CONCLUSIONS AND PERSPECTIVES

This work proposed an automatic, unsupervised segmen-
tation and clustering tool for riding data. The algorithm
identifies and categorises the primitives constituting the
various manoeuvres: the generic dynamic of the motion
is locally described by the segment to which it belongs.
In contrast, the manoeuvre as a whole is defined by the
succession of segments. Although the method only requires the
measurement of a single signal (the roll angle), it carries out
an extensive and detailed description of the lateral dynamics,
highlighting secondary behaviour and detecting the start of
the manoeuvre very early on. Each cluster is relative to a
specific dynamics condition, thus aiding the interpretation of
the meaning of each of those conditions.

This method can aid research on human-machine interaction
and riding preferences in bends. As the corner entry case study
showed, in-depth studies of motorcycle dynamics could also
benefit from the resulting segmentation. The approach enables
new possibilities concerning the analysis of long, naturalistic
sessions, making better use of studies conducted in a more
realistic environment. Trainers could use the tool to train and
evaluate riders, while insurance experts could employ it to
reconstruct the fall dynamics.
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