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ABSTRACT Analysis of human driving behavior aims to inspect drivers’ behavior in the real-world and
in a virtual environment. The study of driving behaviors can be conducted in naturalistic situations or
controlled experiments. Analyzing driving behaviors based on the data collected in naturalistic driving
experiments or controlled experiments in the real-world or in a virtual environment is beneficial to fill
in many of the knowledge gaps about driving behaviors and risk factors. The amount of data collected
during complex experiments with many laps and many drivers tested under different experimental conditions
and with different instructions can be huge. Analyzing such data can thus be considered challenging and
time-consuming if done manually because it requires calling on experts in traffic psychology to inspect and
understand various specific situations at a macroscopic scale involving different riders and at a microscopic
scale for a particular rider on a specific lap. Also, it can be challenging in an unsupervised context to detect
and match the same patterns in different laps to study similar patterns and spot important and risky events.
This paper proposes a multi-step framework for analyzing driving behavior on both the macroscopic and
microscopic scales. The core step of this framework is based on unsupervised machine learning algorithms
applied to driving-pattern identification and the detection of critical driving events using anomaly-detection
algorithms. The detected events are interpreted and described by computing their feature importance using
graphs centralitymeasures. This provides new insight into driving behavior by identifying themotives behind
the driver’s actions. The present experimental study, based on a dataset collected from the Honda Riding
Trainer (HRT) simulator was conducted in the context of the European project SimuSafe and demonstrates
the effectiveness of the proposed methodology. These results argue in favor of the development of such
methodologies in driving-behavior studies.

INDEX TERMS Time series analysis, time series segmentation, driving-pattern identification, motorcycle
simulator, unsupervised learning, anomaly detection.

I. INTRODUCTION
The number of powered two-wheeler (PTW) users is on the
rise, especially in cities because PTWs offer a solution to
growing traffic congestion and parking problems. However,
according to the global status report on road safety conducted
by the World Health Organisation (WHO), PTW users are
considered among the most vulnerable road users because
PTWs offer less protection and stability, which often leads
to fatal accidents [1]. Road crashes are complex events that

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Zhou.

are highly unpredictable. Various parameters and factors may
affect these types of events, e.g., the weather conditions, the
geometric shape of the infrastructure, the vehicle’s dynamic
characteristics, and the driver’s behavior. To reduce the num-
ber of traffic accidents, one must understand how and why
they occur. There are many research tools available for this,
such as naturalistic driving studies on open roads, and exper-
imental studies in driving simulators or test tracks. A driving
simulator is one such tool that can be seen as a way of
tackling this problem. The behavior of real-world drivers
can be modeled and introduced into the simulator. Different
simulation scenarios can be generated, and the factors leading
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to a crash may be studied in greater detail. According to a
study focusing on the analysis of traffic accidents [2], the
personal responsibility of drivers is implicated in the majority
of accidents. The driver’s emotional, mental, and physical
states (frustration, hurry, fatigue, illness, drunkenness, etc.)
are some of the factors influencing drivers’ decisions when
they are interacting with the infrastructure and other road
users. Human error, directly or indirectly, plays a central role
in motorbike and motorcycle accidents [3], [4]. This may
be because the powered two-wheeler users have to actively
maintain the dynamic stability of their vehicle.

It is crucial to be able to describe a driver’s behavior, both
for traffic-collision prevention and traffic-model design. The
design of a realistic traffic model could add value to driving
simulators, which in turn could lead to the development
of more realistic simulation models. The H2020 SimuSafe1

project is aimed at designing a multi-driver driving simulator
and refining Multi-Agent Simulators (MAS) so as to provide
realistic interactions between the users (simulated or real)
of a virtual road network. The goal is to design the digital
twin of a potentially complex road network where simulators
controlled by humans and simulated avatars of different road
users (pedestrians, cyclists, motorcyclists, and car drivers) act
and interact realistically.

Several research studies (see [5] and [6]) have been devoted
to studying driving behavior in different contexts and evaluat-
ing the causal impact of taking medication on driving behav-
ior. Other studies have focused on detecting riding patterns
using supervised algorithms that model temporal dependency
like LSTMs [7] and unsupervised algorithms that classify
riding patterns using Gaussian Hidden Markov Models [8].
However, the model has been evaluated using supervised
learning metrics (e.g. recall and accuracy), which state that
even though the approach used was unsupervised, the data
were labeled, so the methodology was not fully unsupervised
and labeling data can be costly.

While unlabeled datasets are plentiful, labels can require
a huge amount of effort by experts, and labeling is
time-consuming and expensive. Many research studies
focused on unsupervised methods for analyzing driving
behavior and detecting dangerous driving situations. Some
approaches rely on segmentation of the Inertial Measure-
ment Unit (IMU) time-series data, then applying clustering
to group the driving primitives into classes [9]. Another paper
addresses this problem by building a high-level understand-
ing of the driving behavior through decomposing the inertial
data into linear segments and assigning each segment into
a convex optimization of high-level driving behaviors [10].
Recently, an unsupervised approach was proposed in [11];
the proposed methodology is based on a two-step framework.
The first step consists of applying Bayesian multivariate
linear regression models to segment driving sequences into
fragments. The second step applied extended latent Dirich-
let allocation models to cluster the fragments into multiple

1http://simusafe.eu/

descriptive driving patterns. In this paper, we propose an
end-to-end framework for studying the behavior of riders by
better understanding their driving patterns and their inter-
action with the environment and the other road users (e.g.
pedestrian, car) and detecting critical events deemed to be
high-risk situations. The framework is fully unsupervised
and used for characterizing driving behavior and detect-
ing risky driving situations. Our approach is based on the
Toeplitz Inverse Covariance-Based Clustering (TICC) algo-
rithm that performs both segmentation and clustering simulta-
neously and considers the temporal dependencies. Moreover,
we apply the anomaly detection algorithm, Isolation Forest,
on the compressed statistics of the distinct driving patterns
to detect potential risks (e.g. Abrupt accelerations in high
curves). Furthermore, we take advantage of the Markov ran-
dom field (MRF) matrices computed by the TICC algorithm
to enhance the interpretability of these risky driving patterns
by computing their feature importance using graph centrality
measures applied to the MRF adjacency matrices. This gives
a better understanding of the maneuvers that contributed the
most to these risky situations.

This framework provides tools for road-safety researchers
that help them analyze the driving behavior of powered
two-wheeler users or any other road users such as cars and
trucks. We tested the framework on sensory data collected
from a driving experiment performed on a simulator by
eleven drivers with distinct profiles, using various scenar-
ios and instructions. The framework contains tools that we
used for macroscopic behavior, which is the overall behavior
of a given driver compared to other drivers. This simpli-
fies the task of eliminating subjects that did not follow the
instructions or finding subjects with a particular behavior
that is worth analyzing in depth during the second stage, the
microscopic study. For the second stage, we used a state-of-
the-art time-series segmentation algorithm: Toeplitz Inverse
Covariance Based Clustering [12] to study the behavior of a
single subject, and detect and interpret the patters in his/her
driving style. We have demonstrated how this method outper-
formed other clustering methods like Hidden Markov Model
and Mixture Model. We have also described a technique
for matching similar patterns in large-scale datasets, so this
automatic method will help find the various situations where
the subject made the same manoeuvres.

Event detection is one of the most important parts of
analyses of risky situations facing subjects. In this paper,
we propose a method for detecting critical events by applying
Isolation Forest [13] to the segmentation results of TICC. The
critical events detected can be related to abrupt accelerations
by taking curvatures with high vehicle dynamics or any other
important event, since it is application-dependent, and the
user of this framework can choose the features to provide to
the anomaly-detection algorithm.

Detecting critical events is not enough to understand the
origin of the risk incurred by the riders, thus, the need to
inspect the effects of the rider’s maneuvers and their impor-
tance in that particular situation. This is done in the present
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FIGURE 1. Synopsis of the proposed methodology.

paper using graph-centrality measures (e.g. betweenness cen-
trality) applied to a graph of partial correlations between
features. This method is used to compute feature importance
in relation to a specific maneuver and to use it to interpret the
risky situation.

The different steps of the proposed methodology are sum-
marized in Figure 1

The main contributions of this paper are as follows:

• We propose a data-analysis framework that provides
tools to road-safety researchers to help them analyze
motorcyclists’ behavior or that of other road users such
as car or truck drivers.

• We successfully apply the proposed framework to a
dataset of sensor data collected during a simulator exper-
imentation involving eleven subjects with different pro-
files.

• We use state-of-the-art unsupervised segmentation and
clustering methods for driving-pattern identification and
detection, and for event detection based on anomaly-
detection algorithms, to spot critical driving events.

• We interpret the detected events by computing their
feature importance using graph-centrality measures,
which makes this manuscript a valuable reference for
researchers interested in this research topic.

II. DATA DESCRIPTION
The input data are multivariate time series generated from an
experiment conducted on a predefined track and performed
by eleven PTW subjects in six laps with different instructions
and conditions. The infrastructure contains various patterns
(e.g., roundabouts, U-turns, Give away) that put the rider in a
variety of potentially risky situations. The rider’s behavior in

FIGURE 2. Simulation track [8].

TABLE 1. Experimental conditions and instructions.

this kind of situation is observed and his/her maneuvers are
analyzed. Figure 2 displays the track.

In the following, letR= {R0,. . . ,R10} denote the set of rid-
ers andL= {L1,. . . ,L6} the set of laps performed by a specific
rider. Each lap has particular experimental conditions related
to the traffic, level of frustration, and speed instructions. The
following table summarizes these scenarios:
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TABLE 2. Notation of the features and their units.

The raw sensory data are collected with a sampling fre-
quency of 1 Hz for the position of the PTW and 10 Hz for the
throttle position, steering-wheel direction, and brake position.
We upsampled the spatial data to be able to fuse all variables
with the same frequency. We maintained the high sampling
frequency for performance reasons because we noted that
segmentation algorithms gave better results for data with a
high sampling rate, and this also helps avoid convergence
errors in the Toeplitz Inverse Covariance-Based Clustering
algorithm.

We extended the original data collected from the simu-
lation procedure by computing and extracting new features
based on motion physics. These features provided infor-
mation about the vehicle’s dynamics, the rider’s behavior,
and the infrastructure. These extracted features are veloc-
ity, angular velocity, tangential acceleration, and normal
acceleration.

The set of features F = {V ,AT ,AN ,W ,TH ,B,H ,C} is
used to analyse the macroscopic behavior of the riders across
the six laps completed in the next section.

III. PROPOSED APPROACH
This section provides a high-level analysis of the data and the
subjects’ behavior. The set of features F are used to study the
global behavior across the subjects and the laps to describe
the macroscopic behavior of the riders, detect those who
did not follow the instructions, and select the riders that did
respect to inspect their riding patterns on a microscopic scale.
The methodology consists of the following points:

1) Compute feature statistics (e.g., max, mean).
2) Analyze the global trend across riders and laps.
3) Compress the feature statistics using t-SNE and cluster

the compressed data into different groups with specific
overall riding behaviors.

4) Interpret the clustering results and select a rider for the
microscopic analysis.

A. DRIVER SELECTION
The experimental protocol defines a set of instructions
and constraints that the riders must follow in each LAP,
as described in Table 1. The method described here provides
a general methodology for approaching comparative studies
with different constraints, as in [5], and for obtaining an
overview of the overall behavior of riders and spotting both

FIGURE 3. Feature statistics averages over the six laps.

the trends across laps and the outliers who did not follow the
instructions.

The first step is to represent the data of each rider and
each lap by computing the following feature statistics: Maxi-
mum and mean velocity, angular velocity, tangential accel-
eration and normal acceleration, mean use of throttle and
front brake, as well as the mean of the absolute value of
the handle-bar position and the inverse of the duration of
the lap to stay in the same trend as the other statistics,
in other words, higher values imply more dynamic behav-
ior. These variables help in analyzing the overall trend in
riders’ maneuvers and the vehicle dynamics across laps and
riders.

Figure 3 plots some of the above feature statistics over
the 11 riders, where each color corresponds to a given lap.
Note that the fifth and sixth laps have higher values for the
vehicles’ dynamics and the riders’ maneuvers. The fourth lap
has high values for throttle use and tangential acceleration,
which can be explained by the fact that L4 has denser traffic
than L5 because a car and a pedestrian are introduced in L4.
This made the riders use more often the throttle to increase
their speed after decreasing it, either to yield the right of
way or to avoid the pedestrian. This is consistent with the
instructions given in each lap (see Table 1).

Another statistical study had to be performed on each
rider. This is the first step in the rider selection process.
The main idea is to compute the average, over the six laps,
of the mean and/or maximum of each feature, for each driver.
This gives an overview of the rider’s driving behavior. The
results are shown in Figure 4, sorted according to the aver-
age of the normalized statistics. Note that some riders have
very low vehicle dynamics and maneuvers. These riders are
the ones framed in green and can be compared to riders
in the red patch. In other words, the riders framed in red
exhibit riskier driving behavior than the safe drivers framed
in green.

The heat map in Figure 4 also highlights an important
result in detecting anomalies. Riders R10 and R8 have a very
high maximum speed in comparison to their average speed;
we observed the same thing for rider R2 in terms of angular
velocity. These visible results will be discussed further when
we use an automatic method to detect the atypical behaviors.

VOLUME 9, 2021 158459



M. Y. Bouaouni et al.: Driving-Pattern Identification and Event Detection

FIGURE 4. Feature statistics by rider.

TABLE 3. List of removed riders.

FIGURE 5. Average velocity on each lap for each rider.

This gave us two sets of riders, Rs for safe riders and Rr for
potentially risky riders.

Rs = {R1,R2,R9,R10} and Rr = {R4,R5,R6}

The third step was to visualise the average velocity for each
(Ri,Li) pair to better spot the riders that did not follow the
instructions in Table 1.

In general, L1 had lower velocity than the other laps,
because it is considered to be an adaptation phase in which the
riders discover the circuit with a very low habituation level.
In addition, L5 and L6 had the highest velocities because the
riders were instructed to drive faster, with some additional
constraints in L6 (traffic cones and a red light) that slightly
reduced the values.

However, some riders fell outside the trend, which means
that they did not follow the instructions. These riders were
removed from the dataset because they could skew the results.
Table 3 lists the concerned riders as well as the reason for
removing them.

Large datasets require automatic methods to spot anoma-
lies in driving style. Our solution was to use a compression
algorithm called t-Distributed Stochastic Neighbour Embed-
ding (t-SNE) [14] followed by the Gaussian mixture mod-

FIGURE 6. Compression obtained by t-SNE followed by clustering of laps
using GMM. The numbers represent the laps and the colors are the
corresponding clusters.

TABLE 4. The cluster of each (Ri , Li ) pair.

els (GMM) clustering algorithm. The t-SNE algorithm is
sensitive to its hyperparameter perplexity; its impact on the
results is explained in [15]. After the tuning, we obtained
good results by fixing the perplexity value at 7.0 and the
number of GMM components at 5. Figure 6 and Table 4
present the results obtained by applying this approach. There
are five distinct overall behaviors, with one group of laps
considered as outliers either because the riders did not fol-
low the instructions or due to a problem in the simulator
data.

The box plots in Figure 7 show that the cluster 4 (outliers)
has very high velocities and should therefore not be con-
sidered for naturalistic riding studies. Concerning the other
clusters, they are divided into three categories based on their
statistics: low dynamics (cluster 0), average dynamics (cluster
2), and high dynamics (clusters 1 and 3). The difference
between the two clusters with high dynamics is the riders’ use
of both the throttle and the brake. This is quite high in cluster
1 due to the fact that half of the laps in cluster 1 are L6, and
in L6 the riders were instructed to hurry, in addition to having
a car, a pedestrian, and traffic cones requiring the riders to
use the brake. However, we can see that all the laps of rider
R4 have high dynamics. Figure 8 illustrates an example for
comparison of this rider to another (R9) who was classified
as a ‘‘safe rider’’. We can see that R4 used the brake more
often. For this reason, we will use this rider in the next section
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FIGURE 7. Velocity, throttle and brake positions distribution per cluster
obtained in Figure 6.

FIGURE 8. Braking profile of riders R4 and R9 illustrating the excessive
use of the brake by R4.

to apply segmentation algorithms and extract the different
events that caused this unusual driving style.

B. CLUSTERING AND TIME SERIES SEGMENTATION
1) TOEPLITZ INVERSE COVARIANCE-BASED CLUSTERING
(TICC)
Reference [12] is a model-based clustering approach that
performs both clustering and segmentation by categorizing
time series subsequences into a fixed number of states K.
The states (clusters) represent the repeated patterns in the
temporal data and are defined as a correlation network known
as a Markov random field (MRF). This network characterizes
the interdependencies between the different variables for a
specific state across a window of size w. Formally, the learn-
ing of each cluster’s MRF is done by estimating a sparse
Gaussian inverse covariance (Toeplitz) matrix.

The TICC method takes multivariate time series data as its
input, denoted by x = [x1, . . . , xT ], where T is the number of
samples (observations) and xi ∈ Rn, where n is the number
of features. The clustering is performed on short sequences
of size w � T , so we refer to the new sequences as X =
{X1,. . . ,XT }.

In the following, let P = {P1, . . . ,Pk} denote the point
assignments and let 2 = {21, . . . ,2K }, the Toeplitz matri-
ces, where 2i ∈ Rnw×nw. The optimization problem is as

follows:

argmin
θ∈T ,P

k∑
j=1

[

sparsity︷ ︸︸ ︷∥∥λ ◦2j
∥∥
1+

∑
Yi∈Pj

(

log likelihood︷ ︸︸ ︷
``
(
Yi,2j

)
+

temporal consistency︷ ︸︸ ︷
β1
{
Yi−1 /∈ Pj

}
)]

(1)

The algorithm has two regularization parameters: λ and β.
Parameter λ controls the sparsity of theMRFmatrices in each
cluster. It has the same shape as the MRFs (λ ∈ Rnw×nw)
but in practice, λ can be reduced to a single value to reduce
the search process. The second parameter, β, characterizes
the smoothness penalty that ensures temporal consistency and
continuity between the adjacent subsequences. Increasing
the value of β encourages the neighboring subsequences to
belong to the same cluster.

TICC has two other parameters:
• Window size (w), represents the number of observations
in a given subsequence Xt = [xt−w+1, . . . , xt ], with
Xt ∈ Rn×w. All the observations that belong to the same
subsequence will be assigned to the same cluster.

• Number of clusters (k), which corresponds to the num-
ber of patterns that need to be identified. The selection
of this parameter can be done using BIC or the silhouette
score. However, its value is often application-dependent.

Solving the optimization problem consists of randomly
initializing the toeplitz matrices, 2, and cluster assignments,
P, and then using a variation of the expectation maximiza-
tion (EM) algorithm that alternates between subsequence
assigning (update P) and updating the clusters’ parameters
(toeplitz matrices), 2.

IV. EXPERIMENTAL METHODOLOGY
In this section, we first do a comparative study of different
clustering algorithms based on different metrics and seg-
mentation results. Then, we perform a segmentation of the
different laps of a single driver and the results are interpreted
using various techniques. Next, we extract the different driv-
ing patterns that the segmentation algorithm detected and
we compute statistics related to each cluster in order to find
important driving events. We also present a new technique for
determining feature importance that will be used to interpret
the events.

A. MODEL-BASED METHODS
In order to find the different driving patterns, a robust seg-
mentation algorithm must be chosen. A comparison of sev-
eral model-based and distance-based clustering methods was
done in [12] on synthetic data. In our study, we used sim-
ulator data to compare TICC and other methods. We did
not consider distance-based methods in this comparative
study because they do not capture the temporal dependency
in the data. Although a distance-based algorithm such as
KMeans [16] can obtain good performance in terms of silhou-
ette andCalinski-Harabasz scores, the results of the clustering
will not reflect real driving patterns because this algorithm
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TABLE 5. Comparison table regarding different metrics. The best results
in terms of each metric are shown in bold.

FIGURE 9. Segmentation of L2 using TICC and GMM.

performs a clustering based on the distances in the data, which
minimizes the within-cluster sum of squares and disregards
the temporal dependencies.

The segmentation results obtained by three model-based
methods (Gaussian of Mixture Model (GMM) [17], Hid-
den Markov Model with Gaussian mixture emissions
(GHMM) [18], and TICC) are presented in Table 5.

The results presented in Table 5 give the performance
levels of the different methods in terms of clustering. Toeplitz
inverse covariance-based clustering outperforms other meth-
ods, and decreasing the window size could result in bet-
ter scores. However, the Silhouette, Calinski-Harabasz, and
Davies-Bouldin metrics are insufficient to comparing the
methods on the segmentation task because they only reflect
the properties of the different clusters and do not use temporal
dependency. The visualization of the segmentation results
shows that TICCwas better at recovering the different driving
patterns.

Figure 9 plots the L2-segmentation results for both TICC
and GMM. Note that the GMM puts some accelerations and
decelerations in the same cluster shown in purple. This is not
the case for TICC,whichwas better at detecting the difference
between accelerations and decelerations.

Figure 10 and 11 illustrates the segmentation results of a
driving situation in L2 using TICC and GHMM. The first
figure shows that TICC recovered consecutive patterns better
than GHMM did. Furthermore, we can see that GHMM
did not perform the segmentation well because it assigned
individual samples to a particular cluster without considering
the temporal dependency of the driving situation. This was
not the case for TICC, which has two hyper-parameters: β
that encourages adjacent subsequences to belong to the same
cluster, and window size, W, which enables TICC to cluster

FIGURE 10. Segmentation of L2 using TICC and GHMM.

FIGURE 11. Segmentation of L2 using TICC and GHMM.

a window of observations rather than a set of individual data
points.

Another key difference between TICC and GHMM, which
can be seen in Figure 11 is that the TICC algorithm detected
more accurately the transition phases in the driving situations
than GHMM did, as we can see in the framed segments.

The ability of TICC to spot transition phases, to cluster
subsequences and to capture temporal dependencies allows
it to outperform the other model-based methods presented in
Table 5, in terms of both clustering and segmentation. For this
reason, this algorithm was used to detect the different driving
patterns in the next step of the pipeline.

B. SEGMENTATION RESULTS
In this section, we analyze the drivers’ behavior at a micro-
scopic level. We discuss the results of Toeplitz inverse
covariance-based clustering and interpret the detected pat-
terns. The parameters of the TICC {λ, β,W} were tuned
intensively to achieve good performance.

• Higher values of λ (e.g., 0.1) gave better segmenta-
tion results but the inverse covariance matrix was very
sparse, so we could not perform centrality measures on
the graph described by the inverse-covariance adjacency
matrix, which will be described in a later section. Lower
values of λ decreased performance and increased train-
ing time but provided a less sparse inverse covariance
matrix which would help us interpret the results using
graph theory tools like betweenness centrality.

• Higher values of β resulted in a model that did not
detect some short-time patterns like transition phases
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from straight lines to high curvatures or roundabouts.
However, small values of β caused the model to catch
noise in the data and this affected its ability to gener-
alize. It should be noted that the parameter β is highly
dependent on the dataset size; a large dataset requires
higher values of β.

• The model was tested for w ∈ {1, 2, 5, 10, 15}. TICC
proved robust with regard to its hyper-parameter W.
However, a window size of 1 resulted in an MRF
matrix of shape 7 × 7, which made the task of inter-
preting the MRF using betweenness centrality impos-
sible. For higher values of W, some transition phases
were neglected. Thus, the best model we obtained in
terms of segmentation and MRF interpretability was
when w=2.

• K, the number of clusters, is a very important parameter
to consider. In the case of an unsupervised approach,
the selection of the value of this parameter can be done
using the Bayesian Information Criterion (BIC) or the
silhouette score [19], but these two metrics can lead to a
value of K that is not suitable for the targeted application.
Therefore, we determined the value of K by testing
different values in the set K ∈ {5,6,7,8}. Higher values
gave better scores but complicated the interpretation
task. However, lower values caused the model to neglect
the transition states and to treat different patterns as
the same. A good trade-off between performance and
interpretability was attained for K=7.

Figure 12 shows the results of the L3 segmentation per-
formed for R6.
We used the box plots in Figure 12 to interpret the dif-

ferent clusters in terms of the vehicle’s dynamics and the
rider’s behavior. The TICC algorithm detected the smooth
and abrupt accelerations and decelerations, very low dynamic
states corresponding to situations where the rider had to stop
or yield and sharp curves such as in roundabouts and on U-
turns. Table 6 summarizes the different patterns and their
respective colours.

The results also showed that the TICC algorithm could
accurately detect sequential patterns, as seen in Figure 13.

• The first sequential pattern (blue-red) represents full
acceleration, with the blue cluster representing a transi-
tion state from a low dynamic to an abrupt acceleration
and a high velocity (red cluster).

• The second sequential pattern (cyan-yellow-purple) cor-
responds to the situation where the rider releases the
throttle to start a smooth deceleration (cyan), and then
presses the brake (yellow) to finally reach a state of low
dynamics as in stopping or yielding.

• The third sequential pattern (purple-blue) illustrates situ-
ations in which the rider is in a state of low dynamics and
then starts to press on the throttle smoothly. This kind of
pattern can also be found after a sharp curve, where the
riders start to accelerate along a straight line.

TABLE 6. Riding behavior by type of cluster.

• The last sequential pattern (red-cyan) represents a tran-
sition from rapid acceleration to speed reduction by
release of the throttle.

C. PATTERN MATCHING
The task of finding similar patterns in different laps,
or datasets can be very difficult and time-consuming if done
manually. In this part, we propose a method for finding
the like patterns in different laps of rider R6. The method
consists of computing the statistics (maximum, minimum,
mean, median, interquartile range) for the set of features
{V,AN,AT,W,TH,B}. All of the statistics are expressed on a
scale between 0 and 1 using the formula:

sc,l =
sc,l − max(s)

max(s)− min(s)

where s ∈ S, the set of all feature statistics.
c: Cluster number with c ∈ {0, 1,2,3,4,5,6}.
l: Lap number l ∈ {2, 3, 4, 5, 6}.
The statistical data was fed into a compression algorithm.

We then did a comparative study of two of the widely
used dimensionality-reduction techniques: t-SNE [14] and
UMAP [20]. UMAP yielded better results and that can be
explained by the fact that UMAP is better at retaining the
overall structure of the data than t-SNE is, and it is less
sensitive to its hyperparameter, the number of neighbors, than
t-SNE is to perplexity.

These results show that the TICC algorithm is robust
to changes in the data. In other words, the new situa-
tions in L5 and L6 and changes in the experimentation
conditions did not affect the ability of TICC algorithm
to find like riding patterns that are similar (e.g., abrupt
acceleration).
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FIGURE 12. Segmentation of (R6,L3) obtained by the TICC method in different views: (a) trajectory
view, (b) feature profile and (c) box plot view, where the colors represent cluster assignment by the
TICC algorithm.
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FIGURE 13. Sequential patterns detected by the TICC algorithm.

FIGURE 14. Embeddings of feature statistics obtained by UMAP.

D. RISKY-EVENT DETECTION
One of the most important tasks in driving research is event
detection. In this paper, we propose an application-dependent
method to spot events using an anomaly-detection algorithm.

The first step is to choose the features that are the most
closely related to the event. For example, to detect an abrupt
braking event, the most relevant choice is to choose accelera-
tion and brake position. Then, after selecting the appropriate
features, we computed their statistics as described in the pre-
vious section and we fed the statistical data into the Isolation
Forest algorithm, with a number of estimators equal to 55 and
a contamination value of 0.1. The tuning of the contamination
hyperparameter is very important for decreasing or increasing
the number of detected events. Below we provide two exam-
ples of using this method for detecting abrupt acceleration
and braking events.

1) SHARP ACCELERATION AND BRAKING DETECTION
In this example, we want to detect events where the rider
accelerates in an unusual way. The features that best describe
such a riding behavior are the throttle and the brake positions.
We apply the Isolation Forest algorithm [13] on the max,
mean, and median statistics to visualize the detected events.

FIGURE 15. Abrupt acceleration and braking events detected using the
Isolation Forest algorithm.

In the present example, the Isolation Forest algorithm
detected four events that belong to {L4, L5, L6}. This is in line
with the different scenarios and instructions for these laps,
which introduce some elements that increase the frustration
level of the rider (pedestrian, car) and prompt the riders to go
faster.

2) SHARP CURVES
Driving in some parts of the roads, like roundabouts and
U-turns with inappropriate vehicle dynamics can be dan-
gerous and considered risky. This example illustrates the
detected events related to high curvatures with unsuitable
vehicle dynamics. The most relevant features to consider
are AN, W, H. The same steps were performed as the first
example, while changing in the contamination parameter to
0.07 to reduce the number of events. Note that, as in abrupt
accelerations, events were detected in L5,L6 which means
that the rider followed the experimental instructions by going
faster on these two laps. Figure 16 illustrates the detected
event on the trajectory.

E. FEATURE CONTRIBUTION TO EACH DRIVING PATTERN
Another advantage of the TICC algorithm is its inter-
pretability. The MRF of each cluster can be used to inter-
pret the results using partial correlations between variables.
We exploit this property by computing the following mea-
sures of centrality on the graph associated with the MRF.
• Betweenness centrality (BC) [21]. This is a measure
of centrality in a graph based on the shortest path. For
each vertex, the number of shortest paths between each

VOLUME 9, 2021 158465



M. Y. Bouaouni et al.: Driving-Pattern Identification and Event Detection

FIGURE 16. Sharp curvature events detected using the isolation forest
algorithm.

of the two vertices that cross the selected vertex is the
betweenness centrality measure. In our application, the
vertices represent a feature at a certain position in the
window W of the TICC. A high betweenness centrality
indicates that the corresponding feature has more impact
on the riding behavior of that particular cluster.

• Degree centrality (DC) [22]. This is defined as the num-
ber of links incident upon a node. This means that a node
with a high degree centrality is regarded as a central
node, and in our study, a more important feature.

• PageRank (PR) [23]. This algorithm is used by Google
search to rank website pages and measure their impor-
tance. It relies on counting both the number and quality
of the links to a page or node.

Before applying any one of these three algorithms, a threshold
must be set to transform the graph into an unweighted graph.
Edges that have weights below the threshold will be omitted
and the ones that have values above the threshold will be
considered as unweighted links. The threshold depends on the
distribution of the MRF values and the algorithm. Choosing
a very low threshold means that conditionally independent
features that have a low partial correlation will be considered
the same as the features with a very high partial correlation.
This is due to the fact that all values that are above the
threshold are considered in the same way. This parameter,
then, must be carefully selected.

1) FEATURE IMPORTANCE FOR ABRUPT ACCELERATION
We used all three algorithms to quantify the importance of
each feature in the event, abrupt acceleration in L5, shown in

FIGURE 17. Feature importance for abrupt acceleration events using
betweenness centrality, degree centrality, and PageRank.

Figure 17. The thresholds applied to the adjacency matrices
used to compute betweenness centrality, degree centrality,
and PageRank are 10−5, 0.5, and 1, respectively. Figure 17
illustrates the results obtained by applying the three algo-
rithms. Notably, the features with high centrality values are
velocity, acceleration, and throttle position, which is consis-
tent with the type of event: abrupt acceleration along straight
lines.

F. DETECTION OF INTERESTING PATTERNS IN DRIVING
BEHAVIOR
This section explains the link between the detected events
and real-world situations. Riding a motorbike is a very com-
plex task compared to that of four-wheeled vehicles. This
complexity comes from the fact that the rider is intensely
involved in the riding task to maintain her/his vehicle’s
dynamic stability. This task is even more complex when the
rider interacts with other road users such as pedestrians or
cars. We consider Lap 6 because of the different constraints
(pedestrian, car, etc.) and most of the events we detected
occurred on this lap. Figure 18 presents a situation where the
PTW has a yield sign and a passing car. The Isolation Forest
algorithm detected a rapid braking event, shown in black.
We concluded that the methodology we propose provides
the necessary tools to detect events related to critical driving
situations.

The second situation consists of a pedestrian crossing the
road, as illustrated in Figure 19. The anomaly-detection algo-
rithm did not detect any events near the pedestrian. Study-
ing the rider’s behavior in such situations is thus a difficult
task. Another aspect of this difficulty is related to the rider’s
anticipation of facing an unrecognized event during her/his
journey, such as a pedestrian who is crossing. Capturing such
anticipated events based only upon the data from the rider’s
actions and the PTW dynamics can be considered impossi-
ble. Note that this event would not be detected because the
rider decelerated and did not brake abruptly because he/she
anticipated the pedestrian’s behavior. The same figure shows
abrupt braking close to the traffic cones.

158466 VOLUME 9, 2021



M. Y. Bouaouni et al.: Driving-Pattern Identification and Event Detection

FIGURE 18. Situation 1: Rider has a yield sign and the car is passing.

FIGURE 19. Situation 2: Pedestrian crossing the street.

V. DISCUSSION AND CONCLUSION
In this paper, we proposed a set of techniques for analyzing
the driving behavior of different riders at the macroscopic and
microscopic levels using multivariate time-series data. The
macroscopic analysis identified the riders that did not follow
the instructions or displayed a particular driving behavior that
needs to be analyzed at the microscopic level. To this end,
an unsupervised approach was chosen to perform a clustering
of the subsequences using Toeplitz Inverse Covariance-based
Clustering (TICC) to extract and identify the different riding
patterns. TICC algorithm proved promising because it outper-
formed both GaussianMixture Models (GMM) and Gaussian
Hidden Markov Models (GHMM). We also proposed a tech-
nique for findingmatching patterns across different laps using
a dimensionality-reduction algorithm called Uniform Mani-

fold Approximation and Projection (UMAP). It demonstrated
that TICC is robust and can detect like patterns in different
laps.

The segmentation results are interpreted first using box
plots to explain the driving behavior in the clusters, and
then an event detection step was performed using an
anomaly-detection algorithm called Isolation Forest to detect
important events such as rapid acceleration, abrupt braking,
and highly curved trajectories.We compute the feature impor-
tance for these events by applying the centrality algorithms
betweenness centrality, degree centrality and PageRank on
the inverse-covariance matrices to explain the relationship
between each event and the features. This step requires care-
fully choosing the thresholds, which we did manually.

1) PRACTICAL APPLICATIONS
The framework proposed in this paper provides various tech-
niques for analyzing large-scale datasets in the context of
naturalistic driving in real or simulated environments and
can therefore help researchers in the transportation domain
to study driving behavior and the different patterns related
to drivers interaction with other road users (e.g., pedestrians,
cars). In addition, driving schools can benefit from this frame-
work by showing trainees their trajectories and identifying
their driving patterns based on the segmentation results. The
event-detection techniques can be used to spot the high-risk
situations and based on centrality measures, analyze the fac-
tors that contributed the most to making these situations risky.

The main objective of this study is to investigate the behav-
ior during risky situations, which results from the behavior
discrepancy between the rider’s actions, vehicle dynamic,
and the infrastructure. The riding behavior may differ for
each subject according to different factors: riders’ experience,
interaction with infrastructure, riders’ emotional state (frus-
tration), and environmental factors (traffic). Consequently,
road events detection in a general way may be a very arduous
task because of the ambiguity around the definition of a
driving event. Furthermore, this task can be challenging in
the case of a powered-two-wheeler because of the driver’s
strong involvement in the driving task. Thus his experience
could play a significant role in driving and on the perception
of risk. To tackle that challenge, we propose a multi-step
framework where, in the matching step, the algorithm was
able to find the same patterns across different laps, knowing
that each lap has its experimental conditions and instructions.
Therefore, we could say that the TICC algorithm is robust
to changes and can detect the same patterns. Moreover, the
algorithm extracts high-level driving behavior from sensory
data. These patterns are the most common in Naturalistic
driving (going straight, sharp curves, etc.). The grouping step
means that the clusters reflect the same driver’s behavior,
for example, accelerating/decelerating in the same way on
the straight line or taking a curve sharply. This step also
helps to distinguish the patterns presenting some particular
behaviors.
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By learning and identifying riding patterns, useful con-
textual information may be provided to intelligent trans-
portation systems developed for PTWs, improving their
effectiveness and riders’ safety. The human riding behav-
ior is a complex concept, and its characterization may
lead to a better understanding of the rider’s decisions
when encountering different situations. This characteriza-
tion will allow us to prevent collisions and design the
riding models, which is one of the core algorithms that
might make the future of self-riding motorbikes possible.
Autonomous vehicles have to interact with other vehicles
(even non-autonomous ones), and understanding their driv-
ing style can provide valuable information to avoid traffic
collisions [24].

2) LIMITATIONS AND PERSPECTIVES
The proposed unsupervised framework provides an effective
and efficient data mining tool to help researchers with a
deep and comprehensive understanding of drivers’ behavioral
characteristics. The obtained results are promising, but if we
want to continue along these lines, some parts of that method-
ology can further be improved in our future work. At first,
the a priori setting of the number of patterns is the main
limitation of the clustering algorithm (TICC) used in this
framework. TICC can detect repeated behavior by assigning
similar segments of data to the same pattern. However, the
number of patterns is fixed and must be determined by the
user, meaning that the number of different behaviors present
in the data should be known a priori. Additionally, TICC is
not directly suitable for streaming data, as it assumes that all
data is available simultaneously. Secondly, the interpretation
step highly depends on the threshold values that we set for the
computation of the betweenness centrality, degree centrality,
and page rank criteria. Using an automatic method to com-
pute the threshold based on the distribution of the weights
of the MRF graph would lead to better results and make
the framework less dependent on this parameter. Moreover,
the patterns matching step requires domain knowledge to
choose the features that best describe the atypical behav-
ior (anomaly) that the user of this framework is studying.
That issue may also be considered an advantage because the
user will extract the anomalies that depend on his application
(e. g., abrupt braking). In contrast, he can also get a global
atypical behavior by feeding all the features to the UMAP
algorithm.
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