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Abstract: Our work is focused on developing an autonomous robot to monitor greenhouses and
large fields. This system is designed to operate autonomously to extract useful information from the
plants based on precise GPS localization. The proposed robot is based on an RGB camera for plant
detection and a multispectral camera for extracting the different special bands for processing, and an
embedded architecture integrating a Nvidia Jetson Nano, which allows us to perform the required
processing. Our system uses a multi-sensor fusion to manage two parts of the algorithm. Therefore,
the proposed algorithm was partitioned on the CPU-GPU embedded architecture. This allows us
to process each image in 1.94 s in a sequential implementation on the embedded architecture. The
approach followed in our implementation is based on a Hardware/Software Co-Design study to
propose an optimal implementation. The experiments were conducted on a tomato farm, and the
system showed that we can process different images in real time. The parallel implementation allows
to process each image in 36 ms allowing us to satisfy the real-time constraints based on 5 images/s.
On a laptop, we have a total processing time of 604 ms for the sequential implementation and 9 ms
for the parallel processing. In this context, we obtained an acceleration factor of 66 for the laptop and
54 for the embedded architecture. The energy consumption evaluation showed that the prototyped
system consumes a power between 4 W and 8 W. For this raison, in our case, we opted a low-cost
embedded architecture based on Nvidia Jetson Nano.

Keywords: autonomous robot; greenhouses; GPS localization; energy; multispectral camera;
embedded architecture; multi-sensor fusion; real-time

1. Introduction

Autonomous systems have shown great advantages in all fields of technology. These
systems vary from high complexity design to low complexity, all depending on the tasks
expected by these systems. In addition, modern robots have known a huge revolution
in terms of autonomous and performed tasks. More precisely, a revolution in the field of
agriculture [1–3]. These robots can perform simple tasks to advanced tasks that require
robust algorithms. The successful performance of these robots requires multi-sensor fusion
approaches that include cameras, Light Detection and Ranging (LIDAR), and radar. In this
context, the objective of these robots is to navigate the agricultural fields in order to extract
useful information for the production of good quality of agricultural products [4]. The
problem here is the high price of development for these robots, which limits the purchase
by farmers. This will influence the production efficiency of these systems; as a solution, the
proposition of robots based on low-cost sensors and systems. In order to have autonomous
robots to perform complicated tasks, such as monitoring indices, counting plants, and
weed detection [5–7]. In addition, agricultural robots are divided into two types: aerial
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robots and ground robots [8]. The problem of aerial robots is the energy consumption that
influences the operation of these systems. On the other hand, ground robots present an
efficient solution with high flexibility compared to aerial robots. Furthermore, soil robots
can perform local tasks in agricultural fields such as harvesting, the precise distribution of
chemicals, and others.

In the case of soil robots, we can find various solutions proposed for precision agri-
culture applications. R.P. Devanna et al. 2022 proposed a study based on a soil robot for
closed agricultural field monitoring. This work is based on a semi-supervised deep learning
model to detect pomegranates automatically. The robot developed is a semi-trainer in
order to improve the processing time compare d to the other technique developed. The
results show that the proposed system has achieved an F score of 86.42% and an IoU score
of 97.94% [9]. On the other hand, we can find the work of M. Skoczeń et al. 2021, who
developed techniques to avoid dynamic and static obstacles in agricultural fields. The
system proposed in this work is based on an RGB-D camera for depth calculation, and a soil
robot that moves in an autonomous mode. The results show that the system developed has
a distortion of 38 cm [10]. In a similar idea, we find M.R. Kamandar et al. 2022 proposing
a robot to improvise and reduce the effort for hedge trimming. The developed robots
are built with servo motors and wheels for movement based on five degrees of freedom
to give some flexibility to the robots [11]. In addition, W. Zheng et al. 2022 proposed
a bio-inspired human approach to developing a robot able to manipulate efficiently in
agricultural fields [12]. K. Li et al. 2022 proposed a system based on an arm to process
kiwi fruit pollination. The results obtained showed that the developed bra has an accuracy
that varies between 82% and 87% [13]. In this context, we can find a variety of proposed
systems that aim to perform tasks on agricultural farms. These tasks aim to improve the
productivity of agricultural fields. Several applications have been proposed to help farmers
make decisions [14–18]. These developed systems require autonomous movement without
the farmers’ participation, making the algorithmic conception a complicated task. Several
attempts have been made in the literature to propose localization and mapping algorithms
in the automotive domain [19,20]. These algorithms have been adapted to control robots in
the agricultural field. These systems are based on simultaneous localization and mapping
(SLAM) [21]. In this context, several works have been proposed. U. Weiss et al. 2011
proposed a simulation of an autonomous robot based on a 3D lidar sensor instead of the
traditional method based on stereo cameras [22]. In another work, I. Ali et al. 2020 were
based on localization and mapping in the forest in order to build maps for surveillance [23].
Similarly, A.S. Aguiar et al. 2021 were based on SLAM algorithms for autonomous robot
movement. The approach uses a 3D construction to localize and build the map of agri-
cultural fields [24]. All of these proposed works that aim to provide robust solutions for
agricultural field monitoring are based on complex, high-cost systems, which limits the use
of these proposed approaches. The best choice is a low-cost, robust, and flexible system
that helps identify specific problems in agricultural fields, which will increase the chance
of use and help improve agricultural product productivity and yield.

Our work focuses on developing an autonomous robot for real-time plant monitoring
in open agricultural fields and in closed greenhouses. The study was based on a greenhouse
in the southern region of Morocco. This region is known for the high production of
agricultural products, such as tomatoes and pepper. These two plants require permanent
monitoring of vegetation, water, and fertilizer. Our proposed system is based on a robot
equipped with RGB and multispectral cameras (Parrot Sequoia +) and electric motors
and wheels for movement. The role of RGB cameras is to detect plants for processing,
and the multispectral camera is the extraction of images with several bands for index
processing. Additionally, we tried to simulate our system on Catia v 2019 software for the
mechanical part and Proteus V8 for the electrical part. In addition, we tried to add the
precise localization of the plants to help the decision system. The results showed that the
robot is robust and flexible for various applications, such as weed detection and counting.
We tried to use an Nvidia Jetson Nano embedded architecture for the processing part, and
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to control the motors and drivers to ensure autonomous movement, we used an Arduino
board. We aim to build a simple system of low energy consumption and cost, and our
proposed contribution is as follows.

(1) Development of an autonomous robot for real-time crop monitoring in open agricul-
tural fields and greenhouses

(2) A case study on a closed greenhouse based on tomatoes plant
(3) An implementation on low-cost embedded architecture based on the Cuda language
(4) In addition, an optimization based on the Hardware/Software Co-design approach

has been proposed to decrease the processing time and memory consumption for
real-time applications

Our paper is organized as follows: we have a general introduction to exploring the
problem to be treated, then we have materials and methods study which aim to study the
algorithmic part of our system. Section 3 is for the results obtained and, finally a conclusion.

2. Materials and Methods Study
2.1. Area Study

Greenhouses present a robust solution to increase plant yield. These closed green-
houses help control several crop types to improve the performance of plants. Generally, the
monitoring is manually performed based on the experience of the farmers. This leads to
some failures in the decision-making process, affecting the crop’s productivity and reducing
agricultural product yield. Therefore, our work will focus on tomatoes plant. The tomatoes
prefer humus soil, rich in nutrients and which warms up quickly. It is very greedy, and re-
quires constant fertilization before its installation and throughout its cultivation. Therefore,
tomatoes require vital signs monitoring, including water, nitrogen, and vegetation. For
this reason, we have evaluated the three most used indices for monitoring. The indices are
the normalized difference red edge index (NDRE), normalized difference vegetation index
(NDVI), and normalized difference water index (NDWI). The NDRE is based on red-edge
reflection and Near infrared (NIR) to estimate the nitrogen quantity in the plant. The NDRE
index is based on the red edge reflection and the NIR estimates the amount of nitrogen
in the plant. The NDWI is based on the green and NIR band estimates the water amount.
Equations (1)–(3) show the bands used to calculate these indices, with BNIR representing
the Near-infrared band, BR Red band, BG green band and BRedEdge Red-Edge band [25–27].

NDVI =
BNIR − BR
BNIR + BR

(1)

NDWI =
BG − BR
BG + BR

(2)

NDRE =
BNIR − BRededge

BNIR + BRededge
(3)

The greenhouse farm used in our study is located in the Ait Aamira region near Agadir.
This region is known by the high production of tomatoes and closed greenhouses instead of
open fields. The greenhouses studied in our research are located at 30◦09′13” N 9◦30′50” W.
Figure 1 shows the greenhouses to be studied. The structure of the greenhouse is based on
a plastic cover. The greenhouse studied in this research is divided into 20 regions. Each
region contains two tomato rows with 100 m width and 75 m length with a 1.5 m between
the rows. In addition, each region is divided in two rows, one with 48 m and the other
with 48 m. Figure 2 shows the greenhouse structure and Figure 3 shows real images of the
closed greenhouse used in this study.
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The study was conducted on the totality of the rows to build a general report of
tomato plant’s condition. The tool used for the data collection based on the Parrot
Sequoia + multispectral camera. The idea here is to monitor each plant based on the
precise GPS coordination of the multispectral camera to deliver an accurate plant assess-
ment that gives each plant its index value and GPS coordinates afterward. The use of these
coordinates will help to determine which plant lacks fertilizer, water, or vegetation in a
precise approach. In addition, this type of camera gives images separated into four bands,
red, green, near-infrared, and RedEdge, with a resolution of 1280 × 960 pixels for each
image with a high-resolution to visualize the plants. This gives the flexibility to keep just
the RGB image delivered and remove the other unused bands.

2.2. System Modelling

From the literature study, we can conclude that we have three tools for algorithm
validation. The first tool is the satellite, the second is the drones, and the third is the ground
robots. These three tools aim to support the different sensors that collect, process, and
sometimes make real-time decisions. In the case of the satellite, we cannot make decisions
simultaneously, and the low resolution of the images causes a wrong diagnosis. For this
reason, these solutions are limited to medium and high agricultural fields. Additionally,
the application side is limited because the images cannot help when applying counting
algorithms, weed detection, and different diseases. So, we are limited to two solutions in
our case, either the drones or the soil robots. Unmanned aerial vehicles have shown solid
and efficient solutions for surveillance and different applications. However, the problem
with these tools is the battery’s autonomy, which does not reach 30 min of flight if no
overload has been applied. On the other hand, if we want to build a decision system using
a UAV (Unmanned Arial Vehicle), this will increase the weight, affecting the flight time.
Similarly, UAVs are not flexible when we want to use surveillance in closed greenhouses.
These constraints make the ground robots very strong regarding accuracy and flexibility
of applications in open and closed fields such as greenhouses. For this study, we will
focus on designing a platform consisting of a soil robot that moves autonomously to
monitor vegetation, water, nitrogen, and different applications, such as counting and weed
detection. It can also make decisions in real-time. This research aims to show our proposed
algorithms’ applicability and utility. In this context, we have developed a system named
VSSAgri (vegetation surveillance system for Precision agriculture application). This robot
aims to validate the monitoring algorithms proposed in this work. The proposed prototype
is based on an embedded architecture and electrical motors powered by a battery. Similarly,
it offers a low-cost solution compared to the proposed in the literature.

The proposed system validation has been designed through several steps. Among
these steps is the system modeling on CATIA software to study the functional aspect before
the hardware design. As for the electrical part, we used Proteus for the functional electrical
diagram of the system. In this framework, the system is divided into two parts. The
electrical part consists of electric motors and a 12 V battery. The second part is based on the
mechanical modeling of the different components.
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2.2.1. Mechanical Study

The proposed system consists of metal support with a length of 150 cm and 65 cm
wide. The dimensions chosen in our case are based on the test we performed to validate
the system. In the real case, either in a greenhouse or an open field, we can change the
dimensions of the system. Figure 4 shows the metal support used in our case.
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Figure 4. Metal support.

This support is equipped with two barriers in the extremities. The role of these barriers
is to guarantee the flow of the processing system. These barriers will support the box that
contains the RGB camera, multispectral, and the embedded architecture. In this context,
we have tested several solutions based on just two cables that will ensure movement.
But the problem of these cables is the movement of the box that influences the speed of
displacement due to friction. Figure 5 shows the solution that was proposed before the
two barriers.
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Figure 5. First proposed solution for box movement.

As shown in Figure 5, we have two metal cables in the extremity of the support. This
solution has shown some constraints, such as the friction of the box during the displacement.
For this reason, we have selected the use of barriers. Then, we have a metal box that consists
of a power bank for the power supply of the embedded architecture, and this box carries
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the different cameras used. As a second solution, we proposed the use of wheels with
electric motors for the movement in the two barriers. Figure 6 shows the box used.
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Figure 6. Box used in our prototype.

Additionally, we used eight wheels with electric motors, four to drive horizontally,
and the others to drive vertically the box’s support. These wheels will realize a scanner
principle with a horizontal and vertical displacement to guarantee a general vision of
the field that will be handled. The wheels used can be changed if we have problems of
movement related to the geography of the agricultural areas. For some applications, we
need big wheels that will ensure movement without problems. The collection of all these
components will give a complete system, as shown in Figure 7 with the different views on
the CATIA software.
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Generally, the system moves in a horizontal direction from the box that contains the
cameras and the embedded architecture, as shown in Figure 7. Displacement 1 guarantees
that the box will cross the horizontal axis to process all the plants in this row. Likewise,
displacement 2 ensures the movement of all the support on the fields to move to the second
row. These two mechanisms ensure the processing of the whole field. In this case, the
temporal constraint is the plants’ real-time indices processing to avoid data loss. This
temporal constraint depends on the type of camera that will be used. If we want to monitor
indices, such as NDVI, NDWI, and NDRE, we will need a multispectral camera with a
timelapse of 5 frames/s. For monitoring the RGB indices, we will need an RGB camera
with a timelapse of 30 frames per second, and for all applications, such as plant counting,
weed, and disease detection. Temporal constraints in this case have been studied [5,25]
based on the different embedded architectures, either CPU-GPU or CPU-FPGA.
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2.2.2. Electrical Study

This section focuses on the electrical design of our system. It is equipped with eight
electrical motors of low energy consumption. These motors are powered by a 12 V battery
that delivers the necessary voltage and current for the system to operate. Four motors are
reserved for the movement of all the metal supports, and the others for the movement of
the robot. The motors used in the system are flexible and can rotate in both directions. The
fundamental design of a DC machine is described by Equations (4)–(7) and Figure 8:
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U1 = R1·I1 + L1·
dI1

dt
(4)

with U1 voltage of supply field winding, Rs resistance of supply field winding, L1 induc-
tance of field coil, I1 current of supply field winding.

U2 = R2·I2 + L2·
dI2

dt
+ω·MSR·I1 (5)

with U2 voltage of armature coil, R2 Resistance of armature coil, I2 current of armature coil,
ω angular speed of the motor MSR mutual inductance.

M1 + M2 = J·dω

dt
+ B·ω (6)

with M2 moment of load, M1 moment of conversion, J total engine, B coefficient of friction.

M1 = MSR·I1 I2 (7)

The control of the motors was based on a low-cost Arduino Nano board, and we
used only two boards for the driver’s motor. The first will control the support motor and
the other for the box. These drivers allow us to synchronize all the motors to ensure a
simultaneous movement of the support and the box. The role of the Arduino board is to
control the motors through the drivers. Figure 9 shows the electrical diagram of our system.
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2.2.3. Algorithm Study

Our proposed algorithm is based on two parts. The first one is for the front end, which
controls the autonomous movement of the robot. On the other side, we have the back-end
part, which focuses on processing the indices and counting the plants with the suitable
threshold. Figure 10 shows the proposed global algorithm.
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The algorithm proposed in Figure 10 is based on the autonomous robot movement
control and indices processing. The front-end part ensures the movement of the different
parts of the robot based on an Arduino board, electric motors, and drivers. The algorithm
starts with the box movement, this box contains the embedded architecture that will process,
the multispectral and RGB cameras. We used a power bank for the power supply part of
the box. On the other hand, the movement control part contains a large battery with 12 V.
After the box movement, the vision system detects if we have a plant or not, if yes, then
it will apply a 1 s delay, allowing the multispectral cameras to take images with different
bands for the indices processing. We have chosen a 1 s delay, depending on our camera’s
time-laps (5 frames/s). If not, the system will move the box again to find the plant. For the
displacement time, it depends on the distance between the plants. For example, if we have
plants one after the other, therefore, every second, we will have five images. In the opposite
case, the time to take a new image depends on the distance between the plants. In the case
of having located the plant, the multispectral camera takes images with several bands in
order to extract useful information. As soon as the images are ready, the system sends them
to the back-end to process the indices. The algorithmic part of the index calculation has
been studied recently [5,25]. Algorithm 1 shows the front-end process.
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The algorithm proposed in Figure 10 is based on the autonomous robot movement
control and indices processing. The front-end part ensures the movement of the different
parts of the robot based on an Arduino board, electric motors, and drivers. The algorithm
starts with the box movement, this box contains the embedded architecture that will process,
the multispectral and RGB cameras. We used a power bank for the power supply part of
the box. On the other hand, the movement control part contains a large battery with 12 V.
After the box movement, the vision system detects if we have a plant or not, if yes, then
it will apply a 1 s delay, allowing the multispectral cameras to take images with different
bands for the indices processing. We have chosen a 1 s delay, depending on our camera’s
time-laps (5 frames/s). If not, the system will move the box again to find the plant. For the
displacement time, it depends on the distance between the plants. For example, if we have
plants one after the other, therefore, every second, we will have five images. In the opposite
case, the time to take a new image depends on the distance between the plants. In the case
of having located the plant, the multispectral camera takes images with several bands in
order to extract useful information. As soon as the images are ready, the system sends them
to the back-end to process the indices. The algorithmic part of the index calculation has
been studied recently [5,25]. Algorithm 1 shows the front-end process.
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to have a general overview. Once the indices are calculated, the algorithm sends the data



Sustainability 2022, 14, 15539 11 of 26

for segmentation and counting. For the indices processing, we performed a segmentation
step that will eliminate the negative values that correspond to the absence of vegetation
(e.g., soil, earth . . . ). The NDVI, NDWI, and NDRE values calculated previously are now
between 0 and 1. The closer the value is to 1, the more the index reflects good results.
Then, we performed multiple thresholding; we considered the values between 0.2 and 0.3
as being relatively weak, so we assigned them the red color; the values between 0.3 and
0.6 were slightly better, we assigned them the orange color; the values between 0.6 and
0.9 showed a very high level, we assigned them a green color. These different thresholds
were performed in order to make the images more interpretable for the farmer. The system
allows us to create a file containing the index name and value in the output file. On the
other side, a file that contains the images colored for each type of index overall will have
four files. One for RGB images, two for NDVI, three for NDWI, and NDRE. Algorithm 2
shows the thresholding operation.
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between 0 and 1. The closer the value is to 1, the more the index reflects good results.
Then, we performed multiple thresholding; we considered the values between 0.2 and 0.3
as being relatively weak, so we assigned them the red color; the values between 0.3 and
0.6 were slightly better, we assigned them the orange color; the values between 0.6 and
0.9 showed a very high level, we assigned them a green color. These different thresholds
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The purpose of the watershed technique is to segment the image. It treats the image as
a topographic map based on the intensity of the pixels. We find the semantic segmentation
that refers to the process during the program to link each pixel of an image to a particular
class label. In our case, the result obtained would be a single class, and all the pixels
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would belong to the same class so the plants would be treated as a single object. Instance
segmentation is identical to semantic segmentation except that it differs from semantic
segmentation in the fact that it treats the different objects in the image, several objects of
the same class, as distinct entities, which allows us to count the number of objects present
in the image. The methodology followed in this last part of the algorithm:

(a) We convert the indices image to HSV (hue, saturation, value).
(b) We create the CV_8U version of our HSV image, then we look for the contours present

in the HSV image.
(c) We trace the contours on the original image, this tracing step is divided into two steps:

a. Tracing the markers of the foreground;
b. Tracing the background markers in white;
c. The final image is a superposition of the two tracings a and b.

(d) We perform the segmentation using the OpenCV function “Watershed”; afterwards,
we fill the labeled objects with randomly generated colors.

The back-end part is based on image processing and is divided into three functions.
The first function is for the pre-processing of the images, the second for the indices process-
ing, and the third for the counting operation. After the algorithm finishes the back-end, it
goes back to the front end, then a test if the system has finished the vertical line is applied.
If yes, it will move all the metal support. If no, it will move only the box for the next plant.

3. Results and Discussion

Interventionary studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided approval and the corresponding
ethical approval code.

3.1. Test and Implementation

The processing test was based on two architectures, the first is a low-cost embedded
architecture type Nvidia Jetson Nano and the second is a laptop. Using the Jetson Nano
architecture has shown that the processing time is reduced using the CUDA language, and
we can achieve real-time processing. It is the same case for the laptop, but the problem here
is the portability of our system. Table 1 shows the specification of our used device.

Table 1. Architecture specification.

Device type Laptop Nvidia Jetson Nano
Processor type Intel CORE ARMv8

CPU name i7-10510U ARM A57
Base frequency 1.80 GHz 1.43 GHz

Number of cores 4 (8 threads) 4
GPU GeForce MX250 Tegra X1

GPU Architecture Pascal Maxwell
Base frequency 1519 MHz 643 MHz

Number of cores 384 128

Memory 16 GB DDR4{XE “CDDR” \t “:
Double Data Rate ”}

4 GB
LPDDR4{ XE “LPDDR4” \t “:
Low Power Double Data Rate ” }

At the first step, a sequential implementation has been proposed in order to study
the back-end part of our algorithm. Compared to the Laptop on the Jetson Nano, the
three functions constitute the total processing time of the algorithm. Therefore, following a
workload analysis based on a hardware/software Co-Design approach allows us to reduce
the processing time as much as possible for these three functions for both architectures
and mainly for the Jetson Nano. Its compact size of 10 cm × 8 cm × 2.9 cm, and its
minimal power consumption of 5 W, added to its limited resources and adapted memory
capacity. Its relatively low cost allows it to meet a constraining specification related



Sustainability 2022, 14, 15539 13 of 26

to embedded systems. After the sequential implementation we based on the CUDA
parallel programming language to accelerate the processing. Figure 11 shows a sequential
implementation based on C/C++.
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Figure 11. Processing time analysis.

In Figure 11, we can conclude that in the laptop, the pre-processing part occupies
more than 64% of the processing time, while in the Jetson Nano architecture, we have
only 42%. After the time analysis, we decided to accelerate the three functions to decrease
the processing time to satisfy the real-time constraint. Table 2 shows a processing time
comparison on the laptop and Jetson Nano based on C/C++ and CUDA.

Table 2. Processing time comparison.

C/C++ (s) CUDA (s) Acceleration

Laptop
Pre-processing 0.3878 0.0039 99.43

Indices processing 0.0149 0.0015 9.93
Counting 0.2021 0.0036 56.13

Jetson Nano
Pre-processing 0.8334 0.0064 130.21

Indices processing 0.4321 0.0124 34.84
Counting 0.6783 0.0175 38.76

Using the results of the performance profiler, we have gone from a processing time
equal to 387.7 ms for the pre-processing to 3.9 ms, which is an acceleration of almost
100 times. For the indices processing, we have an acceleration of 10, and, finally, the
counting has been accelerated by 56 times. For the heterogeneous embedded system Jetson
Nano, we have gone from a processing time equal to 833.4 ms for the pre-processing to
6.4 ms, an acceleration of 130 times has been achieved. For the second function, we have
gone from 432.1 ms to 12.4 ms, equivalent to an acceleration of 34 times, and, finally, the
counting has been accelerated by a value of 38 times. Figure 12 represents a temporal
synthesis of the different functions on our Laptop and on Jetson Nano.
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After the processing time analysis and acceleration, we added a detailed study on
memory consumption and processing time. The analysis results obtained have been based
on the profiler proposed by Nvidia. The tool offered us the percentage of time that these
functions take compared to the global activity level of the GPU of the functions “CUDA
memcpy H_to_D” and “CUDA memcpy D_to_H”. Table 3 shows a summary of the
results obtained.

Table 3. GPU activity and Data workload results.

GPU Activity (%) Data Workload

GeForce
MX250 Jetson GeForce

MX250(GB/s) Jetson (MB/s)

CUDA memcpy H_to_D 34.78 30.35 2.4829 761.1025
CUDA memcpy D_to_H 18.46 15.62 2.7274 803.36

Total 53.24 45.97 5.21 1564

Table 3 shows that in the case of the Laptop we have a CPU→GPU transfer rate
equal to 2.4829 GB/s and a GPU→CPU rate equal to 2.7274 GB/s. The Jetson Nano
embedded system has values 3 times lower in the order of MB/s. Our system consists of
two movements, the first for the box containing the embedded architecture and the cameras
used for processing. The second part focuses on moving all metal supports to a new row.
With this method, we can ensure that all the plants will be processed. Figure 13 shows an
overview of our system.

The first step that was performed was the testing and validating of our robot in a
closed space based on three rows to validate the mechanism of our system. each rows
contain mint, parsley and pepper plant, respectively. The validation of this system in a
closed space does not imply accurate functionality in a real environment. For this reason,
we have opted after the validation to make a real test in order to validate our algorithmic
and systematic approach. In Figure 13, we have on the top left the developed robot and, on
the bottom, a multispectral and RGB camera view. In the bottom right image, we have the
box that contains the Arduino architecture that operates the movement part of our robot.
Figure 14 shows images collected by our robot.



Sustainability 2022, 14, 15539 15 of 26

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 28 
 

 

 

Figure 12. Temporal synthesis of the different functions. 

After the processing time analysis and acceleration, we added a detailed study on 

memory consumption and processing time. The analysis results obtained have been based on 

the profiler proposed by Nvidia. The tool offered us the percentage of time that these functions 

take compared to the global activity level of the GPU of the functions “CUDA memcpy 

H_to_D” and “CUDA memcpy D_to_H”. Table 3 shows a summary of the results obtained. 

Table 3. GPU activity and Data workload results. 

 
GPU Activity (%) Data Workload 

GeForce MX250 Jetson GeForce MX250(GB/s) Jetson (MB/s) 

CUDA memcpy 

H_to_D 
34.78 30.35 2.4829 761.1025 

CUDA memcpy 

D_to_H 
18.46 15.62 2.7274 803.36 

Total 53.24 45.97 5.21 1564 

Table 3 shows that in the case of the Laptop we have a CPU→GPU transfer rate equal 

to 2.4829 GB/s and a GPU→CPU rate equal to 2.7274 GB/s. The Jetson Nano embedded 

system has values 3 times lower in the order of MB/s. Our system consists of two move-

ments, the first for the box containing the embedded architecture and the cameras used 

for processing. The second part focuses on moving all metal supports to a new row. With 

this method, we can ensure that all the plants will be processed. Figure 13 shows an over-

view of our system. 

  

1

10

100

1000

Pre-processing Indices processing Counting

Laptop C/C++ Laptop CUDA Jetson Nano C/C++ Jetson Nano CUDA

Mint 
Sustainability 2022, 14, x FOR PEER REVIEW 16 of 28 
 

 

  

Figure 13. System overview. 

The first step that was performed was the testing and validating of our robot in a 

closed space based on three rows to validate the mechanism of our system. each rows 

contain mint, parsley and pepper plant, respectively. The validation of this system in a 

closed space does not imply accurate functionality in a real environment. For this reason, 

we have opted after the validation to make a real test in order to validate our algorithmic 

and systematic approach. In Figure 13, we have on the top left the developed robot and, 

on the bottom, a multispectral and RGB camera view. In the bottom right image, we have 

the box that contains the Arduino architecture that operates the movement part of our 

robot. Figure 14 shows images collected by our robot. 

  

  

Figure 14. Camera overview of our system. 

After the prototype validation in the laboratory, we moved to the field validation to 

evaluate the prototype performance. The results showed that the prototype works in the 

same conditions and mechanism as in the laboratory. The test was conducted in an open 

field and a closed greenhouse, showing our system’s flexibility. In addition, our robot can 

be adapted for the different precision agriculture applications by editing the back-end 

with the appropriate algorithm. These applications can be either weed detection, fruit and 

plant counting, or disease detection. In addition, a decision-making system can be added 

to take real-time actions in the agricultural field. This approach will help the farmer make 

Figure 13. System overview.

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 28 
 

 

  

Figure 13. System overview. 

The first step that was performed was the testing and validating of our robot in a 

closed space based on three rows to validate the mechanism of our system. each rows 

contain mint, parsley and pepper plant, respectively. The validation of this system in a 

closed space does not imply accurate functionality in a real environment. For this reason, 

we have opted after the validation to make a real test in order to validate our algorithmic 

and systematic approach. In Figure 13, we have on the top left the developed robot and, 

on the bottom, a multispectral and RGB camera view. In the bottom right image, we have 

the box that contains the Arduino architecture that operates the movement part of our 

robot. Figure 14 shows images collected by our robot. 

  

  

Figure 14. Camera overview of our system. 

After the prototype validation in the laboratory, we moved to the field validation to 

evaluate the prototype performance. The results showed that the prototype works in the 

same conditions and mechanism as in the laboratory. The test was conducted in an open 

field and a closed greenhouse, showing our system’s flexibility. In addition, our robot can 

be adapted for the different precision agriculture applications by editing the back-end 

with the appropriate algorithm. These applications can be either weed detection, fruit and 

plant counting, or disease detection. In addition, a decision-making system can be added 

to take real-time actions in the agricultural field. This approach will help the farmer make 

Figure 14. Camera overview of our system.

After the prototype validation in the laboratory, we moved to the field validation to
evaluate the prototype performance. The results showed that the prototype works in the
same conditions and mechanism as in the laboratory. The test was conducted in an open
field and a closed greenhouse, showing our system’s flexibility. In addition, our robot can
be adapted for the different precision agriculture applications by editing the back-end with
the appropriate algorithm. These applications can be either weed detection, fruit and plant
counting, or disease detection. In addition, a decision-making system can be added to take
real-time actions in the agricultural field. This approach will help the farmer make precise
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and fast decisions to avoid difficult problems. The developed system is characterized by
its low cost and low energy consumption. Figure 15 shows the test of our system in a real
agricultural field.

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 28 
 

 

precise and fast decisions to avoid difficult problems. The developed system is character-

ized by its low cost and low energy consumption. Figure 15 shows the test of our system 

in a real agricultural field. 

 

Figure 15. Test and evaluation of the system in real field. 

In Figure 15, module 1 represents the battery that powers the motors. On the other 

hand, we have used a power bank for the power supply of the camera, and for the em-

bedded architecture. Module 2 is a box with the control part that gives actions to the mo-

tor. Module 3 is the robot embedding cameras and the architecture-based processing. Ad-

ditionally, we added a power consumption analysis as part of the robot specifications 

study. Figure 16 shows the results obtained. 

 

 

Figure 16. Power and current consumption of the electric motors. 

In Figure 16, we have measured the current consumption of the electric motors and 

the power. We tried to make several iterations to see each time the consumption. The 

maximum power consumption is about 2.9 W, and for the current consumption is 0.59 A. 

  

0

2

4

6

8

1 11 21 31 41 51

P (W)

0

0.2

0.4

0.6

0.8

1 11 21 31 41 51

I (A)

Figure 15. Test and evaluation of the system in real field.

In Figure 15, module 1 represents the battery that powers the motors. On the other
hand, we have used a power bank for the power supply of the camera, and for the em-
bedded architecture. Module 2 is a box with the control part that gives actions to the
motor. Module 3 is the robot embedding cameras and the architecture-based processing.
Additionally, we added a power consumption analysis as part of the robot specifications
study. Figure 16 shows the results obtained.
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Figure 16. Power and current consumption of the electric motors.

In Figure 16, we have measured the current consumption of the electric motors and
the power. We tried to make several iterations to see each time the consumption. The
maximum power consumption is about 2.9 W, and for the current consumption is 0.59 A.
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3.2. Experimental Result

The approach used in this work was based on evaluating several indices, namely
NDVI, NDWI, and NDRE. Then, these indices will be collected on all 20 zones to determine
the region with low indices. Afterward, we try to determine the GPS coordinates of each
region with its index. The first index that has been calculated is NDVI. Figure 17 shows the
evaluation of NDVI in the 20 zones.
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Figure 17. NDVI evaluation based on 20 regions.

The NDVI processing was based on several plants to evaluate the variation of this
index. The indices’ values vary between 0.15 and 0.8. Generally, the values close to 1 present
strong vegetation (reflects that the plant has no problem at the vegetation level). Once we
have calculated the variation of NDVI on several plants in the different regions, we move
to calculate the NDVI average in each region to define the regions with less vegetation.
This method will allow us to locate the regions with vegetation problems. Figure 18 shows
the average NDVI in each region.
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Figure 18. NDVI average.

The results in Figure 18 show that zones 6 and 10 give a low index compared to
the other zones. Usually, the mean values vary between 0.15 for zone 6 and 0.67 for
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zone 9. Zones 6 and 10 present low values due to the supply system of the necessary
plant components. This reflects the strong relationship between vegetation, water, and the
nitrogen content in the plants. After locating the region with a low index, we tried to locate
the plants with the vegetation index. Figure 19 shows the vegetation index calculated for
each plant.
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Figure 19. NDVI of each plant for 20 regions.

As a result of evaluating the different plants in the areas with a vegetation problem,
we determined the plant’s exact position through the images collected with the precise
GPS data of the Parrot Sequoia + camera. This localization gives us the plant where we
have the vegetation problem, which will help the farmer or robots make precise decisions.
Figure 20 shows images of the plants and their NDVI results. In Figure 20 are the RGB
images of tomato plants collected in the greenhouse, and we have the evaluation of the
binarized NDVI index using the threshold T1 = 0.5. Additionally, we have tried to vary the
threshold for the red images with T2 = 0.4. This threshold variation shows the plants that
have an index more than T1 or T2. This operation will help us to classify the final results.
To determine the index with its proposed threshold, we need to take the plants of each type
and create a test with the vegetation sensors afterward to provide each plant with its own
index for decision-making.

After determining the NDVI vegetation index, we need to calculate the other indices,
such as NDRE and NDWI. The reason for calculating these indices is that vegetation is
not enough to indicate that the plant is in good condition. The second evaluation was
based on the NDRE index shown in Figure 21. The NDRE evaluation was based on a
0.2 threshold. Regions with an index lower than 0.2 suffer from a nitrogen deficiency in the
plants. Figure 21 summarizes the results obtained for 20 zones that have been evaluated.
The results show that the index varies between 0.079 and 0.75 in zones 10 and 5, with
minimum and maximum values. We also find zones 1 and 6 with NDRE values of 0.15 and
0.08. These regions reflect the nitrogen lack in plants. Similarly, for the vegetation index,
we have zone 6 and 10 that are in the same situation. On the other hand, in the evaluation
of NDRE, another zone that suffers from a lack of nitrogen has been added. After a first
synthesis, we concluded that the suffering zones are 6, 1, and 10. For this reason, it is
necessary to extend the evaluation and see the average of the NDRE index in the different
regions. Figure 22 shows the different areas’ evaluation based on each zone’s average.
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Figure 21. NDRE evaluation for 20 regions.
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Figure 22. NDRE average.

The application of the average processing in the different zones has reinforced the
synthesis elaborated in Figure 22. It also confirmed that zones 6, 1, and 10 suffer from the
lack of nitrogen. Our evaluation methodology based on a thorough evaluation that aims to
determine the exact plants where we have problems.

In Figure 23, we have shown an evaluation of 20 plants in regions 1, 6, and 10. The
results show that the plants in regions 6 and 10 have very low values compared to zone 1.
The values vary between 0.05 and 0.1. On the other hand, zone 1 varies between 0.2 and 0.11.
After evaluating the different plants, it is necessary to determine the precise localization
of the plants. The third vital index that is opted for our evaluation is NDWI. This index
determines the amount of water in the vegetation. Figure 24 shows the evaluation of
the NDWI.
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Figure 23. NDRE for 1, 6 and 10 zones.

The NDWI evaluation is based on a threshold of 0.3. Areas with less than 0.3 have
a water deficiency or water absence, while areas with more than 0.3 have water. The
index evaluation showed that, like the NDRE, areas 1, 6, and 10 have low water content.
Figures 25 and 26 present the results in each zone.
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Figure 24. NDWI evaluation based on 20 regions.
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Figure 25. NDWI average.
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Figure 26. NDWI for 1, 6 and 10 zones.
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The NDWI values in Figure 26 range from 0.618 to 0.13 for zones 18 and 10. The
calculation of NDWI in the figure is based on the average of each zone. The global analysis
of the greenhouse study showed that vegetation problems appeared in zones 6 and 10,
while water and nitrogen problems appeared in zones 1, 6, and 10. This methodology of
interpretation and this study will help farmers monitor the agricultural fields and determine
the plants and areas that suffer from a various problem. This will increase the productivity
of the farm. After processing the indices in each plant, we will have the precise localization
of each plant Figure 27 shows an example of NDVI.
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Figure 27. NDVI and GPS data for 6 and 10 zones.

The GPS data shown in Figure 28 are provided by the Parrot Sequoia + camera. Then,
we generated a map of the greenhouse with the 20 zones and the index result with the
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GPS data, as shown in Figure 27. This will improve the decision system associated with
the closed greenhouse. Therefore, in the map, the green and blue colored rectangle shows
zones 10 and 6. Additionally, the GPS coordinates of the plants that have a vegetation
problem. After evaluating the different vital indices, including NDVI, NDRE, and NDWI,
we obtained the different information needed in the agricultural fields. This information
is the most relevant to have an overview of the health of the plants. As soon as the
evaluation is finished, a global map should be generated for the farmer, containing the
different information about the greenhouse. Figure 28 shows the overall map of the
indices monitoring.
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The GPS data shown in Figure 28 are provided by the Parrot Sequoia + camera. Then,
we can generate a map of the greenhouse with the 20 zones and the index result with the
GPS data, as shown in Figure 27. This will improve the decision system associated with the
closed greenhouse. In the map, the green and blue colored rectangle shows these zones
10 and 6.

In addition, the GPS coordinates of the plants that have a vegetation problem are
given. After evaluating the different vital indices, including NDVI, NDRE, and NDWI,
we obtained the different information needed in the agricultural fields. This informa-
tion is the most relevant to have an overview of the health of the plants. As soon as
the evaluation is finished, a global map should be generated for the farmer, containing
the different information about the greenhouse. Figure 28 shows the overall map of
the indices monitoring. Table 4 shows a Summary of normalized indices results in the
closed greenhouse.

Table 4. Summary of normalized indices results in the closed greenhouse.

Nomenclature for Table

- <0.2
+ 0.2–0.4

++ 0.4–0.6
+++ <0.6

Zones Value
NDVI NDWI NDRE

1 + + -
2 + + +
3 ++ + +
4 ++ + ++
5 ++ ++ +++
6 - - -
7 +++ ++ ++
8 +++ + +
9 +++ ++ ++
10 - - -
11 +++ ++ +
12 +++ ++ ++
13 ++ + ++
14 +++ ++ ++
15 ++ + +
16 +++ ++ ++
17 ++ + +
18 ++ ++ +
19 ++ + +
20 ++ ++ +

4. Conclusions

The validation of the algorithmic approach is a very important step to test the al-
gorithm’s reliability. In real scenarios, we can find a variety of environmental problems
that influence the algorithm’s operation. The development of autonomous robots helps to
validate the research approach and make it useful. In this work, we have proposed an au-
tonomous monitoring system that monitors crops in closed greenhouses and in open fields.
This system delivers a map that contains an image with vegetation, water, and fertilizer
information, and GPS localization. This technique will increase the precision of monitor-
ing, which will help us to improve the decision systems and reduce the consumption of
resources required by the plant for growth. This will maximize the yield by decreasing the
consumption of resources. Therefore, we added a sequential and parallel implementation
in a heterogeneous embedded architecture type CPU-GPU in order to study the processing
time and the memory consumption. The results allowed us to process each image in 1.94 s
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for the Jetson Nano embedded architecture. On the other hand, the Laptop processed each
image in 0.604 s, which does not give real-time processing based on 5 images/s. For this
reason, an optimization based on the architecture-algorithm mapping approach allowed
us to reduce the processing time for the Laptop to 9 ms and the embedded architecture to
36 ms. This gave us real-time processing for both architectures with an acceleration factor
of 66 for the laptop and 54 for the Jetson Nano.
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