
HAL Id: hal-04451199
https://hal.science/hal-04451199

Submitted on 19 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-agent reinforcement learning for autonomous
vehicles: a survey

Joris Dinneweth, Abderrahmane Boubezoul, René Mandiau, Stéphane Espie

To cite this version:
Joris Dinneweth, Abderrahmane Boubezoul, René Mandiau, Stéphane Espie. Multi-agent reinforce-
ment learning for autonomous vehicles: a survey. Autonomous Intelligent Systems, 2022, 2 (1), pp.27.
�10.1007/s43684-022-00045-z�. �hal-04451199�

https://hal.science/hal-04451199
https://hal.archives-ouvertes.fr


Autonomous Intelligent
Systems

Dinneweth et al. Autonomous Intelligent Systems            (2022) 2:27 
https://doi.org/10.1007/s43684-022-00045-z

R E V I E W Open Access

Multi-agent reinforcement learning for
autonomous vehicles: a survey
Joris Dinneweth1,2* , Abderrahmane Boubezoul1 , René Mandiau3 and Stéphane Espié1

Abstract
In the near future, autonomous vehicles (AVs) may cohabit with human drivers in mixed traffic. This cohabitation
raises serious challenges, both in terms of traffic flow and individual mobility, as well as from the road safety point of
view. Mixed traffic may fail to fulfill expected security requirements due to the heterogeneity and unpredictability of
human drivers, and autonomous cars could then monopolize the traffic. Using multi-agent reinforcement learning
(MARL) algorithms, researchers have attempted to design autonomous vehicles for both scenarios, and this paper
investigates their recent advances. We focus on articles tackling decision-making problems and identify four
paradigms. While some authors address mixed traffic problems with or without social-desirable AVs, others tackle the
case of fully-autonomous traffic. While the latter case is essentially a communication problem, most authors
addressing the mixed traffic admit some limitations. The current human driver models found in the literature are too
simplistic since they do not cover the heterogeneity of the drivers’ behaviors. As a result, they fail to generalize over
the wide range of possible behaviors. For each paper investigated, we analyze how the authors formulated the MARL
problem in terms of observation, action, and rewards to match the paradigm they apply.

Keywords: Multi-agent reinforcement learning, Simulation, Autonomous Vehicles

1 Introduction
According to the world health organization (WHO1), road
accidents kill 1.3 million people and injure 50 million peo-
ple each year. Several technologies have been proposed
to make driving safer, such as advanced driver assistance
systems (ADAS), adaptative cruise control (ACC), and in-
telligent transportation systems (ITS). The latter, with the
recent technological advances in communication systems,
paved the way for the deployment of autonomous vehicles.

Trommer et al. [1] described five levels of vehicle au-
tomation in their technical report, ranging from superfi-
cial assistance (level 1) to full automation (level 5). With
effective algorithms that prevent fatal accidents, the latter
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level could make traffic safer. AVs and humans may cohabit
in mixed traffic before reaching full automation. However,
the evidence suggests that accident-free mixed traffic may
be impossible [2]. Human drivers follow informal and sub-
jective norms, but autonomous vehicles comply with traf-
fic rules [3, 4]. Because of their divergent concerns, AVs are
unlikely to be effective in mixed traffic. By contrast, coordi-
nating a fully-autonomous fleet is straightforward because
AVs act homogeneously and are therefore predictable. AVs
should be capable of handling all traffic scenarios, whether
they are driving in mixed traffic or fully autonomous fleets.
However, because these scenarios are nearly endless, de-
signing ruled-based models is practically certain to fail.

With advances in hardware, machine learning
approaches provide new opportunities to generalize driv-
ing scenarios. Reinforcement learning (RL) approaches, in
particular, are successful at solving sequential decision-
making problems, such as Go, Chess, arcade games, and
real-time video games [5–9]. In RL, an agent learns and
self-corrects by receiving feedback on the quality of its in-
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Figure 1 Distribution of the reviewed papers

teractions within an environment. Multi-agent RL (MARL)
is a more distributed framework in which several agents
simultaneously learn cooperative or competitive behavior.
Since several decision-makers learn simultaneously and
possibly coordinate, more robust and convincing policies
can emerge than with single-agent RL approaches.

Several surveys have investigated relative aspects of RL
for AVs more global way. Schmidt et al. [10] tackled au-
tonomous mobility, including traffic management, un-
manned aerial vehicles (UAVs), AVs, and resource opti-
mization using MARL algorithms. Elallid et al. [11] sur-
veyed AVs’ scene understanding, decision-making, plan-
ning, and social behavior using RL approaches. Kiran et al.
[12] tackled scene understanding, decision-making, and
planning using RL algorithms. Ye et al. [13] tackled mo-
tion planning and control using RL approaches. Notwith-
standing, no reviews investigated the decision-making of
autonomous vehicles using MARL algorithms.

Our survey seeks to fulfill this gap by answering two re-
search questions: (RQ1) what is the recent state-of-art of
AVs’ decision-making using MARL algorithms; and (RQ2)
what are the topic’s primary current limitations. To answer
these questions as concisely as possible while considering
recent breakthroughs in MARL algorithms, we have re-
stricted this review to sixteen papers published since 2019
(distribution in Fig. 1). We focus our survey on decision-
making problems; nonetheless, interested readers can find
in [14], a recent survey that focuses on autonomous driving
policy learning using deep reinforcement learning (DRL)
and deep imitation learning (DIL) techniques.

We have organized the remainder of this review as
follows. Firstly, we introduce the state-of-art of RL and
MARL algorithms (Sect. 2). Secondly, we highlight the
learning schemes and strategies of MARL algorithms
(Sect. 3). Thirdly, we review the driving simulation envi-
ronments (Sect. 4). Fourthly, we investigate articles tack-
ling AVs’ decision-making using MARL algorithms (Sect. 5).
Lastly, we discuss open challenges and conclude this study
(Sect. 6).

Figure 2 Single-agent reinforcement learning

2 Reinforcement learning
This section provides a state-of-art of single (2.1) and
multi-agent (2.2) reinforcement learning algorithms.

2.1 Single-agent reinforcement learning
Reinforcement learning (RL) is a trial-and-error learn-
ing method where an agent interacts within an environ-
ment [5] (Fig. 2). The agent’s goal is to reach the most
rewarding states of the environment. The agent explores
the environment, grasping its dynamics and devising an
appropriate policy (behavior) to discover these states. As
a result, the agent gains knowledge from its actions and
maximizes long-term accumulated rewards. Non-learning
agents who obey stationary policies may be present in the
environment. The environment, the state, the actions, and
the rewards for an autonomous car may correspond to the
roadway, the positions of other vehicles, accelerating or
braking, and collision avoidance, respectively.

There are three types of RL learning algorithms: value-
based, policy-based, and actor-critic. In value-based meth-
ods, the agent implicitly learns a deterministic policy by
picking higher-valued actions via a value function that
maps state-action pairs. Nevertheless, the value function
becomes inefficient as the state-action space grows, such
as discrete spaces [15]. In policy-based methods, the agent
explicitly learns a stochastic policy function. However,
policy-based approaches suffer from high variance, which
slows down the learning process. Actor-critic approaches
appear to be a reasonable compromise that combines the
benefits of the preceding methods. The latter is divided
into a critic part which approximates the value function,
while an actor part learns a policy based on critic estima-
tions to alleviate the variance. Because they work effec-
tively in real-world contexts with continuous space, actor-
critic approaches are widespread within the RL commu-
nity.

We briefly describe the single-agent RL algorithms
(Fig. 3) addressed in Sect. 5. Deep Q-network (DQN) [16]
is a value-based agent that builds a deep learning model to
estimate future rewards and execute behaviors that lead to
the best outcome. Advantage actor-critic (A2C) [17] is an
actor-critic agent that builds a stochastic policy to estimate
the advantage of taking action over others. Deep determin-
istic policy gradient (DDPG) [18] is an A2C agent with de-
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Figure 3 Taxonomy of RL methods

terministic off-policy, which means that the present policy
does not guide the learning process. Instead of employing
a logarithmic update, proximal policy optimization (PPO)
[19] is an expansion of the A2C agent that updates the pol-
icy based on the ratio between the old and new policies
weighted by the advantage. None of them deal with policy-
based methods.

2.2 Multi-agent reinforcement learning
Multi-agent reinforcement learning (MARL) algorithms
involve several agents learning simultaneously in a shared
environment. Agents are either cooperative, competitive,
or have a mixed approach. Cooperative agents possibly
communicate to coordinate their actions (Fig. 4) and often
share a common reward function. Conversely, competitive
agents play a zero-sum game attempting to outperform
their opponents. When agents do not behave fully cooper-
atively or fully competitively, they follow the mix setting, a
general-sum game without any restrictions on agents’ re-
lations [20].

MARL algorithms follow the same taxonomy of single-
RL methods introduced in Fig. 3. Multi-agent extensions of
single-agent algorithms are often prefixed with MA, e.g.,
MAA2C and MADDPG [21, 22]. MARL algorithms are
more complicated than single-agent RL approaches be-
cause several agents learn simultaneously and constantly
co-adapt their policies. This non-stationarity disrupts the
dynamics of the environment and impedes the learn-
ing process [23]. Furthermore, as the number of agents
increases, the space expands exponentially, slowing the
learning process. The latter phenomenon is called the
curse of dimensionality.

In other environments, agents operate with just partial
observations of the present state, making learning more
challenging; for example, it is hard to observe the whole
traffic flow in road driving. To dispel these obstruction
zones, agents can communicate in cooperative tasks [24].
Connected autonomous vehicles, for example, could share
and merge their local observations to better represent traf-
fic, potentially revealing a vehicle in a blind spot. Non-

stationarity and partial observability are mitigated by com-
munication.

Many learning schemes and strategies have been pro-
posed in response to the additional challenges of MARL al-
gorithms, which are exacerbated by the number of agents.

3 Learning schemes
The curse of dimensionality, partial observability, and non-
stationarity represent three critical challenges for MARL
development. This section introduces how MARL central-
ized or decentralized the learning and its execution (3.1)
and what are learning schemes (3.2) implemented in the
reviewed papers that tackle these challenges.

3.1 Centralization and decentralization
In learning algorithms, an agent learns a policy during a
training phase and follows it during the execution phase.
These phases, in MARL algorithms, can be either central-
ized or decentralized. In the centralized one, agents share
information to improve their policies, whereas, in the de-
centralized one, they learn independently with no addi-
tional information. Three major learning schemes have
been proposed depending on whether the training and ex-
ecution phases are centralized or decentralized.

3.1.1 Centralized training centralized execution (CTCE)
In centralized training centralized execution (CTCE)
scheme, a central learner gathers information from agents
to learn a joint policy, which mitigates the partial observ-
ability and non-stationarity issues. However, CTCE suf-
fers from centralization, which exacerbates the curse of
dimensionality. Furthermore, agents with competing goals
may disrupt each other’s policies, making learning harder.
Single-agent RL algorithms may suffice because CTCE
does not expressly assume decentralization. In contrast to
CTCE, a fully-decentralized scheme has been proposed.

3.1.2 Decentralized training decentralized execution
(DTDE)

Decentralized training decentralized execution (DTDE)
scheme allows each agent to learn independently with-
out exchanging additional information. As a result, agents
are unaware of one another’s existence, and the environ-
ment appears non-stationary from their viewpoints. Fur-
thermore, Gupta et al. [25] demonstrated that DTDE scales
poorly with agent number.

One last scheme has been proposed as an intermedi-
ary solution, given the previous limitations of the fully-
centralized and fully-decentralized approaches.

3.1.3 Centralized training decentralized execution
(CTDE)

Lowe et al. [22] introduced the centralized training decen-
tralized execution (CTDE) method, which overcomes the
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Figure 4 MARL with two communicative agents

Figure 5 CTDE learning schemes

shortcomings of the fully-centralized and fully-
decentralized approaches. During the training phase,
agents share additional information to reduce non-
stationarity and partial observability, then discard it during
the execution phase. CTDE scheme includes two popular
strategies that can be used depending on the agents’ nature
[25].

Parameter sharing Parameter sharing (PS) is a well-
known approach for dealing with large-scale environ-
ments where several homogeneous agents cooperate [25].
PS mitigates the curse of dimensionality by allowing all
agents to learn simultaneously using a single neural net-
work during the training phase (Fig. 5(a)).

Centralized critic decentralized actor However, when
agents are heterogeneous, the centralized critic decentral-
ized actor is more convenient [22]. It follows the actor-
critic architecture. Since the critic focuses on assessing the
actor, it is no longer helpful for the execution phase. There-
fore, each agent receives a duplicate of the actor after the
training phase (Fig. 5(b)).

MARL research is still in its infancy, and we have barely
skimmed its surface. Interested readers may find compre-
hensive reviews dedicated to MARL algorithms and chal-
lenges [20, 26–30]. In addition to these MARL learning

schemes, various RL strategies may overcome multi-agent
challenges.

3.2 Learning strategies
This subsection presents some RL strategies inspired by
human cognitive mechanisms that were used in the papers
discussed in Sect. 5.

3.2.1 Memory
Memory is a mechanism allowing humans to analyze dy-
namics. Because RL approaches deal with sequential prob-
lems, giving agents memory strengthens their ability to
figure out the environment’s dynamics [31]. Researchers
designed a Recurrent Neural Network (RNN), a memory-
based neural network with information cycles that remem-
ber the past inputs and reuse them in subsequent deci-
sions. As a result, RNN reduces non-stationarity by im-
proving the analysis of current dynamics based on these
experiences. In the case of driving, the memory enables
determining the heading of a vehicle between two lanes
(Fig. 6).

3.2.2 Masking
Masking prevents humans from performing undesirable
actions, making the environment safer and decision-
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Figure 6 The benefit of memory. It is impossible to figure out the car’s heading without memory (6(a)), while it becomes straightforward with
memory (6(b))

Figure 7 Masking prevents from undertaking undesirable actions (red)

Figure 8 Curriculum Learning for driving. From left to right, agents start in light traffic, increase the complexity, and become more robust in dense
traffic

making straightforward [31]. When a designer knows a
priori that an action is counterproductive, he or she can
prevent the agents from undertaking it. For example, when
a road is under construction, barriers prevent us from tak-
ing it (Fig. 7). Masking speeds up the training and alleviates
the curse of dimensionality by narrowing the action space.
Another way to ease learning is to reduce exploration.

3.2.3 Curriculum learning
Curriculum learning [32] refers to a learning method that
gradually increases the difficulty. For example, when peo-
ple learn to drive, they usually start in low-traffic areas, and
when they master it, they move on to denser areas (Fig. 8).
In MARL, agents often fail to learn practical policies be-
cause of the non-stationarity. With curriculum learning,
agents start learning in stationary environments and grad-
ually remove this stationarity, making the task more chal-

lenging. Another way to ease learning is to consider it hi-
erarchically.

3.2.4 Hierarchical reinforcement learning (HRL)
Hierarchical reinforcement learning are “divide and con-
quer” algorithms [33]. Dividing the main policy into lower-
level sub-policies make problems more manageable since
these sub-policies can be reused in related tasks (Fig. 9).
For example, a left lane change on a highway can reuse
the knowledge acquired from a similar task on a country
road. Sub-tasks are sometimes less resource-intensive than
global tasks; because they can operate in a narrowed state-
action space, thus alleviating the curse of dimensionality.

We showed in this section that centralized and decen-
tralized schemes suffer from many problems that learning
strategies can alleviate. The following section will describe
the MARL-based driving simulation environments.
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Figure 9 Hierarchical reinforcement learning (inspired from Chen et al. [34]). A higher-level policy (orange) selects a subtask (blue) to perform a
sub-policy on a narrow action space (green)

4 MARL-based driving simulation environments
Coordinating a fully-autonomous fleet, i.e., without hu-
man drivers, is more tractable than driving in mixed traffic
because of the predictable nature of homogeneous agents.
Furthermore, to keep traffic flowing, AVs share informa-
tion and coordinate within short reaction times. Most
MARL training use simulation environments (4.1) to learn
these features on various scenarios (4.2) and with human
driver models (4.3).

4.1 Simulation environments
Simulation environments provide tools to simulate traf-
fic and develop learning algorithms for AVs. They allow
benchmarking of the effectiveness of the suggested algo-
rithms before shifting to a real-world implementation. We
briefly introduce, in alphabetic order, four simulation en-
vironments used in the papers introduced in Sect. 5.

• CARLA [35] is an open-source road environment
based on Unreal Engine.2 It provides assets to model
the road environment and implement perception,
planning, and control modules.

• Flow3 [36] is a framework combining the SUMO
traffic simulator [37] and a deep RL library Rllab [38].
It provides many traffic scenarios and supports
training involving a fixed number of vehicles.

• Highway-env4 is an open-source Gym-based platform.
It provides road scenarios designed to train AVs’
decision-making in mixed traffic. According to
Schmidt et al. [10], its performance decreases with the
number of vehicles.

• MACAD-Gym5 [39] is a Gym-based training
environment based on CARLA. As its name implies,
multi-agent connected autonomous driving

2www.unrealengine.com
3https://github.com/flow-project
4https://github.com/eleurent/highway-env
5https://github.com/praveen-palanisamy/macad-gym

(MACAD) allows the implementation of
communicative agents.

All these simulation environments support the design of
different scenario types.

4.2 Driving scenarios
Most papers focus on narrow scenarios instead of consid-
ering overall traffic. We present the traffic scenarios ac-
cording to their complexity.

1. Highway driving. This scenario is commonly
accepted as the most straightforward scenario and
considers two maneuvers: car-following and lane
changing. Mastering these maneuvers, which
account for 98% of driver actions, is crucial for safe
driving. Robust AVs mastering highway driving
should avoid collisions and frequent lane changes,
which will affect traffic flow.

2. Merging and exiting. These maneuvers are similar to
lane change but are constrained in space and time.
Robust AVs must anticipate gaps in traffic to merge
smoothly within the traffic flow and space-time
constraints. Inference capabilities should also
determine whether a driver is inclined to engage in
an altruistic behavior by leaving a gap, which is not
straightforward since AVs are agnostic about
informal rules.

3. Intersections and roundabouts. There are
heterogeneous configurations of intersection, and
apprehending them can be challenging. For
instance, designers failed to generalize them via
rules-based models and designed a decision graph
for each one, which is tedious. Robust AVs should
generalize them and figure out the singularities of
each.

Because designing a generic model of intersections is dif-
ficult, most research concentrate on the first two levels. Re-
gardless of the scenario, robust AVs should have an advan-
tage by avoiding more collisions if they can predict human
driver behavior.

http://www.unrealengine.com
https://github.com/flow-project
https://github.com/eleurent/highway-env
https://github.com/praveen-palanisamy/macad-gym
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4.3 Human driver models
AVs have difficulty adapting to the heterogeneity of human
behavior because it produces additional uncertainty and
forces caution. To overcome uncertainty, humans make as-
sumptions based on experience, informal rules, and be-
havioral cues, which are sometimes biased or stereotyped
[40, 41]. It is impossible to replicate the entire human cog-
nitive process, and therefore, AVs often learn with over-
simplified human models.

Human-driven vehicle (HDV) models simulate car-
following and lane-changing maneuvers [42–44]. The
well-known intelligent driver model (IDM) describes
speed and acceleration based on the driver’s preferences
for speed and headway [45]. The IDM is often combined
with the MOBIL or LC2013 lane-changing model, which
considers the utility and risk associated with this maneuver
[46, 47]. Although the literature refers to them as human-
driven models, they lack human traits such as psychology
or intrinsic motivation.

Designing AVs for mixed traffic is challenging because
of the fundamental differences between humans and ma-
chines. Although inferring human social behavior helps
AVs’ decision-making, the following section shows that
this approach is not widespread in the literature.

5 MARL algorithms for AVs
We have identified four research paradigms throughout
the MARL decision-making for AVs literature. Some au-
thors focused on mixed traffic where AVs drive in a self-
concern way (5.1), while others attempted to incorporate
social abilities into their decision-making (5.2). In both
cases, the authors realized that the current HDV mod-
els do not fulfill their objectives since they are oversim-
plified and fail at providing a heterogeneity of behaviors.
As a result, researchers designed a more sophisticated
HDV model endowed with social capabilities (5.3). The
last paradigm tackles the fully autonomous traffic case
where no human driver can disturb AVs’ coordination
(5.4). Finally, we present the formulation of the authors
(5.5). For each paradigm introduced, we present the au-
thors’ formulation of the MARL problem in terms of ob-
servation, action, and reward function.

5.1 Mixed traffic
Before reaching the full automation level, AVs will poten-
tially cohabit with human drivers in mixed traffic, which is
no easy feat. AVs follow homogeneous policies, while hu-
mans are sometimes erratic and irrational. Here, we focus
on papers suggesting self-concern AVs driving in mixed
traffic.

Wang et al. [48] trained AVs on three scenarios: a ring
network, a figure-of-eight network, and a mini-city with
intersections and roundabouts. The ego-agent state com-
prises its position, speed, and the distance and speed head-

way of the leading and following vehicles. AVs communi-
cate local observations with other AVs within range. The
ego-agent’s actions are constrained within predefined dis-
crete acceleration values, and its reward function pro-
motes safety and efficiency.

Dong et al. [31] tackled a challenging environment where
AVs have to exit by one of the two off-ramps on a three-
lane highway. The agent’s observations contain the relative
speeds, longitudinal locations, lane positions, and inten-
tions of surrounding AVs, as well as an adjacency matrix
and a mask. AVs pick up high-level actions: lane change or
lane keeping. Functions reward when each AV reaches the
desired off-ramp indicated by the intention and penalizes
collision and lane changes to prevent versatility.

Han and Wang [49] trained AVs to drive on a three-lane
freeway. Each AV observes its position, velocity, accelera-
tion, and data captured from an onboard camera and LI-
DAR sensors. Additionally, AVs share their states, actions,
and observations with each other. AVs select high-level ac-
tions such as lane keeping, lane change, or emergency stop
and are rewarded according to their velocities and passen-
gers’ comfort. The reward system deals with the credit as-
signment problem, i.e., how to fairly reallocate a shared
global reward by marginalizing rewards using the Shapley
value. In the cooperative game theory, the Shapley value is
a solution concept that distributes fair payoffs to players
proportionally to their contribution. Since the complex-
ity of the Shapley value is polynomial with the number of
agents, the authors estimated via a neural network and ex-
tended it to sequential problems.

AVs decision-making in mixed traffic is significantly im-
pacted by the absence of other AVs in their vicinities. As
AVs communicate local observations within range, mean-
ing the uncertainty about the environment grows as the
number of surrounding AVs decreases. To overcome this
challenge, some researchers envision AVs that are more
aware of their surroundings and propose algorithms with
social capabilities.

5.2 Socially desirable AVs
Socially desirable AVs will likely include the concept of
altruism. In psychology, social value orientation (SVO)
quantifies an individual’s level of altruism, i.e., how much
importance to place on others. Lower SVO levels denote
selfish behavior, while higher levels denote true altruism.

In their first paper, Toghi et al. [50] tackled the merg-
ing and exiting scenarios with socially desirable AVs. AVs
observe the kinematics of their neighboring vehicles as
well as their last high-level actions to extract the tempo-
ral information giving their current trajectories. They per-
form meta-actions, including lane change, acceleration,
and deceleration. The socially desirable behavior is in-
duced through a reward function acting as a trade-off be-
tween egoistic and altruistic behavior, differentiating altru-
ism towards AVs and human-driven vehicles. The SVO of
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the AV weighs this trade-off and the distance of the sur-
rounding vehicles considered.

In their second paper, Toghi et al. [51] enhanced their
approach using a 3D convolution network with the rela-
tive vehicle speeds as channels. Further experiments have
identified an optimal level of SVO that improves overall
traffic flow and show that overly altruistic AVs reduce per-
formance. Their third paper achieves better results using a
multi-agent actor-critic algorithm [52].

Chen et al. [53] trained AVs to avoid collisions in a merg-
ing scenario using a supervisor prioritizing vehicles that
merge because their situation is time-critical. AVs observe
lateral and longitudinal positions and velocities of sur-
rounding vehicles and pick up meta-action among lane
change, accelerating or decelerating. A reward function
promotes fast merging, high velocity, and safe time head-
way and penalizes collisions. This function is a global re-
ward shared by all the AVs in the simulation for encourag-
ing coordination among AVs.

As the results of these articles noticed, socially desir-
able AVs improve the success rate of merging and exiting
maneuvers. Nonetheless, this coordination is facilitated
because human-driven vehicles are all controlled by the
IDM model and thus are easily predictable. Designing ro-
bust AVs that cope with heterogeneous driver behavior and
traffic simulations will require comprehensive driver mod-
els.

5.3 Heterogeneous HDVs
Robust AVs inevitably will have to be trained to drive
in complex mixed traffic composed of heterogeneous
human-driven vehicles (HDV). Some researchers [54] at-
tempted to learn an HDV model via inverse RL (IRL), a
technique for figuring out an agent’s reward function given
its policy; but this approach is highly dependent on the
quality of the extracted data and the studied scenario. As
a consequence, there is a need for a “realistic” and hetero-
geneous HDV model.

Valiente et al. [55] extended the research of Toghi et al.
by incorporating an SVO factor into the IDM model used
for controlled HDVs. Similarly, Zhou et al. [56] endowed
HDVs with a politeness factor, and Hu et al. [57] designed
a social HDV model with different levels of cooperation.

All the mentioned authors took advantage of their new
HDV models by enabling AVs to infer this SVO and thus
anticipated which driver is prone to act altruistically or
not.

5.4 Fully-autonomous fleet
When AVs reach the fifth level of automation, human
drivers might be considered the main threat to road safety
and therefore be banned from driving. In this context, all
traffic will be composed of fully-autonomous fleets.

Yu et al. [58] addressed the problem of coordination
on the highway. AVs observe their current lane position,

speed, and the distances and velocities of four neighboring
vehicles. Actions comprise driving in the driving lane at a
suboptimal speed or driving in the overtaking lane with a
higher velocity. The reward function exclusively promotes
safety and is shared among a local group of AVs depicted
by coordination graphs.

Bhalla et al. [59] learned AVs to better communicate
and coordinate on a highway. They measure them against
DIAL, a benchmark algorithm that focuses on learning to
communicate in cooperative tasks [60]. Unlike DIAL, their
method does not require past experiences, which mitigates
non-stationarity and stabilizes learning. AVs’ actions in-
clude sending messages, accelerating, decelerating, and di-
rection change. The reward function does not provide ex-
plicit rewards for cooperation between the agents but pro-
motes safety distance and penalizes crashes.

Liu et al. [15] proposed a framework for fleet control
where each vehicle learns to maintain a constant headway
with the vehicles ahead and behind on a highway. Each
AV observes its position and speed, as well as those of
front and rear vehicles. To maintain the homogeneity of
the fleet, a reward function penalizes the AVs which are
not at equidistance to the front and rear vehicles or AVs
whose velocity and acceleration differ from the group.

Palanisamy [39] designed MACAD, a simulation envi-
ronment to simulate AV’s perception, decision-making,
and control. In an intersection scenario, AVs’ observations
are images captured from an onboard camera, and they
can pick up one of the eight discrete actions controlling
steering angle, throttle, and brake. The function rewards
AVs crossing the intersection while maintaining a high
speed and avoiding collisions. Optionally a factor encour-
ages/discourages cooperativeness/competitiveness among
the agents.

Nakka et al. [61] tackled the coordination problem in a
merging scenario. The merging AV observes the distances
and velocities of the surrounding vehicles and the distance
from the end of the merging zone. Actions allow the AV to
accelerate or decelerate, and the reward function encour-
ages agents to maintain their speed within a predefined
range and penalizes rear-end collisions.

5.5 Synthesis
We synthesize the previous papers according to the con-
cepts introduced in this survey (Table 1). Most authors
used single-agent RL methods, especially those based on
DQN, to address MARL problems (12 out of 16) and
mainly adopted the CTDE scheme for MARL approaches
(3 out of 4). The action space’s nature seems to guide the
motivations for using value-based or actor-critic methods
since the latter better deal with continuous action space. In
addition, few articles used learning strategies or explicitly
mentioned them.

Interestingly, most papers (12 out of 16) focused their
study on simulations involving few agents (≤ 10). This



Dinneweth et al. Autonomous Intelligent Systems            (2022) 2:27 Page 9 of 12

Table 1 Summary of papers according to the problem addressed and simulation settings. Scenarios include merging (M), exiting (E),
highway (H) without merging nor exiting, urban navigation comprising intersections and roundabouts (U), and intersection (I). Learning
strategies include Hierarchical Reinforcement Learning (HRL), Curriculum Learning (CL), Memory module (Mem), and Masking (Mask)

Article Class Algorithm Scheme No. AVs HDV model Scenario Simulator Learning strat.

Yu et al. [58] Fleet DQN DTDE ≤ 20 – H – –
Bhalla et al. [59] Fleet DQN CTDE / DTDE ≤ 10 – H Gym-based Mem, HRL
Liu et al. [15] Fleet DQN – ≤ 10 – H – –
Palanisamy [39] Fleet IMPALA1 CTDE ≤ 5 – I MACAD –
Nakka et al. [61] Fleet DDPG CTDE ≤ 10 – M – –
Wang et al. [48] Mixed PPO – ≤ 10 IDM U Flow –
Dong et al. [31] Mixed DQN CTDE ≤ 20 IDM-LC2013 E Flow Mem, Mask
Han and Wang [49] Mixed MADDPG CTDE ≤ 30 CARLA-autopilot H CARLA –
Toghi et al. [50] Social DQN DTDE ≤ 5 IDM-MOBIL M Highway-env –
Toghi et al. [51] Social DQN DTDE ≤ 5 IDM-MOBIL M Highway-env –
Toghi et al. [52] Social MA2C DTDE ≤ 5 IDM-MOBIL M / E Highway-env –
Chen et al. [53] Social MA2C CTDE ≤ 5 IDM-MOBIL M Highway-env CL, Mask
Valiente et al. [55] HDV DQN DTDE ≤ 5 IDM-MOBIL2 M / E Highway-env –
Zhou et al. [56] HDV A2C DTDE ≤ 5 IDM-MOBIL2 H Highway-env –
Hu et al. [57] HDV MA2C CTDE ≤ 10 IDM2 M – CL

1 Single-agent actor-critic algorithm designed for multi-task RL [63].
2 Modified version.

choice is presumably motivated by the MARL challenges,
notably the curse of dimensionality [62].

Most studies investigated highway driving and merging
scenarios (13 out of 16), as these critical maneuvers involve
anticipation and often cause accidents to AVs. For their
simulations, Gym-based environments prevail due to their
manageable API for RL. Similarly, IDM prevails because of
its efficiency and computational simplicity.

Since 2019, few papers have addressed AVs’ decision-
making using MARL compared to those using single-agent
RL. Due to the limited number of articles dealing with
MARL, our conclusions may be biased, so we invite read-
ers to consider this.

6 Open challenges and conclusion
Overall, most studies focus on simulations rather than ad-
dressing transferability to real traffic scenarios. The needs
for “realistic” driver models, safe and interpretable models
are two significant problems for AV simulation discussed
in this section.

Safety is undoubtedly the critical point of the develop-
ment of AV algorithms. In MARL, designing a safe policy is
a real challenge that implies considering safety constraints
at the agent and group levels. The constrained markov de-
cision process (CMDP) framework provides tools for de-
signing such safe RL [64] algorithms.

Most studies agree that existing HDV models are unre-
alistic because they disregard human characteristics such
as psychological and biological traits. Although some re-
searchers tried to provide heterogeneity in HDV models,
their models are still limited to a single SVO trait. Besides,
despite their differences, HDV and AV models behave de-
terministically. Introducing AVs trained with these HDV

models into real-world traffic would likely result in acci-
dents.

Therefore, developing convincing driver models for safe
driving is critical, as driving styles vary among countries
and cultures [65]. Attempts have been made using in-
verse reinforcement learning (IRL), but these algorithms
are overly dependent on the situations under study and fre-
quently fail to generalize. Others have proposed utilizing
MARL algorithms to learn social norms, which may be a
new field of research [66].

Another way to prepare AVs for real-world traffic is to
make them trustworthy by incorporating interpretability.
Explainable artificial intelligence (EAI) is an important re-
search topic gaining interest over the years, mainly be-
cause lawmakers require AI to be interpretable, as in Eu-
rope with the general data protection regulation (GDPR6).
Therefore, robust AVs should incorporate interpretable al-
gorithms providing security and robustness guarantees.
Interpreting MARL policies involves explaining short- and
long-term decision-making and interactions of multiple
agents. This may be accomplished via Causal MARL [67].

Since multi-agent simulations, and MARL algorithms
in a broader way, enable the emergence of organizational
structures, it might be interesting to investigate how self-
organization occurs in a fully autonomous fleet with no
predetermined rules. While researchers tend to incorpo-
rate standards into AVs’ decision-making, they do not rule
them out for the fully-autonomous fleets. These emergent
organizations may be more appropriate for AVs than cur-
rent regulations based on humans’ limitations.

6https://gdpr-info.eu/

https://gdpr-info.eu/
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We posed two research questions in the introduction (1),
which we now address.

• RQ1. Recent AVs’ decision-making research focused
on two paradigms. On the one hand, since
autonomous vehicles may soon coexist with human
drivers, mixed traffic received much attention. Some
studies concentrated on improving traffic safety and
throughput, while others proposed empowering AVs
with social abilities. Some attempted to design HDV
models that mimic driver altruism to robustify AVs’
policies. On the other hand, since human drivers
might be banned from traffic, some researchers
devised fully-autonomous fleets that should enhance
the overall traffic flow and security.

• RQ2. Designing traffic simulations with adequate
HDV models is challenging, and despite the proposed
models, none covered the heterogeneity of human
behavior. Given the current limitations, it seems
involved to consider mixed traffic, and future research
will likely pay more attention to this problem. In
addition, since intersections and roundabouts are
manifolds, most studies concentrated on the most
straightforward scenarios, such as highway driving,
merging, and exiting. Finally, most experiments
involved few agents due to the aforementioned MARL
challenges [62].

In conclusion, RL and MARL algorithms have recently
received interest due to their recent achievements and
generalization capabilities. They provide a practical ap-
proach for learning complex policies involving real-time
decision-making in stochastic environments. However,
many challenges remain in mitigating the scalability when
involving numerous agents. Furthermore, mixed traffic
does not meet the security standards in the current simu-
lations. Recent papers attempted to mimic human behav-
ior, particularly social capabilities, to enforce AVs’ policies.
Given current AVs’ algorithms, future research will most
likely continue to design less deterministic driver models.
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