
HAL Id: hal-04451198
https://hal.science/hal-04451198

Submitted on 19 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low-Power FPGA Architecture Based Monitoring
Applications in Precision Agriculture
Amine Saddik, Rachid Latif, Abdelhafid El Ouardi

To cite this version:
Amine Saddik, Rachid Latif, Abdelhafid El Ouardi. Low-Power FPGA Architecture Based Monitoring
Applications in Precision Agriculture. Journal of Low Power Electronics and Applications, 2021, 11
(4), pp.39. �10.3390/jlpea11040039�. �hal-04451198�

https://hal.science/hal-04451198
https://hal.archives-ouvertes.fr

Journal of

Low Power Electronics
and Applications

Article

Low-Power FPGA Architecture Based Monitoring Applications
in Precision Agriculture

Amine Saddik 1,* , Rachid Latif 1 and Abdelhafid El Ouardi 2

����������
�������

Citation: Saddik, A.; Latif, R.; El

Ouardi, A. Low-Power FPGA

Architecture Based Monitoring

Applications in Precision Agriculture.

J. Low Power Electron. Appl. 2021, 11,

39. https://doi.org/10.3390/

jlpea11040039

Academic Editors: Nicu Bizon and

Mihai Oproescu

Received: 23 August 2021

Accepted: 27 September 2021

Published: 30 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Systems Engineering and Information Technology LISTI, National School of Applied Sciences,
Ibn Zohr University, Agadir 80000, Morocco; r.latif@uiz.ac.ma

2 SATIE, ENS, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
abdelhafid.elouardi@universite-paris-saclay.fr

* Correspondence: amine.saddik@edu.uiz.ac.ma

Abstract: Today’s on-chip systems technology has grounded impressive advances in computing
power and energy consumption. The choice of the right architecture depends on the application. In
our case, we were studying vegetation monitoring algorithms in precision agriculture. This study
presents a system based on a monitoring algorithm for agricultural fields, an electronic architecture
based on a CPU-FPGA SoC system and the OpenCL parallel programming paradigm. We focused
our study on our own dataset of agricultural fields to validate the results. The fields studied in our
case are in the Guelmin-Oued noun region in the south of Morocco. These fields are divided into two
areas, with a total surface of 3.44 Ha2 for the first field and 3.73 Ha2 for the second. The images were
collected using a DJI-type unmanned aerial vehicle and an RGB camera. Performance evaluation
showed that the system could process up to 86 fps versus 12 fps or 20 fps in C/C++ and OpenMP
implementations, respectively. Software optimizations have increased the performance to 107 fps,
which meets real-time constraints.

Keywords: CPU-FPGA SoC; on-chip systems; embedded systems; precision agriculture

1. Introduction

Algorithm-based vegetation indices monitoring involves mathematical models used
in precision agriculture. The main role of these indices is to extract information used
on agricultural fields. This information will be interpreted later to monitor the crop in
the agricultural areas. The use of embedded systems in the field of monitoring has been
increasing. As a solution proposed in the literature, we can find applications based on
embedded CPU systems, such as raspberry [1], and CPU-GPU systems, such as the jetson
family proposed by NVIDIA [2].

Due to the processing power used in GPU architectures, these architectures can be
strong options for implementing monitoring algorithms. However, the problem with
this type of architecture is the high energy consumption, limiting the use of autonomous
systems such as robots and unmanned aerial vehicles. As a solution, we address the use of
FPGA architectures; this type of architecture combines computational power and energy
savings [3,4].

On-chip FPGA systems contain a CPU and an FPGA coprocessor; this heterogeneous
system helps to speed up processing by focusing on reducing processing time and energy
consumption. This type of system can help us in cases where we have agricultural fields
with a huge surface. The autonomous monitoring of this type of field based on UAVs or
robots requires the use of low-cost systems as well as low energy consumption [5]. In the
context of monitoring indices in agricultural fields, the literature offers various indices
based on different special bands depending on the application. We can divide these indices
into three families. The first family is based on hyperspectral bands such as the moisture
index [6,7]. The second type is based on the vegetation and water index; this type of

J. Low Power Electron. Appl. 2021, 11, 39. https://doi.org/10.3390/jlpea11040039 https://www.mdpi.com/journal/jlpea

https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0002-1284-5436
https://orcid.org/0000-0003-3665-2185
https://doi.org/10.3390/jlpea11040039
https://doi.org/10.3390/jlpea11040039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jlpea11040039
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea11040039?type=check_update&version=2

J. Low Power Electron. Appl. 2021, 11, 39 2 of 17

index uses multispectral images [8]. The last type is based on RGB images; this index
represents low-cost solutions based on RGB cameras instead of expensive multispectral or
hyperspectral cameras [9].

In our work, we aim to accelerate the processing of indices for real-time applications
on heterogeneous CPU-FPGA systems, as well as to study the implementation issues and
the corresponding optimizations. The results have been evaluated on real datasets based
on a DJI UAV and an RGB camera [8].

Our contribution is as follows:

1. Speeding up the algorithm proposed in [8] for indices computation on a CPU-FPGA-
based SoC using the OpenCL paradigm;

2. Design study of the proposed architecture based on the H/S Co-Design approach;
3. A case study on a data set acquired on agricultural fields (Guelmim-Oued Noun

region in the south of Morocco).

The rest of the paper is organized as follows:
We provide an overview of the different monitoring applications in agricultural fields.

Subsequently, we present the two areas that will be used in our study. Afterward, the
methodology followed will be explained, and the hardware and experimental implementa-
tion results will be discussed. Finally, we give a conclusion and an outline of future work.

2. Overview and Study Area
2.1. RGB Indices Overview in Precision Agriculture

Monitoring applications in agricultural fields aim to predict performance in the cor-
responding areas. This prediction is based on weed counts, weed detection, and other
applications [10–12]. However, none of these applications can be realized if a disease-
resistant crop is not detected. For this reason, the monitoring of vital signs plays a very
important role in different applications. Several works have been developed towards
monitoring agricultural fields based on various indices. In this context, L. Congcong et al.
(2019) used the normalized difference vegetation index (NDVI) to monitor plant growth in
real-time. The evaluation of the proposed approach was based on satellite images between
2018 and 2014 [13]. R. Shoujia et al. 2021 used NDVI for yield prediction in agricultural
fields [14]. In [8], the authors used NDVI and the Normalized Difference Water Index
(NDWI) to perform agricultural field analysis using an embedded CPU-GPU system.

In terms of monitoring indices based on multispectral cameras, NDVI and NDWI
are the most widely used indices in the field, either for detecting diseases or for yield
prediction and crop monitoring. However, RGB indices present an alternative solution to
other indices that require multispectral and hyperspectral cameras. The problem with this
type of camera is the high cost. Therefore, the construction of a low-cost system requires
this type of solution, which is based on RGB cameras. Among the RGB indices, we can
identify the Red Green Blue Vegetation Index (RGBVI), based on the three bands red,
green and blue, proposed in [15]. Additionally, the Modified Green Red Vegetation Index
(MGRVI) is an improvement of the Green Red Vegetation Index (GRVI) based on the two
bands red and green [16].

Thus, we can find various applications in the agriculture field. These applications
are based on different tools; e.g., R. Bezen et al. (2020) proposed a GPU-based system
for cow feed intake measurement. The approach proposed by the authors is based on
an RGB-D camera and the CNN model. After evaluation, they showed that the system
processes the algorithm in real time for the developed application [17]. In the same way,
J. Gené-Mola et al. (2019) proposed a method for Fuji apple detection based on an Nvidia
TITAN GTX GPU system and the R-CNN approach. The tool used for image collection was
a Kinect v2 RGB-D camera [18]. The embedded part was based on a raspberry V3 board.
In addition, J. Shin et al. 2021 proposed a system based on an Intel workstation with a
CPU operating at 3.2 GHz implemented in MATLAB. This system is dedicated to detecting
disease in strawberry farms with an accuracy that can reach 92.61%. Table 1 summarizes
the recent applications used in precision agriculture.

J. Low Power Electron. Appl. 2021, 11, 39 3 of 17

Table 1. Recent precision agriculture-based application and tools.

Reference Application Algorithm Tools

[17] Cow feed
measurement CNNs Model RGB-D Camera

[18] Fuji apple detection R-CNN RGB-D Camera type Kinect v2
and GPU Nvidia TITAN GTX

[19] Crop monitoring Image-processing
algorithms

Raspberry V3 board and RGB
camera

[20] Disease detection CNNs Model Workstation

[21] Detection of food
objects ICP algorithm GTX Nvidia 1080Ti and camera

type SR300 RealSense

[22] System of thinning a
forest stand __ NVIDIA GPU Titan-V

[23] Weed management __ GTX NVIDIA GPU 1070 Ti and
Jetson TX2

[24]
Lamb’s quarters

detection in potato
production

DCNN models GPUs: GTX1080 Ti, GeForce
930MX and GTX1050

[25] Kiwifruit harvest __ Desktop with GPU TITAN XP
and RGB camera

[26] Detection of rice
disease YOLOv3 GPU Tesla V100

[27] Weeds classification Multimodal fusion Tesla K40c NVIDIA

In our case, we chose the two indices Green Red Vegetation Index (GRVI) and Green
Leaf Index (GLI). Both indices track and detect the vegetation in agricultural fields using
RGB cameras. Equations (1) and (2) show how we can obtain these indices.

GRVI =
BandG − BandR
BandG + BandR

(1)

GLI =
2× BandG − BandR − BandB
2× BandG + BandR + BandB

(2)

The values of these indices vary between −1 and 1. Generally, an index less than
0 reflects soil or non-living plants. Values above 0 reflect vegetation. Therefore, the thresh-
old of these indices must be above 0 [28].

2.2. FPGA-SoC Architecture Overview

The architectures listed in Table 1 are based on GPU processors. The use of this type
of architecture is due to the high computing power. However, the problem here is the
high energy consumption, limiting the use of autonomous systems based on monitoring
agricultural fields. The use of FPGA on-chip systems can solve this problem. Among the
most reliable and robust systems in parallel processing are the CPU-FPGA systems, which
contain both a CPU and an FPGA. Figure 1 shows the CPU-FPGA architecture. the host
global memory is the memory of the CPU that contains the whole memory. The host is the
CPU part of the board. Local memory is the device part (FPGA) memory, which shares the
work with the items of each group. Global memory on-chip is the global memory of the
FPGA part. The Work Group is a set of work items; the number of work items depends on
the configuration chosen in the CPU part. The private memory is that which is not shared
with the elements of each work group.

J. Low Power Electron. Appl. 2021, 11, 39 4 of 17

1

Figure 1. Memory model-based OpenCL architecture.

Generally, the exploitation of an FPGA architecture is achieved using VHSIC Hard-
ware Description Language (VHDL) [29]. On the other hand, the CPU architecture is
operated using languages such as C/C++. Therefore, using both parts (CPU and FPGA)
simultaneously in the same architecture requires a high-level language such as OpenCL
paradigm. OpenCL is a parallel programming language used to improve performance
by exploiting the architecture as much as possible. It is a dedicated language for het-
erogeneous architectures that contains a host and a device part. Generally, the host part
is a CPU, and the device can include GPU, FPGA, or DSP. In our case, we have opted
for the CPU-FPGA architecture, given its computational performance as well as its low
power consumption. The selected device in our study is the Cyclone V SoC, proposed
by the Intel-Altera company. This on-chip system contains a Cyclone V FPGA with a
hardware dual-core A9 cortex processor. Besides its low power consumption, this type
of architecture is characterized by its low cost compared to other CPU-GPU architectures.
Additionally, CPU-FPGA systems are characterized by their pseudo-parallel behavior in
different processes. This makes this architecture the best choice.

Table 2 summarizes the different characteristics of the evaluation platform used.

Table 2. Evaluation SoC platform specifications.

FPGA Device 5CSEMA5F31C6

CPU ARM CORTEX-A9
Logic Elements 85 K

Embedded Memory 4450 Kbits
SDRAM on FPGA 32 M × 16
SDRAM on HPS 2 × 256 M × 16
Communication USB 2.0

Power 12 V DC

We did not choose a CPU-GPU architecture because this architecture leads to a high
energy consumption. Moreover, it uses the CUDA language, which is dedicated to Nvidia
CPU-GPU architectures only, and no other architectures such as Intel or AMD. For this rea-
son, OpenCL presents a flexible and powerful solution for the various architectures used.

2.3. Area Study

The agricultural field selected in our study is located in the Guelmim-Oued Noun
region in the south of Morocco, with a perimeter of 0.81 Km and a surface area of 3.44 Ha2.

J. Low Power Electron. Appl. 2021, 11, 39 5 of 17

The coordinates of the agricultural field used in this study are 29◦04′39′′ N and 10◦16′29′′ W.
Thus, the tools used for collecting our dataset are based on an unmanned aerial vehicle
type DJI Phantom Pro4 with an RGB camera based on 1-inch CMOS and 20 Mpx. The lens
had an FOV of 84◦8.8 mm/24 mm and a focal length f/2.8 auto focus. The left image of
Figure 2 shows an example of images collected with the UAV.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 5 of 18

Table 2. Evaluation SoC platform specifications.

FPGA Device 5CSEMA5F31C6

CPU ARM CORTEX-A9

Logic Elements 85 K

Embedded Memory 4450 Kbits

SDRAM on FPGA 32 M × 16

SDRAM on HPS 2 × 256 M × 16

Communication USB 2.0

Power 12 V DC

We did not choose a CPU-GPU architecture because this architecture leads to a high

energy consumption. Moreover, it uses the CUDA language, which is dedicated to Nvidia

CPU-GPU architectures only, and no other architectures such as Intel or AMD. For this

reason, OpenCL presents a flexible and powerful solution for the various architectures

used.

2.3. Area Study

The agricultural field selected in our study is located in the Guelmim-Oued Noun

region in the south of Morocco, with a perimeter of 0.81 Km and a surface area of 3.44

Ha2. The coordinates of the agricultural field used in this study are 29°04′39″ N and

10°16′29″ W. Thus, the tools used for collecting our dataset are based on an unmanned

aerial vehicle type DJI Phantom Pro4 with an RGB camera based on 1-inch CMOS and 20

Mpx. The lens had an FOV of 84°8.8 mm/24 mm and a focal length f/2.8 auto focus. The

left image of Figure 2 shows an example of images collected with the UAV.

Figure 2. Image illustrating area 1.

The type of camera used in this study operated on RGB bands. The reason for using

this camera is the low cost of this type of sensor compared to multispectral cameras that

operate on near-infrared or red-edge bands. In this study, we also used another field lo-

cated in the Guelmim-Oued Noun region, with a longitude of 29°00′36″ N and a latitude

of 10°12″39 W. The selected field’s perimeter is about 0.78 Km, with a surface area of 3.73

Ha2. Figure 3 shows the localization of the second field.

The images of the second field are shown in Figure 3, taken in February 2021 at 9:56

AM at a fly height of 335.08 m. Similarly, as regards the first field in Figure 2, the images

were collected in February at around 4:00 PM. Figures 4 and 5 show some images used in

our study.

Figure 4 shows images collected with our UAV in the first agricultural field studied.

Figure 5 shows images collected with the same tool but in a different agricultural area

from the first one. The images have a resolution of 5472 × 3648, captured using an RGB

camera.

Figure 2. Image illustrating area 1.

The type of camera used in this study operated on RGB bands. The reason for using
this camera is the low cost of this type of sensor compared to multispectral cameras that
operate on near-infrared or red-edge bands. In this study, we also used another field
located in the Guelmim-Oued Noun region, with a longitude of 29◦00′36′′ N and a latitude
of 10◦12′39′′ W. The selected field’s perimeter is about 0.78 Km, with a surface area of
3.73 Ha2. Figure 3 shows the localization of the second field.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 6 of 18

Figure 3. Image illustrating area 2.

Figure 4. Images of dataset corresponding to area 1.

Figure 5. Images of dataset corresponding to area 2.

Figure 3. Image illustrating area 2.

The images of the second field are shown in Figure 3, taken in February 2021 at
9:56 A.M. at a fly height of 335.08 m. Similarly, as regards the first field in Figure 2, the
images were collected in February at around 4:00 P.M. Figures 4 and 5 show some images
used in our study.

J. Low Power Electron. Appl. 2021, 11, 39 6 of 17

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 6 of 18

Figure 3. Image illustrating area 2.

Figure 4. Images of dataset corresponding to area 1.

Figure 5. Images of dataset corresponding to area 2.

Figure 4. Images of dataset corresponding to area 1.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 6 of 18

Figure 3. Image illustrating area 2.

Figure 4. Images of dataset corresponding to area 1.

Figure 5. Images of dataset corresponding to area 2.

Figure 5. Images of dataset corresponding to area 2.

Figure 4 shows images collected with our UAV in the first agricultural field studied.
Figure 5 shows images collected with the same tool but in a different agricultural area from
the first one. The images have a resolution of 5472 × 3648, captured using an RGB camera.

3. Methodology and Results
3.1. Methodology

The methodology adopted in our study is based on a hardware–software partitioning
and processing-time evaluation using the C/C++ language and OpenCl paradigm. A study
was conducted to define parts that consume more time in order to be accelerated in the
CPU-FPGA system. The developed code is based on two parts. The first one is dedicated
to the CPU, which loads the necessary data for the FPGA coprocessor acceleration. For
the device part, we used an Altera offline compiler (AOC) based on the OpenCL kernel.
Then, we compiled our kernel to create the hardware part that was to be implemented
in the FPGA part. The evaluation of the hardware constraint in our implementation was
based on two techniques. The first one was to make the naive implementation in order to
evaluate the performance. The second one was based on optimization using the local fast
memory compared to the global memory. Figure 6 shows the algorithm we used for the
implementation, and Figure 7 shows the naive implementation.

J. Low Power Electron. Appl. 2021, 11, 39 7 of 17

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 7 of 18

3. Methodology and Results

3.1. Methodology

The methodology adopted in our study is based on a hardware–software partitioning

and processing-time evaluation using the C/C++ language and OpenCl paradigm. A study

was conducted to define parts that consume more time in order to be accelerated in the

CPU-FPGA system. The developed code is based on two parts. The first one is dedicated

to the CPU, which loads the necessary data for the FPGA coprocessor acceleration. For the

device part, we used an Altera offline compiler (AOC) based on the OpenCL kernel. Then,

we compiled our kernel to create the hardware part that was to be implemented in the

FPGA part. The evaluation of the hardware constraint in our implementation was based

on two techniques. The first one was to make the naive implementation in order to eval-

uate the performance. The second one was based on optimization using the local fast

memory compared to the global memory. Figure 6 shows the algorithm we used for the

implementation, and Figure 7 shows the naive implementation.

Figure 6. Algorithm overview. Figure 6. Algorithm overview.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 8 of 18

Figure 7. Naive implementation mapping.

After the naive implementation in the CPU-FPGA architecture, we improved the pro-

cessing time using the local memory of the FPGA board. Once we acquired the images,

the data were uploaded to the FPGA global memory. The local memory was used for ker-

nel processing. In addition, we used two kernels to avoid data concurrency. The first ker-

nel was dedicated to processing the GRVI index, and the second one was dedicated to the

GLI index. The evaluation has shown that the second technique gives better results than

the first one in terms of processing times. Figure 8 shows the second technique used to

improve the first implementation.

Figure 8. Improved implementation mapping.

Figure 7. Naive implementation mapping.

After the naive implementation in the CPU-FPGA architecture, we improved the
processing time using the local memory of the FPGA board. Once we acquired the images,
the data were uploaded to the FPGA global memory. The local memory was used for
kernel processing. In addition, we used two kernels to avoid data concurrency. The first
kernel was dedicated to processing the GRVI index, and the second one was dedicated to
the GLI index. The evaluation has shown that the second technique gives better results
than the first one in terms of processing times. Figure 8 shows the second technique used
to improve the first implementation.

J. Low Power Electron. Appl. 2021, 11, 39 8 of 17

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 8 of 18

Figure 7. Naive implementation mapping.

After the naive implementation in the CPU-FPGA architecture, we improved the pro-

cessing time using the local memory of the FPGA board. Once we acquired the images,

the data were uploaded to the FPGA global memory. The local memory was used for ker-

nel processing. In addition, we used two kernels to avoid data concurrency. The first ker-

nel was dedicated to processing the GRVI index, and the second one was dedicated to the

GLI index. The evaluation has shown that the second technique gives better results than

the first one in terms of processing times. Figure 8 shows the second technique used to

improve the first implementation.

Figure 8. Improved implementation mapping.

Figure 8. Improved implementation mapping.

3.2. Processing Times Evaluation

We have evaluated the processing times between different implementations. As well
as a comparison of two implementations (the first one using an intel desktop operating
2.2 GHz, the second one using an XU4 platform operative at 2 Ghz), both are CPU-GPU
architectures. The XU4 platform is equipped with an Exynos 5 processor, which contains an
ARM Cortex A7 and A15 with 1.4 Ghz and 2 Ghz, respectively, as well as a Mali T628MP6
GPU. For the TX1 platform, we used an ARM Cortex A57 MPCore processor and an Nvidia
Maxwell GPU with 256 cores. Table 3 presents the specifications of the used platforms.
Table 4 presents a synthesis of the different processing times obtained using different
languages and architectures.

Table 3. Different platform specification.

Type Desktop TX1 XU4

Frequency 2.2 Ghz 1.9 Ghz 1.4/2 Ghz
Processor Intel I5 MPCore Exynos 5

CPU Intel Cortex A57 Cortex A7/A15
GPU Intel Nvidia Maxwell Mali T628MP6

Energy 20 W 15 W 5 W

Table 4. Processing times using different architectures.

Architecture Desktop XU4 TX1

Executing time (ms) C/C++ OpenMP C/C++ OpenMP C/C++ CUDA
31 15 91 47 80 0.77

The processing time on the desktop allows us to process 32 fps (frames per second)
based on C/C++ implementation. On the other hand, the use of the OpenMP directive
leads to a rate of 66 fps. In the case of the XU4 platform, we can process 21 fps using
OpenMP optimization, but only 12 fps in the case of C/C++ implementation. The TX1

J. Low Power Electron. Appl. 2021, 11, 39 9 of 17

platform gave us 80 ms for the sequential processing, and about 0.77 ms using the CUDA
heterogeneous architecture programming language.

The time shown in Table 3 shows that the real-time constraint is respected in the
case of the desktop using OpenMP, as well as in the case of the TX1 board using CUDA.
The real-time constraint, in our case, is based on the acquisition frequency of the RGB
camera. The camera used in our study operates at 60 fps. Therefore, it is necessary to
follow this frequency in order to achieve real-time processing. Generally, desktops are
not suitable because they are validation tools and not embedded architecture, and they
consume more energy than an embedded architecture. Additionally, the TX1 card can
present an alternative solution for boarding the various algorithms. This type of card
also consumes a lot of energy—as much as 15 W—compared to the other embedded
architectures.

The solution is to use a low-cost system with low power consumption. The SoC sys-
tem based on a CPU-FPGA architecture can present a robust solution for high processing
efficiency and low power consumption. In our case, we have evaluated both implemen-
tations on the same platform. Figure 9 shows the results obtained after the synthesis and
placement routing.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 10 of 18

Figure 9. FPGA resources usage after synthesis and placement routing.

The evaluation of the resources shown in Figure 8 is based on the RAM (random

access memory) blocks consumed, the DSP (digital signal processing), the FFS (flip flops),

logic usage, and the dedicated logic register. The results show that the naive implementa-

tion based on processing two indices in the same kernel consumes 20.63% of RAM, 6% of

DSPs, 12.15% of FFS, 25% logic usage, and 11.53% of the dedicated logic registers. On the

other hand, the implementation based on two separated kernels and the use of the FPGA

on-chip memory has significant benefits. This implementation achieved rates of 8.4% for

the GNVI kernel and 10.2% for GLI in the RAM block utilization. The DSPs achieved 4%

for the GNVI kernel and the same for the GLI kernel.

Additionally, FFS showed consumption rates of 5.56% and 6.32% for GNVI and GLI,

respectively. In addition, logic usage was 10% for GNVI and 12.96% for GLI. We noticed

that the GLI kernel consumed more resources than GNVI, due to the fact that the GLI

index is based on three bands in place of two in the GNVI case, which leads to its higher

consumption. Table 5 summarizes the different results obtained.

Table 5. Resource utilization on FPGA.

Kernel Type.
RAM

Blocks
DSPs FFS

Logic

Utiliza-

tion

Dedicated Logic

Registers

Both Indices 20.63% 6% 12.153% 25% 11.53%

GNVI 8.4% 4% 5.56% 10% 6.12%

GLI 10.2% 4% 6.32% 12.96 7.56%

Available in the

FPGA
379 87 -- 32,070 77,650

After the extraction of different resources, we proceeded to the processing time eval-

uation. This evaluation was based on a sequence of 150 images, evaluating the robustness

of the processing task. Figure 10 shows the results obtained.

Figure 9. FPGA resources usage after synthesis and placement routing.

The evaluation of the resources shown in Figure 8 is based on the RAM (random access
memory) blocks consumed, the DSP (digital signal processing), the FFS (flip flops), logic
usage, and the dedicated logic register. The results show that the naive implementation
based on processing two indices in the same kernel consumes 20.63% of RAM, 6% of DSPs,
12.15% of FFS, 25% logic usage, and 11.53% of the dedicated logic registers. On the other
hand, the implementation based on two separated kernels and the use of the FPGA on-chip
memory has significant benefits. This implementation achieved rates of 8.4% for the GNVI
kernel and 10.2% for GLI in the RAM block utilization. The DSPs achieved 4% for the
GNVI kernel and the same for the GLI kernel.

Additionally, FFS showed consumption rates of 5.56% and 6.32% for GNVI and GLI,
respectively. In addition, logic usage was 10% for GNVI and 12.96% for GLI. We noticed
that the GLI kernel consumed more resources than GNVI, due to the fact that the GLI
index is based on three bands in place of two in the GNVI case, which leads to its higher
consumption. Table 5 summarizes the different results obtained.

J. Low Power Electron. Appl. 2021, 11, 39 10 of 17

Table 5. Resource utilization on FPGA.

Kernel Type. RAM Blocks DSPs FFS Logic
Utilization

Dedicated Logic
Registers

Both Indices 20.63% 6% 12.153% 25% 11.53%
GNVI 8.4% 4% 5.56% 10% 6.12%
GLI 10.2% 4% 6.32% 12.96 7.56%

Available in
the FPGA 379 87 – 32,070 77,650

After the extraction of different resources, we proceeded to the processing time evalu-
ation. This evaluation was based on a sequence of 150 images, evaluating the robustness of
the processing task. Figure 10 shows the results obtained.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 11 of 18

Figure 10. OpenCL time processing.

Figure 10 shows the results obtained with the evaluation of the algorithm used on an

image sequence. The time varied between a minimum value of 7.23 ms and a maximum

value of 14.8, with an average of 11.5 ms. The approach used in this work allowed us to

accelerate the second block shown in Figure 6, which was based on the processing of in-

dices. The sequential evaluation of processing time confirmed this choice, which encour-

aged us to process the first block in the CPU part (host) and the second block in the device

part (FPGA) in order to return the results to the host for classification. In the proposed

acceleration, we used a naive acceleration based on a single kernel that achieved all the

processing. Subsequently, we optimized this implementation in terms of processing time

by using the fast local memory of the CPU-FPGA architecture. The tool used in our case

was based on OpenCL, both for the naive implementation and the optimized version. The

following two pseudo codes (Algorithms 1 and 2) show the processing in the host part

and the kernel part.

Algorithm 1: Kernel Code

Start Algorithm
1. __kernel void Name_kernel(declare matrix and const);
2. /////////////////////Local data initialization////////////////////////////////////
3. const int num_rows ← get_local_id(0);
4. const int num_col ← get_local_id(1);
5. //////////////////// Global data initialization//////////////////////////////////
6. const int Global_rows ← Num_Local*get_group_id(0) + num_ rows;
7. const int Global_col ← Num_Local *get_group_id(1) + num_ col;
8. read data (Matrix);
9. /////////////////////// Convert data to local memory////////////////////
10. convert data to locale memory;
11. __local float (Num_Mat1)[Num_Local][Num_Local];
12. __local float (Num_Mat2)[Num_Local][Num_Local];
13. const int Num_Block ← num_rows/ Num_Local
14. For I from 0 to Num_Block
15. Load data in Local ← Num_Local *I + num_rows;
16. Load data in Local ← Num_Local *I + num_col;
17. END for
18. Synchronisation;
19. /////////////////// Compute different vegetation indices////////////////
20. Process index;
21. Synchronisation;

Figure 10. OpenCL time processing.

Figure 10 shows the results obtained with the evaluation of the algorithm used on an
image sequence. The time varied between a minimum value of 7.23 ms and a maximum
value of 14.8, with an average of 11.5 ms. The approach used in this work allowed us
to accelerate the second block shown in Figure 6, which was based on the processing
of indices. The sequential evaluation of processing time confirmed this choice, which
encouraged us to process the first block in the CPU part (host) and the second block in
the device part (FPGA) in order to return the results to the host for classification. In the
proposed acceleration, we used a naive acceleration based on a single kernel that achieved
all the processing. Subsequently, we optimized this implementation in terms of processing
time by using the fast local memory of the CPU-FPGA architecture. The tool used in our
case was based on OpenCL, both for the naive implementation and the optimized version.
The following two pseudo codes (Algorithms 1 and 2) show the processing in the host part
and the kernel part.

J. Low Power Electron. Appl. 2021, 11, 39 11 of 17

Algorithm 1: Kernel Code

Start Algorithm

1. __kernel void Name_kernel(declare matrix and const);
2. /////////////////////Local data

initialization////////////////////////////////////
3. const int num_rows← get_local_id(0);
4. const int num_col← get_local_id(1);
5. //////////////////// Global data

initialization//////////////////////////////////
6. const int Global_rows← Num_Local*get_group_id(0) + num_ rows;
7. const int Global_col← Num_Local *get_group_id(1) + num_ col;
8. read data (Matrix);
9. /////////////////////// Convert data to local memory////////////////////
10. convert data to locale memory;
11. __local float (Num_Mat1) [Num_Local] [Num_Local];
12. __local float (Num_Mat2) [Num_Local] [Num_Local];
13. const int Num_Block← num_rows/ Num_Local
14. For I from 0 to Num_Block
15. Load data in Local← Num_Local *I + num_rows;
16. Load data in Local← Num_Local *I + num_col;
17. END for
18. Synchronisation;
19. /////////////////// Compute different vegetation indices////////////////
20. Process index;
21. Synchronisation;
22. End Algorithm

Figure 11 shows a comparison between the naive and improved implementations.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 13 of 18

Figure 11. Processing time comparison between naive and improved implementations.

Figure 11 shows that the improved version has a mean processing time of 9.31 ms,

compared to the naive version’s mean processing time of 11.5 ms. This improvement al-

lows for processing 107 frames/s compared to 86 frames/s in the naïve implementation.

Consequently, the temporal evaluation has shown that our algorithm can respect the

real-time constrain, which is 60 frames/s. In this context, the enhanced implementation

has shown an acceleration of ×9 compared to the sequential version, which consumes 90

ms [8]. The time obtained in the sequential version is based on a low resolution compared

to our resolution proposed in this paper, which is 5472 × 3648. This shows that the

OpenCL-based CPU-FPGA architecture has improved the processing time, even though

the resolution is very high.

3.3. Experimental Results

The experimental results are based on calculating the two indices GLI and GRVI in

different agricultural fields. The images used in this evaluation have a resolution of 5472

× 3648 pixels for each image collected by the UAV RGB camera used in this study. The

temporal evaluation showed that we could process up to 107 images/s with high resolu-

tion. This resolution will influence the calculation of the indices. The results obtained were

based on the coding of the algorithm with OpenCL in the CPU-FPGA architecture.

The evaluation of our algorithm was based on two tools, the FPGA SoC embedded

platform and the desktop using the Matlab tool. The reason for using Matlab is to validate

the results obtained with the FPGA embedded architecture. The algorithm is based on the

acquisition of images and then separating these RGB images into different images con-

taining red, green, and blue bands. Then, the prepared images are transferred to the FPGA

to process the different indices. The process of calculation is described in detail in [8]. After

the calculation of the indices, we binarized images using a thresholding operation in order

to be able to interpret the results. Figure 12 shows the results obtained from the evaluation

of the second agricultural field.

Figure 11. Processing time comparison between naive and improved implementations.

J. Low Power Electron. Appl. 2021, 11, 39 12 of 17

Algorithm 2: Host code

Start Algorithm

1. Declaration of variables and matrices:
2. Mred, Mgre, Mblu, Mgli, Mgnvi;
3. Function Data preparation ////////Preparation of required data for processing
4. Read images (OriginRGB);
5. Split chanel (R,G,B); //// Band separation for processing
6. MAT R← R_band;
7. MAT G← G_band;
8. MAT B← B_band;
9. For i from 0 to num_rows
10. For j from 0 to num_col
11. Mred, Mgre← pixel_MAT (R,G);
12. END for
13. END for
14. END Function
15. Function OpenCL initialization: ////// Platform, device and context setting.
16. cl_platform_id platform;
17. num_devices;
18. cl_context context;
19. platform = findPlatform (Name of plateform);
20. device.reset(getDevices);
21. context = clCreateContext;
22. END Fuction
23. kernel = clCreateKernel(program, “name of kernel”, &kl);
24. kl = clSetKernelArg(list of argument); // set argument list
25. containing processing data
26. const int = Num_Local;
27. const size_t local [1] = { Num_Local, Num_Local};
28. const size_t global [1] = { num_rows, num_col };
29. Run kernel; get FPGA data;
30. Function Classification: (Mat_index)
31. Data classification;
32. END Function
33. END Algorithm

Figure 11 shows that the improved version has a mean processing time of 9.31 ms,
compared to the naive version’s mean processing time of 11.5 ms. This improvement
allows for processing 107 frames/s compared to 86 frames/s in the naïve implementation.

Consequently, the temporal evaluation has shown that our algorithm can respect the
real-time constrain, which is 60 frames/s. In this context, the enhanced implementation has
shown an acceleration of×9 compared to the sequential version, which consumes 90 ms [8].
The time obtained in the sequential version is based on a low resolution compared to our
resolution proposed in this paper, which is 5472× 3648. This shows that the OpenCL-based
CPU-FPGA architecture has improved the processing time, even though the resolution is
very high.

3.3. Experimental Results

The experimental results are based on calculating the two indices GLI and GRVI
in different agricultural fields. The images used in this evaluation have a resolution of
5472 × 3648 pixels for each image collected by the UAV RGB camera used in this study.
The temporal evaluation showed that we could process up to 107 images/s with high
resolution. This resolution will influence the calculation of the indices. The results obtained
were based on the coding of the algorithm with OpenCL in the CPU-FPGA architecture.

J. Low Power Electron. Appl. 2021, 11, 39 13 of 17

The evaluation of our algorithm was based on two tools, the FPGA SoC embedded
platform and the desktop using the Matlab tool. The reason for using Matlab is to validate
the results obtained with the FPGA embedded architecture. The algorithm is based on
the acquisition of images and then separating these RGB images into different images
containing red, green, and blue bands. Then, the prepared images are transferred to the
FPGA to process the different indices. The process of calculation is described in detail in [8].
After the calculation of the indices, we binarized images using a thresholding operation
in order to be able to interpret the results. Figure 12 shows the results obtained from the
evaluation of the second agricultural field.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 14 of 18

Figure 12. GRVI evaluation based on FPGA SoC architecture compared to MATLAB implementation.

In Figure 12, the top image shows the three bands that build the RGB image. Images

1 and 3 show the R and G bands after the separation of the bands. In image two, we show

the GRVI index based on the thresholding operation. The threshold used in this image is

0.3. In image four, we tried to change the threshold to 0.45 to show the regions with a low

index. Figure 13 shows the interpretation of the high index regions.

Figure 13. GRVI interpretation.

Figure 13 shows the evaluation of the GRVI index. The blue areas indicate regions

that have a low index compared to other areas. The interpretation of the results obtained

gives the farmer an idea about the agricultural field. The decision is made based on the

physiology of each agricultural product. Therefore, the decision and the threshold opera-

tion are based on this physiology. Generally, each agricultural product has a specific index

threshold. After evaluating the GRVI based on the second agricultural field shown in Fig-

ure 3, we evaluated the GLI in the first agricultural field. Figure 13 shows the results ob-

tained.

Figure 12. GRVI evaluation based on FPGA SoC architecture compared to MATLAB implementation.

In Figure 12, the top image shows the three bands that build the RGB image. Images 1
and 3 show the R and G bands after the separation of the bands. In image two, we show
the GRVI index based on the thresholding operation. The threshold used in this image is
0.3. In image four, we tried to change the threshold to 0.45 to show the regions with a low
index. Figure 13 shows the interpretation of the high index regions.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 14 of 18

Figure 12. GRVI evaluation based on FPGA SoC architecture compared to MATLAB implementation.

In Figure 12, the top image shows the three bands that build the RGB image. Images

1 and 3 show the R and G bands after the separation of the bands. In image two, we show

the GRVI index based on the thresholding operation. The threshold used in this image is

0.3. In image four, we tried to change the threshold to 0.45 to show the regions with a low

index. Figure 13 shows the interpretation of the high index regions.

Figure 13. GRVI interpretation.

Figure 13 shows the evaluation of the GRVI index. The blue areas indicate regions

that have a low index compared to other areas. The interpretation of the results obtained

gives the farmer an idea about the agricultural field. The decision is made based on the

physiology of each agricultural product. Therefore, the decision and the threshold opera-

tion are based on this physiology. Generally, each agricultural product has a specific index

threshold. After evaluating the GRVI based on the second agricultural field shown in Fig-

ure 3, we evaluated the GLI in the first agricultural field. Figure 13 shows the results ob-

tained.

Figure 13. GRVI interpretation.

J. Low Power Electron. Appl. 2021, 11, 39 14 of 17

Figure 13 shows the evaluation of the GRVI index. The blue areas indicate regions
that have a low index compared to other areas. The interpretation of the results obtained
gives the farmer an idea about the agricultural field. The decision is made based on
the physiology of each agricultural product. Therefore, the decision and the threshold
operation are based on this physiology. Generally, each agricultural product has a specific
index threshold. After evaluating the GRVI based on the second agricultural field shown
in Figure 3, we evaluated the GLI in the first agricultural field. Figure 13 shows the
results obtained.

The GLI index is more sensitive than GRVI because it is based on three bands instead
of two in the case of GRVI. This fact gives it more visibility than GRVI. On the other hand,
the GRVI index is more precise than the GLI index. In our study, we used these two
indices because they are the most known and are used for monitoring agricultural fields.
In Figure 14, we have evaluated the GLI index of the first agricultural field illustrated in
Figure 2. Images 1 and 2 show the red and green bands, respectively, after the separation
of the bands. Image 3 shows the results obtained with the FPGA SoC architecture after the
thresholding operation.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 15 of 18

The GLI index is more sensitive than GRVI because it is based on three bands instead

of two in the case of GRVI. This fact gives it more visibility than GRVI. On the other hand,

the GRVI index is more precise than the GLI index. In our study, we used these two indi-

ces because they are the most known and are used for monitoring agricultural fields. In

Figure 14, we have evaluated the GLI index of the first agricultural field illustrated in

Figure 2. Images 1 and 2 show the red and green bands, respectively, after the separation

of the bands. Image 3 shows the results obtained with the FPGA SoC architecture after the

thresholding operation.

Figure 14. GLI evaluation based on the FPGA SoC platform.

Similarly, for image 4, we used different thresholds to depict the high value of the

index in red. Image 5 shows the binary image obtained with the FPGA SoC platform. Fi-

nally, image 6 shows the original image based on the three RGB bands. In the same context

and to compare the results, we have also evaluated this index in Matlab to compare the

software and hardware implementations. Figure 15 shows the results obtained on Matlab.

Figure 15. GLI evaluation based on Matlab.

The Matlab evaluation in Figure 14 shows that the FPGA SoC platform gives accurate

results based on the Matlab software tool. This shows that this architecture, in addition to

its low cost and low consumption, gives robust results. Figure 15 shows the interpretation

of the results.

Figure 14. GLI evaluation based on the FPGA SoC platform.

Similarly, for image 4, we used different thresholds to depict the high value of the index
in red. Image 5 shows the binary image obtained with the FPGA SoC platform. Finally,
image 6 shows the original image based on the three RGB bands. In the same context
and to compare the results, we have also evaluated this index in Matlab to compare the
software and hardware implementations. Figure 15 shows the results obtained on Matlab.

The Matlab evaluation in Figure 14 shows that the FPGA SoC platform gives accurate
results based on the Matlab software tool. This shows that this architecture, in addition to
its low cost and low consumption, gives robust results. Figure 15 shows the interpretation
of the results.

In Figure 16, we have focused on the first region in the blue box at the top left, which
gives a matrix of indices values with an average of 0.12. In the blue box at the bottom right,
the index evaluation shows a value of 0.6, which offers a high index of GLVI.

J. Low Power Electron. Appl. 2021, 11, 39 15 of 17

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 15 of 18

The GLI index is more sensitive than GRVI because it is based on three bands instead

of two in the case of GRVI. This fact gives it more visibility than GRVI. On the other hand,

the GRVI index is more precise than the GLI index. In our study, we used these two indi-

ces because they are the most known and are used for monitoring agricultural fields. In

Figure 14, we have evaluated the GLI index of the first agricultural field illustrated in

Figure 2. Images 1 and 2 show the red and green bands, respectively, after the separation

of the bands. Image 3 shows the results obtained with the FPGA SoC architecture after the

thresholding operation.

Figure 14. GLI evaluation based on the FPGA SoC platform.

Similarly, for image 4, we used different thresholds to depict the high value of the

index in red. Image 5 shows the binary image obtained with the FPGA SoC platform. Fi-

nally, image 6 shows the original image based on the three RGB bands. In the same context

and to compare the results, we have also evaluated this index in Matlab to compare the

software and hardware implementations. Figure 15 shows the results obtained on Matlab.

Figure 15. GLI evaluation based on Matlab.

The Matlab evaluation in Figure 14 shows that the FPGA SoC platform gives accurate

results based on the Matlab software tool. This shows that this architecture, in addition to

its low cost and low consumption, gives robust results. Figure 15 shows the interpretation

of the results.

Figure 15. GLI evaluation based on Matlab.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 16 of 18

In Figure 16, we have focused on the first region in the blue box at the top left, which

gives a matrix of indices values with an average of 0.12. In the blue box at the bottom right,

the index evaluation shows a value of 0.6, which offers a high index of GLVI.

Figure 16. GLI interpretation.

3.4. Discussion

The two indices used in this evaluation are known for their high sensitivity to vege-

tation compared to the other indices. The comparison between the embedded architecture

used in this work and the Matlab tool on the desktop shows that the FPGA SoC architec-

ture gave accurate results. In this context, we can find other architectures, such as TX1,

TX2, Xavier and other CPU-GPU-type systems. These architectures provide better results,

but the problem is the high energy consumption in embedded applications dedicated to

precision agriculture. For this reason, the CPU-GPU architecture has a high-power con-

sumption even if we use only a part of the architecture. This leads to high consumption

despite the low complexity of the applications. On the other hand, FPGA-based architec-

tures allow the mapping of the algorithm to be implemented. This allows for optimized

implementation using the hardware/software co-design approach. This adequation be-

tween architecture and algorithm will exploit the lowest amount of resources while main-

taining the accuracy of the results.

In this study, we have compared XU4 CPU-GPU low-cost architectures with a CPU-

FPGA based SoC architecture. The experimental results show that it can take 14.89 ms to

process one image with a maximum value of 17.8 ms and a minimum value of 9.2 ms. This

processing time was based on the XU4 architecture, which gave a processing rate of 67

frames/s. On the other hand, the processing time using the FPGA SoC architecture was

11.5 ms, which shows that the architecture chosen in this study, along with its low power

consumption, reached a processing time lower than the CPU-GPU-based architecture us-

ing the same paradigm OpenCL. Figure 17 shows the performances of the two architec-

tures.

Figure 16. GLI interpretation.

3.4. Discussion

The two indices used in this evaluation are known for their high sensitivity to vegeta-
tion compared to the other indices. The comparison between the embedded architecture
used in this work and the Matlab tool on the desktop shows that the FPGA SoC architecture
gave accurate results. In this context, we can find other architectures, such as TX1, TX2,
Xavier and other CPU-GPU-type systems. These architectures provide better results, but
the problem is the high energy consumption in embedded applications dedicated to preci-
sion agriculture. For this reason, the CPU-GPU architecture has a high-power consumption
even if we use only a part of the architecture. This leads to high consumption despite the
low complexity of the applications. On the other hand, FPGA-based architectures allow the
mapping of the algorithm to be implemented. This allows for optimized implementation
using the hardware/software co-design approach. This adequation between architecture
and algorithm will exploit the lowest amount of resources while maintaining the accuracy
of the results.

In this study, we have compared XU4 CPU-GPU low-cost architectures with a CPU-
FPGA based SoC architecture. The experimental results show that it can take 14.89 ms
to process one image with a maximum value of 17.8 ms and a minimum value of 9.2 ms.
This processing time was based on the XU4 architecture, which gave a processing rate of
67 frames/s. On the other hand, the processing time using the FPGA SoC architecture was
11.5 ms, which shows that the architecture chosen in this study, along with its low power

J. Low Power Electron. Appl. 2021, 11, 39 16 of 17

consumption, reached a processing time lower than the CPU-GPU-based architecture using
the same paradigm OpenCL. Figure 17 shows the performances of the two architectures.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 17 of 18

Figure 17. CPU-GPU and CPU-FPGA comparaison.

4. Conclusions

In this work, we present a CPU-FPGA architecture for index monitoring applications

in precision agriculture using the OpenCL paradigm. The results obtained with the SoC

FPGA architecture are similar to the results obtained in software implementation based

on MATLAB. In addition, the evaluation processing times showed that our algorithm

could process 87 frames/s in the naive implementation and 107 frames/s in the improved

implementation, with a high resolution of 5472 × 3648 pixels. Compared to the C/C++ im-

plementation, which was based on a resolution of 1280 × 960 pixels, the improvement fac-

tor reached 9.6. Thus, our implementation has shown robustness at the processing time

level, as well as the number of images processed per second (which exceeds the frame rate

of the camera, i.e., 60 frames/s). This responds to the real-time constraints of a monitoring

system.

Author Contributions: Conceptualization, A.S.; data curation, A.S.; formal analysis, A.S.; method-

ology, A.S.; writing—original draft. and A.E.O.; resources, R.L.; supervision, R.L. and A.E.O.; vali-

dation, A.E.O.; writing—review & editing, R.L. and A.E.O. All authors have read and agreed to the

published version of the manuscript.

Funding: This research received no external funding

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We owe a debt of gratitude to the National Centre for Scientific and Technical

Research of Morocco (CNRST) for their financial support and for their supervision (grant number:

19 UIZ2020).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shadrin, D.; Menshchikov, A.; Ermilov, D.; Somov, A. Designing Future Precision Agriculture: Detection of Seeds Germination

Using Artificial Intelligence on a Low-Power Embedded System. IEEE Sens. J. 2019, 19, 11573–11582.

2. Melián, J.M.; Jiménez, A.; Díaz, M.; Morales, A.; Horstrand, P.; Guerra, R.; López, S.; López, J.F. Real-Time Hyperspectral Data

Transmission for UAV-Based Acquisition Platforms. Remote Sens. 2021, 13, 850. https://doi.org/10.3390/rs13050850.

3. Cortes Torres, C.C.; Yasudo, R.; Amano, H. Body Bias Optimization for Real-Time Systems. J. Low Power Electron. Appl. 2020,

10, 8. https://doi.org/10.3390/jlpea10010008.

4. Spagnolo, F.; Perri, S.; Frustaci, F.; Corsonello, P. Energy-Efficient Architecture for CNNs Inference on Heterogeneous FPGA. J.

Low Power Electron. Appl. 2020, 10, 1. https://doi.org/10.3390/jlpea10010001.

5. Latif, R.; Jamad, L.; Saddik, A. Implementation of Hybrid Algorithm for the UAV Images Preprocessing Based on Embedded

Heterogeneous System: The Case of Precision Agriculture. In Enabling Machine Learning Applications in Data Science; Hassanien,

A.E., Darwish, A., Abd El-Kader, S.M., Alboaneen, D.A., Eds.; Algorithms for Intelligent Systems; Springer: Singapore, 2021.

https://doi.org/10.1007/978-981-33-6129-4_11.

Figure 17. CPU-GPU and CPU-FPGA comparaison.

4. Conclusions

In this work, we present a CPU-FPGA architecture for index monitoring applications
in precision agriculture using the OpenCL paradigm. The results obtained with the SoC
FPGA architecture are similar to the results obtained in software implementation based
on MATLAB. In addition, the evaluation processing times showed that our algorithm
could process 87 frames/s in the naive implementation and 107 frames/s in the improved
implementation, with a high resolution of 5472 × 3648 pixels. Compared to the C/C++
implementation, which was based on a resolution of 1280 × 960 pixels, the improvement
factor reached 9.6. Thus, our implementation has shown robustness at the processing
time level, as well as the number of images processed per second (which exceeds the
frame rate of the camera, i.e., 60 frames/s). This responds to the real-time constraints of a
monitoring system.

Author Contributions: Conceptualization, A.S.; data curation, A.S.; formal analysis, A.S.; method-
ology, A.S.; writing—original draft. and A.E.O.; resources, R.L.; supervision, R.L. and A.E.O.;
validation, A.E.O.; writing—review & editing, R.L. and A.E.O. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We owe a debt of gratitude to the National Centre for Scientific and Technical
Research of Morocco (CNRST) for their financial support and for their supervision (grant number: 19
UIZ2020).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shadrin, D.; Menshchikov, A.; Ermilov, D.; Somov, A. Designing Future Precision Agriculture: Detection of Seeds Germination

Using Artificial Intelligence on a Low-Power Embedded System. IEEE Sens. J. 2019, 19, 11573–11582. [CrossRef]
2. Melián, J.M.; Jiménez, A.; Díaz, M.; Morales, A.; Horstrand, P.; Guerra, R.; López, S.; López, J.F. Real-Time Hyperspectral Data

Transmission for UAV-Based Acquisition Platforms. Remote Sens. 2021, 13, 850. [CrossRef]
3. Cortes Torres, C.C.; Yasudo, R.; Amano, H. Body Bias Optimization for Real-Time Systems. J. Low Power Electron. Appl. 2020, 10, 8.

[CrossRef]
4. Spagnolo, F.; Perri, S.; Frustaci, F.; Corsonello, P. Energy-Efficient Architecture for CNNs Inference on Heterogeneous FPGA. J.

Low Power Electron. Appl. 2020, 10, 1. [CrossRef]

http://doi.org/10.1109/JSEN.2019.2935812
http://doi.org/10.3390/rs13050850
http://doi.org/10.3390/jlpea10010008
http://doi.org/10.3390/jlpea10010001

J. Low Power Electron. Appl. 2021, 11, 39 17 of 17

5. Latif, R.; Jamad, L.; Saddik, A. Implementation of Hybrid Algorithm for the UAV Images Preprocessing Based on Embedded
Heterogeneous System: The Case of Precision Agriculture. In Enabling Machine Learning Applications in Data Science; Hassanien,
A.E., Darwish, A., Abd El-Kader, S.M., Alboaneen, D.A., Eds.; Algorithms for Intelligent Systems; Springer: Singapore, 2021.
[CrossRef]

6. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J.
Remote. Sens. 1996, 17, 1425–1432. [CrossRef]

7. Bastarrika, A.; Alvarado, M.; Artano, K.; Martinez, M.P.; Mesanza, A.; Torre, L.; Ramo, R.; Chuvieco, E. BAMS: A tool for
supervised burned area mapping using Landsat data. Remote. Sens. 2014, 6, 12360–12380. [CrossRef]

8. Saddik, A.; Latif, R.; Elhoseny, M.; El Ouardi, A. Real-time evaluation of different indexes in precision agriculture using a
heterogeneous embedded system. Sustain. Comput. Inform. Syst. 2021, 30, 100506. [CrossRef]

9. Sumesh, K.C.; Ninsawat, S.; Som-ard, J. Integration of RGB-based vegetation index, crop surface model and object-based image
analysis approach for sugarcane yield estimation using unmanned aerial vehicle. Comput. Electron. Agric. 2021, 180, 105903.
[CrossRef]

10. Tian, H.; Wang, P.; Tansey, K.; Han, D.; Zhang, J.; Zhang, S.; Li, H. A deep learning framework under attention mechanism for
wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102,
102375. [CrossRef]

11. Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. A machine learning algorithm to detect pine wilt disease using UAV-based
hyperspectral imagery and LiDAR data at the tree level. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102363. [CrossRef]

12. Hunt, E.R., Jr.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.; Perry, E.M.; Akhmedov, B. A visible band index for remote
sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 103–112. [CrossRef]

13. Li, C.; Li, H.; Li, J.; Lei, Y.; Li, C.; Manevski, K.; Shen, Y. Using NDVI percentiles to monitor real-time crop growth. Comput.
Electron. Agric. 2019, 162, 357–363. [CrossRef]

14. Ren, S.; Guo, B.; Wu, X.; Zhang, L.; Ji, M.; Wang, J. Winter wheat planted area monitoring and yield modeling using MODIS data
in the Huang-Huai Hai Plain, China. Comput. Electron. Agric. 2021, 182, 106049. [CrossRef]

15. Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height
from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs.
Geoinf. 2015, 39, 79–87. [CrossRef]

16. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote. Sens. Environ. 1979, 8, 127–150.
[CrossRef]

17. Bezen, R.; Edan, Y.; Halachmi, I. Computer vision system for measuring individual cow feed intake using RGB-D camera and
deep learning algorithms. Comput. Electron. Agric. 2020, 172, 105345. [CrossRef]

18. Gené-Mola, J.; Vilaplana, V.; Rosell-Polo, J.R.; Morros, J.R.; Ruiz-Hidalgo, J.; Gregorio, E. Multi-modal deep learning for Fuji apple
detection using RGB-D cameras and their radiometric capabilities. Comput. Electron. Agric. 2019, 162, 689–698. [CrossRef]

19. Osroosh, Y.; Khot, L.R.; Peters, R.T. Economical thermal-RGB imaging system for monitoring agricultural crops. Comput. Electron.
Agric. 2018, 147, 34–43. [CrossRef]

20. Shin, J.; Chang, Y.K.; Heung, B.; Nguyen-Quang, T.; Price, G.W.; Al-Mallahi, A. A deep learning approach for RGB image-based
powdery mildew disease detection on strawberry leaves. Comput. Electron. Agric. 2021, 183, 106042. [CrossRef]

21. Isachsen, U.J.; Theoharis, T.; Misimi, E. Fast and accurate GPU-accelerated, high-resolution 3D registration for the robotic 3D
reconstruction of compliant food objects. Comput. Electron. Agric. 2021, 180, 105929. [CrossRef]

22. Moriguchi, K. Acceleration and enhancement of reliability of simulated annealing for optimizing thinning schedule of a forest
stand. Comput. Electron. Agric. 2020, 177, 105691. [CrossRef]

23. Partel, V.; Kakarla, S.C.; Ampatzidis, Y. Development and evaluation of a low-cost and smart technology for precision weed
management utilizing artificial intelligence. Comput. Electron. Agric. 2019, 157, 339–350. [CrossRef]

24. Hussain, N.; Farooque, A.A.; Schumann, A.W.; Abbas, F.; Acharya, B.; McKenzie-Gopsill, A.; Barrett, R.; Afzaal, H.; Zaman,
Q.U.; Cheema, M.J. Application of deep learning to detect Lamb’s quarters (Chenopodium album L.) in potato fields of Atlantic
Canada. Comput. Electron. Agric. 2021, 182, 106040. [CrossRef]

25. Song, Z.; Zhou, Z.; Wang, W.; Gao, F.; Fu, L.; Li, R.; Cui, Y. Canopy segmentation and wire reconstruction for kiwifruit robotic
harvesting. Comput. Electron. Agric. 2021, 181, 105933. [CrossRef]

26. Temniranrat, P.; Kiratiratanapruk, K.; Kitvimonrat, A.; Sinthupinyo, W.; Patarapuwadol, S. A system for automatic rice disease
detection from rice paddy images serviced via a Chatbot. Comput. Electron. Agric. 2021, 185, 106156. [CrossRef]

27. Trong, V.H.; Gwang-hyun, Y.; Vu, D.T.; Jin-young, K. Late fusion of multimodal deep neural networks for weeds classification.
Comput. Electron. Agric. 2020, 175, 105506. [CrossRef]

28. Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing
Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [CrossRef]

29. Skliarova, I. Accelerating Population Count with a Hardware Co-Processor for MicroBlaze. J. Low Power Electron. Applications.
2021, 11, 20. [CrossRef]

http://doi.org/10.1007/978-981-33-6129-4_11
http://doi.org/10.1080/01431169608948714
http://doi.org/10.3390/rs61212360
http://doi.org/10.1016/j.suscom.2020.100506
http://doi.org/10.1016/j.compag.2020.105903
http://doi.org/10.1016/j.jag.2021.102375
http://doi.org/10.1016/j.jag.2021.102363
http://doi.org/10.1016/j.jag.2012.07.020
http://doi.org/10.1016/j.compag.2019.04.026
http://doi.org/10.1016/j.compag.2021.106049
http://doi.org/10.1016/j.jag.2015.02.012
http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.1016/j.compag.2020.105345
http://doi.org/10.1016/j.compag.2019.05.016
http://doi.org/10.1016/j.compag.2018.02.018
http://doi.org/10.1016/j.compag.2021.106042
http://doi.org/10.1016/j.compag.2020.105929
http://doi.org/10.1016/j.compag.2020.105691
http://doi.org/10.1016/j.compag.2018.12.048
http://doi.org/10.1016/j.compag.2021.106040
http://doi.org/10.1016/j.compag.2020.105933
http://doi.org/10.1016/j.compag.2021.106156
http://doi.org/10.1016/j.compag.2020.105506
http://doi.org/10.1080/10106040108542184
http://doi.org/10.3390/jlpea11020020

	Introduction
	Overview and Study Area
	RGB Indices Overview in Precision Agriculture
	FPGA-SoC Architecture Overview
	Area Study

	Methodology and Results
	Methodology
	Processing Times Evaluation
	Experimental Results
	Discussion

	Conclusions
	References

