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Abstract: This paper is a comparative study of the multiple RC, Oustaloup and Grünwald–Letnikov
approaches for time domain implementations of fractional-order battery models. The compar-
isons are made in terms of accuracy, computational burden and suitability for the identification of
impedance parameters from time-domain measurements. The study was performed in a simulation
framework and focused on a set of ZARC elements, representing the middle frequency range of
Li-ion batteries’ impedance. It was found that the multiple RC approach offers the best accuracy–
complexity compromise, making it the most interesting approach for real-time battery simulation
applications. As for applications requiring the identification of impedance parameters, the Oustaloup
approach offers the best compromise between the goodness of the obtained frequency response and
the accuracy–complexity requirements.

Keywords: battery impedance model; equivalent circuit model; fractional-order model; time-
domain implementation

1. Introduction

Energy storage systems (ESSs) are among the most critical components concerning
the full adoption of renewable energy sources and electric transportation [1]. In such appli-
cations, energy management systems (EMSs) are required for coordinating the operations
of systems with multiple energy generation resources, as often is the case with micro-
grids and hybrid ESSs, which employ multiple complementary energy storage subsystems.
For the energy management of ESSs, the most commonly desired objectives are: improved
energy efficiency, extended lifetimes for storage elements and compliance with constraints
of internal energy storage modules, e.g., no over-charging and no over-discharging [2]. In
the case of rechargeable batteries, those goals typically require accurate monitoring; state
of charge (SoC) and state of health (SoH) estimations; and charging control, which can
be accomplished by using dedicated battery management systems (BMS). The methods
employed for these operations range from experiment-based ones, such as incremental
capacity [3], to data-driven ones, including machine learning [4]. State estimation and
control algorithms in a BMS may require battery models capable of approximating the
battery’s response under given operating conditions [5].

Equivalent circuit models (ECMs) are preferred over electrochemical or empirical
models, as they approximate the dynamic behaviour of a battery with relatively high
accuracy [6], while offering simplified descriptions of the complex physical and chemical
processes occurring within batteries, by representing them with a set of lumped elements,
including resistors, capacitors and inductors. ECMs have been widely used as parts of bat-
tery state estimation and charging control strategies. The adoption of ECM-based optimal
state estimation, by directly solving the model-constrained optimisation problem [7] or
using techniques such as the Kalman filter and all its variants [8], has enabled the imple-
mentation of online SoC and SoH estimations in EMS frameworks. The implementation of
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online optimal charging strategies, known for their high computational burden, has also
been enabled by algorithms, including ECMs, by profiting from the accuracy–complexity
trade off offered by such models [9].

The parameters of an ECM can be fitted from voltage and current data obtained
during specific operating conditions [6]. However, these circuit components are often
insufficient for modelling the dynamics of electrochemical processes such as charge and
mass transfers and double layer capacitance in a battery, due to the spatial distribution
of those processes [10]. This lack of physical significance may compromise the identifi-
cation of relationships between health estimation and ECM parameters. Said drawback
may be overcome by substituting capacitors in the ECM with constant phase elements
(CPEs), defined in the frequency domain and analytically derived from the electrochemical
principles of the diffusion processes. Such elements are often used to fit electrochemical
impedance spectroscopy (EIS) data [11]. The reduced number of parameters in ECMs
using CPEs instead of capacitors is mainly attractive for SoH estimation approaches based
on the analysis of variations in the parameters associated with specific electrochemical
processes [12].

The direct time-domain implementation of such models is particularly challenging,
because they represent dynamic systems with non-integer-order derivative operations,
hence the name fractional order models (FOM) [10]. The time-domain implementations of
FOMs’ electrical responses have been employed in applications such as online SoC esti-
mation using fractional-order (FO) Kalman filters [13] and a time-domain characterisation
of battery diffusion dynamics [14]. Three main implementation approaches have been
identified: the multiple RC (mRC) circuit [15], the high-order integer transfer function [16]
and the Grünwald–Letnikov (GL) fractional derivative [17] approximations. However,
the literature is rather obscure about the motivation for the selection of one approach
over the others. This work fills this gap by presenting a comparative study of the three
approaches. The comparisons are made in terms of:

• Accuracy: by analysing the error of each implementation with respect to a reference
analytical model for given input signals;

• Complexity: by writing the sets of equations required by each approach using similar
structures and comparing the sizes of the arrays involved and the numbers of required
additions and multiplications, in view of an embedded use of the FOMs;

• Suitability for identification of impedance parameters from time-domain measurements.

We used a simulation environment with a set of FOMs representing the middle-
frequency range impedance of Li-ion batteries, normally represented by the so-called
ZARC elements. Our study identifies which of the analysed approaches offers the best
compromise between accuracy and computational burden for applications such as real-time
simulations. The second goal was to understand for which of the three cases the time-
domain identification of the FOM leads to a correct frequency-domain response, keeping
the impedance model meaningful. This analysis may serve as a guide for the selection of
implementation approaches for FOMs in EMS applications.

The paper is organised as follows. Section 2 introduces the battery impedance models
based on constant phase elements, Section 3 presents, in detail, the three time-domain
implementation approaches studied in this work. Then, the results of the comparative
analysis in terms of accuracy and complexity are presented in Sections 4 and 5, respectively.
Section 6 presents a time-domain identification study performed for the three implementa-
tion approaches. Finally, the conclusions are drawn in Section 7.

2. Battery Impedance Models

EIS analyses the impedance of battery cells in a specific range of frequencies, drawing
conclusions about internal electrochemical processes with different time constants. A typi-
cal EIS test is performed by injecting a sinusoidal voltage or current signal; acquiring the
cell response; and computing the impedance through the amplitude ratio and the phase
difference between voltage and current signals. That experiment is repeated for several
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frequencies in a selected frequency range. Then, by calculating the impedance, a Nyquist
plot, often called impedance plot, can be generated. If this is performed for multiple battery
operating conditions (temperature, SoC and dc operating point), it is possible to visualise
and quantify their influences over the frequency response. For a Li-ion battery cell, a typical
impedance plot is shown in Figure 1 [18].

Figure 1. Qualitative impedance spectrum of a Li-ion cell and an ECM approximating it.

In the qualitative impedance plot shown in Figure 1, it is possible to identify four
sections that can be associated with particular electrochemical processes [18]. In the first
part, an inductive behaviour can be seen at high frequencies, related to the inductive
reactances of metallic elements in the cell and wires. The presence of an ohmic resistance
is revealed by the intersection with the real axis at a nonzero value. This corresponds
to the sum of the current collectors, active material, electrolyte and separator resistances.
The semi-circle-like section represents the double layer capacitance and charge transfer
processes at the electrodes. Finally, at low frequencies, the main effect corresponds to the
diffusion processes of the active material of the electrodes, which manifests as a section
with a constant slope in the impedance plot. It is worth noting that measured spectra often
show variations with respect to the qualitative curve presented. For example, the number of
semi-circles can be increased to two or more, or the inductive part can exhibit a slope with
an increasing real part. Moreover, the semi-circle section may tend to present a depression
at its mid-point (non-constant radius) [19].

For a relatively accurate and meaningful reproduction of the impedance spectrum of
a battery cell, the ECMs presented in Figure 1 can be considered [20]. The behaviour of the
cell at high frequencies is represented by an ideal inductor L and the resistor Rs represents
the ohmic resistance of the cell elements. The semi-circle section can be represented using a
ZARC element, which corresponds to a parallel connection between a resistor and a CPE.
The impedance of a CPE, ZCPE, is presented in:

ZCPE(ω) =
1

Q(jω)φ , (1)

where Q corresponds to a generalised capacitance, φ to the depression factor, ω to the
angular frequency and j to the imaginary unity [21].

The low-frequency response is represented by a Warburg impedance, which models
a semi-infinite linear diffusion process. The Warburg impedance, namely, ZW , is charac-
terised by a 45◦ phase, and therefore can be also represented by a CPE:

ZW(ω) =
Aw√

ω
(1− j) =

√
2Aw√

jω
=

1

Qw(jω)φw
, (2)
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where Aw is the diffusion coefficient [21], and the equivalent generalised capacitance and
depression factor for the Warburg element are given by Qw = 1/(

√
2Aw) and φw = 0.5,

respectively.
CPEs are used instead of capacitors because when they are connected in parallel with

a resistor forming a ZARC element, φ represents the depression often observed in the
semi-circles in the impedance plot of a Li-ion cell. The factor φ can take values between
zero and one; when φ = 0, the ZARC element represents only an ohmic resistor, and if
φ = 1, the response of an RC element is obtained. The ZARC impedance is represented by:

ZZARC(ω) =
Rp1

1 + Rp1Q1(jω)φ1
, (3)

where Rp1, Q1 and φ1 characterise the resistance and CPE parameters of the ZARC element.
The overall impedance of the circuit presented in Figure 1 is then defined by:

Zbat(ω) = jωL + Rs + ZZARC(ω) + ZW(ω). (4)

For the sake of simplicity, the discussion that follows focuses on the computation of
the voltage v(t) of the ZARC element for a given current signal i(t). The presented results
can easily be extended to the Warburg element using similar principles, and from there to
the whole battery’s impedance.

3. Time-Domain Implementation of the ZARC Element Response

In the framework of battery modelling, three main approaches for approximating the
time-domain responses of elements with FO transfer functions have been proposed.

1. Approximation 1. The FO impedance is approximated with a series of parallel RC
branches [22–24]. In [22], the mRC approximation was used for the implementation
of two battery diffusion impedance models. A comparison in terms of the accuracy
of the two models is presented. Similarly in [23], a CPE was used for approximating
the diffusion dynamics of Li-ion batteries. A comparison of the identification per-
formances of multiple implementations of the CPE based on the mRC approach is
presented. The authors of [24] used the mRC approach for the approximation of the
response of a ZARC element, in the framework of time-domain-based identification
of impedance models for batteries.

2. Approximation 2. The approximation of the FO transfer function with a high-degree
integer-order system, the Oustaloup (OU) approach being the most widely
adopted [10,14,25]. In [10] and [25], this implementation was used for FOM identi-
fication with time-domain measurements. In [14], the approximation was used for
studying and identifying the diffusion dynamics of Li-ion batteries.

3. Approximation 3. The approximation of a derivative of FO with a specific definition that
allows for implementing difference equations, mainly based on the GL definition of
the FO derivative [13,26,27]. Another study [26] analysed the performance of a FOM,
implemented using the GL definition of the FO derivative, for the approximation
of the battery voltage, and compared the results with a typical single RC model.
Additionally, a method for the time-domain identification of the FOM was provided
to the readers. In [13], the implementation was used in conjunction with a FO Kalman
filter for online SoC estimation. Similarly, in [27], a GL-based implementation was
used with an extended Kalman filter scheme for online estimation of SoC and SoH.

Flowcharts for the three implementation approaches are given in Figure 2. In the three
approaches, the time response of the FOM is approximated by a set of discrete equations,
corresponding to discrete state-space representations for the mRC and OU approaches and
to a difference equation for the GL approach. These discrete implementations were evalu-
ated in our simulation environment in terms of accuracy and complexity, as presented in the
following sections. The main differences between the approaches lie in the parametrisation
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processes. For the GL approach, the coefficients in the difference equation are computed di-
rectly from the impedance parameters using predefined mathematical relationships, which
are introduced in Section 3.3. As illustrated in Figure 2, the other two approaches require
an initial approximation of the FO transfer function with an integer-order system, for which
a discrete state-space representation can be obtained. The main difference between the
mRC and OU approaches is the structure of the integer-order transfer function and the
method used for the approximation of the FO transfer function, which are introduced in
Sections 3.1 and 3.2, respectively.

In this section we will focus on defining difference equations for the computation of
the ZARC voltage v(t) for each one of the mentioned approaches. The resulting expressions
have the form given by:

v[k] = Cx[k] + Di[k]. (5)

Equation (5) allows one to compute the ZARC element voltage in the discrete instant
k as a function of the input value i and the vector x. The vector x may be the states’ vector
or a set of previous values of v, depending on the implementation approach. The values of
vector C and scalar D are functions of the parameters of each approximation, as is discussed
in the following subsections.

Figure 2. A summary of the FOM implementation approaches considered.

3.1. Approximation 1: Multiple RC Approach

For the approximation of the ZARC element impedance, series connections of multiple
parallel RC circuits have been considered in the literature [15]. The values of the compo-
nents for this kind of approximations are normally fitted from time measurements directly,
by minimising the differences between experimental data and the model voltage output.
However, for the case in which the initial point is an impedance model, the estimation
process requires fitting the impedance spectra. The idea is to approximate the transfer
function of the ZARC element with a set of RC parallel elements:

ZZARC(s) =
Rp1

1 + Rp1Q1sφ1
≈

nRC

∑
h=1

Rh
1 + RhChs

= ZRC(s). (6)

In (6), a transfer function representation is used for the impedance, using s as the
Laplace complex variable. The approximation of the ZARC impedance ZRC(s) employs a
set of nRC RC branches. The parameters Rh and Ch represent the resistance and capacitance
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of the h-th RC parallel branch in the approximation of the ZARC impedance presented in
(6), accounting for 2nRC parameters to fit.

The values for the resistance and capacitance in (6) can be computed by minimising
the difference between the ZARC impedance, given in (3), and the mRC approximation.
One method for solving this minimisation problem is presented with detail in Appendix A.
This method is employed from this point on during the parametrisation stage of the
mRC-based implementations.

Once the values for Rh and Ch have been fitted, the continuous time response of the
mRC circuit can be written in state-space representation:

ẋRC(t) = ARCxRC(t) + BRCi(t) (7)

vRC(t) = CRCxRC(t) + DRCi(t), (8)

where the states’ vector xRC contains the RC elements voltages, ẋRC represents the states’
derivatives and vRC is the approximation of the ZARC voltage using the mRC approach.
Additionally, the matrices ARC, BRC, CRC and DRC are nRC × nRC, nRC × 1, 1× nRC and
1× 1 matrices, respectively, given by:

ARC = diag
(
− 1

R1C1
,− 1

R2C2
, · · · ,− 1

RnRC CnRC

)
(9)

BRC =
[

1
C1

1
C2
· · · 1

CnRC

]>
(10)

CRC =
[
1 1 · · · 1

]
(11)

DRC = 0. (12)

For the discretisation of this set of equations, the derivatives are approximated using
the backward Euler approximation for stability reasons [28]. The obtained set of difference
equations can be rewritten and used for estimating the value of the ZARC element voltage
in a discrete instant k, vRC[k], as a function of the current i[k] and the RC elements voltages
xRC[k]:

xRC[k] = (InRC − TARC)
−1xRC[k− 1] + T(InRC − TARC)

−1BRCi[k] (13)

vRC[k] = CRCxRC[k] + DRCi[k], (14)

in which InRC is the nRC × nRC identity matrix, and T is the sampling period.
Equations (13) and (14) can be used for implementing the response of the RC approxi-
mation given a current signal and a set of initial values for the RC branch voltages.

3.2. Approximation 2: Oustaloup Approach

This approach relies on approximating the transfer function of the CPE in the ZARC
element using a transfer function with integer order nOU (the same number of zeros and
poles) in a given frequency range. One of the most popular methods for the approxima-
tion of the CPE transfer function with a rational transfer function of odd order nOU was
presented by Oustaloup et al. [16]. The approximation is valid in the frequency range
ω ∈ [ωl , ωh], where ωl and ωh are the lower and higher frequency limits, respectively.
Following this method, the transfer function of the CPE can be rewritten as:

ZCPE(s) =
1

Q1sφ1
= KCPE

(
s

ωc

)−φ1

≈ KCPE

(
ωl
ωc

)−φ1 N

∏
h=−N

1 + s
ωz(CPE)h

1 + s
ωp(CPE)h

= ZOU(CPE)(s),

where ZOU(CPE)(s) is the integer-order approximation of the CPE impedance using the
OU approach; ωc =

√
ωlωh is the central frequency between the bounds of the range of
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interest; and KCPE and N are given by KCPE = 1
Q1ω

φ1
c

and N = nOU−1
2 . In order to estimate

the nOU zeros ωz(CPE)h and nOU poles ωp(CPE)h in (15), Oustaloup et al. proposed [16]:

ωz(CPE)h = ωl

(
ωh
ωl

) h+
nOU+φ1

2
nOU

, ωp(CPE)h = ωl

(
ωh
ωl

) h+
nOU−φ1

2
nOU

. (15)

The transfer function can be used to approximate the frequency response of the CPE.
Then, the approximation ZOU(s) of the whole ZARC impedance using the OU approach is:

ZZARC(s) =
Rp1

1 + Rp1Q1sφ1
≈

Rp1

1 +
Rp1

ZOU(CPE)(s)

= ZOU(s). (16)

In order to obtain a time representation of the response of this approximation, the trans-
fer function ZOU(s) needs to be rewritten in zero-pole-gain form, as expressed in:

ZOU(s) = KZARC

nOU

∏
h=1

(s−ωzh)

(s−ωph)
, (17)

where KZARC, ωzh and ωph represent the gain, zeros and poles of the ZOU(s) transfer
function, respectively. A time-domain state-space representation for the OU approximation
with the structure presented in (17) was introduced in [28]:

ẋOU(t) = AOU xOU(t) + BOU i(t) (18)

vOU(t) = COU xOU(t) + DOU i(t), (19)

where xOU and ẋOU represent the system states and their derivatives, and vOU is the
approximation of the ZARC element voltage. The matrices AOU nOU × nOU , BOU nOU × 1,
COU 1× nOU and DOU 1× 1, are given by:

AOU =


ωp1 0 0 · · · 0

(ωp2 −ωz2) ωp2 0 · · · 0
(ωp3 −ωz3) (ωp3 −ωz3) ωp3 · · · 0

...
...

...
. . .

...
(ωpnOU −ωznOU ) (ωpnOU −ωznOU ) · · · (ωpnOU −ωznOU ) ωpnOU

 (20)

BOU = KZARC
[
(ωp1 −ωz1) (ωp2 −ωz2) · · · (ωpnOU −ωznOU )

]> (21)

COU =
[
1 1 · · · 1

]
(22)

DOU = KZARC. (23)

Again, the backward Euler approximation was used to discretise the obtained state-
space system. This discrete representation is obtained by replacing ARC, BRC, CRC and
DRC with AOU , BOU , COU and DOU in (13) and (14).

3.3. Approximation 3: Grünwald–Letnikov Approach

The ZARC element response can be approximated by adopting a FO derivative
definition in the time domain. The FO differential equations representing the ZARC
voltage can be obtained from transfer function (3) by replacing ZZARC(s) = V(s)/I(s) and
rewriting the equation as:

sφ1 V(s) =
I(s)
Q1
− V(s)

Rp1Q1
, (24)
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where V(s) and I(s) represent the Laplace transform of the ZARC voltage and current,
respectively. Then, by applying inverse Laplace transform, the FO differential equation is
rewritten as:

Dφ1 v(t) =
i(t)
Q1
− v(t)

Rp1Q1
. (25)

Dφ1 represents the derivative of FO φ1. Among the multiple definitions of the FO
derivative, the GL one is of particular interest, as it allows one to directly obtain difference
equations for the approximations of the time response of a FO system [17]. The definition
of the considered equation is:

Dα f (t) = lim
T→∞

1
Tα

b t
T c

∑
h=0

(−1)h
(

α

h

)
f (t− hT), (26)

where the derivative of FO α of the causal function f (t) is computed between 0 and t.
In (26), T is the sampling period,

⌊ t
T
⌋

represents the integer part of t/T and (α
h) represents

the Newtonian binomial coefficients generalised to real numbers, computed as:(
α

h

)
=

α(α− 1)(α− 2) · · · (α− h + 1)
h!

=
Γ(α + 1)

Γ(h + 1)Γ(α− h + 1)
, (27)

where Γ(·) stands for the gamma function, which works as a generalisation of the factorial
operator for real numbers.

It is worth noting that, according to the GL definition in (26), the derivative of order α
of the function at time t depends on all the values of that function in [0, t], which is due to
the non-local property of fractional derivatives [29].

By fixing the value of T to an appropriately low value for the application, and adopting
the discrete variable k instead of the continuous time t, it is possible to obtain the first order
discrete approximation of the FO derivative:

Dα f [k] =
1

Tα

k

∑
h=0

(−1)h
(

α

h

)
f [k− h]. (28)

This approximation may be used to obtain a difference equation for the numerical
evaluation of function f [k]. The discrete version also requires all the data points of f [k] since
k = 0 for the computation of the derivative approximation, which may imply large memory
requirements for simulations using this approach. This drawback may be addressed by
applying the short-memory principle reported in reference [17], taking into account the
behaviour of the signal in only the recent past, in the interval [k − L, k], where L is the
memory length. Applying this principle, we rewrite:

Dα f [k] =
1

Tα

L

∑
h=0

(−1)h
(

α

h

)
f [k− h]. (29)

This short-memory approximation allows one to implement numerical difference
equations in cases in which the required memory is a critical constraint. Obviously, this
introduces some inaccuracy, mostly manifested in the form of static error [30].

By replacing (29) in (25), we obtain the difference equation:

vGL[k] = Tφ1
Rp1

Rp1Q1 + Tφ1
i[k]−

Rp1Q1

Rp1Q1 + Tφ1

L

∑
h=1

(−1)h
(

φ1

h

)
vGL[k− h], (30)
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which allows one to compute the approximation of the ZARC element voltage using the
GL approach vGL. For the sake of comparison with the other implementation approaches,
(30) can be written in matrix form:

vGL[k] = CGLxGL[k] + DGLi[k], (31)

where xGL[k] is a L× 1 vector with the L previous values of the ZARC voltage:

xGL =
[
vGL[k− 1] vGL[k− 2] · · · vGL[k− L]

]>. (32)

The matrices CGL and DGL, having size L× 1 and 1× 1, respectively, are given by:

CGL = −
Rp1Q1

Rp1Q1 + Tφ1

[
−(φ1

1 ) (φ1
2 ) · · · (−1)h(φ1

h ) · · · (−1)L(φ1
L )
]

(33)

DGL = Tφ1
Rp1

Rp1Q1 + Tφ1
. (34)

It is worth noting that for the matrix CGL, the coefficients (−1)h(φ1
h ) for the previous

samples can be precomputed for the implementation of the ZARC voltage.

4. Accuracy Comparison

Ideally, the data required for the validation of approximations of the responses of FO
battery impedance models must consider EIS and pulsed current tests both performed
under similar SoC, SoH and temperature conditions. Due to the lack of availability of
such data in the known datasets, and in order to perform accuracy comparisons between
the analysed approximations, a reference model based on the analytical solution of FO
differential equations was utilised for the generation of the reference data.

4.1. Reference Data Generation from the Analytical Solution of Fractional Differential Equations

Assuming that the current signal can be written as a set of steps:

i(t) =
Nu

∑
h=1

Uhu(t− tuh), (35)

where u(t) corresponds to the unit step function. Each one of the Nu current steps in i(t) is
characterised by an amplitude Uh and application time tuh.

The ZARC element voltage can be expressed as [17]:

v(t) =
Nu

∑
h=1

Uh
Q1

(t− tuh)
φ1 Eφ1,φ1+1

(
− 1

Rp1Q1
(t− tuh)

φ1

)
u(t− tuh), (36)

where the function Eα,β is the two-parameter Mittag–Leffler function, defined by a series
expansion presented in Appendix B, which also includes a derivation of (36).

Equation (36) was implemented in Matlab® for the generation of the reference data.
For the Mittag–Leffler function, the implementation introduced in [31] was employed. It is
worth mentioning that such an analytical voltage representation is not suitable for online
implementation, due to the limitations imposed by the assumed input signal and to the
iterative nature of the Mittag–Leffler function computation, which makes the evaluation of
a single data point highly demanding from a computational point of view.

4.2. Analysis of the Voltage Approximation Signals

The evaluation of the accuracy of the considered approximations requires one to
perform an analysis of the differences between the responses of the reference model and
the approximation of interest, for given ZARC element parameters and while using the
same input current signal, as illustrated in Figure 3.
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Figure 3. A schematic diagram representing the accuracy tests performed.

The test proposed in Figure 3 requires one to define an input current signal, a set of
ZARC elements parameters and the order or memory length of the approximations. Tests
such as this one were performed for six sets of ZARC element parameters, for currents
generated with different sampling and dynamic characteristics and with variations of
nRC, nOU and L. In order to generate the input currents and select the ZARC elements
to be employed, first, we focused on the typical middle-frequency range of the dynamic
response of Li-ion batteries, namely, the range between 0.01 and 200 Hz. This dynamic
range is normally associated with the response of the double layer capacitance and the
charge transfer resistance [18].

The considered input signals contained two stages: one aimed at evaluating the
transient responses of the different approximations, and the second stage was for testing
the steady state error. An input signal sample is presented in Figure 4. In this signal, the
first stage has a total duration of 200 s, for which the amplitude and duration of each
current pulse were selected randomly in the ranges [−1, 1] A and [0.5, 10] s, respectively.
The second stage contains one single 0.5 A step with a duration of 500 s, with fixed 150 s
rests before and after the step.

Time (s)

C
ur

re
nt

 (
A

)

Dynamic
randomly
generated stage

Static stage

Figure 4. An example of the current profiles used during the accuracy tests.

The six sets of ZARC parameters we used are presented in Table 1. The ZARC
parameters were selected for obtaining characteristic frequencies ω0 = (1/(Rp1Q1))

1/φ1

covering the frequency range of interest, with ω0 = 2π f0, while keeping the parameters’
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values inside typical ranges—namely, Rp1 ∈ [0.1, 100] mΩ, Q1 ∈ [1, 1000] F sφ1−1 and
φ1 ∈ [0.5, 0.9] [32,33].

Table 1. Values of the parameters for the ZARC elements considered during the accuracy tests.

ZARC id f0 (Hz) Rp1 (mΩ) Q1 (F sφ1−1) φ1

1 0.034 59.2 55 0.77
2 0.090 8.4 193 0.86
3 0.487 60.4 8 0.65
4 0.787 5.8 55 0.72
5 2.444 0.3 722 0.56
6 8.215 0.8 122 0.59

The evaluation of accuracy was performed for:

• Nine mRC-based approximations, employing nRC values corresponding to the odd
numbers between 3 and 19;

• Nine OU-based implementations, with odd orders nOU between 3 and 19;
• Fourteen GL-based approximations, with L values between 5 and 10,000 samples

(which correspond to time windows between 0.05 and 100 s).

Figures 5 and 6 present some examples of the voltage computed by mRC, OU and
GL approximations for ZARC 4 employing T = 0.01 s. The plots in Figure 5a present the
reference voltage and the voltages obtained for three mRC-based approximations during
the first 20 s of the random stage of the accuracy test. In general, all the implementations
were able to approximate the dynamics of the reference signal, with only appreciable
differences for the approximation being of the lowest order. The error signals, presented in
Figure 7a for this set of implementations, show spikes always under a few hundred µV
during all the current steps, which reduce in magnitude as the order increases. Similar
results can be observed for the OU-based implementations, as shown in Figure 5b and the
first 200 s of the error signal in Figure 7b. The low-order OU approximations resulted in
higher error magnitudes than the mRC ones. In the case of the GL approximations, as seen
in Figure 5c, the lower L values caused higher offset errors. This is further illustrated
by the error signal in Figure 7c during the first 200 s on which the spikes, at least for the
lower memory lengths, seem to be wider than those in the mRC and OU approximations.
An increase in L led to decreases in the magnitudes of the error signal, showing that
adding terms to the sum in (30) leads to a better approximation of the analytical response,
as expected.
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Figure 5. Examples of ZARC 4 voltages during the dynamic stage of the accuracy test. (a) mRC; (b) OU; (c) GL.
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Figure 6. Examples of ZARC 4 voltages during the static stage of the accuracy test. (a) mRC; (b) OU; (c) GL.
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Figure 7. Examples of ZARC 4 voltage errors during the accuracy test. (a) mRC; (b) OU; (c) GL.

As is shown in the static state results presented in Figure 6a for three mRC-based
implementations, increasing the order of the approximation reduced the errors during this
stage. A higher value of nRC allowed a better approximation of the distribution of time
constants represented by the FO element, leading to an extension of the validity of the
approximation over a wider frequency range. Similar considerations apply for the OU
approximations, presented in Figure 6b, except for the worse performance at low orders,
under nine, with respect to the mRC case. The offset error for the GL approximations is
more evident during the static stage of the test, as shown in Figures 6c and 7c. The static
error obtained for GL implementations with L under a few thousand for ZARC 4 is
considerably higher than the errors obtained for the other approximations. This highlights
the main drawback of the GL approximations using the short memory principle: by
reducing the number of previous samples that are used for the computation, some level of
inaccuracy appears, particularly in static state. For the sake of completeness, it is worth
mentioning that Podlubny [17] proposed a relationship for estimating a suitable memory
length for the approximation of the FO derivative presented in (28), given an expected
error level.

4.3. Effects of the Approximation Order and Memory Length on The Accuracy

In order to analyse the effects of the parameters in each implementation approach,
namely, nRC, nOU and L, on the approximation accuracy, the mean relative errors during
the dynamic and the static stages were used as indicators. For ZARCs 1, 3 and 6, the mean
relative errors during the dynamic and the static stages are presented in Figures 8a and 9a,
respectively. The very similar results for the other ZARC elements are not reported for the
sake of brevity.
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Figure 8. Average relative errors during the dynamic stage of the test. (a) mRC; (b) OU; (c) GL.
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Figure 9. Average relative errors during the static stage of the test. (a) mRC; (b) OU; (c) GL.

The error during the static stage of the tests for the RC approximations remained
under 1%, even for the approximations with fewer RC branches. This result was expected,
as in the fitting procedure adopted in this work (Appendix A), the sum of the resistances
in the mRC approximation was set to match the value of Rp1, leading to similar voltage
drops in the response after the initial transitory. On the other hand, even if the values of the
relative error during the dynamic stage tended to decrease with the number of employed
RC elements, considerable improvements were only obtained up to nRC = 9. After that
point, further improvements could be achieved by decreasing the value of T. The observed
behaviour at the highest orders may be associated with the variability introduced by the
fitting procedure required for the computation of the parameters of the mRC case from the
ZARC parameters. Nevertheless, for cases over nRC = 5, the mean relative errors were
always under 5%.

In the case of the OU-based approximations, the mean relative errors during the
dynamic and the static stages are presented in Figures 8b and 9b, respectively. In general,
for the OU approximations during the dynamic stage, orders nOU higher than nine are
required for reaching average relative errors under 5%. It is worth noting that, compared
with the mRC approach, similar average relative errors were achievable in general, but with
approximations of higher order. Again, the average relative errors for the static tests were
almost always below 1%. For both stages of the accuracy tests, a monotonic reduction
in the errors could be observed with increases in the approximation order, highlighting
the advantage of computing the integer order approximation of the FO transfer function
with a set of predefined equations instead of performing a fitting. This behaviour can be
useful when trying to select the approximation order by analysing the accuracy–complexity
trade off.

Then, for a set of GL-based approximations, with L values between 5 and
10,000 samples (which correspond to time windows between 0.05 s and 100 s), a simi-
lar accuracy analysis was performed. Figures 8c and 9c show the results obtained for the
dynamic and static average relative errors obtained for this set of approximations. Regard-
ing the results in the dynamic stage, only the higher memory lengths, over 500 samples,
allowed us to reach values in the same order of magnitude as the ones obtained for the
other approaches. In the case of the static stage, the average relative error is always about
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one order for magnitude higher, and it is evident that higher memory lengths or sampling
times need to be considered for reducing the static error to a similar range. The errors were
higher for the ZARC elements with slower dynamics, showing that slower systems require
longer memory lengths to reach an acceptable accuracy level.

5. Computational Burden Comparison

A battery ECM can be used in an EMS as a part of the BMS state estimation structure
or for battery simulation purposes during validation of energy management algorithms,
particularly in real-time simulation scenarios. In both cases, considering that normally
middle to low-end processing devices are often favoured due to budgetary restrictions,
care needs to be taken in regard to the computational requirements of the battery model
implementation. Here, we analyse those requirements in a general sense, by addressing
the sizes of the matrices and the number of operations for each FOM implementation
approach as indicators of required memory and computational complexity, respectively,
in an eventual deployment.

For the three approaches, the time implementation relies on a set of matrix additions
and multiplications. For mRC and OU-based approaches, the implementations consist of
sets of equations in the form of (37) and (5) for the state and output equations, respectively.
The discrete state equation established for the mRC approach can be generalised as:

x[k] = Adx[k− 1] + Bdi[k], (37)

where Ad and Bd, namely, the discrete state and input matrices, are given by:

Ad = (InRC − TARC)
−1 (38)

Bd = T(InRC − TARC)
−1BRC. (39)

Conversely, the GL-based implementation relies only on a difference equation with
the structure of (5), but in which x[k] does not represent the system states vector but a
vector with L previous values of the ZARC voltage.

Table 2 presents the sizes of the matrices and vectors used in the three approaches.
Even if the mRC and OU approaches seem to be equivalents in terms of memory require-
ments, the simpler structure of the mRC can be exploited for the reduction of its memory
requirements. Additionally, even if the number of arrays required for a GL implementation
is lower and its size dependency given L seems simpler than those for the matrices in the
other approaches, it is worth keeping in mind that in general for a given accuracy level L
will take values in the range of hundreds or thousands, while nRC or nOU will be under 20.

Table 2. Sizes of the matrices in the state and output equations in the analysed implementations.

Element mRC OU GL

Ad nRC × nRC (Diagonal) nOU × nOU (Lower triangular) −
Bd nRC × 1 nOU × 1 −
C 1× nRC (All-ones) 1× nOU (All-ones) L× 1
D 1× 1 (zero) 1× 1 1× 1

Table 3 summarises the numbers of additions and multiplications required by each
implementation approach. The specific structures of the matrices can be also exploited
in the mRC and OU-based implementations, to refine the results presented in Table 3 by
skipping the multiplications by zero and expressing the multiplication of column vectors by
row vectors full of ones as an addition. The new operations count with this considerations
is presented in Table 4.
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Table 3. Numbers of additions and multiplications required for the analysed implementations.

Approach Additions Multiplications Total

RC n2
RC + nRC n2

RC + 2nRC + 1 2n2
RC + 3nRC + 1

OU n2
OU + nOU n2

OU + 2nOU + 1 2n2
OU + 3nOU + 1

GL L L + 1 2L + 1

Table 4. Numbers of additions and multiplications with simplifications.

Approach Additions Multiplications Total

RC 2nRC − 1 2nRC 4nRC − 1

OU n2
OU+3nOU

2
n2

OU+3nOU+2
2 n2

OU + 3nOU + 1
GL L L + 1 2L + 1

Similarly to what was concluded for the array dimensions discussion, the expressions
in Table 4 show that for the same order, a mRC implementation will require fewer opera-
tions than an OU one. It is worth mentioning that for the GL approach, even if there is not
dependence on the square of L in the expressions for the number of operations required,
the value of L needs to be considerably higher than the order for the other approaches to
reach a given accuracy level.

The number of multiplications required for the evaluation of each type of implemen-
tation was used for assessing the computational burden in each case. Figure 10 plots the
accuracy against the computational burden in terms of the number of multiplications for
ZARC 4. The errors in static and dynamic stages are shown in Figure 10a,b, respectively.
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Figure 10. Average relative errors vs. numbers of multiplications for mRC, OU and GL. (a) Dynamic stage; (b) static stage.

The curves for T = 0.01 s in Figure 10a show clearly how for a fixed mean relative error
level in the dynamic stage of the accuracy tests, the number of required multiplications
is always lower for the mRC approach, followed by the OU one. It is worth mentioning
that the three approaches converge to values in the same order of magnitude for the mean
relative error when increasing the complexity of the implementation; this may be an effect
of the local truncation error due to the discretisation process. The asymptotic values of
the analysed errors are comparable for a fixed sampling time. This can be ascribed to
the fact that both the backward Euler and the GL derivative approximations are first-
order approximations, leading to an O(T) local truncation error, using big O notation [17].
To show the dependency on the sampling time of the identified error asymptotic values,
the accuracy test was repeated using the current signal in Figure 4, but downsampled using
T = 0.1 s. Those results are also summarised in Figure 10a, showing how the limit in the
mean relative error is reached at a higher value, confirming the relationship between the
sampling time and the maximum achievable accuracy.
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The results presented in Figure 10b show that an increase in complexity has a more
pronounced effect on the accuracy under static conditions, which tracks back to the re-
quirement of higher orders or memory lengths for covering a wider time-constant range in
the response approximation. In this case the previously observed oscillatory behaviour
for higher orders in the mRC implementations is more evident for the two considered
values of T. The effect of the local truncation error due to the discretisation process is also
observed in this case, even if for lower values of the mean relative error.

From the results of the accuracy against complexity analysis, it can be clearly observed
that the best accuracy–complexity compromise is offered by the mRC approach, allowing
one to reach low error levels with a small computational burden. It is worth mentioning
that this is the case provided good fitting of the ZARC element in the frequency domain
can be performed. This is true for applications in which the model is used for battery
simulation, but it is not the case when identification of impedance models from time
measurements is required. In such instances, a good relationship between the parameters
fitted from time-domain experiments with the frequency response is required. Thus, it is
worth checking the suitability of the implementations for the time-domain identification of
impedance parameters.

6. Analysis of the Suitability of Time-Domain Identification of the Battery Impedance

One of the main reasons for adopting battery FOMs is the capability of accurately
approximating the voltage response while requiring a low number of parameters, which is
of interest for tasks such as state estimation and battery characterisation. For this reason,
in order to illustrate the applicability of the considered FOM implementation approaches
in the framework of battery model identification using time-domain measurements, a set
of time-domain FOM fitting tests were performed.

For the fitting tests, the reference voltage data v[k] correspond to the random stage of
the accuracy tests as the reference voltage signals presented in Figure 5. For all the ZARC
elements and the implementations considered in the accuracy analysis, the associated
parameters were fitted by minimising the mean square error between the reference voltage
v[k] and vx[k], which corresponded to vRC[k], vOU [k] or vGL[k] depending on the evaluated
approximation. For all cases, the minimisation problem was solved in Matlab® using
the default particle swarm optimisation (PSO) algorithm, implemented by the Matlab®

function “particleswarm”. The default PSO algorithm employs a number of particles
automatically selected as the minimum between 10 times the number of parameters to be
fitted and 100 particles; a function tolerance of 10−6; and a maximum iteration number of
200 times the number of parameters to find [34].

The set of identified parameters changes depending on the approach evaluated.
In the case of the GL-based implementations, the three parameters of the ZARC element,
namely, Rp1, Q1 and φ1, can directly be identified due to the nature of this implementa-
tion, where the time response of the FO element is directly approximated, as presented in
Section 3.3. This can be observed in the schematic of the identification procedure presented
in Figure 11c, where the parametrisation process takes the identified values of the ZARC pa-
rameters as inputs for generating the vectors required for the time-domain implementation.
Similarly, for the OU approach, the direct identification of the ZARC element parameters
from time measurements is possible due to the direct relationship between Rp1, Q1, φ1
and the poles and zeros of the implemented integer-order transfer function, as introduced
in Section 3.2. Figure 11b shows the implementation based on the OU approach, which
was not modified for the fitting tests; only the source of the ZARC element parameters’
changes, now being generated by the minimisation algorithm.

For the mRC approach, an initial frequency-domain fitting of the FO element impedance
is required. For identification using time-domain measurements, this step cannot be per-
formed. The resistance and capacitance values needed to be fit directly, as represented in
the flowchart in Figure 11a.
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(a)

(b)

(c)

Figure 11. Block diagrams of the fitting procedures for the (a) multiple RC, (b) Oustaloup and
(c) GL approximations.

On the one hand, for the OU and the GL approaches, the number of parameters to
be identified was always 3, independently of the order nOU or memory length L. On the
other hand, the number of parameters to identify with the mRC approach increased with
the order, being equal to 2nRC. This highlights the main drawback of the mRC approach:
when fitting the time response of the FO element, overfitting issues may arise due to the
high number of parameters.

For all the fitting tests, the mean of the relative error between the reference voltage
and the response of the fitted approximation was computed as an indicator of the goodness
of the time-domain fit. Additionally, the indicator of how close the obtained impedance is
to the expected one in the range from 0.01 to 20 Hz is the following:

δZ(ω) =

∣∣ZZARC(ω)− Zapp(ω)
∣∣

|ZZARC(ω)| . (40)
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Here, δZ corresponds to the relative distance between the impedance of the fitted
approximation, called Zapp, and the one of the original ZARC element, ZZARC.

The results obtained for ZARC 3 are summarised in Figure 12 as a plot of the relative
error in time against the one in frequency. Even if relative errors in time under 5% were
obtained for multiple instances of each approach, similar results in frequency were only
reached for OU and GL approximations. In the case of mRC-based approximations, a good
fitting in time is not necessarily translated to a low distance between the approximation
impedance and the original one. It is worth mentioning that the minimisation algorithm
was not optimised, but despite this, good accordance between the original and approx-
imated impedance was reached for the OU and the GL approximations and not for the
mRC case. Similar results were reached for all the other ZARC elements, illustrating
how for the mRC approach, the lack of a direct relationship between the approximation
parameters—namely, the resistance and capacitance values—and the ZARC impedance
parameters reduces the possibility of identifying an approximation in time domain that
also has a frequency response close to the real one.

An on-board-oriented implementation of these identification methods should address
additional issues. One of them is the noise affecting the current and voltage measurements.
Such noise contributes to causing a bias in the identified parameters, which should be
compensated for with advanced fitting algorithms, as shown, for instance, in reference [35].
The noise compensation is worthy to be a matter of future study.
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Figure 12. Fitting ZARC 3: average relative voltage error vs. average relative impedance distance.

7. Conclusions

In this work, the three main approaches adopted in the literature for the implemen-
tation of the time-domain response of battery FOMs were introduced and compared in
terms of accuracy, computational requirements and suitability for the time-domain iden-
tification of battery impedance. The study was performed in a simulation framework
with six different ZARC elements, which are normally used for the approximation of
battery impedance in the middle-frequency range. The comparison was performed in a
simulation environment where the reference solution was an analytical expression for the
response of a ZARC element under a multiple-step current. The proposed expression,
obtained using FO calculus theory, was used for generating the reference data required for
the accuracy analysis of the considered implementations. Even if the discussion focused
on ZARC elements, the results can be extended to the Warburg element and to the total
battery impedance.
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The primary results of the study can be summarised as follows.

• In terms of accuracy under static conditions, average relative errors under 0.1% were
reached for all the evaluated ZARC elements using the three evaluated approaches.
From the computational complexity viewpoint, these results were achieved with the mRC
and OU approaches having similar computational requirements, whereas the GL
approach often required a number of multiplications two orders of magnitude higher.

• In terms of accuracy under dynamic conditions, the mean relative errors converged to
values in the same order of magnitude for the three approaches, when increasing
the complexity of the implementation. The asymptotic errors were comparable for a
fixed sampling time. For instance, the best mean relative error was around 2% using a
sampling time of 0.01 s for all the methods.

• In terms of suitability for identification from time-domain data, all approaches well fit the
time-domain voltage responses of the ZARC elements, with errors under 5%.

• However, in terms of suitability to reproduce the frequency-domain impedance spectrum
from the parameters achieved in the time-domain identification, only OU and GL
approximations reached errors of a few percent.

• The best accuracy–complexity relationship is offered by the mRC approach. It reached low
error levels with the smallest computational burden. This should be the case as long
as good fitting of the ZARC element in the frequency domain can be performed. This
conclusion does not hold up if the starting point for the ZARC identification is time-
domain measurements. In this latter case, the RC parameters may not lead to a correct
frequency-domain response, and therefore, the best compromise for identification
from time-domain data is represented by the OU approximation, which outperforms
GL in terms of computational complexity.

The selection of the FOM implementation method depends on the application require-
ments. On the one hand, if the interest is only in the battery response simulation, the mRC
approach offers the best accuracy–complexity compromise, which is desirable for real-time
simulations oriented towards the validation of energy management algorithms. On the
other hand, if the application requires accurate identification of the impedance parameters
from time-domain measurements, the OU approach offers the best compromise among iden-
tifying the impedance model parameters, the complexity and the accuracy requirements.
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Abbreviations
The following abbreviations are used in this manuscript:

BMS Battery Management System
CPE Constant phase element
ECM Equivalent Circuit Model
EIS Electrochemical impedance spectroscopy
EMS Energy Management System
ESS Energy Storage System
FO Fractional Order
FOM Fractional Order Model
GL Grünwald–Letnikov
mRC multiple RC
OU Oustaloup
SoC State of Charge
SoH State of Health

Appendix A. Fitting of the Multiple RC Approaches’ Parameters

The values of Rh and Ch, from the mRC approximation of the ZARC impedance
introduced in Equation (6), can be computed by solving the minimisation problem:

min
ΘRC

{∣∣ZZARC(jω)− ZRC(jω)
∣∣2}, (A1)

where the array of parameters is given by ΘRC = [R1, · · · , RM+1, C1, · · · , CM+1]. This
optimisation problem has been previously solved in the literature. The most widely
accepted solution is the one proposed by [15], which presents the approximations of ZARC
elements for given values of φ1 using 1, 3 and 5 RC branches. That approximation relies on
a number of optimisation parameters precomputed in [15] only for a few discrete values of
φ1. Here, we present a generalisation of this method for an odd number of RC branches
nRC = M + 1 and any positive value of φ1 < 1.

For the procedure, we take as starting point the parameters of the ZARC element,
namely, Rp1, Q1 and φ1. We want to approximate the ZARC frequency response with M + 1
RC branches, with the values of the resistances and capacitors sorted as follows: RRC =
[R1, R2, · · · , RM/2+1, · · · , RM, RM+1] and CRC = [C1, C2, · · · , CM/2+1, · · · , CM, CM+1]. The
generalisation can be obtained by defining the values of the resistance “in the middle”,
defined by the index M/2 + 1, according to:

RM/2+1 =
K1Rp1 sin φ1π

2

1 + cos φ1π
2

. (A2)

For all the remaining resistances, except those with indexes 1 and M+ 1, and by taking
advantage of the the symmetry of the ZARC element impedance spectra, the values are
computed as fractions of the difference between Rp1 and RM/2+1, as expressed in:

Rh = RM+2−h =
Kh
(

Rp1 − RM/2+1
)

2
, 2 ≤ h ≤ M

2
. (A3)

Finally the most “external” resistances are computed as:

R1 = RM+1 =
Rp1 −∑M

h=2 Rh

2
. (A4)
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Then, the values of the capacitors can be estimated using the resistance and the
characteristic frequency ω0 = (1/(Rp1Q1))

1/φ1 values as follows:

CM/2+1 =
1

ω0RM/2+1
(A5)

Ch =
1

KM/2+hω0Rh
, 1 ≤ h ≤ M

2
(A6)

Ch =
1

ω0
K3M/2+2−h

Rh
,

M
2

+ 1 ≤ h ≤ M + 1. (A7)

While using this method for rewriting the optimisation problem presented in (A1),
we can replace the parameters vector for ΘRC = [K1, . . . , KM], reducing the number of
unknown parameters from 2M + 2 (the number of resistors plus the number of capaci-
tors) to M. The solution of the optimisation problem presented in (A1), and the set of
Equations (A2)–(A7), were implemented in Matlab®, allowing us to obtain the parameters
of the RC circuit that approximate the frequency response of an ideal ZARC element.

Appendix B. ZARC Element—Analytical Voltage Expression

For a ZARC element, the voltage v(t) = L −1{V(s)} can be computed as [17]:

v(t) = L −1


1

Q1

sφ1 + 1
Rp1Q1

I(s)

 =
1

Q1

[
tφ1−1Eφ1,φ1

(
− 1

Rp1Q1
tφ1

)]
∗ i(t)

=
1

Q1

∫ t

0
(t− τ)φ1−1Eφ1,φ1

(
− 1

Rp1Q1
(t− τ)φ1

)
i(τ)dτ, (A8)

where L −1{X(s)} is the inverse Laplace transform of X(s), Eα,β is the two-parameter
Mittag–Leffler function, the symbol ∗ stands for convolution and τ is the integration variable.
The two-parameter Mittag–Leffler function is defined by the following series expansion:

Eα,β(t) =
∞

∑
h=0

th

Γ(αh + β)
, (A9)

and it can be seen as a generalisation of the exponential function et, which can be considered
as a particular case of the Eα,β(t) function with α = β = 1 [17].

Equation (A8) can be used for computing the voltage response of the ZARC element
from the current signal. The main limitation of this solution is that it requires an expression
for the current in order to be evaluated. Additionally, this analytical expression is very
demanding computationally, as the computation for a given time value requires all the
previous values. Simplifications of this analytical expression can be achieved by considering
a step current signal i(t) = Uu(t− tu), where U and tu are the step amplitude and time,
and u(t) represents the unit step function. By taking (A8), and using I(s) for the Laplace
transform of the current step, it is possible to obtain an expression that does not require the
evaluation of an integral for the computation of the ZARC voltage:

v(t) = L −1{V(s)} = L −1


1

Q1

sφ1 + 1
Rp1Q1

U
s

e−tus


=

U
Q1

(t− tu)
φ1 Eφ1,φ1+1

(
− 1

Rp1Q1
(t− tu)

φ1

)
u(t− tu). (A10)
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Using the superposition principle, it is possible to extend these results for current
signals composed by combinations of sets of Nu step signals, meaning that they can be
written as:

i(t) =
Nu

∑
h=1

Uhu(t− tuh), (A11)

which is true for inputs such as square or pseudo-random binary sequence signals. If such
an input current signal is considered, the resulting voltage signal for the ZARC element is
given by:

v(t) =
Nu

∑
h=1

Uh
Q1

(t− tuh)
φ1 Eφ1,φ1+1

(
− 1

Rp1Q1
(t− tuh)

φ1

)
u(t− tuh). (A12)
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