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Abstract: L0 sparse methods are not widespread in Direction-Of-Arrival (DOA) estimation yet,
despite their potential superiority over classical methods in difficult scenarios. This comes from the
difficulties encountered for global optimization on hill-climbing error surfaces. In this paper, we
explore the loss landscapes of L0 and Continuous Exact L0 (CEL0) regularized problems in order
to design a new optimization scheme. As expected, we observe that the recently introduced CEL0
penalty leads to an error surface with less local minima than the L0 one. This property explains the
good behavior of the CEL0-regularized sparse DOA estimation problem for well-separated sources.
Unfortunately, CEL0-regularized landscape enlarges L0-basins in the middle of close sources, and
CEL0 methods are thus unable to resolve two close sources. Consequently, we propose to alternate
between both error surfaces to increase the probability of reaching the global solution. Experiments
show that the proposed approach offers better performance than existing ones, and particularly an
enhanced resolution limit.

Keywords: direction-of-arrival; sparse modeling; L0 regularization; nonconvex regularization;
loss landscapes

1. Introduction

The study of Direction-Of-Arrival (DOA) estimation has a long history in signal
processing. Conventional methods [1] such as beamforming or Capon’s method are still
the subject of numerous works, e.g., [2]. However, they present degraded performance in
the presence of multiple close sources. Subspace-based methods such as MUltiple SIgnal
Classification (MUSIC) have been introduced to improve the resolution limit for multiple
sources. Unfortunately, these methods fail in presence of correlated sources [3]. They also
often require a priori knowledge of the number of sources and need a sufficient number of
snapshots. Sparse DOA estimation has received much attention in the last decade due to
its potential performance in such scenarios [4–10].

Sparsity naturally arises in DOA estimation when considering a discretization of the
field-of-view in numerous candidate angles of arrival on a grid. The aim is to estimate
a vector γ whose dimension covers the whole grid and whose only the very few entries
corresponding to sources DOA are non-zero.

The purpose of sparse estimation, under the Single Measurement Vector (SMV) frame-
work, is to retrieve the sparse vector γ ∈ CG from the noisy measurement y = Bγ + w,
with y ∈ CN2

, N2 � G , knowing a dictionary B. The dictionary B depends on the ar-
ray’s responses for the different angles of arrival candidates. It can be formulated as the
following regularized problem:

min
γ

{
J`0(λ, γ) =

1
2
‖Bγ− y‖2

2 + λ‖γ‖0

}
, (1)
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where the so-called `0-norm is defined as ‖γ‖0 = Card
{

g ∈ {1, . . . , G} : γg 6= 0
}

, γg being
the the g-th component of vector γ. The `0-norm is the natural measure of sparsity: it
counts the number of non zero components of the vector. The regularization parameter λ
aims to balance the relative importance between the data fidelity term 1/2‖Bγ− y‖2

2 and
the `0-norm enforcing sparsity of the solution. The sparse estimation problem can also be
formulated as a constraint problem. The relationship between the two `0-problems has been
studied in [11]. Based on this study, recent theoretical results [12,13] have been provided
for an off-line selection of λ so that the `0-problems are equivalent. The regularization
parameter is here chosen in accordance with those results.

The `0-minimization problem is known to be NP-hard: its resolution usually re-
quires an exhaustive search. The use of the very recently proposed global optimization
method [14] is limited to small size problems and is thus unadapted here because of its
huge computational cost. So far, many suboptimal methods have therefore been proposed,
as the well-known Iterative Hard Thresholding (IHT) algorithm. IHT is a proximal gra-
dient descent algorithm: it iteratively produces estimates γ̂(i) so that the cost function J`0

decreases, starting from an initial point γ̂(0). However, the `0-regularized error surface
J`0 exhibits numerous local minima, and convergence is only proved to a stationary point.
Convex relaxation of (1) by the `1-norm is also a popular alternative. However, condi-
tions [15] under which the sparse vector can be reliably recovered are usually too restrictive
for practical applications as in DOA estimation.

More recently, minimization of a regularized criterion using nonsmooth nonconvex
but continuous penalties has drawn considerable attention [16], and it has been shown in
many applications that it can yield significantly better performance than with using the
`1-norm [17]. Such penalties include `q-norms (0 < q < 1), Smoothly Clipped Absolute
Deviation (SCAD), and Minimax Concave Penalty (MCP) [18]. The Continuous Exact `0
(CEL0) penalty [19] corresponds to the limit case of MCP for the SMV framework. CEL0
is shown to suppress some local minima of J`0 while preserving the global one. The
CEL0-regularized cost function is:

JCEL0(λ, γ) =
1
2
‖Bγ− y‖2

2 + ΦCEL0(λ, γ), (2)

with

ΦCEL0(λ, γ) = ∑
i∈IG

φ(λ, αi, γi) (3)

φ(λ, αi, γi) = λ−
(
|γi| −

√
2λαi

)2

2αi
1{|γi |≤

√
2λαi} (4)

and αi = 1/‖B·,i‖2
2, B·,i being the i-th column of matrix B. 1 is the indicator function whose

value is one if the given condition is respected and zero otherwise. Despite its promising
interest, we have shown in [12] that traditional suboptimal optimization schemes of CEL0-
regularized functional as Iterative Reweighted `1 (IRL1) or Forward Backward (FB) are
unable to resolve close sources.

The aim of this paper is to investigate the properties of J`0 and JCEL0 loss surfaces
in order to propose a sparse optimization strategy to resolve close sources . The goal is
to improve the resolution limit of both MUSIC method, limited for low Signal-to-Noise
Ratios, and existing sparse methods. The proposed approach follows an iterative scheme
that requires little computational cost. It shows good performance for close sources and
does not require any particular initialization.
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Outline of the paper: we first explain the model and the sparse DOA estimation
problem in Section 2. In Section 3, we compare J`0 and JCEL0 loss surfaces in the context of
multi-source DOA estimation: an in-deep analysis of the minimizers is provided for two
close sources. Based on this analysis, Section 4 presents the proposed optimization scheme,
whose originality is to alternate between both loss surfaces. Numerical simulations of
Section 5 finally show the validity and advantages of our approach.

Notations: Upper-case and lower-case boldface letters denote matrices and vectors,
respectively. ·∗ denotes the conjugate, ·T the transpose and ·H the conjugate transpose of a
vector or matrix. xi is the ith component of vector x, and ωi the ith component of the set
ω. Given a matrix X, the ith column is denoted X·,i. Considering a matrix X of dimension
N×G, Xω is the submatrix of X containing the columns indicated by the set ω ⊆ IG, where
IG = {1, . . . , G} is the ordered index set. Similarly, xω is the subvector of x defined as:

xω =
(

xω1 , . . . , xω]ω

)T
, with ]ω the number of elements in ω.

2. Sparse DOA Estimation Problem
2.1. On-Grid Array Signal Modeling

Consider M far field narrow band sources impinging an array of N antennas from
angles θ̃m, m = 1 . . . M. For a single snapshot at time t, the output array signal x(t) ∈ CN

is expressed as x(t) = [x1(t) . . . xN(t)]
T = ∑M

m=1 a(θ̃m)s̃m(t) + n(t), where a(θ̃m) is the
steering vector (or array response) for the direction θ̃m, s̃m(t) the complex envelope of
the signal of the mth source, and n(t) ∈ CN a white gaussian noise vector of covariance
E
[
n(t)nH(t)

]
= σ2

nIN , where IN is the N×N identity matrix. Let us suppose the directions
of the sources are part of a predefined set Θ = {θ1, . . . , θG} resulting from the discretization
of the field-of-view, with G � N: for all arrival angles θ̃m, m ∈ [1, . . . , M], there exists
g ∈ [1, . . . , G] such that θ̃m = θg. This assumption is often considered in operational systems
to measure the calibration table A = [a(θ1), . . . , a(θG)] containing the array responses
for the angles in Θ. Considering this calibration table, the measurement x(t) can be
expressed as:

x(t) = As(t) + n(t), (5)

where s(t) ∈ CG is sparse with only M non-zero entries corresponding to the sources
signals s̃m(t), with M� G.

Under the assumption that the sources are uncorrelated, it is interesting to use the
vectorized covariance matrix in algorithms: it allows us to consider the contribution of
multiple snapshots thus increasing the accuracy, without increasing the computational cost
by much. It also has the advantage of being a SMV model, thus all associated methods
can be used, and it additionally gives the possibility of estimating more sources than the
number of sensors.

2.2. Vectorized Covariance Matrix Model

Considering uncorrelated sources, the covariance matrix Rxx =̂ E[x(t)xH(t)] is given by:

Rxx =
M

∑
m=1

a(θ̃m)aH(θ̃m)γ̃m + σ2
nIN , (6)

with γ̃m the power of the mth source and IN the square identity matrix of dimension N.
The vectorized covariance matrix, noted as r = vec(Rxx), is the vector obtained from the
concatenation of the columns of Rxx. It can be expressed as

r =
M

∑
m=1

b(θ̃m)γ̃m + σ2
nvec(IN) (7)

with b = a∗ ⊗ a, a∗ is the conjugate of a, and ⊗ is the Kronecker product. Considering
a dictionary B = [b(θ1), . . . , b(θG)] computed from the calibration matrix A, we have
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r = Bγ + σ2
nvec(IN). Considering K finite samples, the covariance matrix is estimated by

R̂xx = 1/K ∑K
k=1 x(tk)xH(tk), and we denote r̂ the associated estimated vectorized covari-

ance matrix. Let us suppose that the power of the noise is known. We consider the noisy
observation vector y ∈ CN2

computed as:

y = r̂− σ2
nvec(IN) = Bγ + w, (8)

with B ∈ CN2×G. The noise vector w results from the estimation of Rxx with a finite
number of snapshots. The power vector γ ∈ CG is sparse and the indices of non-zero
components indicate the directions of the sources. The aim of sparse DOA estimation is
to retrieve the indices of non-zero components of vector γ in Equation (8), through the
resolution of the problem given by Equation (1).

3. Description and Numerical Investigations of the Minimizers of J`0 and JCEL0

It is known that there are numerous local minima in J`0 , which complicates the
minimization of the criterion. Initialization of iterative descent algorithms is particularly
delicate, as also highlighted in the DOA estimation literature. In [12], we have successfully
used CEL0 penalty for DOA estimation of well-separated sources. Those good results
do not seem to be transposed to the case of close sources. It is important now to analyze
more deeply the minimizers of `0 and CEL0 penalized problems in order to propose an
optimization scheme able to resolve closer sources.

3.1. Simulation Setup

Although our approach is array and scenario independent, we illustrate it in this
paper with the following setup. We consider an Uniform Circular Array (UCA) with N = 7
antennas and radius d = λ0/2, where λ0 is the wavelength. This array could allow for two-
dimensions direction-of-arrival estimation, but we limit ourselves to azimuth estimation.
The −3 dB beamwidth of this array is 40°. UCAs are well known for their θ invariant
performance. We study the case of M = 2 incoming sources located at θ̃1 = 32° and a
varying θ̃2. The number of snapshots is fixed to K = 50. In this part, the received signal
is noiseless. The field-of-view is the range [0, 360]° with a grid spacing of 0.5° (G = 720).
The mutual coherence, corresponding to the maximum absolute correlation between two
columns of the dictionary, is in this case close to 1: `1 methods are thus ineffective.

3.2. Minimizers of J`0

Let us define IG = {1, . . . , G} the ordered index set. For a given observation y ∈ CG

and a set ω ⊆ IG, we define the constrained problem (Cω) as follows:

(Cω) : min
γ
‖Bγ− y‖2

2, s. t. γi = 0, ∀i ∈ IG \ω (9)

where γi is the ith component of vector γ. Let us note γ̂ω the subvector of γ̂ composed only

with the terms indicated by ω : γ̂ω =
(

γ̂ω1 , . . . , γ̂ω]ω

)T
, with ]ω the number of elements

in ω. The constraint ensures the solutions γ̂ are sparse vectors whose indices of all non
zero entries are in ω, i.e., all components whose indices are not in ω are null. We can then
write γ̂ = Zp(γ̂ω), where Zp is a zero padding operator in IG:

γ̂i =

{
0 if i /∈ ω

γ̂ωk for the unique k such that ωk = i.
(10)
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For any ω ⊆ IG, γ̂ ∈ CG solves (Cω) if and only if γ̂ω ∈ C]ω solves BH
ω Bωx = BH

ω y
and γ̂ = Zp(γ̂ω). Bω is the submatrix of B composed only with the columns whose indices
are in ω.

There are strong connections between the minimizers of the constrained problem
(Cω) and the minimizers of the regularized criterion J`0(λ, ·) that we want to analyze. For
y ∈ CN , given a set ω ⊆ IG, let γ̂ solve problem (Cω). Then for any λ, J`0(λ, ·) reaches a
(local) minimum at γ̂ (Proposition 2.3 [20]). Conversely, for y ∈ CN and λ > 0, let J`0(λ, ·)
have a (local) minimum at γ̂. Then γ̂ solves (Cω̂) for ω̂ = supp(γ̂) (Lemma 2.4 [20]). More-
over, the (local) minimum that J`0(λ, ·) has at γ̂ is strict iff rank(Bω̂) = ]ω̂ (Theorem 3.2 [20]).
There is thus a large number of local minima: the number of supports ω ⊆ IG such that
rank(Bω) = ]ω that lead to strict local minima is upper bounded by ∑N2

k=0 (
G
k ).

In [20], it is shown that under mild conditions, J`0(λ, ·) have a unique strict global
minimizer. It is common knowledge that the optimal solution of the regularized problem
given by Equation (1) depends on the regularization parameter λ, which balances the
relative importance between data fidelity and sparsity. In most papers, this parameter
is empirically tuned. In previous works [12,13], we proposed a theoretical analysis for
an off-line selection of λ. In the sequel of this paper, λ will be selected in an appropriate
interval I as defined in [12,13].

Figure 1a–d represents projections of J`0 for the scenario described above, for θ̃1 = 32°
and θ̃2 = 62° in the noiseless case. Iso-levels of J`0 are reported for a vector γ having at
most two non-zero components: γ = Zp(γω) with ]ω = 2. Those components correspond
to fixed directions θω1 = θ̃1 = 32° and θω2 which changes on the different figures. On (a),
θω2 = 47°, which corresponds to 1/2

(
θ̃1 + θ̃2

)
; on (d), θω2 = θ̃2 = 62°. In between, we set:

θω2 = 52° and 57°. The values of the two components γω1 and γω2 , which are the only
components allowed to be non-zero, are varying along the two axis. λ is fixed to 9.5, which
belongs to the interval I. In each figure, we see four (local) minima: the local minimum at
0, local minima along the axis (i.e., one non-zero component), and those corresponding to
strictly two non-zero components. The global minimum (black filled circle) is located on
Figure 1d for γω1 = γω2 = 7 and its value is 2λ = 19.

3.3. Minimizers of JCEL0

The global minimizer of J`0 is preserved in JCEL0, but the number of local minima of
JCEL0 may be inferior to the number of local minima of J`0 . Particularly, a local minimum γ

of JCEL0 verifies |γi| ∈ {0} ∪ [
√

2λ,+∞); hence local minimizers of J`0 having at least one
component |γi| ∈ (0,

√
2λ) are not local minimizers of JCEL0 [21]. Figure 1e–h represents

the loss surfaces of JCEL0. We observe the suppression of local minima on JCEL0 for θω2

close to 1/2
(
θ̃1 + θ̃2

)
= 47°, for which 0 < γω2 <

√
2λ = 4.36. Some local minima of

J`0 are also only critical points of JCEL0. Moreover, the local minima that J`0 has at 0 is
no longer one in JCEL0, which is particularly interesting for the initialization of iterative
optimization algorithms.

However, those good properties also have a disadvantage: it leads to “flat” minima,
i.e., large connected regions where the error remains approximately constant. This is
illustrated on Figure 2, comparing the minimum of J`0 and JCEL0 as a function of θω1 and
θω2 for two (or one) non-zero components. Numerous points of the CEL0 surface are
approximately at the level of the local minima corresponding to θω1 = θω2 = 1/2(θ̃1 + θ̃2).
This behavior appears for close sources when this point is also close to the global minimum.
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(h) JCEL0, θω1 = 32°, θω2 = 62°

Figure 1. Loss surfaces of J`0 (a–d) and JCEL0 (e–h) as a function of γω1 and γω2 , for γ = Zp(γω), with ]ω = 2, i.e., at most
two non-zero components corresponding to directions θω1 = θ̃1 and a varying θω2 . When those directions correspond to the
true ones θ̃1 = 32° and θ̃2 = 62° (d and h) the global minimum indicated by a black filled circle (γω1 = γω2 = 7) is equal to
2λ = 19. Local minima are indicated by the blue asterisks, while light blue diamonds represent critical points that are not
local minima.

(a) J`0 (b) JCEL0

Figure 2. Minimum of the loss surfaces of J`0 (a) and JCEL0 (b) for γ = Zp(γω), with ]ω = 2, as a
function of θω1 and θω2 . The diagonal corresponds to θω1 = θω2 , i.e., ]ω = 1.
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4. Alternating between Loss Surfaces

For well separated sources, we have shown in [12] than IRL1 algorithm used to
minimize JCEL0 (IRL1-CEL0) gives better statistical results than IHT and at a lower com-
putational cost. Indeed, IRL1-CEL0 benefits from the suppression of local minima in this
case. Unfortunately, IRL1-CEL0 fails for close sources. This behavior is illustrated on
Figure 3a, for true sources at 32° and 48°. Let us note that MUSIC fails for such close
sources. The IRL1-CEL0 algorithm is rapidly attracted by a local bad basin corresponding
to a few non-zero components for directions in the middle of the true directions (lack of
resolution). In this example, denoting γ̂ the final estimated vector and ω̂ the set indicating
the non-zero components, we verify that BH

ω̂ Bω̂γ̂ω̂ = BH
ω̂ y and rank(Bω̂) = ]ω̂ = 5: it is

a strict local minimum of J`0 . The IHT algorithm also remains stuck in a local minimum
with this time numerous non-zero components (Figure 3b), forming two clusters around
the true directions. In order to avoid being attracted by a bad basin and take advantage
of both regularizations, we propose to alternate the minimization between them. Based
on this heuristic, we propose the optimization scheme ALICE-L0 (Alternated Landscapes
Iterations for Complementary Enhancement for `0) detailed on Algorithm 1.

Algorithm 1. Optimization Scheme ALICE-L0 (Alternated Landscapes Iterations for
Complementary Enhancement for `0)

Input: dictionary B, observation y, β = 1/L, L Lipschitz-constant of B, τ1, τ2, stopping criteria
Initialization: γ̂(0) = 0, i = 0, iouter = 0
• ε(i) = ‖Bγ̂(i) − y‖2

2

while |ε
(i−1)−ε(i−2) |

ε(i−1) > εlim and iouter < nlim do
• iouter = iouter + 1
• Compute w weighting vector by:

wg = (
√

2λ− |γ(i)
g |)1{|γ(i)

g |≤
√

2λ
}, g = 1..G

• j = 1, T(1) = 1, z(1) = γ̂(i)

while |ε
(i−1)−ε(i−2) |

ε(i−1) > εlim,1 and j < nlim,1 do
(weighted FISTA iterations)
• j = j + 1, i = i + 1
• γ̂(i) = prox‖·‖1,λβw

(
z(j−1) − βBH(Bz(j−1) − y)

)
• T(j) =

1+
√

1+(2T(j−1))2

2

• z(j) = γ̂(i) + T(j−1)−1
T(j)

(
γ̂(i) − γ̂(i−1)

)
end while
• k = 0
while |ε

(i−1)−ε(i−2) |
ε(i−1) > εlim,2 and k < nlim,2 do

(IHT iterations)
• k = k + 1, i = i + 1
• γ̂(i) = prox‖·‖0,λβ

(
γ̂(i−1) − βBH(Bγ̂(i−1) − y)

)
end while
• εlim,1 = τ1εlim,1, εlim,2 = τ2εlim,2

end while
return γ̂(iend)
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(a) IRL1-CEL0 (b) IHT (c) ALICE-L0

Figure 3. Solutions as iterations go by for close sources with no noise, for λ = 0.78. X-axis: iteration number. Y-axis:
directions associated with components of γ̂. The color represents the level of the components. True sources θ̃1 = 32° and
θ̃2 = 48° are indicated by the black doted lines. Corresponding components of the optimal solution are equal to 7, all others
are null.

We start the minimization considering the CEL0-regularized functional, and using
γ̂(0) = 0 as initialization. Indeed, we previously saw that this local minimum in J`0 is
suppressed in JCEL0. Iterations of the weighted Fast Iterative Soft Thresholding Algorithm
(weighted FISTA) aim to minimize the convex majorizer of the nonconvex CEL0 functional.
For a weighting vector w, iterations use the proximal of the weighted `1 function, defined
component by component as:[

prox‖·‖1,λβw

]
g
(x) = max

{
0, 1− λβw

|xg|

}
xg1{|xg |6=0}. (11)

After some iterations, the estimated vector is used as initialization for IHT, which
performs minimization steps over the `0-regularized cost function. The hard threshold
corresponds to the proximal of the `0-norm, defined by:[

prox‖·‖0,λβ

]
g
(x) = xg1{|xg |≥

√
λβ
}. (12)

We then loop back to alternate between the loss surfaces. The behavior of our algo-
rithm is represented on Figure 3c for close sources (in this article, we set εlim = 1× 10−6,
εlim,1 = 1× 10−2, εlim,2 = 1× 10−6, nlim = 2000, nlim,1 = 200, nlim,2 = 200, τ1 = 0.9,
τ2 = 1). In this noiseless case, this is the only algorithm attaining the global minimum
of J`0 .

5. Statistical Performance

The purpose of this section is to numerically quantify the algorithms’ performance
as a function of the sources’ separation. For that, two criteria will be used: the first one
is the percentage of outliers (only one estimated direction or located at more than half a
beamwidth of the true directions), and the second one the Root-Mean-Square-Error (RMSE)
between estimated and true directions, calculated without outliers. The simulation setup is
the one described in Section 3.1, for a Signal-to-Noise Ratio per source equal to 0 dB. Results
are presented in Figure 4: we observe that the proposed scheme ALICE-L0 outperforms
other methods in terms of statistical accuracy and resolution limit. Let us note that the
behavior of IHT is unreliable with noise, and thus statistical results are not presented.
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Figure 4. Performance as a function of the sources separation: percentage of outliers and RMSE
(not reported when having more than 50% outliers). The regularization parameter λ is fixed to 0.78
according to the theoretical analysis [12].

6. Conclusions

We linked the operating limits of IHT and IRL1-CEL0 to the properties of correspond-
ing loss landscapes in DOA estimation. To avoid the weaknesses of both criteria, an
optimization scheme is proposed using alternatively J`0 and JCEL0, i.e., alternating between
the two regularizations. A particular implementation using λ obtained by [12,13] has been
successfully tested, improving for example the resolution limit. Ongoing work concerns
algorithm parameters (when to change of regularization) which are here left to the user.
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