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COMPLEX ASSOCIATED TO SOME SYSTEMS OF PDE

PIERRE BONNEAU* AND EMMANUEL MAZZILLI**

Abstract. In [WW1] and [WW2], the author constructed the Complex associated to 1-regular
functions. This complex is the equivalent of Dolbeault’s complex for holomorphic functions if
we replace the Cauchy-Riemann equations by the Cauchy-Fueter equations. In this paper, using
the Cartan theory of linear Pfaffian system, we give a direct construction for the Cauchy-Fueter
complex, at least in R

8. Moreover, we give a sufficient condition in terms of Cartan’s theory, to
ensure that a complex associated to a linear PDE system with constant coefficients of order one,
contains only operators of order one. In fact, the Cauchy-Fueter equation in R

8 is an illuminating
example for which this condition is not satisfied.

1. introduction

The aim of this paper is to give a complete construction of the complex associated to the
1-regular functions. This complex was first obtained by Wang Wei in [WW1] and [WW2] using
classical theory of Leray’s spectral sequences. Here we give a more elementary construction using
the Cartan theory of involution for linear Pfaffian exterior differential system. For simplicity, we
restrict ourselves to germs of 1-regular functions defined in the neighborood of a point z ∈ C

8

with value in C
2. Using the notation of [WW2], the coordinates on C

8 will be (zij) with 0 ≤ i ≤ 3
and 0 ≤ j ≤ 1. The 1-regular functions are the solutions of the following PDE system

∂φ0

zi0
+

∂φ1

zi1
= 0, (1)

for all i. Nevertheless the previous homogeneous system is overdetermined, φ identically equal
zero, is not the only solution (it will be clear in the following). We will explain in more details the
construction of the first step in the 1-regular complex. We have to solve the non homogeneous
system associated to the first one

∂φ0

zi0
+

∂φ1

zi1
= Φi , (J). (2)

The system is overdetermined and so it has no solution for all (Φi). The first difficulty is to find
the constraint of integration; if we made an analogy with the Dolbeault complex for ∂̄ and we use
the language of differential form, the equivalent of the system J in this setting is the system

∂̄f = u, (3)

with u a 1-form in C
8 and a function f in C

8 with values in C. It is well known that we have
two constraints to solve these equations : u has to be a (0, 1)-form and ∂̄u = 0. In our case, it is
a little more difficult to find the constraints and the solutions. The system J can be viewed as a
linear pfaffian exterior differential system so we can apply the Cartan’s theory to find solutions
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of it. More precisely, if we introduce pa, paij as free variables for Φa, ∂φa

zij
, the structure forms of

the Pfaffian system associated to J are,

dpa − paijdz
ij ,

on the manifold M defined by the equations:

p0i0 + p1i1 = Φi, (J)

with independence condition ∧i,jdz
ij 6= 0 on M . Roughly speaking the Cartan theory implies

existence of solution of J passing through all points of M if the system is in involution. For
Pfaffian linear system the involution is equivalent of the two following things : the torsion is zero
for all points in M and the tableau associated to J , Ax, must be involutive for all x in M (see
[BCGGG] for the definition of Ax). The torsion is the obstruction of the existence of solutions
of the first prolongation system of J , denoted by J1, in sense of jets. With the variables paijkl for
∂2φa

∂zij∂zkl
, the first prolongation system J1 is the linear Pfaffian system with structure forms

dpa − paijdz
ij ,

dpaij − paijkldz
kl,

on the manifold M1 defined by the equations:

p0i0 + p1i1 = Φi,

p0i0kl + p1i1kl =
∂Φi

∂zkl
.

Clearly the two systems have exactly the same solutions. Finally the torsion is the compatibility
conditions for which the last two linear equations have solutions with paijkl symmetric by change
of pairs ij and kl. We can define by induction the prolongation Jq of J on the manifold M q for
all q ∈ N. Using the proposition 3.9 of [BCGGG], there exists k0 such that for all k ≥ k0 the
tableau Aq associated to Jq is in involution. To obtain a solution of J , it is sufficient to compute
the torsion of all Jq, which is done precisely in the section 2 for more general system than the
Cauchy-Fueter equations with intrinsic definition of the torsion. In section 3, we calculate the
torsion of the PDE system induced by the torsion of J by means of Spencer’s cohomology. This
torsion will give the second linear operator in the complex associated to the 1-regular functions,
and so on, until we obtain a system without torsion (see section 4). Furthermore, in the section
4, we give a sufficient condition for a linear PDE system with constant coefficients of order one,
to have only first order operators in the associated complex, in terms of ”tableau”’s involutivity,
which seems new.

2. Some systems of PDE

Let us consider the system of partial differential equations

∂φ0

∂zj00
+

∂φ1

∂zj11
= ϕj0,j1 , with (j0, j1) ∈ I ⊂ {1, ..., n} × {1, ...,m}, (4)

where the unknown functions φ0, φ1 are complex functions defined in an open set Ω of Cn+m =
C
n×Cm with coordonates (z10, z20, ..., zn0) ∈ C

n, and (z11, z21, ..., zm1) ∈ C
m, and the functions

ϕj0,j1 given in the second member are complex functions defined in Ω.
I is a subset of {1, ..., n} × {1, ...,m}, and the system 4 is a system with card(I) equations.
We denote I1 = {j ∈ {1, ...,m} : ∃j0 ∈ {1, ..., n} : (j0, j) ∈ I}, I0 = {i ∈ {1, ..., n} : ∃i1 ∈
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{1, ...,m} : (i, i1) ∈ I}, and I1 = {1, ...,m} − I1, I0 = {1, ..., n} − I0.
Suppose that (j0, j) and (j′0, j) are two elements of I. Then the system 4 contains the two equations

∂φ0

∂zj00
+

∂φ1

∂zj1
= ϕj0,j , (5)

and
∂φ0

∂zj
′

00
+

∂φ1

∂zj1
= ϕj′0,j . (6)

Therefore,

∂φ1

∂zj1
= ϕj0,j −

∂φ0

∂zj00
= ϕj′0,j −

∂φ0

∂zj
′

00
, (7)

and, consequently,

ϕj′0,j = ϕj0,j +
∂φ0

∂zj
′

00
−

∂φ0

∂zj00
. (8)

Reporting this expression of ϕj′0,j in 6 gives 5. We have then two times the same equation. So,
we suppose that if (j0, j) and (j′0, j) are in I, then j′0 = j0. Consequently, to one element j of I1

corresponds one element j0 of I0. Similarly, to one element i of I0 corresponds one element i1 of
I1. We have a bijection b between I1 and I0. Often, we shall denote j0 = b(j) when j ∈ I1. The
number of equations in 4 is card(I1) = card(I0) = card(I).
According with [BCGGG], we note

pki0 = ∂φk

∂zi0
, pki0,j1 = ∂2φk

∂zi0∂zj1
, pki0,j1,l1 = ∂3φk

∂zi0∂zj1∂zl1
, ϕj0,j

i0 = ∂ϕj0,j

∂zi0
and so on. We also note

ϕj = ϕj0,j.
Then, 4 can be written

p0j00 + p1j1 = ϕj , j ∈ I
1. (9)

We want to obtain the torsion of the system 9 by using the notations and results of [BCGGG].
If I = {i1, i2, ..., ir} with ik ∈ {1, ..., n} and J = {j1, ..., js} with jk ∈ {1, ...,m} are multi-indices,
we note

I + ik = I, ik = {i1, i2, ..., ir , ik}, I − ik = {i1, i2, ..., ik−1, ik+1, ..., ir},

I0 = {i10, i20, ..., ir0}, I1 = {i11, i21, ..., ir1}, paI0,J1 =
∂r+sφa

∂zi10∂zi20...∂zir0∂zj11∂zj21...∂zjs1
.

We want to look for the torsion of any order of the system 9 by using the methods and notations
of [BCGGG].
We have, if we now note I = {i10, ..., ir0, j11, ..., js1} with ik ∈ {1, ..., n} and jl ∈ {1, ...,m}, by
deriving 9

p1I,j1 = ϕj
I − p0I,j00 when (j0, j) ∈ I, (10)

and obtain the structure equations






































θ0 := dφ0 − p0i0dz
i0 − p0j1dz

j1 = 0

θ0,i0 := dp0i0 − p0i0,i′0dz
i′0 − p0i0,j′1dz

j′1 = 0

θ0,J := dp0J − p0
J,i′0

dzi
′0 − p0J,j′1dz

j′1 = 0 when J ⊂ I

θ1 := dφ1 − p1i0dz
i0 − p1j1dz

j1 = 0

θ1,i0 := dp1i0 − p1i0,i′0dz
i′0 − p1i0,j′1dz

j′1 = 0

θ1,J := dp1J − p1J,i′0dz
i′0 − p1J,j′1dz

j′1 = 0 when J ⊂ I.

(11)
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IfM is the variety in the space of the variables φ0, φ1, z10, ..., zn0; z11, ..., zm1, p0J , p
1
J (with J ⊂

I), p0I,i′0, p0I,j′1, P 1
I,i′0, p1I,j′1, defined by the conditions 9, we can consider the cotangent space

T ∗M which is generated by

θ0, θ1, θ0,J , θ1,J , (with J ⊂ I), dz10, ..., dzn0, dz11, ..., dzm1, dp0J , dp
1
J ,

dp0I,i′0, dp
0
I,j′1, dp

1
I,i′0

, and (when j′ ∈ I1), dp1I,j′1.
(12)

When j′ ∈ I1, according with 9, dp1I,j′1 is replaced by dϕj′

I − dp0
I,j′00

.

From 11, we can deduce










































−dθ0,J = dp0J,i′0dz
i′0 + dp0J,j′1dz

j′1 with J ⊂ I

−dθ1,J = dp1J,i′0dz
i′0 + dp1J,j′1dz

j′1 with J ⊂ I, J 6= I

−dθ1,I = dp1I,i′0dz
i′0 + dp1I,j′1dz

j′1

= dp1I,i′0dz
i′0 +Σj′∈I1(dϕ

j′

I − dp0
j′00,I

)dzj
′1 +Σ

j′∈I1
dp1I,j′1

= dp1I,i′0dz
i′0 − Σj′∈I1dp

0
I,j′00

dzj
′1 +Σ

j′∈I1
dp1I,j′1 +Σj′∈I1ϕ

j′

I,i0dz
i0dzj

′1

+Σj′∈I1ϕ
j′

I,j1dz
j1dzj

′1.

(13)

We precise the summation domain under the sign Σ, except when the dommain of summation
concern all the indices, in this case, conformly with the Einstein convention, the indices are only
repeated.
We have to compare our notations, inspired by [WW2], with those of [BCGGG]. θa, in [BCGGG]
page 129, is indexed by a or b so, here, we have a = (0, J) with J ⊂ I (possibly ∅). The variables
are indexed by i or j, and, now, we have i = i0 or j1 with i ∈ {1, ..., n} and j ∈ {1, ...,m}. And
the terms dp (noted π in page 129 of [BCGGG]) are indexed by ε or δ which now becomes
ε = (0, J) or (0, I, i′0) or (0, I, j′1) or (1, J) or (1, I, i′0) or (1, I, j′1).
So, translating the formulas of [BCGGG] in page 130, we have, from 13, if J 6= I,

A0,J
(0,J,i′0),i0 = A1,J

(1,J,i′0),i0 = δ
i′

i , A0,J
(0,J,j′1),j1 = A1,J

(1,J,j′1),j1 = δ
j′

j ,

c0,Ji0,i′0 = c0,Jj1,j′1 = c0,Ji0,j1 = c1,Ji0,i′0 = c1,Jj1,j′1 = c1,Ji0,j1 = 0,
(14)

all the others expressions A0,J
.,. being 0. And, when J = I, we have

A0,I
(0,I,i′0),i0 = δ

i′

i , A0,I
(0,I,j′1),j1 = δ

j′

j ,

A1,I
(1,I,i′0),i0 = δ

i′

i , A1,I
(1,I,j′1),j1 = δ

j′

j if j ∈ I1,

A1,I
(0,I,j00),j1

= −1 if j ∈ I1 and 0 else,

c0,Ii0,i′0 = c0,ij1,j′1 = c0,Ii0,j1 = 0

c1,Ii0,i′0 = c1,Ij1,j′1 = c1,Ii0,j1 = 0 if j ∈ I1,

c1,Ii0,j1 =
∂ϕj

I

∂zi0
= ϕj

I,i0 and c1,Ij′1,j1 =
∂ϕj

I

∂zj′1
= ϕj

I,j′1 if j ∈ I
1.

(15)

Let I ⊂ J ⊂ T ∗M be a filtration of T ∗M like that of [BCGGG] page 129, that is to say I is
generated by θ0,J , θ1,J with J ⊂ I; J is generated by θ0,J , θ1,J , dz10, ..., dzn0, dz11, ..., dzm1;
and the generators of T ∗M are given before.
If p is an element of J⊥ ⊗ J /I, (see [BCGGG] page 138), i.e.
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p = p
(0,J)
i0

∂
∂p(0,J)⊗dz

i0+p
(0,J)
j1

∂
∂p(0,J)⊗dz

j1+p
(1,J)
i0

∂
∂p(1,J)⊗dz

i0+p
(1,J)
j1

∂
∂p(1,J)⊗dz

j1+p
(1,I,i′0)
i0

∂

∂p(1,I,i
′0)
⊗

dzi0 + p
(1,I,i′0)
j1

∂

∂p(1,I,i
′0) ⊗ dzj1 +Σ

j∈I1

(

p
(1,I,j′1)
i0

∂

∂p(1,I,j
′1) ⊗ dzi0 + p

(1,I,j′1)
j1

∂

∂p(1,I,j
′1) ⊗ dzj1

)

,

we want, using the values A•
•,• given in 14 and 15, to calculate π(p) (see page 138) and obtain

π(p) = ΣJ⊂I

(

p
(0,J,i′0)
i0 − p

(0,J,i0)
i′0

) ∂

∂θ0,J
⊗ dzi0 ∧ dzi

′0 + 2
(

p
(0,J,j′1)
i0 − p

(0,J,i0)
j′1

) ∂

∂θ0,J
⊗ dzi0 ∧ dzj

′1

+
(

p
(0,J,j′1)
j1 − p

(0,J,j1)
j′1

) ∂

∂θ0,J
⊗ dzj1 ∧ dzj

′1

+ΣJ⊂I, J 6=I

(

p
(1,J,i′0)
i0 − p

(1,J,i0)
i′0

) ∂

∂θ1,J
⊗ dzi0 ∧ dzi

′0

+ 2
(

p
(1,J,j1)
i0 − p

(1,J,i0)
j1

) ∂

∂θ1,J
⊗ dzi0 ∧ dzj1 +

(

p
(1,J,j′1)
j1 − p

(1,J,j1)
j′1

) ∂

∂θ1,J
⊗ dzj1 ∧ dzj

′

+
(

p
(1,I,i′0)
i0 − p

(1,I,i0)
i′0

) ∂

∂θ1,I
⊗ dzi0 ∧ dzi

′0 + 2Σ
j∈I1

(

p
(1,I,j1)
i0 − p

(1,I,i0)
j1

) ∂

∂θ1,I
⊗ dzi0 ∧ dzj1

− 2Σj∈I1
(

p
(1,I,i0)
j1 + p

(0,I,j00)
i0

) ∂

∂θ1,I
⊗ dzi0 ∧ dzj1

+Σ
j,j′∈I1

(

p
(1,I,j′1)
j1 − p

(0,I,j1)
j′1

) ∂

∂θ1,I
⊗ dzj1 ∧ dzj

′1

+ 2Σ
j∈I1,j′∈I1

(

p
(1,I,j′1)
j1 + p

(0,I,j00)
j′1

) ∂

∂θ1,I
⊗ dzj1 ∧ dzj

′1

+Σj,j′∈I1
(

p
(0,I,j00)
j′1 − p

(0,I,j′00)
j1

) ∂

∂θ1,I
⊗ dzj1 ∧ dzj

′1.

(16)

Besides, always following the page 138 of [BCGGG], we have to calculate the element c ∈ I∗ ⊗
∧2(J /I) given by the values c••,• in 14 and 15. We obtain

c =
∂

∂θ1,I
⊗ Σj∈I1dϕ

j
I ∧ dzj1

=
∂

∂θ1,I
⊗ Σj∈I1

[

ϕj
I,i′0dz

i′0 ∧ dzj1 + ϕj
I,j′1dz

j′i ∧ dzj1
]

.

(17)

Now, the torsion of 10 vanishes if and only if there exists p satisfying π(p) = c. It is easy to write

this condition because π(p) and c are expressed in the same base of I∗⊗
∧2(J /I). We obtain the

conditions:
if J ⊂ I,











p
(0,J,i′0)
i0 − p

(0,J,i0)
i′0 = 0

p
(0,J,j1)
i0 − p

(0,J,i0)
j1 = 0

p
(0,J,j′1)
j1 − p

(0,J,j1)
j′1 = 0,

(18)

if J ⊂ I and J 6= I,










p
(1,J,i′0)
i0 − p

(1,J,i0)
i′0 = 0

p
(1,J,j1)
i0 − p

(1,J,i0)
j1 = 0

p
(1,J,j′1)
j1 − p

(1,J,j1)
j′1 = 0,

(19)
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and










































p
(1,I,i′0)
i0 − p

(1,I,i0)
i′0 = 0

p
(1,I,j1)
i0 − p

(1,I,i0)
j1 = 0 if j ∈ I1

−
(

p
(1,I,i0)
j1 + p

(0,I,j00)
i0

)

= 1
2ϕ

j
I,i0 if j ∈ I1

p
(1,I,j′1)
j1 − p

(1,I,j1)
j′1 = 0 if j and j′ ∈ I1

p
(1,I,j′1)
j1 + p

(0,I,j00)
j′1 = 1

2ϕ
j
I,j′1 if j ∈ I1 and j′ ∈ I1

p
(0,I,j00)
j′1 − p

(0,I,j′00)
j1 = ϕj

I,j′1 − ϕj′

I,j1 if j and j′ ∈ I1.

(20)

The two first systems are easily satisfied. Also, the five first equations of the last system. The
third gives

p
(1,I,i0)
j1 = −p

(0,I,j00)
i0 −

1

2
ϕj
I,i0 if j ∈ I

1, (21)

and the last but one

p
(1,I,j′1)
j1 =

1

2
ϕj
I,j′1 − p

(0,I,j00)
j′1 if j ∈ I

1 and j′ ∈ I1. (22)

Now, it remains the last equation. First, if I = {k00} with k ∈ I1, it gives

p
(0,k00,j00)
j′1 = ϕj

k00,j′1
− ϕj′

k00,j1
+ p

(0,k00,j′00)
j1

= ϕj
k00,j′1

− ϕj′

k00,j1
+ ϕk

j′00,j1
− ϕj

j′00,k1
+ p

(0,j00,j′00)
k1

= ϕk
j00,j′1 − ϕj′

j00,k1
+ p

(0,j00,j′00)
k1 .

(23)

After simplification between the two last lines, we have, if j, j′, k ∈ I1,
(

ϕj
k00,j′1

− ϕj

j′00,k1

)

+
(

ϕj′

j00,k1
− ϕj′

k00,j1

)

+ (ϕk
j′00,j1

− ϕk
j00,j′1

)

= 0. (24)

Conversely, if this condition is satisfied, it is possible to find p
(0,j00,k00)
j′1 , symmetric in j, k, verifying

the first line of 23, that is to say, the last line of 20.
If, now, I = {i0} with i ∈ I0, (i.e. there is no i1 ∈ {1, ...,m} verifying (i, i1) ∈ I), then, the last
line of 20 says

p
(0,i0,j00)
j′1 = ϕj

i0,j′1 − ϕj′

i0,j1 + p
(0,i0,j′00)
j1 , (25)

and this does not implies constraint.
At last, if I = {j1}, we do not have any constraint, even if j ∈ I1.
Now, we want to look at the case where I contains more than one only element. If I does not
contain any element of I0, there is no constraint. But, if I contains an element k00 with k0 ∈ I0,
that is to say ∃k ∈ I1 such that (k0, k) ∈ I. Then, from 20,

p
(0,I,j00)
j′1 = ϕj

I,j′1 − ϕj′

I,j1 + p
(0,I,j′00)
j1

= ϕj
I,j′1 − ϕj′

I,j1 + ϕk
I−k0,j

′

00,j1
− ϕj

I−k0,j
′

00,k1
+ p

(0,I−k0,j
′

00,j00)
k1

= ϕk
I−k0,j00,j′1 − ϕj′

I−k0,j00,k1
+ p

(0,I−k0,j
′

00,j00)
k1 .

(26)

Simplifying the two last lines, we obtain
(

ϕj
I,j′1 − ϕj

I−k0,j
′

00,k1

)

+
(

ϕj′

I−k0,j00,k1
− ϕj′

I,j1

)

+
(

ϕk
I−k0,j

′

00,j1
− ϕk

I−k0,j00,j′1

)

= 0, (27)
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or again

∂

∂(I − k0)

[

(

ϕj
k00,j′1

− ϕj

j′00,k1

)

+
(

ϕj′

j00,k1
− ϕj′

k00,j1

)

+
(

ϕk
j′00,j1

− ϕk
j00,j′1

)

]

= 0. (28)

In the brackets
[

.
]

we have the quantity 24 which is zero. So, we have no new condition. The
condition 24 is the only condition for the system 10 having no torsion.

Here, we want to calculate the Hilbert-Poincaré series of the previous system. As [BCGGG],
we denoted by Aq, the set of homogeneous solutions of degree q + 1 to the homogeneous PDE
system deduced from 4. We are able now to recall the definition of the Hilbert-Poincaré series

Definition 2.1. For a linear PDE system with constant coefficients, the Hilbert-Poincaré series
is

∑

q dim(Aq)zq which is defined on the disk of radius 1.

Moreover, by general results, we know

Theorem 2.2. The Hilbert-Poincaré series is a rational function.

By rearranging the variables zi,0, zj,1, if card(I) = t, we may suppose that
I = {(n− k,m− k) : k = 0, 1, ..., t − 1}.
Then, the system 9 may be written

p0n−k,0 + p1m−k,1 = ϕk, ∀k = 0, ..., t − 1. (29)

We have

A(q) =
{

f = (f0, f1) : fj = Σ|I|=q+1A
j
Iz

I :
∂f0

∂zn−k,0
+

∂f1
∂zm−k,1

= 0, k = 0, ..., t − 1
}

. (30)

Sometimes, we shall note the variables
(z1,0, z2,0, ..., zn,0, z1,1, ..., zm,1) = (z1, z2, ..., zn, zn+1, ..., zm+n), and the multi-index I will be
note I = (i1, i2, ..., iq+1) with ij ∈ {(1, 0), (2, 0), ..., (n, 0), (1, 1), ..., (m, 1)} = {1, 2, ..., n, n +
1, ..., n +m} or I = [lI1, l

I
2, ..., l

I
m+n] = [lI1,0, l

I
2,0, ..., l

I
m,1] where lIi,0 = lIi is the number of i = (i, 0)

in I, and lIn+j = lIj,1 is the number of n+ j = (j, 1) in I.
The above-mentioned condition on f may be written

Σ|I|=q+1l
I
n−k,0A

0
Iz

I−(n−k,0) + lIm−k,1A
1
Iz

I−(m−k,1) = 0, ∀k = 0, ..., t − 1, (31)

that is to say, for all multi-index J such that | J |= q, and all k = 0, ..., t,

(lJn−k,0 + 1)A0
J+(n−k,0) + (lJm−k,1 + 1)A1

J+(m−k,1) = 0, (32)

or

A1
J+(m−k,1) = −

(lJn−k,0 + 1)A0
J+(n−k,0)

lJm−k,1 + 1
. (33)

Therefore, if the quantities A0
I are knonwn, then the quantities A1

I also, except when I∩J1 = ∅

where J = {(m− t+ 1, 1), (m − t+ 2, 1), ..., (m, 1)} = {n+m− t+ 1, n+m− t+ 2, ..., n +m}.
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But, the quantities A0
I have to verify another condition. If J ′ is a multi-index such that | J ′ |= q−1,

and k1, k2 = 0, 1, ..., t − 1, then, by 33,

A1
J ′+(m−k1,1)+(m−k2,1)

= −
l
J ′+(m−k2,1)
(n−k1,0)

+ 1

l
J ′+(m−k2,1)
(m−k1,1)

+ 1
A0

J ′+(m−k2,1)+(n−k1,0)

= −
l
J ′+(m−k1,1)
(n−k2,0)

+ 1

l
J ′+(m−k1,1)
(m−k2,1)

+ 1
A0

J ′+(m−k1,1)+(n−k2,0)
,

(34)

and therefore,
(

l
J ′+(m−k2,1)
(n−k1,0)

+ 1
)(

l
J ′+(m−k1,1)
(n−k2,1)

+ 1
)

A0
J ′+(m−k2,1)+(n−k1,0)

=
(

l
J ′+(m−k1,1)
(n−k2,0)

+ 1
)(

l
J ′+(m−k2,1)
(n−k1,1)

+ 1
)

A0
J ′+(m−k1,1)+(n−k2,0)

(35)

So, except for a multiplicative constant, in this equality, we can interchange k1 and k2.
Now, if I = I ′0+I ′′0+I ′1+I ′′1 with I ′0 ⊂ {(1, 0), (2, 0), ..., (n−t, 0)}, I ′′0 ⊂ {(n−k, 0), k = 0, ..., t−1},
I ′1 ⊂ {(1, 1), ..., (m − t, 1)}, I ′′1 ⊂ {(m− k, 1), k = 0, ..., t − 1}, then, to define I ′′0 + I ′′1 , with, for
example, | I ′′0 | + | I

′′
1 |= s, it suffices to give the numbers k1, ..., ks with kj ∈ {0, ..., t − 1}, and

then, these kj been interchangeables, we have to affect 0 to some, and 1 to the others, which we
have s+ 1 ways to do.
We have Ct−1

t−1+s ways to choose k1, ..., ks and, therefore, (s+1)Ct−1
t−1+s manners to choose I ′′0 + I ′′1 .

We then have Cm+n−2t−1
q+m+n−2t−s choices to define I ′0 + I ′1 when | I ′0 | + | I

′
1 |= q + 1− s.

At last, we have (s+1)Ct−1
t−1+sC

m+n−2t−1
q+m+n−2t−s manners to choose A0

I if | I |= q+1 and | I ′′0 +I ′′1 |= s.

In the same way, we have Cm+n−t−1
q+m+n−t choices for A1

I if | I |= q + 1 and I ∩ J1 = ∅.
For the following calculations, we need a numeric lemma.

Lemma 2.3.

Σq
s=0C

a
a+s = Ca+1

a+q+1

Σq
s=pC

a
a+s = Ca+1

a+q+1 − Ca+1
a+p

Σq
s=0C

b
a+s = Cb+1

a+q+1 − Cb+1
a

Σq
s=0(s+ 1)Ca

a+s = (a+ 1)Ca+2
a+q+1 + Ca+1

a+q+1

Σq
s=0(s+ 1)Cb

a+s = (b+ 1)[Cb+2
a+q+1 − Cb+2

a ] + (b− a+ 1)[Cb+1
a+q+1 − Cb+1

a ] if a ≥ b+ 2

Σd
s=0C

a
a+sC

b−d
b−s = Ca+b+1−d

a+b+1 if d ≤ b.

(36)

The proofs are elementary. We only write the last one.

Σd
s=kC

b−d
b−s = Σd

s=kC
b−d
b−d+(d−s) = Σd−k

s′=0C
b−d
b−d+s′ = Cb−d+1

b+1−k , (37)

so

Σd
s=0C

a
a+sC

b−d
b−s = Σd

s=0C
b−d
b−sΣ

s
k=0C

a−1
a−1+k = Σd

k=0Σ
d
s=kC

a−1
a−1+kC

b−d
b−s

= Σd
k=0C

a−1
a−1+kC

b+1−d
b+1−k = Σd

k=0C
a−2
a−2+kC

b+2−d
b+2−k = ... = Σd

s=0C
0
0+sC

a+b−d
a+b−s

= Σd
s′=0C

a+b−d
a+b−d+s′ = Ca+b−d+1

a+b+1 .

(38)
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Using this lemma, we obtain the dimension of the space A(q)

DimA(q) = Σq+1
s=0(s+ 1)Ct−1

t−1+sC
m+n−2t−1
q+m+m−2t−s + Cm+n−t−1

q+m+n−t

= Σq+1
s=1sC

t−1
t−1+sC

m+n−2t−1
q+m+m−2t−s +Σq+1

s=0C
t−1
t−1+sC

m+n−2t−1
q+m+m−2t−s + Cm+n−t−1

q+m+n−t

= tΣq+1
s=1C

t
t−1+sC

m+n−2t−1
q+m+m−2t−s + Cm+n−t−1

q+m+n−t + Cm+n−t−1
q+m+n−t

= tCm+n−t
q+m+n−t + 2Cm+n−t−1

q+m+n−t .

(39)

3. Torsion’s system of the 1-Cauchy-Fueter equation

As we saw in the introduction, the second step of the 1-Cauchy-Fueter complex involved the
non-homogeneous torsion’s equations of the 1-Cauchy-Fueter equations :

∂2Φk

∂zi1∂zθ0
−

∂2Φk

∂zi0∂zθ1
+

∂2Φi

∂zk0∂zθ1
−

∂2Φi

∂zk1∂zθ0
+

∂2Φθ

∂zi0∂zk1
−

∂2Φθ

∂zi1∂zk0
= ϕiθk, (40)

for all i, θ, k dans {0, 1, 2, 3}. It is easy to see that the left hand term is antisymmetric in (i, θ, k),
so ϕiθk must to be C-analytic in z = (zij) and antisymmetric in (i, θ, k) therefore gives an element
of Λ3(C[[Z]])4. In the following it will be clear that this condition is not sufficient to solve the
previous system. The linear system defining the torsion is given by











pki1θ0 − pki0θ1 + pik0θ1 − pik1θ0 + pθi0k1 − pθi1k0 = ϕiθk

pki1θ0l0 − pki0θ1l0 + pik0θ1l0 − pik1θ0l0 + pθi0k1l0 − pθi1k0l0 =
∂ϕiθk

∂zl0

pki1θ0l1 − pki0θ1l1 + pik0θ1l1 − pik1θ0l1 + pθi0k1l1 − pθi1k0l1 =
∂ϕiθk

∂zl1
,

(41)

where pkijlq are symmetric by interchanging the pairs ij and lq and pkijlqpr are symmetric by
interchanging the pairs ij, lq and qr. The terms at the right and left hand of the equality
are antisymmetric with respect to i, θ, k so it is enough to solve the last two equations with

i < θ < k. Consider the form f =
∑

i<θ<k,l
∂ϕiθk

∂zl0
X ldXi ∧ dXθ ∧ dXk and suppose that we

can find a 2-form, u, with homogeneous symmetric polynomials of degree 2 as coefficients : u =
∑

i,k,l,θ akiθlX
lXθdXi∧dXk such that du = f then pki1θ0l0 := akiθl solve the second line of equations

of 41. On the other hand if we have solutions of the equations, we have a solution of du = f . By
classical results, this is possible if and only if df = 0. These conditions give :

∂ϕiθk

∂zl0
−

∂ϕlθk

∂zi0
+

∂ϕlik

∂zθ0
−

∂ϕliθ

∂zk0
= 0, (42)

for all i, θ, k, l ∈ {0, 1, 2, 3}. We can do the same thing with the third line equations 41 and we
obtain the condition

∂ϕiθk

∂zl1
−

∂ϕlθk

∂zi1
+

∂ϕlik

∂zθ1
−

∂ϕliθ

∂zk1
= 0. (43)

It is easy to see that the last equations are antisymmetric in i, θ, k, l.

The calculus of the torsion for the prolongation system is more technical. So we need the
following lemma:

Lemma 3.1. Let J = (j1, · · · , jl) and Λ = (λ1, · · · , λl
′ ) two multi-index We denote by J

′

, J
′′

,

J
′′′

, J/{jl}, J/{jl−1, jl}, J/{jl−2, jl−1, jl} respectively. If XJ are numbers indexed by J and
furthermore if these numbers are invariant by permutation of two elements of J , we write X(J).
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Now suppose that we have the identity between the two following forms
∑

jl<jl−1<k

[

(Xk
(J ′ )jl(Λ)

−Xjl
(J ′ )k(Λ)

)− (Xk
(J ′′

jl)jl−1(Λ)
−X

jl−1

(J ′′
jl)k(Λ)

)

+(Xjl
(J ′′

k)jl−1(Λ)
−X

jl−1

(J ′′
k)jl(Λ)

)
]

X(Λ)dXjl ∧ dXjl−1 ∧ dXk

=
∑

jl<jl−1<k

[

(Xk
(J

′′
)jl−1(jlΛ)

−X
jl−1

(J ′′ )k(jlΛ)
)− (Xk

(J
′′
)jl(jl−1Λ)

−Xjl
(J ′′ )k(jl−1Λ)

)

+(X
jl−1

(J ′′ )jl(kΛ)
−Xjl

(J ′′ )jl−1(kΛ)
)
]

X(Λ)dXjl ∧ dXjl−1 ∧ dXk.

(44)

Then the form
∑

jl−2<jl−1<k

[

(Xk
(J ′′ )jl−1(jlΛ)

−X
jl−1

(J ′′ )k(jlΛ)
)− (Xk

(J ′′′
jl−1)jl−2(jlΛ)

−X
jl−2

(J ′′′
jl−1)k(jlΛ)

)

+(X
jl−1

(J ′′′
k)jl−2(jlΛ)

−X
jl−2

(J ′′′
k)jl−1(jlΛ)

)
]

X(jlΛ)dXjl−2 ∧ dXjl−1 ∧ dXk

(45)

is d-closed.

Remark 3.2. The two forms in 44 are equal if and only if the form at left hand is d-closed.

Proof. By elementary but tedious calculus, it is easy to check that the coefficients of the exterior
derivative of the form defined in 45 is exactly the coefficients of the exterior derivative of this form

∑

jl<jl−1<k

[

(Xk
(J

′
)jl(Λ)

−Xjl
(J ′ )k(Λ)

)− (Xk
(J

′′
jl)jl−1(Λ)

−X
jl−1

(J ′′
jl)k(Λ)

)

+(Xjl
(J ′′

k)jl−1(Λ)
−X

jl−1

(J ′′
k)jl(Λ)

)
]

X(J ′′)dXjl ∧ dXjl−1 ∧ dXk.

(46)

On the other hand it is easy to see that the last form is equal to

d
[

∑

jl−1<k

(Xk
(J ′ )jl(Λ)

−Xjl
(J ′ )k(Λ)

)X(J ′)dXjl ∧ dXk
]

(47)

and so all the previous coefficients are zero.
�

To compute the torsion of the prolongation of the system 41, we have essentially to solve the
following equation with the given symmetric properties respect to the pairs of index for pa:

pki1θ0J1Λ0 − pki0θ1J1Λ0 + pik0θ1J1Λ0 − pik1θ0J1Λ0 + pθi0k1J1Λ0 − pθi1k0J1Λ0 =
∂ϕiθk

∂zJ1∂zΛ0
(48)

where j11 · · · jl1 and λ10 · · · λm0 denoted by J1 and Λ0.

Remark 3.3. Recall that the torsion for the first prolongation system defined by 41 is exactly the
compatibility conditions to have integral element for this system. We know that the torsion for
the initial system is exactly done by 42 and 43 and so we have just to verify that the system 48
has solutions under these assumptions.

Going through the algebraization of the problem, we have to find numbers indexed by J and
Λ, with a appropriate properties of symmetry, which satisfying:

(Y k
(Ji)(Λθ) − Y i

(Jk)(Λθ))− (Y k
(Jθ)(Λi) − Y θ

(Jk)(Λi)) + (Y i
(Jθ)(Λk) − Y θ

(Ji)(Λk)) = Ziθk
(J)(Λ) (49)
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where Ziθk
(J)(Λ) =

∂ϕiθk

∂zJ1∂zΛ0 is antisymmetric in i, θ, k and the parenthesis point out the symmetry

in the multi-indices. The form
∑

i<θ<k

Ziθk
(J)(Λ)X

(Λ)dXi ∧ dXθ ∧ dXk (50)

is d-closed if 42 and 43 are satified (it suffices to remark that the d of this form is the derivatives

with respect to zΛ
′

0 and zJ1 of 42 with λm instead of l), so for fixing J , we can solve 49 but
perhaps without the symmetry with respect to J . Indeed we can symmetrise with respect to J
and obtain finally:

(Y k
(J)i(Λθ) − Y i

(J)k(Λθ))− (Y k
(J)θ(Λi) − Y θ

(J)k(Λi)) + (Y i
(J)θ(Λk) − Y θ

(J)i(Λk)) = Ziθk
(J)(Λ). (51)

We point out here that 51 has a solution if and only if 50 is d-closed and so it is a necessary
condition to solve 49. The equation 51 is the first step of the construction now we have to obtain
one more symmetry between J and i, J and θ, J and k. All the solution of 51 are deduced by the
sum of the previous one and the following term: Y k

(J)i(Λθ)+Xk
(J)(iΛθ). We want to choose Xk

(J)(iΛθ)

such that

Y k
(J)i(Λθ) +Xk

(J)(iΛθ) − Y i
(J)k(Λθ) −Xi

(J)(kΛθ) = Y k
(Ji)(Λθ) − Y i

(Jk)(Λθ). (52)

It is enough to find Xk
(Ji)Λθ which satisfy 52 and symmetrise with respect to Λθ. A necessary and

sufficient condition to get 52 is the following:
∑

i<k

(

(Y k
(J)i(Λθ) +Xk

(J)(iΛθ))− (Y i
(J)k(Λθ) +Xi

(J)(kΛθ))
)

X(J)dXi ∧ dXk = d
(

∑

Y k
(Ji)(Λθ)X

(Ji)dXk
)

(53)
which is equivalent to

(Y k
(J)i(Λθ) − Y i

(J)k(Λθ))− (Y k
(J ′

i)jl(Λθ)
− Y jl

(J ′
i)k(Λθ)

) + (Y i
(J ′

k)jl(Λθ)
− Y jl

(J ′
k)i(Λθ)

)

=− (Xk
(J)(iΛθ) −Xi

(J)(kΛθ)) + (Xk
(J ′

i)(jlΛθ)
−Xjl

(J ′
i)(kΛθ)

)− (Xi
(J ′

k)(jlΛθ)
−Xjl

(J ′
k)(iΛθ)

).
(54)

The form at left hand of the equality is antisymmetric in (i, jl, k) and the form
∑

i<jl<k

(

(Y k
(J)i(Λθ) − Y i

(J)k(Λθ))− (Y k
(J ′

i)jl(Λθ)
− Y jl

(J ′
i)k(Λθ)

)+(Y i
(J ′

k)jl(Λθ)
− Y jl

(J ′
k)i(Λθ)

)
)

X(Λθ)dXi ∧ dXjl ∧ dXk

(55)

is d-closed thanks to 42 and 43. So it is equal to

d
(

∑

jl<k

(Xk
(J ′ )jl(iΛθ)

−Xjl
(J ′ )k(iΛθ)

)X(iΛθ)dXjl ∧ dXk
)

, (56)

we solve for fixing J
′

and we symmetrise with respect to. With the help of 55, we have 54 with
Xk

(J ′ )jl(iΛθ)
instead of Xk

(J)(iΛθ). To override this commutation failure, we correct again in the

following way: Xk
(J ′ )jl(iΛθ)

+ Zk
(J ′ )(jliΛθ)

such that the form

d
(

∑

jl<k

(

(Xk
(J ′ )jl(iΛθ)

+ Zk
(J ′ )(jliΛθ)

)− (Xjl
(J ′ )k(iΛθ)

+ Zjl
(J ′ )(kiΛθ)

)
)

X(J
′

)dXjl ∧ dXk
)

= 0. (57)
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Using the same argument as to obtain 54 and 55, to get 57 the following form must be d-closed:
∑

jl<jl−1<k

(

(Xk
(J ′ )jl(iΛθ)

−Xjl
(J ′ )k(iΛθ)

)− (Xk
(J ′′

jl)jl−1(iΛθ)
−X

jl−1

(J ′′
jl)k(iΛθ)

)

+ (Xjl
(J ′′

k)jl−1(iΛθ)
−X

jl−1

(J ′′
k)jl(iΛθ)

)
)

X(iΛθ)dXjl ∧ dXjl−1 ∧ dXk.

(58)

Using lemma 3.1 with J̃ = (J, i) and Λ̃ = (Λ, θ), we obtain without difficulties that 58 is d-closed

(it suffices to remark that the d of this form is the derivatives with respect to zJ
′

1 and zΛ0 of 43
with jl instead of l) and so we get a form Zk

(J ′′ )jl−1(jliΛθ)
instead of Zk

(J ′ )(jliΛθ)
. We can use this

process up to obtain Zk
j1j2(j3j4···jliΛθ)

and we modify again by a form Zk
j1(j2···jliΛθ)

. Now the last

form has no commutation failure so we get the identity:

(Zk
j1j2(j3j4···jliΛθ)

+ Zk
j1(j2···jliΛθ)

)− (Zj2
j1k(j3j4···jliΛθ)

+ Zj2
j1(kj3···jliΛθ)

)

= Zk
(j1j2)(j3j4···jliΛθ)

− Zj2
(j1k)(j3j4···jliΛθ)

.
(59)

We can modify now Zk
(j1j2)j3(j4···jliΛθ)

by Zk
(j1j2)j3(j4···jliΛθ)

+Zk
(j1j2)(j3j4···jliΛθ)

to get a form

Zk
(j1j2j3)(j4···jliΛθ)

. So we can go back up to the term Y k
(J)i(Λθ) that we will be change by Y k

(J)i(Λθ)+

Zk
(J)(iΛθ) such that

(Y k
(J)i(Λθ) + Zk

(J)(iΛθ))− (Y i
(J)k(Λθ) + Zi

(J)(kΛθ)) = Y k
(Ji)(Λθ) − Y i

(Jk)(Λθ) (60)

and finally Y k
(Ji)(Λθ) is a solution of 49.

Remark 3.4. Indeed all arguments above are still available in C
4n, we have the torsion’s system

in the general case.

4. Torsion and Complex associated to the kernel of a partial differential

system of order one with constant coefficients

In this section, we consider a linear homogeneous system of PDE with constant coefficients of
order one denoted by A:

∑

amijP
i
j = 0 with 1 ≤ m ≤ α, 1 ≤ i ≤ β, 1 ≤ j ≤ n and the standard

notations P i
j := ∂P i

∂xj
. We recall that A0 is the set of 1-jets solutions of A and A1 is the set of

2-jets such that
∑

amijP
i
lj = 0 for all l.

Definition 4.1. We say that the sequence of 1-jets (P i
1j)j≥1, (P

i
2j)j≥2, · · · , (P

i
kj)j≥k is k-regular

if and only if (P i
1j) ∈ A0 and

ami1P
i
1l + · · ·+ ami(l−1)P

i
(l−1)l = −

∑

j≥l

amijP
i
lj,

for all 2 ≤ l ≤ k.

Remark 4.2. We can adapt easily the previous definition for A linear partial differential system
with constant coefficients for which the matrix of total symbol contains only homogeneous polyno-
mials of order γ. The previous definition depends of the coordinates but it becomes coordinates
free if we consider only generic coordinates (see [BCGGG], pp 119), it will be more clear in the
following.
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Definition 4.3. We say that A is in involution if and only if all k-regular sequel can be ex-
tended by a k+1-regular sequel. More precisely : if (P i

1j)j≥1, (P
i
2j)j≥2, · · · , (P

i
kj)j≥k is a k-regular

sequence, there exists (P i
(k+1)j)j≥k+1 such that (P i

1j)j≥1, (P
i
2j)j≥2, · · · , (P

i
kj)j≥k, (P

i
(k+1)j)j≥k+1 is

k + 1-regular.

We will see in the next proposition that the involution in the previous sense, is exactly the
same than the involution of the tableau associated to A in the sense of Cartan (see the definition
below). So generic coordinates for this notion of involution is the same than generic coodinates
for Cartan’s tableau involution.

Proposition 4.4. A is in involution if and only if the tableau associated to A is in involution in
the sense of Cartan.

Proof. A tableau is in involution in the sense of Cartan if and only if dimA1 = dimA0+ dimA0
1+

· · · + dimA0
n−1 where A0

j is the set of one jets in the variables xj+1, · · · , xn solutions of A. If

(P i
lj)l,j≥1 a 2-jet is in A1 then

amijP
i
1j = 0, amijP

i
2j = 0, · · · , amijP

i
nj = 0,

with the usual notation: if an index is repeated then we sum with respect to it. Using the last
equalities, we deduce that (P i

lj) ∈ A1 implies that (P i
1j) is in A0 and

ami1P
i
1l + · · ·+ ami(l−1)P

i
(l−1)l

is in the image of the endomorphism defined by
∑

j≥l a
m
ijP

i
lj denoted by A

[0]
l−1 for all 2 ≤ l ≤ n.

Now it is obvious that always

dimA1 ≤ dimA0 + dimA0
1 + · · ·+ dimA0

n−1.

On the other hand, the equality dimA1 = dimA0 + dimA0
1 + · · · + dimA0

n−1 is obtained when

all l-regular sequences of jets, (P i
1j)j≥1, (P

i
2j)j≥2, · · · , (P

i
lj)j≥l, can be extended in a l + 1-regular

sequence of jets for all 2 ≤ l ≤ n− 1. �

Remark 4.5. The last proposition says exactly that we can construct all the 2-jets in A1 only
with the help of any 1-jets in A0 which is completed like in the previous proposition. Clearly this
proposition can be adapted mutatis mutandis if Ap is in involution with p > 0.

Let us consider, A and B two partial differential operators of order one with constant coeffi-
cients:

∑

amijP
i
j , 1 ≤ m ≤ α, 1 ≤ i ≤ β, 1 ≤ j ≤ n (A),

∑

bmijQ
i
j, 1 ≤ m ≤ γ, 1 ≤ i ≤ α, 1 ≤ j ≤ n (B).

The operators A and B induce two endomorphisms on the sets of one jets which, by abuse of
notations, we denote by A and B too. Similary the operator A induces an endomorphism denoted
by A1 on 2-jets which is obviously defined by

∑

amijP
i
lj l = 1, · · · , n.

We can define Aq in the same way. Suppose that the following sequence of endomorphisms is
exact:

Sβ
2n

A1

→ Sα
1n

B
→ Sγ

0n,
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where Si
ln are the sets of i-vectors valued jets of order l in n-variables. We want to show that the

involution of A (the PDE system associated to A) is a hereditary property by the previous exact
sequence. First, we etablish this lemma:

Lemma 4.6. Suppose that the tableau associated to A is in involution and

Sβ
2n

A1

→ Sα
1n

B
→ Sγ

0n

is an exact sequence, then the tableau associated to B (the PDE system associated to B) is in
involution if and only if

dimB0
j = dimSβ

2(n−j) − dimA1
j ∀1 ≤ j ≤ n− 1.

Remark 4.7. In fact, the operator B is so called the torsion of the system A because by definition
of the torsion, the sequence

Sβ
2n

A1

→ Sα
1n

B
→ Sγ

0n

is exact. But in general, the associated sequence of PDE system is not exact, because the tableau
associated to A is not necessary in involution.

Proof. The tableau A is in involution so a jet in Sα
2n is in Im(A2) if and only if it is in B1 = ker(B1)

and therefore we have the following equality dimB1 = dimSβ
3n − dimA2. On the other hand, if

the tableau associated to A is in involution, dimA2 = dimA1 + dimA1
1 + · · ·+ dimA1

n−1. Clearly

we have dimB0 = dimker(B) = dimSβ
2n − dimA1 and dimB0

j ≥ dimSβ

2(n−j) − dimA1
j for j ≥ 1.

If the equalities hold for all j ≥ 1, we have

dimB1 = dimSβ
3n − dimSβ

2n −
n−1
∑

j=1

dimSβ
2(n−j) + dimB0 +

n−1
∑

j=1

dimB0
j .

But elementary calculation gives

dimSβ
3n − dimSβ

2n −
n−1
∑

j=1

dimSβ

2(n−j) = 0,

and therefore the tableau associated to B is in involution. Conversely if there exists j such that

dimB0
j > dimSβ

2(n−j) − dimA1
j then

dimB1 < dimB0 +
n−1
∑

j=1

dimB0
j .

�

We can now prove the hereditary property for the involution

Proposition 4.8. Under the assumptions of the previous lemma, the tableau associated to B is
in involution.

Proof. According to the lemma 4.6, we have to prove that a 1-jet (θml ) ∈ B0 = ker(B) = Im(A1)

with (θml ) = 0 for all 1 ≤ l < k, is the image of a 2-jet in A1, P̃m
lj , with P̃m

lj = 0 for all
1 ≤ l and j < k.
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- Suppose k = 2, we have
∑

amijP
i
lj = θml for all l ≥ 2,

∑

amijP
i
1j = 0, and therefore

ami1P
i
21 +

∑

j≥2

amijP
i
2j = θm2 ,

which is the same thing, thanks to the commutating properties of 2-jets

ami1P
i
12 +

∑

j≥2

amijP
i
2j = θm2 .

Using the proposition 4.4 and the definition 4.3, we obtain the existence of a one jet (1P i
2j)j≥2

such that

−
∑

j≥2

amij
1P i

2j +
∑

j≥2

amijP
i
2j = θm2 ,

that is to say
∑

j≥2

amij
(

− 1P i
2j + P i

2j

)

= θm2 .

So we put (P̃ i
2j)j≥2 := (−1P i

2j + P i
2j)j≥2 and we want to construct a 1-jet (P̃m

3j )j≥3 with the

appropriate commutating properties with respect to (P̃m
2j )j≥2. We start with the equality

ami1P
i
31 +

∑

j≥2

amijP
i
3j = θm3 ,

which can be write obviously

ami1P
i
13 + ami2

1P i
23 − ami2

1P i
23 +

∑

j≥2

amijP
i
3j = θm3 .

With the help of proposition 4.4 and the definition 4.3, we get

−
∑

j≥3

amij
2P i

3j − ami2
1P i

23 + ami2P
i
32 +

∑

j≥3

amijP
i
3j = θm3 ,

and finally

−ami2
1P i

23 + ami2P
i
32 +

∑

j≥3

amij
(

− 2P i
3j + P i

3j

)

= ami2P̃
i
23 +

∑

j≥3

amij
(

− 2P i
3j + P i

3j

)

= θm3

and therefore we have the commutating properties needed, if we put (P̃ i
3j)j≥3 :=

(

−2P i
3j+P i

3j

)

j≥3
.

Suppose that we have choosen in a similar way (P̃ i
kj)j≥k := (−(k−1)P i

kj +P i
kj)j≥k for all k ≤ l, we

want to construct a 1-jet (P̃ i
(l+1)j)j≥l+1 with the required commutating properties with respect to

(P̃ i
kj)j≥k for all k ≤ l. We start with the equality

amijP
i
(l+1)j = ami1P

i
1(l+1) +

l
∑

j=2

amij
(j−1)P i

j(l+1) −
l

∑

j=2

amij
(j−1)P i

j(l+1) +
∑

j≥2

amijP
i
4j = θml+1,

we use again proposition 4.4 and the definition 4.3 and we get:

−
∑

j≥l+1

amij
lP i

(l+1)j −
l

∑

j=2

amij
(j−1)P i

j(l+1) +
l

∑

j=2

amijP
i
(l+1)j +

∑

j≥l+1

amijP
i
(l+1)j = θml+1
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which can be written

∑

j≥l+1

amij (−
lP i

(l+1)j + P i
(l+1)j) +

l
∑

j=2

amij (−
(j−1)P i

j(l+1) + P i
j(l+1)) = θml+1

and so
∑

j≥l+1

amij (−
lP i

(l+1)j + P i
(l+1)j) +

l
∑

j=2

amij P̃
i
j(l+1) = θml+1,

therefore we choose (P̃ i
(l+1)j)j≥l+1 := (−lP i

(l+1)j + P i
(l+1)j)j≥l+1. The proof is complete for a jet

(θml ) satifying (θm1 ) = 0

- If k is bigger than 2, we have a jet (θml ) ∈ B0 = ker(B) = Im(A1) with (θml ) = 0 for all
l < k and we want to show that this 1-jet is the image by A1 of a 2-jet (P i)lj with P i

lj = 0 for
all 1 ≤ l and j < k. We proceed by induction on k: the induction hypothesis implies that the
restrictions of the endomorphisms, A1 and B, to the plane generated by the variables xk−1, · · · , xn
define an exact sequence. Furthermore the restriction operator A to the plane xk−1, · · · , xn is still
in involution: the involution property is stable by restriction on plane generated by xk−1 · · · xn;
it is a well known fact (see for example the characterization due to Matsushima of involution in
[M] and [BCGGG] pages 119 and 120) but it is a nice exercise to see this with the help of the
proposition 4.4. Therefore all the assumptions needed are satisfied to apply the previous case for
k = 2 to the endomorphisms restricted to the plane xk−1, · · · , xn.

�

In the following, we construct the complex associated to a linear operator differential of order

one, A0 with tableau in involution, using the previous result. Let A0 = amij
∂P i

∂xj
with 1 ≤ m ≤

α, 1 ≤ i ≤ β, 1 ≤ j ≤ n. We suppose that the endomorphism induced by A0 between the space

Sβ
1n and Sα

0n is surjective. The torsion A1, which is only a representative of the class of equations
which define Im(A1) in Sα

1n with minimal number, define a differential operator of order one
denoted by A1 too. Similary by induction, we define Ai operators of order one for all i ∈ N. By
the previous result, all the Ai are in involution and by the Cartan-Kahler theorem we have the
exact sequence S (possibly infinite):

(

Cw
x0
(Rn)

)β A0→
(

Cw
x0
(Rn)

)α A1→
(

Cw
x0
(Rn)

)α1 · · ·
Ai→ · · ·

where
(

Cw
x0
(Rn)

)α
is an α-vector with entries germs in x0 of real analytic functions on R

n.

Proposition 4.9. The exact sequence S is finite.

Remark 4.10. Although all the previous facts are elementary, we do not have an elementary
proof of this fact. The involution of the operator Ai implies subtle combinatory properties on the
dimension of the tableau associated to Ai which we are not able to treat with simple arguments.

With the help of theorem A in [N], the above complex is exact on C∞(Ω) with Ω convex.

Proof. By classical results (see for example, [N] theorem A), the previous exact sequence give the
exact sequence below:

(C[X])β
tA0(X)
←− (C[X])α

tA1(X)
←− (C[X])α1 · · ·

tAi(X)
←− · · · ,

where Ai(X) is the matrix symbol associated to Ai. This exact sequence give a resolution of
finitely generated graded C[X]-module defined by the kernel tA0(X). The Hilbert Syzygy theorem
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give a unique finite free resolution of length l ≤ n+1 up to complexes isomorphism (see [Ei] for the
classical facts on Hilbert Syzygy theorem). The matrix tAi contains only polynomials of degree
one, so the above resolution is minimal and finite by Hilbert Syzygy theorem. �

Remark 4.11. The Dolbeault complex is relevable of the previous construction: the Cauchy-
Riemann equations are in involution in sense of Cartan (See [BCGGG] pp 155-156). The Cauchy-
Fueter complex is particulary interesting because the Cauchy-Fueter equations do not have tableau
in involution. So we cannot apply the above proposition and indeed the complex contains an
operator of order 2. We are going to develop this example in the next section.

5. The Cauchy-Fueter complex

We begin with the simplest but illuminating example of PDE system with a tableau which is
not in involution and so it cannot be treated as before: the Cauchy-Fueter equations in R

8. Using
the coordinates zi0, zi1 as in [WW2], section 2 and 3 give two operators, tor0 and tor1 (remenber
tor0 is a PDE system of order 2 not of order 1), such that the following sequence is exact:

(Cw(R8))2
CF
→ (Cw(R8))4

tor0→ λ(R8,Λ3(C4))
tor1→ λ(R8,C2 ⊗ Λ4(C4))

where Cw(R8) are the germs of real analytic functions with values in C, λ(R8,Λ3(C4)) are the
3-forms in C

4 with coefficients in Cw(R8) and λ(R8,C2 ⊗ Λ4(C4)) are the 2-vectors with entries
4-forms with coefficients in Cw(R8). Clearly this exact sequence induced an exact sequence of
endomorphisms between spaces of jets:

S2
(k+4)8

CF k+3

→ S4
(k+3)8

tork+1
0→ S4

(k+1)8

tork1→ S2
k8.

Now using the rank theorem, it is obvious to see that

dim(Im(tork1 )) = dim(S4
(k+1)8)− dim(S4

(k+3)8) + dim(S2
(k+4)8)− dim(ker(CF k+3)),

where dim(ker(CF k+3)) is nothing else than the dimension of the tableau of order (k + 3)
associated to the Cauchy-Fueter equations (see section 2). Now using (39) in section 2 with
m = n = t = 4, we have dim(CF k+3) = 4C4

7+k+2C3
k+7. On the other hand, dim(Sp

kn) = pCn−1
k+n−1

and therefore the difference dim(Im(tork1 ))−dim(S2
k8) is a polynomial of degree 7 in k. Moreover

we can prove after elementary calculus that this polynomial is zero for k = 0, 1, · · · , 6, 7, therefore
this polynomial is 0 which gives the Cauchy-Fueter complex in R

8:

(Cw(R8))2
CF
→ (Cw(R8))4

tor0→ λ(R8,Λ3(C4))
tor1→ λ(R8,C2 ⊗ Λ4(C4))→ 0.

In R
4n the complex is longer and we need some technical lemmas to construct the torsion of tor1

and so on... Nevertheless, we can do it in the same spirit of the section 3 but the calculus are
tedious and there is no additional ideas, so we do not included the proof in this paper.
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