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Abstract 

 

 The major specifications for phase equilibrium are: pressure and temperature (PT), volume, 

temperature and moles (VTN), pressure, enthalpy and moles (PHN), pressure, entropy and moles (PSN), 

internal energy, volume and moles (UVN) and entropy, volume and moles (SVN). For some of these 

specifications, stability testing is not well documented in the literature. It appears that derivations of 

stability criteria for PHN, PSN and SVN stability are presented here for the first time, as well as the 

possibility to solve the stability problem in their hyperspaces. Two general stability criteria are derived, 

which include all state functions and specifications. The general tangent plane distance (TPD) function 

degenerates to the TPD function corresponding to any desired specifications. The formalism is not model 

dependent. It is shown that stability testing for any specifications naturally reduces to either PT stability 

(when pressure is a specification, as in PHN and PSN stability) or VTN stability (when volume is a 

specification, as in UVN and SVN stability), by solving the appropriate nonlinear equation in 

temperature. In other words, there is no need (moreover, it is shown that there it is not even 

recommended) to minimize a specific TPD function in its hyperspace (defined by natural variables of the 

state function). This paper presents the first unified treatment of phase stability testing including all major 

specifications; beyond its theoretical importance, an important practical consequence is a unified 

calculation framework for phase stability testing, allowing a versatile numerical treatment and using 

existing highly robust and efficient procedures for PT, volume-based PT or VTN stability, whatever the 

specifications.  
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1. Introduction 

 

 Phase stability testing is a key type of thermodynamic calculation. Phase stability assesses the 

state of a mixture at given conditions and it is crucial in multiphase flash initialization (for specifications 

other than pressure and temperature, stability testing is imperatively required even in the two-phase case); 

stability testing is also used to check the validity of a given phase split. Many applications, some of them 

important in the energy transition and environmental context (such as carbon dioxide capture and storage 

and geothermal energy) require phase equilibrium calculations at specifications other than pressure and 

temperature. Beyond the most widely encountered (and well documented in the literature) isothermal-

isobaric (PT) case, the other major specifications for phase equilibrium are [1,2,3]: volume, temperature 

and moles (VTN), pressure, enthalpy and moles (PHN), pressure, entropy and moles (PSN), internal 

energy, volume and moles (UVN) and entropy, volume and moles (SVN). Note that throughout this 

paper, the abbreviation PT (not PTN) is used for pressure and temperature specifications, which are both 

intensive variables. For all other cases, at least one of the specifications is an extensive variable (volume 

or/and a state function) and the total number of moles must also be given (it is tacitly assumed that 

stability analysis is performed at given feed composition). The literature was extremely poor before the 

last decade, when a continuously increasing interest in such phase equilibrium calculations emerged. It 

appears that derivations of stability criteria and detailed analysis for PHN, PSN and SVN stability testing 

were not yet presented in the literature and are presented here for the first time. Moreover, up to date, to 

the best of our knowledge, a unified presentation of phase stability testing covering all major 

specifications and giving a general stability criterion is not available in the literature. The aim of this 

paper is to provide for the first time such a unified framework for phase stability testing. 

 Based on the early work of Gibbs [4], almost simultaneously Baker et al. [5] and Michelsen [6] 

presented two important papers on phase stability at pressure and temperature specifications. The former, 

more theoretical, includes several important theorems, while in the latter, beyond its theoretical 

importance, a practical solution was proposed for solving the phase stability problem as an unconstrained 

minimization problem. Michelsen’s formulation is the most widely used since and became the standard in 

phase stability testing, along with his sequential stability-flash approach in multiphase equilibrium 

calculations [7]. 

 The PT (isobaric-isothermal) phase equilibrium calculations are the most common and very well 

documented in the literature; at these specifications both flash and stability can be formulated as 

unconstrained minimization problems (Michelsen [6-7]).  

 For all other specifications, very few papers on phase equilibrium were available in the open 

literature (even fewer for phase stability testing) before the last decade, when an increasing interest for 

other specifications led to many papers on this subject. The interest in these topics is expected to grow, 

since in energy transition and environmental issues, more and more processes require phase equilibrium 

calculations at various specifications other than pressure and temperature. 
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 VTN (isochoric-isothermal) phase equilibrium (consisting of the minimization of Helmholtz free 

energy at given volume, temperature and moles) [1,2] is basically applied to phase equilibrium in closed 

vessels at given temperature; some of its many applications are listed in Refs. [8,9]. Among all 

specifications other than PT, VTN phase equilibrium is the best documented in the literature [1,8-24]. 

Derivations of the TPD function for VTN stability were given by Mikyska and Firoozabadi [10] and 

Castier [11]. Phase stability testing at VTN condition was investigated by Nichita et al. [8], Mikyska and 

Firoozabadi [10], Castier [11], Nichita [12,13], Smejkal and Mikyška [14-16], Kou et al. [17], Kou and 

Sun [18], Jex and Mikyška [19]. A special topic, closely related to equilibrium at VTN specifications, 

consists of the so-called “volume-based” phase equilibrium calculations at PT specifications (Michelsen 

[1], Nagarajan et al. [25], Kunz et al. [26], Deiters and Kraska [27], Nichita [28], Paterson et al. [29], 

Sandoval et al. [30]). In volume-based methods, volume is an independent variable, thus the EoS is not 

solved for volume and the required partial derivatives have simpler expressions. Volume-based methods 

are slightly slower than conventional PT formulations (in terms of number of iterations) [28,34], but the 

cost of an iteration is smaller, especially when complex thermodynamic models are used. Volume-based 

phase stability testing at PT conditions was investigated by Nagarajan et al. [25], Michelsen [6], Nichita 

et al. [31], Pereira et al. [32,33], Nichita [34]. Another topic related to VTN stability is phase envelope 

construction in the VT (or molar density-temperature) plane [26,27,30,35]. 

 PHN (isobaric isenthalpic) phase equilibrium (consisting of the maximization of entropy at given 

pressure, enthalpy and moles) [1-3, 36-48] has many practical applications, such as adiabatic expansions, 

throttling processes, compositional reservoir simulation of thermal recovery processes, etc. Phase stability 

testing at PHN conditions can be assessed using a classical PT stability testing, as correctly mentioned by 

Michelsen [36], Zhu and Okuno [39], Sun et al. [40]; however, no detailed analysis of phase stability 

testing was given for these very important specifications. 

 PSN (isobaric-isentropic) phase equilibrium (consisting of the minimization of enthalpy at given 

pressure, entropy and moles) [1-3, 49,50] is useful in the preliminary design of compressors and turbines 

under the assumption of adiabatic and reversible operation, in simulation of full bore rupture of 

pressurized pipelines, decompression of pipeline fluids, ideal adiabatic compressors, pumps, turbines, etc. 

As for PHN stability, no detailed analysis was provided in the literature. 

 UVN (isochoric-isoenergetic) phase equilibrium (consisting of the maximization of entropy at 

given internal energy, volume and moles) [1-3, 51-57] is applied in rigorous dynamic simulation of 

distillation columns; simulating two-phase pipe flow, filling tank, venting and leaks from pressure 

vessels, etc. A derivation of the TPD function at UVN conditions was apparently first given by Castier 

[52], who also showed that a PT stability testing can be carried out to assess UVN stability. Phase 

stability at UVN conditions was addressed by Castier [52], Smejkal and Mikyška [54,55], Bi et al. [56] 

and Nichita [13]. 

 For the SVN (isochoric-isentropic) phase equilibrium (consisting of the minimization of internal 

energy at given entropy, volume and moles) [46-50], there are no known applications to date, but the 
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problem has a similar structure and fits the general pattern [46]. Phase stability is addressed here for the 

first time. 

 Michelsen [1] presented a unified approach to multiphase flash calculations for all major 

specification, showing that the phase split problem can be formulated as a minimization of a state 

function for all specifications. Michelsen’s state functions and specifications are listed in Table 1 [1]. He 

presented two solution approaches. In the first, which is extremely robust (and can be used as a backup 

for alternative methods), consists of a nested optimization in which a PT-flash is solved in an inner loop 

and temperature or/and pressure are corrected in an outer loop until the specifications are met. In a second 

one, modified objective functions with the Gibbs free energy as a “core function” are introduced and 

second-order Newton iterations are used to locate their saddle points. An alternative formulation based on 

the Helmholtz free energy is also given. Michelsen’s Q-functions are listed in Table 1. Several recent 

papers [46-48], originating from the same research group at DTU, presented unified approaches including 

all major specifications, for various phase and chemical equilibrium problems using modified RAND 

methods. 

 A general stability criterion is given by Michelsen and Mollerup [2]. A unified presentation of 

phase stability and flash was presented by Smejkal and Mikyška [55], including only PT, VTN and UVN 

specifications. They presented a general criterion for phase stability and provided a comparison of phase 

equilibrium calculations at these specifications. 

Up to date, to the best of our knowledge, a unified presentation of phase stability testing including 

all major specifications is not available in the literature. Moreover, derivations of stability criteria for 

certain specifications (PHN, PSN, SVN) are missing in the literature. This paper also shows that whatever 

the specifications other than PT or VTN, there is no need and it is not even recommended to minimize a 

specific TPD function in its hyperspace, since the same results can be obtained by solving a PT or VTN 

stability problem, at a temperature calculated from the specific nonlinear equation. Two different but 

equivalent general stability criteria are derived, both reducing to the TPD function corresponding to any 

desired specifications. 

 The paper is structured as follows. After a brief recall of PT stability, stability analysis at 

specifications other than pressure and temperature is presented in detail. A general formulation is 

presented, using two different methods; general stability criteria degenerate to any desired criterion for 

any major specification. PHN and UVN (except derivation of stability criterion) stability are presented in 

detail. For the remaining specifications, detailed presentations (derivation of stability criteria, 

convergence analysis and links with stability at other specifications) are given in Appendix A (PSN 

stability) and Appendix B (SVN stability). 

 

 This paper was prepared for a special issue of Fluid Phase Equilibria to honor the memory of 

Prof. Michael Locht Michelsen, his pioneering work and his outstanding contributions to computational 

thermodynamics. 
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2. TPD functions for PT stability 

 

 Michelsen’s TPD function (1982) [7] at specified pressure and temperature is 

  0

1

nc

i i i

i

D x


           (1) 

A mixture is stable if D is nonnegative for all feasible compositions. Finding the stationary points of the 

TPD function consists of a constrained minimization (if all mole fractions are independent variables) [2], 

subject to  

 
1

1
nc

i

i

x


          (2) 

or an unconstrained one, if a mole fraction is dependent. The stationarity conditions of  D x  are 

    0 0 ,0

1 1

0; 1, 1
nc nc

j j

j j j i i nc nc

j ji i i

xD
x i nc

x x x 

 
            

  
   (3) 

where the dependent mole fraction is 
1

1
1

nc

nc ii
x x




   and 

 
; , 1, 1

1; 1, 1,

j ji

i

x i j nc

i nc j ncx

   
 

    
       (4) 

From Eq. (3) 

 0 ,0 ; 1, 1i i nc nc K i nc               (5) 

or 

 
0 ; 1,i i K i nc            (6) 

Taking into account that the chemical potentials are [2] 

    
 , ,

, , , ln
iig

i i ref

ref

f T P
T P T P RT

P
 

x
x       (7) 

and dividing Eq. (1) by RT, the dimensionless TPD function is 

 
1

( ) (ln ln ( ) ln ln ( ))
nc

PT i i i i i

i

D x x z


     x x z      (8) 

 Michelsen [7] also proposed an equivalent stability criterion based on a modified TPD function  

  *

1 1

( ) (1 ) ln ln ( ) ln ln ( )
nc nc

PT i i i i i i

i i

D Y Y Y z
 

        Y Y z    (9) 

or  

  * ( ) ( )PT PTD f D   Y x        (10) 
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where K

i iY x e ,
1

nc

ii
Y


   and   1 lnf      . The new variables Yi are formally mole numbers, 

since 
1

/
nc

i i ii
x Y Y


   (physically, mole numbers of an equilibrium phase are restricted by 0 i in z  ). 

However, throughout this paper, the notation ni will be used instead of Yi for all modified TPD functions. 

 Finding the stationary points of the modified TPD function requires an unconstrained 

minimization of *

PTD  with respect to mole numbers, with bounds on variables, 0iY  . The gradient vector 

is 

 
*

( ) ln ln ( ) ln ln ( ) ln ln ( ) ln ( )PT PT
i i i i i i i

i

D
g n z f f

n


         


n z n z   (11) 

and the Hessian matrix is 

 
*

( ) ln ln1ijPT i iPT
ij

i j i j j

fD
H

n n n n n

   
    
    

     (12) 

The Newton iteration equation is 

 ( ) ( )PT PT  H n g         (13) 

 At the stationary points, the modified TPD function is 

  * 1PTD P,T,  n         (14) 

 The modified TPD function *

PTD  has the same stationary points and same sign as the TPD 

function D [2,7]. Michelsen’s change of variables 2i iY   [7] is most commonly used in the 

minimization of *

PTD .  

 

 Highly robust and efficient methods were developed for PT stability testing, including volume-

based methods and reduction methods.  

 

3. Specifications other than P and T 

 

 In this section, phase stability analysis is addressed for all major specifications other than PT. 

PHN stability is presented in detail, including derivation of the stability criteria, convergence analysis and 

links with PT stability. For VTN stability, only equations required to analyze its links with UVN and 

SVN stability are presented. For UVN stability, a detailed analysis is provided (except stability criteria, 

which were previously established). PSN and SVN stability are only briefly presented and detailed 

analyses are given in Appendix A (PSN) and Appendix B (SVN). The TPD function for all major 

specifications are listed in Table 2. 
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3.1. PHN stability 

 

 Phase equilibrium calculations at given pressure, enthalpy and moles (PHN) consist of the 

maximization of entropy, or   , ,min S H P n  at the specifications  0 0 0, ,H P n . The stability criterion is 

given in Michelsen and Mollerup [2]. However, although it was correctly recognized that a PT stability at 

the temperature calculated at the specifications can assess PHN stability [36,39,40,41,43], a derivation of 

the TPD function and a detailed analysis of the PHN stability are not available in the literature for these 

very important specifications and are given for the first time in this work. 

 The total differential of enthalpy is [2] 

 
1

nc

i i

i

dH TdS VdP dn


           (15) 

Solving Eq. (15) for dS, the total differential of entropy is  

 
1

1 1 nc

i i

i

V
dS dH dP dn

T T T 

           (16) 

On the other hand 

 
1, , , , j i

nc

i

iP H i H P n

S S S
dS dH dP dn

H P n




      
       

       


n n

    (17) 

From Eqs. (16) and (17), the partial derivatives are 

 
,

1

P

S

H T

 
 

  n

         (18a) 

 
,H

S V

P T

 
  

  n

         (18b) 

 

, , j i

i

i H P n

S

n T


  
  

 
        (18c) 

 Consider a mixture in an initial single-phase state of entropy  0 0 0 0, ,S S H P n  and a two-phase 

state, with a bulk phase (of composition 
*

n ) and an infinitesimal amount of incipient phase (of 

composition 'n ), of entropy    * * *

1 , , ' ', ', 'S S H P S H P *
n n . The balance equations are  

 *

0'H H H           (19a) 

 *

0' ; 1,i i in n n i nc           (19b) 

and the pressure is 

 *

0'P P P           (19c) 

 A Taylor series expansion around  0 0 0 0, ,S S H P n  gives (retaining only the first-order terms) 
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 
0 0 0 0 0 0 0

* * * *

0 0 0 0 0 0 0

1, , , ,

, , ( ) ( ) ( )

j i

nc

i i

iP H i H P n

S S S
S S H P H H P P n n

H P n




      
           

       


n n

n (20) 

or, taking into account Eqs. (19),  

 * 0
0

10 0

'
'

nc
i

i

i

H
S S n

T T


          (21) 

where  0 0 0 0, ,T T H P n  is calculated at the specifications from the nonlinear equation 

 0 0 0 0, ,H T P Hn  and  0 0 0 0, ,i i P T   n . 

 The entropy of the incipient phase is 

 
1

''
' '

' '

nc
i

i

i

H
S n

T T


          (22) 

where  0' ' ', , 'T T H P n  and  0' , ', 'i i P T   n . 

 The change in entropy between states 0 and 1 is 

  *

1 0 0'S S S S S S             (23) 

or, from Eqs. (20) to (23) 

 0

10 0

'1 1
' '

' '

nc
i i

i

i

S H n
T T T T

    
       

   
       (24) 

 Dividing S  by the numbers of moles in the trial phase n, the TPD function in PHN stability is  

 0

10 0

1 1 nc
i i

Ph i

i

S
D s h x

n T T T T

    
         

   
      (25) 

where /s S n  and /h H n  are the molar entropy and molar enthalpy, respectively. 

 A mixture is stable if the TPD function is negative or zero for all feasible n and h (or n and T); 

strictly positive values of the TPD function indicate instability. In other words, a phase is stable if any 

possible perturbation cannot increase its total entropy. 

 In the following, it is preferable to work in mole numbers rather than in mole fractions, to relate a 

modified TPD function for PHN stability to the modified TPD function in Eq. (9), which is effectively 

used in PT stability testing. The modified TPD function for PHN stability (similarly to PT [6], VTN [28] 

and UVN [13] stability) is  

 * ( )PH PhD Rf D             (26) 

or  

  * 0

1 0 0

1 1nc
i i

PH i

i

D R f n H
T T T T

    
         

   
     (27) 
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Since   0 0f     , the first term is strictly negative; thus 
PhD  is positive for any point where *

PHD  is 

positive and a positive *

PHD  indicates instability. Note that unlike *

PTD , *

PHD  is not dimensionless (to 

avoid additional partial derivatives with respect to temperature). 

The elements of the gradient of *

PHD  are (using the Gibbs-Duhem equation in the differentiation) 

 
*

0

0, ,

ln ; 1,

j i

i iPH
i

i H P n

D
g R i nc

n T T


    
         

   
    (28a) 

and 

 
*

1

0,

1 1PH
nc

P

D
g

H T T


 
   

  n

       (28b) 

 Introducing the stationarity conditions into the expression of the TPD function, at the stationary 

points  

    * 1PHD P,H, R  n        (29) 

 At the stationary points, 
0T T  from Eq. (28b); the elements of the gradient vectors in PHN and 

PT stability are related by  

 

0

* *

, , , ,

0; 1,

j i j i

PH PT

i iP H n P T n
T

D D
R i nc

n n
 

    
      

    
    (30) 

and the TPD functions by 

    
0

* *

0,PH PT T
D P,H, R D P,T n n       (31) 

 Thus, the modified TPD function in PHN stability, *

PHD , has the same stationary points (from Eq. 

29) as the modified TPD function in PT stability at T0, 
*

PTD , and opposite signs (from Eq. 31). This means 

that PHN stability (maximization of *

PHD ) can be replaced by a conventional PT stability (minimization 

of *

PTD ) at  0 0 0 0, ,T T H P n . 

 

 When the nonlinear equation  0 0 0 0, ,H T P Hn  is solved for temperature at the specifications, a 

special case arises if the EoS has multiple real roots; in this case a transition temperature T* is calculated, 

where the system is known to be unstable and stability testing is optional (its results can be used to 

initialize PHN flash calculations]). Details can be found in Michelsen [36] and Sun et al. [41]. Note that 

solving a PT stability instead of a PHN stability also avoids a special treatment of the multiple roots case 

during iterations, the nonlinear equation being solved only once at the specifications. 
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 Let us now analyze the maximization of the modified TPD function for PHN stability in its 

hyperspace (defined by nc+1 variables, mole numbers and enthalpy of the trial phase). The Newton 

iteration equation for PHN stability is 

 ( ) ( )PH PH  H g         (32) 

where  1,..., ,
T

ncn n H  is the vector of independent variables. 

 The elements of the Hessian matrix are 

 
 

, ,

/

s j

ii
ij

j j P H n

Tg R
H

n n


  
     

    

      (33a) 

 
 

, 1 2

,

/ 1ii i
i nc i

P

Tg T
H T

H H T H H


      
        
      n

    (33b) 

 
 1

1, 2

, ,

1/ 1

s j

nc
nc j

j j jP H n

Tg T
H

n n T n





  
    

    

     (33c) 

 
 1

1, 1 2

,

1/ 1nc
nc nc

P

Tg T
H

H H T H


 

   
    

    n

     (33d) 

Symmetry of second-order partial derivatives of entropy gives 

 
 

, , ,

/

s j

i

jP P H n

T T

H n


     
          n

       (34) 

where 

 
, ,

, ,

, ,

s j

s j

j P T n

j P H n

P T

H

n
T

Hn

T





 
     

  
       

  n

       (35) 

 The linear system Eq. (32) has a block structure and can be written as 

 
n

Hgc H

     
      
     

T

gA b n

b
       (36) 

where A is an [nc×nc] matrix, with elements ijij HA  , b is an [nc×1] vector, with elements 1,  ncii Hb , 

and 1, 1nc ncc H    is a scalar. The elements of the vector ng  are ncigg iin ,1;,   and 1H ncg g  . The 

system of equations in Eq. (36) is 

 nH    A n b g         (37a) 

 c HH g    T
b n         (37b) 
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Solving Eq. (37b) for H  gives 

  -1

HH c g    T
b n         (38) 

which introduced in Eq. (37a) gives 

  1 1

n Hc c g     T
A bb n g b       (39) 

or, by putting/with the notation 

 
1c  T

M A bb         (40) 

and  

 1

n Hc g  r g b         (41) 

the linear system is  

 rnM           (42) 

 Solving the reduced system of equations (Eq. 42) for mole numbers and then updating enthalpy 

from Eq. (38) is equivalent to solve the original system (Eq. 32). The matrix M is the Schur complement 

of c in H, with elements 

 
  1

2

,, ,, , , ,

/ 1

s is j s j

i

ij

Pj i jP H nP H n P H n

T T T T
M

n T n n H
 

         
                   n

   (43) 

 On the other hand, the partial derivative of chemical potentials with respect to mole numbers can 

be expressed as 

 
     

,, , , , , , , ,

/ / /1

s j s j s j s j

i i ii

j j j jPP T n P T n P H n P T n

T T T H

T n n n H n
   

               
                             n

(44) 

Combining Eq. (43) with Eqs. (44) and (35) and comparing with Eq. (12) gives 

 
( ) ( ) ; , 1,PH PT
ij ijM RH i j nc         (45) 

 The matrix M is formally the same as ( )PT
H , the elements of the two matrices being related by a 

factor of proportionality. Thus, solving the PHN stability in the  , Hn  hyperspace is equivalent to 

performing a sequence of PT stability iterations at a series of temperatures converging to T0, with a 

modified gradient containing some temperature information. It is clear that the Newton method in PHN 

stability will be inherently slower in terms of number of iterations, since both the Hessian and the 

gradient have lower levels of implicitness than in the PT stability (numerical evidences for closely related 

problems are given in Refs. [28,34]). 
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 Other drawbacks of solving PHN stability are: i) the non-linear equation  0, ,H T P Hn  must 

be solved for temperature at each iteration (a special treatment is required if the cubic EoS has three real 

roots, as described by Sun et al. [41] for PHN flash calculations); ii) the SSI method cannot be used [1], 

iii) the condition number of the Hessian matrix can be severely deteriorated by the bordering vectors b 

and convergence problems may occur without proper scaling (as shown for instance for volume-based PT 

stability [34] using mole numbers and volume as independent variables, and for other of phase 

equilibrium problems [28,58] which have a similar mathematical structure) and iv) the initial guess 

vectors must contain an estimation of H and the number of required initial guesses may be significantly 

increased. 

 Therefore, even though the PHN stability problem can be solved in its hyperspace, this is not 

recommended, since exactly the same results are obtained from a PT stability testing at T0, using faster 

and more robust solvers. 

 

 

3.2. PSN stability 

 

 Phase equilibrium calculations at given pressure entropy and moles consist of the minimization of 

the enthalpy, that is,   , ,min H P S n ; the specifications are  0 0 0, ,S P n . As for PHN stability, the 

expression of the PSN stability criterion was given in Michelsen and Molllerup [2], but its derivation is 

given for the first time here (see Appendix A). The TPD function is 

    0 0

1

nc

Ps i i i

i

D x s T T


           (46) 

where  , ,T T S P n  is calculated by solving the non-linear equation  0 , ,S S P T n . 

 A mixture is stable if the TPD function is non-negative for all feasible compositions and molar 

entropies. The modified TPD function is given in Table 3, the nonlinear equation to be solved for 

temperature is given in Table 4 and the TPD function in terms of molar density in Table 5. A detailed 

analysis of PSN stability testing is also given in Appendix A. 

 

 

3.3. VTN stability 

 

 Phase equilibrium calculations at VTN condition consist of the minimization of Helmholtz free 

energy,   , ,min A V T n , at specifications  0 0 0, ,V T n . Derivations of the stability criterion were given 

by Mikyška and Firoozabadi [10] and by Castier [11]. The TPD function is 
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    0 0

1

( , , )
nc

vT i i i

i

D v T x v P P


    x      (47) 

where /v V n , ( , , )i i v T   x  and ( , , )P P v T x . 

 The modified TPD function presented by Nichita [34] for volume-based PT phase stability can be 

used for VTN stability 

        *

0 0

1

nc

VT i i i vT

i

D RT f n V P P RT f D


              (48) 

It was shown in Ref. [34] that *

VTD  has the same stationary points and the same sign as *

PTD  

In terms of component molar densities (the name and symbol used in Nagarajan et al. [25] are 

adopted), the TPD function is [10,11,25], at 
0T T  

       
   0

0

1

ln ln
nc

dT i i i

i

P P
D d f f

RT


  

d d
d d d     (49) 

where / /i i id n V x v  , ( , )i i T   d  and ( , )P P T d . 

 The TPD function must be minimized with respect to di, subject to the linear inequality constraint 

 
1

1 0
nc

i i

i

b d


           (50) 

which is equivalent to bv   and to bounds on variables ( 0id  ). 

The minimization of dTD  appears to be used first by Nichita et al. [8] for VTN stability. The gradient is 

      ln ln ln ln ; 1,dT
i i i i i i

i

D
g f f d h i nc

d


       


0d d d    (51) 

where     /i i if d d d  is a density function (defined in such a way that molar densities are isolated in 

zero-gradient equation [12,18]) and  0ln lni i ih d   0d . 

The Hessian matrix is 

 
ln ln

; , 1,
iji i

ij

j i j

f
H i j nc

d d d

  
   

 
      (52) 

and the Newton iteration equation is 

 ( ) ( )dT dT  H d g         (53) 

 The required partial derivatives with respect to molar densities are related to partial derivatives 

with respect to mole numbers, based on homogeneity properties of the derivatives of the thermodynamic 

potentials, as described in Refs. [12,13,28]. 
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3.4. UVN stability 

 

 Phase equilibrium at UVN consists of entropy maximization, or   , ,min S U V n . It appears 

that the expression of the TPD function for UVN stability was first derived by Castier [52]; derivations 

can be also found in Smejkal and Mikyška [54] and Bi et al. [56]. The UVN stability TPD function is 

 0 0

1 0 0 0

1 1nc
i i

uv i

i

PP
D x u v

T T T T T T

      
           

     
     (54) 

where the temperature  n,,VUTT   is calculated by solving the nonlinear equation  , ,U U T V n , the 

pressure  , ,P P V T n  is calculated explicitly from the EoS and  , ,i i V T   n . 

 A mixture is stable if the TPD function is non-positive for all feasible compositions, molar 

volumes and molar internal energies. The modified TPD function in terms of mole numbers for the UVN 

stability (Nichita [13]) is given in Table 3. In terms of molar densities, the TPD function is [52,54] 

 0 0
'

1 0 0 0

1 1
'

nc
i i

u d i

i

PP
D d u

T T T T T T

      
           

     
     (55) 

where ' / /u u v U V  is the internal energy density, the temperature is calculated from the nonlinear 

equation  ' ' ,u u T d ,    , , ,i i iV T T    n d  and    , , ,P P V T P T n d . 

 A mixture is stable if the TPD function is non-positive for all feasible d and u’; strictly positive 

values of the TPD function indicate instability. 

 The gradient of 
'u dD  is [54] 

 ' 0

0',

; 1,

j i

u d i i

i u n

D
i nc

d T T


     
      

   
      (56a) 

 '

0

1 1

'

u dD

u T T

 
  

 d

        (57b) 

 The function 'u dD  has the same stationary points as dTD  at 0T T  and opposite signs (see Refs. 

[54,13] for details). This means that UVN stability (maximization of 'u dD ) can be replaced by a VTN 

stability (minimization of dTD ) at  0 0 0,T T u d , calculated by solving the nonlinear equation 

 0 0 0 0 0, ,U U T V n . 

 If the UVN stability problem is solved in its hyperspace (defined by nc+1 variables, component 

molar densities and internal energy density of the trial phase), like in Smejkal and Mikyška [54,55], that 

is as the maximization of 'u dD , the Newton iteration equation for UVN stability is 

 ( ' ) ( ' )u d u d  H g         (58) 
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with  1,..., , '
T

ncd d u  the vector of independent variables. 

 The linear system Eq. (58) has a block structure and can be written as: 

 
'

d

ugc u'

     
      
     

T

gA b d

b
       (59) 

where 

 
 2

'

2

',

/ 1

s j

iu d i i
ij ij i

i j j j j ju d

TD g T
A H T

d d d d T d d


       
          

           

  (60a) 

 
 

, 1 2

/ 1

' ' ' '

ii i
i i nc i

Tg T
b H T

u u T u u


      
         

     d

   (60b) 

 
 1

1, 2

',

1/ 1

s j

nc
j nc j

j j ju d

Tg T
b H

d d T d





  
      

    

    (60c) 

 
 1

1, 1 2

1/ 1

' ' '

nc
nc nc

Tg T
c H

u u T u


 

   
     

   d

     (60d) 

Eq. (60b) corrects a misprint in Ref. [54]. Symmetry of second-order partial derivatives gives 

 
 

2

',

/ 1

s j

i

j ju d

T T

d T d


   
 

   

       (61) 

where 

 
,

',

'

'

s j

s j

j T d

j u d

u

d
T

ud

T





 
     

  
       

 d

       (62) 

 Proceeding as in the PHN case, the reduced linear system is  

  M d r          (63) 

with 

 
    1

', ',

/ /

' '
s j s j

i i

ij

j ju d u d

T T T T
M

d u d u
 

           
                    dd

   (64) 

and 

 1

'd uc g  r g b         (65) 

 Solving the original system (Eqs. 59) is equivalent to solve the reduced linear system for di and 

then update u’ from  -1

'uu' c g    T
b d . On the other hand, the partial derivative of chemical 

potentials with respect to molar densities can be written as 
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     

, , ', ,

/ / /1 '

'
s j s j s j s j

i i ii

j j j jT d T d u d T d

T T T u

T d d d u d
   

               
                             d

 (66) 

Taking into account Eqs. (64), (66) and (62), the relation between matrices is 

 ( ') ( )1
; , 1,du dT

ij ijM H i j nc
T

         (67) 

 The matrix M is formally the same as ( ' )u d
H (they differ by a factor of proportionality). Solving 

the UVN stability in its hyperspace  , 'ud  is equivalent to performing a sequence of VTN stability 

iterations at a series of temperatures converging to T0, with a modified gradient containing some 

temperature information (via u’); the Newton method in UVN stability will be inherently slower in terms 

of number of iterations than in VTN stability. Moreover, the nonlinear equation  ' ' ,u u T d  must be 

solved for temperature at each iteration, the SSI method cannot be used, condition number of the Hessian 

may severely increase and a significantly higher number of initial guesses (incorporating estimations of 

u’) are required. Smejkal and Mikyška [54] used 7(nc+2) initial guesses in the  , 'ud  hyperspace, while 

in the d-hyperspace only (nc+2) initial guesses were required; for vapor-liquid systems two to four initial 

guesses suffice [10,13,26]. Thus, it is not recommended to solve the UVN stability problem in its 

hyperspace, since exactly the same results are obtained from a VTN stability testing at T0, using existing 

fast and robust solvers. 

 

 Castier [52] went one step further and showed that a PT stability can be performed at 
0T T  and 

0P P . However, using VTN stability has the advantage of handling negative pressures, where a mixture 

is clearly unstable, but stability testing is still required for initialization of flash calculations [52,54]. It 

can be shown that solving UVN stability in its hyperspace is equivalent to solving a reduced PT-like 

systems at each iteration, at a sequence of T and P converging to T0 and P0, respectively. 

 

 

3.5. SVN stability 

 

 Phase equilibrium at SVN conditions consist of the minimization of internal energy, 

  , ,min U S V n  at the specifications  0 0 0, ,S V n . The expression of the TPD function was given in 

Michelsen and Molllerup [2], but a derivation is presented for the first time here (see Appendix B). The 

TPD function is 

      0 0 0

1

nc

sv i i i

i

D x s T T v P P


            (68) 
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where  , ,T T S V n  is the solution of the nonlinear equation  , ,S S T V n  and  0 0 0 0, ,T T S V n ; at 

any temperature, the pressure is calculated explicitly from the EoS,  , ,P P T V n . 

 A mixture is stable if the TPD function is non-negative for all feasible compositions, molar 

entropies and molar volumes. The modified TPD function for SVN stability is given in Table 3. As in 

VTN and UVN cases, it is more convenient to use molar densities instead of mole fractions. Dividing Eq. 

(68) by v, the TPD function in terms of molar densities is 

      ' 0 0 0

1

nc

s v i i i

i

D d s T T P P


            (69) 

whrere vsVSs //   is the entropy density. 

 An analysis of PSN stability testing is given in Appendix B. 

 

 

4. General stability criteria 

 

4.1. Derivation of a general stability criterion 

  

 Let us consider a state function ( )F   (can be any of the four thermodynamic potentials or 

entropy) and the vector of nc+2 variables is    1 2 1 1 2,..., ,..., , ,
T T

nc nc nc ncn n        . Except nc mole 

numbers, the two additional variables can be either extensive (V, H, S, U), or intensive (P, T); let us note 

with m the number of extensive variables other than mole numbers. 

 Consider a mixture in an initial single-phase state with  0 0F F   and a possible two-phase 

state, with a bulk phase (described by 
*
) and an infinitesimal amount of incipient phase (of variables 

' ), of state function  

    *

1 ' 'F F F   *
        (70) 

The balance equations for extensive specifications is 

 * '

i0; 1,i i i nc m              (71) 

and for intensive specifications (P and/or T) 

 * '

i0; , 2i i i nc m nc               (72) 

 The total differential of a state function of variables   is 

 
2

1

d
nc

i

i i

F
F d






 


         (73) 

 A state function is a homogeneous function of degree one in its extensive variables [2], thus 

according to Euler’s theorem 
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1

( )
nc m

i

i i

F
F






 


         (74) 

The expressions of total differentials and of partial derivatives of state functions are listed in Table 6 for 

all major specifications. 

 

 A truncated Taylor series development of F around 
0  gives 

    
2

* * *0 0
0 0 0 0 0 0

1 10 0

( ) ( )
nc nc m

i i i i

i ii i

F F
F F F

 

 

 
         

 
      (75) 

or, from the balance equations 

  * 0
0 0

1 0

nc m

i

i i

F
F F






  


        (76) 

The state function of the incipient phase is 

 ' '

'
1

'
'( )

nc m

i

i i

F
F






 


         (77) 

The change in state function F between states 0 and 1 is 

  *

1 0 0'F F F F F F             (78) 

or 

 0

1 0

( )
nc m

i

i i i

FF
F





 
    

  
        (79) 

 A general criterion for phase stability including all major specifications is obtained; ( )F   

degenerates to the change of any state function between states 0 and 1 for the desired specifications, if the 

appropriate F and   are used. Dividing Eq. (79) by the number of moles in the incipient phase, the 

general expression of the TPD function is 

 0

1 0

( )
nc m

m m

i m m
i i i

ff
D





 
   

  
        (80) 

where /m

i i n    are the molar extensive specifications, /f F n  are the molar state functions and 

 1 ,...,
T

m m m

nc m   , with ; 1,m

i ix i nc   . The TPD functions for all specifications are collected in 

Table 2. 

 

 By adding and subtracting  

 0
0 0 0

1 0

( )
nc m

i

i i

F
F






 


         (81) 

in Eq. (79) and taking into account Eq. (74), we obtain after rearrangement 
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   0
0 0

1 0

( )
nc m

i i

i i

F
F F F






      


       (82) 

which divided by the total number of moles in the trial phase n gives 

   0
0 0

1 0

( )
nc m

m m

i i

i i

f
D f f






     


       (83) 

which matches the expression given by Smejkal and Mikyška [55]. 

 

 

4.2. Legendre transformations from a core function 

 

 Given a function (0)
1( ,... )ny f x x  and its first-order partial derivatives,  (0) /

j i
i i

x
y x



    , the  

kth Legendre transformation of (0)y  is [59,60,61] 

 ( ) (0)
1 1

1

( ,..., , ,... )
k

k
k k n i i

i

y x x y x



          (84) 

 Usually, state functions are obtained as Legendre transformations starting from ( , , )U S V n . Here 

state functions can be expressed as first-order (A and H) or second-order (S and U) Legendre 

transformations of a core function  1, , ,..., ncM M P T n n . In some cases (PHN, UVN), it is more 

convenient to use the Planck function, /Y G T  [62,63] (with P/T and 1/T as variables) instead of the 

Gibbs free energy. Thus, the core function is  1 2 1, , ,..., ncM M v v n n  and the state functions are 

 
1

m

i i

i

F M v


           (85) 

where  

 

,j i

i

i v

M

v


 
   

 
n

         (86) 

The function M and the variables iv and i  ( 1, )i m are given in Table 7 for all major specifications. 

 

4.3. Alternative derivation of a general stability criterion 

 

 As suggested by Michelsen [3], for a two-phase (say, without losing generality) vapor-liquid 

system the Gibbs free energy 

 L V L L V VG G G g g           (87) 

can be expressed as (by adding and subtracting G0 and after rearrangement) 
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 0 L L V VG G D D           (88) 

where G0 is the Gibbs free energy of a hypothetical single-state phase with global composition. For 

strictly negative values of D, 0G G , which means that the system splits into two or more phases. 

 The state function F for a two-phase system is 

 L V L L V VF F F f f           (89) 

and a generalization of Eq. (88) gives 

 0 , ,L F L V F VF F D D          (90) 

where FD is the TPD function corresponding to the state function F. 

 Adding and subtracting F0 in Eq. (89) and taking into account Eq. (85), we obtain  

  0 0 0 0

1

m

L V jL jL jV jV j j

j

F F M M M v v v


             (91) 

The core function can be expressed as 

 

1 2
1 1, , j i

nc nc

ii i

ii iv v n

M
M n n M

n


 

 
  

 
        (92) 

where 

 

1 2, , j i

i

i v v n

M
M

n


 
  

 
        (93) 

are the partial molar core functions. 

 The balance equations are 

 0 : 1,i iL iV L i V in n n x y i nc           (94) 

and 

 0 : 1,m m
i iL iV L iL V iV i m                (95) 

Combining Eq. (91) with Eqs. (94), (95) and (92) gives 

       0 00 0 0

1 1 1 1

nc m nc m
m m

iL i iV iL i jL jL j V i jV jV j

i j i j

F F x M M v v y M M v v
   

   
             

      
    (96) 

 By identification from Eq. (90) and Eq. (96), the general TPD function is 

    0 0

1 1

nc m
m

i iF i j j j

i j

D x M M v v
 

           (97) 
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 The procedure to obtain Eq. (97) is exactly a generalization of what Michelsen [3] did to obtain 

Eq. (88) for PT stability. Introducing in Eq. (97) the appropriate M, iv and i  from Table 7, the TPD 

functions in Table 2 are obtained. 

 The two general stability criteria presented here are equivalent, both reducing to the TPD function 

corresponding to any desired specifications. The criterion in Eq. (80) contains the state function and its 

partial derivatives with respect to the natural variables and the criterion in Eq. (97) contains partial 

derivatives of a core function (Gibbs free energy (or the Planck function)) with respect to pressure and 

temperature. Regarding the second method, one can similarly use as a core function the Helmholtz free 

energy in its natural variables (V, T, n), or the Massieu potentials [62,64], /A T , with natural variables 

(V, 1/T, n)). The TPD functions in terms of molar densities are listed in Table 5 for all specifications. 

 

 

4.4. Short final remarks 

 

 In Michelsen’s [1] general formulation for flash calculations, in that of Smejkal and Mikyška 

[55], as well as in unified treatments of using RAND-type methods [46-48], a common Jacobian matrix is 

assembled, capable of handling all specifications. This is also possible for phase stability testing, but it 

would be rather a mathematical exercise, with no practical use, since minimization of TPD functions in 

their hyperspaces is not recommended for most specifications, as discussed throughout this paper; as 

shown earlier, phase stability testing for any major specifications can be reduced to either PT or VTN 

stability testing.  

 In the volume-based methods for PT stability [7,31,34] (which are useful particularly for complex 

thermodynamic models), the TPD function is formally the same as the TPD function in VTN stability and 

the same computational tools can be used. In VTN stability, the volume is specified and the pressure in 

Eq. (49) is calculated explicitly from the EoS; in volume-based PT stability, the pressure is specified and 

the volume is calculated by solving the EoS and selecting the root giving the minimum Gibbs free energy. 

Note that the volume-based formulation is natural if volume is a specification (i.e., VTN, UVN, SVN). In 

other cases, when pressure is a specification (i.e., PHN and PSN), a volume-based PT stability testing can 

be performed at 0T T . Unlike for any other specifications other than PT, in VTN stability the SSI 

method can be formulated, but it is not robust; the explanation is given in Ref. [13], based on the earlier 

work of Michelsen [7] and Heidemann and Michelsen [65]. 

 Our final recommendation is to solve a PT stability problem for PHN and PSN specifications and 

a VTN stability problem in molar densities for UVN and SVN specifications, after solving the 

corresponding nonlinear equation in temperature (nonlinear equations for each specifications are listed in 

Table 3). 
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 Many robust and efficient computational methods are available for PT stability. A common 

practice is to use a combined SSI/Newton procedure, with SSI in the early iteration stages and a switch to 

the second-order Newton method when the solution is approached. A strong safety feature which makes 

the method extremely robust is to switch back to SSI whenever the Newton method fails to provide a 

descent direction; however, the method can be extremely slow in some cases [66,67]. Our favorite solvers 

[34,67] use either a modified Cholesky factorization [68,69] and a line-search procedure, or a Trust-

region approach [70,71]. Reduction methods [72,73,66] are suitable for mixtures with many components 

and few binary interaction parameters in the cubic EoS; several formulations are available for phase 

stability testing [66, 73-76]. A promising research attempting to bridge phase stability and phase split 

(including the negative flash [77]) in a common framework was recently presented [78]. Further 

developments are expected in the light of this elegant approach. For VTN stability, the conventional 

SSI/Newton method is not robust; damped SSI [65] may be used with caution in the early iteration stages, 

as discussed in Ref. [13]. Robust implementations using Newton iterations with a modified Cholesky 

factorization and a two-stage line-search procedure were presented in Refs. [12,13,34]. 

 

 

5. Conclusions 

 

 This paper presents for the first time a formalism for phase stability analysis including all major 

specifications. Derivations of stability criteria and detailed analysis for PHN, PSN and SVN stability are 

presented here for the first time. It is shown that stability testing for any specifications naturally reduces 

to either PT stability (when pressure is a specification, as in PHN and PSN stability) or VTN stability 

(when volume is a specification, as in UVN and SVN stability), by solving the appropriate nonlinear 

equation in temperature. 

 Using the block structure of the Hessian matrix, it is shown that solving the phase stability 

problem in the hyperspace defined by the natural variables of the state function for any specifications 

other than PT and VTN will be inherently slower in terms of number of iterations and a number of 

additional drawbacks are discussed. Therefore, it is not recommended to minimize a specific TPD 

function for these specifications, since exactly the same results are obtained from PT or VTN stability 

testing using faster and more robust solvers. 

 Two general phase stability criteria (TPD functions) are proposed, which include all state 

functions and specifications. The first one contains the state function and its partial derivatives with 

respect to natural variables; in the second one, Legendre transformations of the Gibbs free energy (or the 

Planck function) taken as a core function are used and partial derivatives are with respect to pressure and 

temperature. Both general TPD functions degenerate to the TPD function corresponding to any given 

specifications. 
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 Even though only a theoretical framework is presented here, an important practical consequence 

is that existing codes for PT stability (for which highly robust methods are available) or VTN stability 

and volume-based PT stability (for which important advances were made in the recent years) can be used 

whatever the specifications, by simply adding routines for solving the specific nonlinear equation in 

temperature. Such codes handling all major specifications would be valuable for compositional simulators 

addressing a variety of thermodynamic processes. 
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Appendix A PSN stability 

 

 The total differential of the enthalpy is [2] 

 
1

nc

i i

i

dH TdS VdP dn


           (A1) 

or 

 
1, , , , j i

nc

i

iP S i S P n

H H H
dH dS dP dn

S P n




      
       

       


n n

    (A2) 

From Eqs. (A1) and (A2), the partial derivatives are 

 
,P

H
T

S

 
 

  n

         (A3a) 

 
,S

H
V

P

 
 

  n

         (A3b) 

 

, , j i

i

i S P n

H

n


 
  

 
        (A3c) 

 Consider a mixture in an initial single-phase state of enthalpy  0 0 0 0, ,H H S P n  and a two-

phase state, with a bulk phase (of composition 
*

n ) and an infinitesimal amount of incipient phase (of 

composition 'n ), of enthalpy    * * *

1 , , ' ', ', 'H H S P H S P *
n n . The balance equations are  

 *

0'H H H           (A4a) 

and  

 *

0'i i in n n           (A4b) 

and the pressure is 

 *

0'P P P           (A4c) 

A truncated Taylor series expansion around  0 0 0 0, ,H H S P n  gives 

  
0 0 0 0 0 0 0

* * * *

0 0 0 0 0 0

1, , , ,

, , ( ) ( ) ( )

j i

nc

i i

iP S i S P n

H H H
H H S P S S P P n n

S P n




      
           

       


n n

n (A5) 

or, taking into account the balance equations and *

0P P  

 
*

0 0 0

1

' '
nc

i i

i

H H S T n


           (A6) 

The enthalpy of the incipient phase is 

 
1

' ' ' ' '
nc

i i

i

H S T n


           (A7) 
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 The change in enthalpy between states 0 and 1 is 

  *

1 0 0'H H H H H H            (A8) 

or, introducing Eq. (A6) and Eq. (A7) into Eq. (A8) 

    0 0

1

' ' ' '
nc

i i i

i

H S T T n


            (A9) 

 Dividing H  by the numbers of moles in the trial phase n, the TPD function in PSN stability is  

    0 0

1

nc

Ps i i i

i

H
D h s T T x

n 


             (A10) 

where /s S n  is the molar entropy. 

 A mixture is stable if the TPD function is non-negative for all feasible n and s (or n and T); 

strictly negative values of the TPD function indicate instability. The modified TPD function for PSN 

stability is 

 *

0 ( )PS PsD RT f D            (A11) 

or  

      *

0 0 0 0

1

( )
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PS i i i Ps
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D RT f n S T T RT f D


              (A12) 

The gradient of *

PSD  is 

  
*
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      (A13a) 
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S
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        (A13b) 

 

 Introducing the stationarity conditions into TPD function gives 

    *

0 1PSD P,H, RT n        (A14) 

 At the stationary points, 0T T  from Eqs. (A13b). The elements of the gradient vectors in PSN 

and PT stability are related by  

 

0

* *

0

, , , ,

0; 1,

j i j i

PS PT

i iP H n P T n
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D D
RT i nc

n n
 

    
     

    
    (A15) 

and the TPD functions by 

    
0

* *

0 0,PS PT T
D P,H, RT D P,Tn n       (A16) 
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 The modified TPD function in PSN stability, *

PSD , has the same stationary points as the modified 

TPD function in PT stability (from Eq. A15), *D  at T0 and the same signs (from Eq. A16). Therefore, the 

PSN stability (minimization of *

PSD ) can be replaced by a conventional PT stability (minimization of 

*

PTD ) at  0 0 0 0, ,T T S P n . 

 If the PHN stability problem is solved by a minimization of the modified TPD function in its 

hyperspace (defined by nc+1 variables, mole numbers and entropy of the trial phase), the Newton 

iteration equation for PHN stability is 

 ( ) ( )PS PS  H g         (A17) 

with  1,..., ,
T

ncn n S  

The linear system Eq. (A17) can be written as: 
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T

gA n n

b
       (A18) 

where the blocks of the Hessian matrix are 
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 
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       (A19d) 

Symmetry of second-order partial derivatives of enthalpy gives 

 

, s j
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and  
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       (A20) 

 Similar to PHN stability, it is equivalent to solve the original linear system in Eq. (A17) or a 

reduced linear system for mole numbers 

 rnM           (A21) 
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with 
1c  T

M A bb  and 1

n Hc g  r g b , then to update entropy from  -1

SS c g    T
b n . 

 The elements of M are  
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    (A22) 

The partial derivative of chemical potentials with respect to mole numbers can also be expresses as 
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Comparing Eq. (A22) and (A23) and taking into account Eq. (A20) 

 
( ) ( )

0 ; , 1,PS PT
ij ijM RT H i j nc         (45) 

 The matrix M is formally the same as ( )PT
H , the elements of the two matrices being related by a 

factor of proportionality. From now on, all the points of the discussion on PHN stability (section 3.1.) 

hold for the PSN stability. 

 

 

Appendix B SVN stability 

 

 The total differential of internal energy is 
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From Eqs. (B1) and (B2), the partial derivatives are 
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 Consider a mixture in an initial single-phase state of internal energy  0 0 0 0, ,U U S V n  and a 

two-phase state, with a bulk phase (of composition 
*

n ) and an infinitesimal amount of incipient phase (of 

composition 'n ), of internal energy    * * *

1 , , ' ', ', 'U U S V U S V *
n n . The balance equations are  
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The balance equations are 
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0'S S S           (B4a) 
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0'V V V            (B4b) 

 *
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A truncated Taylor series expansion of the internal energy around  0 0 0, ,U S V n  gives 
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The internal energy in the incipient phase is 
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The change in the internal energy between states 0 and 1 is 
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Dividing U  by the numbers of moles in the trial phase n, the TPD function in SVN stability is 
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As in VTN and UVN cases, it is more convenient to express the TPD function in terms of molar densities, 

which is obtained by dividing Eq. (B10) by the molar volume  
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where vsVSs //   is the entropy density. 

 The gradient is 
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 It can be easily shown, similarly to the UVN case in Refs. [54,13], that the TPD functions s dD   

and dTD  have the same stationary points and the same signs. This means that SVN stability (minimization 
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of 
s dD  ) can be replaced by a VTN stability (minimization of

dTD ) at  0 0 0,T T u d , calculated by 

solving the nonlinear equation  0 0 0 0 0, ,S S T V n . 

 If the SVN stability problem is solved in its hyperspace (defined by nc+1 variables, component 

molar densities and entropy density of the trial phase), that is, as the minimization of 
s dD  , the Newton 

iteration equation for SVN stability is 

 ( ' ) ( ' )s d s d  H g         (B13) 

with  1,..., , '
T
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 The linear system is 
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where the elements of the constitutive blocks of the Hessian matrix are 
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and  
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from the symmetry of second-order partial derivatives, where 
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 Solving the original system in Eq. (B13) is equivalent to solving a reduced linear system 
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for di and then update s’ from  -1

'ss' c g    T
b d , where the elements of the matrix 
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and 1

'd sc g  r g b . 

 On the other hand, the partial derivative of chemical potentials with respect to molar densities can 

be written as 
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Taking into account Eqs. (B19), (B20) and B17), the relation between matrices is 

 
( ') ( ) ; , 1,du dT
ij ijM H i j nc         (67) 

 The matrix M is formally the same as ( )dT
H  in Eq. (53) for VTN stability. All the points of the 

discussion on UVN stability (section 3.4.) hold for the PSN stability. 
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Table 1 State functions, specifications and Q-functions (Michelsen [1]) 

Specification State function Q-function QV-function 

PT G G 
specA P V  

VTN A 
specPVG   A 

PHN S    THG spec /    /spec specA P V H T   

PSN H 
specTSG   

spec specA P V TS   

UVN S    TPVUG specspec /    TUA spec /  

SVN U 
specspec PVTSG   specTSA   

 

 

 

Table 2 TPD functions 

Specification TPD function Variables 

PT  



nc

i

iiixD
1

0  x 

VTN    0

1

0 PPvxD
nc

i

iiivT 


 x,v 

PHN 

















 



 

 01 0

0 11

TT
h

TT
xD

nc

i

ii
iph  x,h 

PSN    0

1

0 TTsxD
nc

i

iiips 


 x,s 

UVN 




























 



 

 0

0

01 0

0 11

T

P

T

P
v

TT
u

TT
xD

nc

i

ii
iuv  x,v,u 

SVN      00

1

0 PPvTTsxD
nc

i

iiisv 


 x,v,s 
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Table 3 Nonlinear equations for temperature and explicit pressure 

Specification Nonlinear equation Pressure and/or temperature 

VTN  0 specT T   0 , ,spec specP P V T n  

PHN  , ,spec spec specH H T P n   0 , ,spec spec specT T H P n  0 specP P  

PSN  , ,spec spec specS S T P n   0 , ,spec spec specT T S P n  0 specP P  

UVN  , ,spec spec specU U T V n   0 , ,spec spec specT T U V n   0 0, ,spec specP P T V n  

SVN  , ,spec spec specS S T V n   0 , ,spec spec specT T S V n   0 0, ,spec specP P T V n  

 

 

 

Table 4 Modified TPD functions 

Specification TPD function Variables 

PT    *

0 0

1

nc

PT i i i

i

D RT f n


      n 

VTN      *

0 0 0

1

nc

VT i i i

i

D RT f n V P P


        n, V 

PHN  * 0

1 0 0

1 1nc
i i

PH i

i

D R f n H
T T T T

    
        

   
  n, H 

PSN      *

0 0 0

1

nc

PS i i i

i

D RT f n S T T


        n, S 

UVN  * 0 0

1 0 0 0

1 1nc
i i

UV i

i

PP
D R f n U V

T T T T T T

      
            

     
  n, V, U 

SVN        *

0 0 0 0

1

nc

SV i i i

i

D RT f n S T T V P P


          n, V, S 
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Table 5 TPD functions in terms of molar densities 

Specification TPD function Variables 

PT    0

1

nc

i i i spec spec

i

D d P P P


     
   d 

VTN    0 0

1

nc

vT i i i

i

D d P P


      d 

PHN 
 0

1 0 0 0

1 1
'

nc
i spec speci

ph i

i

P PP
D d h

T T T T T T

     
          
      

  d, h’ 

PSN      0 0

1

'
nc

ps i i i spec spec

i

D d P s T T P P


       
   d, s’ 

UVN 
0 0

1 0 0 0

1 1
'

nc
i i

uv i

i

P P
D d u

T T T T T T

      
          

     
  d, u’ 

SVN      0 0 0

1

'
nc

sv i i i

i

D d s T T P P


        d, s’ 

 

 

Table 6 Total differentials and partial derivatives of state functions 

Spec. Total differential [2] Partial derivatives 

PT 
1

nc

i i

i

dG SdT VdP dn


      
,P

G
S

T

 
  

  n

 
,T

G
V

P

 
 

  n

 
, , j i

i

i P T n

G

n


 
  

 
 

PHN 
1

1 1 nc

i i

i

V
dS dH dP dn

T T T 

     
,

1

P

S

H T

 
 

  n

 
,H

S V

P T

 
  

  n

 

, , j i

i

i H P n

S

n T


  
  

 
 

PSN 
1

nc

i i

i

dH TdS VdP dn


     
,P

H
T

S

 
 

  n

 
,S

H
V

P

 
 

  n

 

, , j i

i

i S P n

H

n


 
  

 
 

VTN 
1

nc

i i

i

dA SdT PdV dn


      
,V

A
S

T

 
  

  n

 
,T

A
P

V

 
  

  n

 

, , j i

i

i V T n

A

n


 
  

 
 

UVN 
1

1 1 nc

i i

i

P
dS dU dV dn

T T T 

     
,

1

V

S

U T

 
 

  n

 
,U

S P

V T

 
 

  n

 

, , j i

i

i U V n

S

n T


  
  

 
 

SVN 



nc

i

iidnPdVTdSdU
1

 T
S

U

V














n,

 P
V

U

S














n,

 
i

nSVi
ij

n

U
















,,
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Table 7 State functions as Legendre transformations of Gibbs free energy or Plank function 

F Spec. M m v1 1  v2 2  
1

m

i ii
F M v


    

G PTN  , ,G P T n  0 - - - - G 

S PHN 
1

, ,Y P
T

 
 
 

n  1 
1

T
 

 
,

1/
P

Y
H

T

 
    n

 
- - G H

S
T


   

H PSN  , ,G P T n  1 T 
,P

G
S

T

 
  

  n

 
- - H G TS   

A VTN  , ,G P T n  1 P 
,T

G
V

P

 
 

  n

 
- - A G PV   

S UVN 
1

, ,
P

Y
T T

 
 
 

n  2 
P

T
  

,
/

T

Y
V

P T

 
    n

 
1

T
 

 
,

1/ P

T

Y
U

T

 
    n

 
G PV U

S
T

 
   

U SVN  , ,G P T n  2 P 
,T

G
V

P

 
 

  n

 
T 

,P

G
S

T

 
  

  n

 
U G PV TS    

 

 

 

 

 

 

 

 

 

 

 


