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Imaging ellipsometry is an optical characterization tool that is widely used to investigate the spatial variations of the 
opto-geometrical properties of thin films. As ellipsometry is an indirect method, ellipsometric map analysis requires a 
modeling step. Classical methods such as the Levenberg–Marquardt algorithm (LM) are generally too time-consuming to 
be applied on a large data set. In this way, an artificial neural network (ANN) approach was introduced for the analysis 
of ellipsometric map. As a proof of concept this method was applied for the characterization of silver nanoparticles 
embedded in poly-(vinyl alcohol) film. We demonstrate that the LM and ANN gives similar results. However, the time 
requires for the ellipsometric map analysis decreases from 15 days for the LM to 1s for the ANN. This suggests that ANN 
is a powerful tool for fast spectroscopic ellipsometric imaging analysis. 

 

Spectroscopic ellipsometry (SE) is one of the most powerful 
techniques for investigating the opto-geometrical properties of 
materials. SE is based on the measurement of the change of 
polarization state of light reflected from sample. This technique, 
was previously used to determine the complex refractive index of 
materials, the optical anisotropy, the stoichiometry of alloys, the 
thickness and the roughness of thin films [1-5], the profile of 
diffraction grating [6-8] or the volume fraction and shape 
distribution of nanoparticles (NP) contained in nanocomposite 
films [9-10]. The beam size of standard ellipsometer which limits 
the lateral resolution, is about few millimeters. However, the 
trends of devices miniaturization require the development of 
ellipsometric set up with microscopic scaled resolution. Cohn et al. 
have addressed this issue by introducing an imaging ellipsometer 
[11]. This kind of set-up allows recording the spatial variation of 
ellipsometric spectra with a lateral resolution as small as 1 μm. 
This technique was previously used to investigate the 
homogeneity and the optical properties of 2D nanomaterials [12-
13], optical waveguides [14], patterned biosensors [15], diffraction 
gratings [16] or plasmonic materials [17]. Two images 
representing the ellipsometric angles  and  are recorded for 
each wavelength. As SE is an indirect characterization tool, the 
extraction of physical parameters of the sample from the recorded 
spectra requires a modeling step. However, the analysis of this 
huge data cube remains challenging. To reduce the data size, pixels 
can be gathered into region of interest (ROI) by using the binning 
process. However, this approach assumes that opto-geometrical 
properties are homogeneous inside a ROI. On the other end, the 
fitting of the full ellipsometric map by using classical optimization 
algorithm such the Levenberg-Marquard algorithm (LM) is often 

time consuming. Even the interpolation of the  and  values 
limits to power of the analysis to 1-parameter optical models. 
Recent works have suggested that ellipsometric spectra, recorded 
without spatial resolution, can be exploited by using an artificial 
neural network (ANN) [4,6-8,18-23]. Fried et al. have used an ANN 
analysis of ellipsometric spectra to determine the damage profile 
induced by ion implantation in silicon-on-insulator structure [18]. 
This neural analysis procedure was also used to analyze 
ellipsometric map [19]. They also modified the sample selection 
strategy to improve the convergence of the learning algorithm 
toward global minima [20]. Urban III et al. have implemented a 
cascade of several ANN to improve the accuracy of the ANN 
analysis [21]. Recently, some authors. have shown that ANN could 
be a fast, accurate, and useful approach to exploit ellipsometric 
measurements performed on Ge-Sb-Te alloys [22] or perovskite 
materials [23]. In our previous work, we have also demonstrated 
that ANN is less sensitive to local minima and solves the inverse 
problem in a shorter time than the LM algorithm [24]. Despite 
these development in ellipsometric characterization, this approach 
has never been used to exploit ellipsometric images. Indeed, it was 
only applied to punctual ellipsometric measurements or 
ellipsometric map with a small number of pixels [4, 19].  
 
In this context, the aim of this letter is to demonstrate the feasibility 
of the complete analysis of ellipsometric images by using a neural 
network. Compare to punctual ellipsometric measurements or 
standard ellipsometric map, these images are composed of a large 
number of pixels. The fine analysis of this kinds of images generally 
constitutes a challenge. For this proof of concept, spectroscopic 
imaging ellipsometry measurements were performed on thin 
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poly-(vinyl alcohol) (PVA) film containing silver nanoparticles 
(NPs) and deposited on silicon wafer. This sample was elaborated 
according to the Porel method [25]. Briefly, a (0.12g/ml) aqueous 
solution of PVA (MW: 13000 – 23000) is first prepared and stirred 
vigorously at 90°C for 1 hour, and at room temperature for 23h. 
Then, silver nitrate (AgNO3) is added to the solution in order to 
obtain an AgNO3 concentration of 0.0475 g/ml. After that, the 
solution was deposited by spin coating at 5000 rpm on a silicon 
substrate. Finally, the central part of the obtained sample was 
irradiated with a 150W Xenon lamp for 2h at an irradiance value of 
2000 W/m².   Twenty maps of ellipsometric angles  and  were 
recorded at 10 wavelengths in the 380–812 nm spectral range by 
means of an EP3-SE spectroscopic nulling imaging ellipsometer 
(Accurion GmbH). This corresponds to a data-cube of 8424600 
elements. The objective was a Nikon 10X (NA=0.21). The angle of 
incidence was set to 60°. The spatial resolution was estimated to 
0.52x0.52 μm² per pixel, without binning of the images. 
Ellipsometric spectra are also recorded by using a classical 
ellipsometer (UVISEL, Horiba), without spatial resolution. The 
measurements are performed at an angle of incidence of 70° in the 
270nm-900nm spectral range and a spot size of about 800 µm. 
As ellipsometry is an indirect technique, each spectrum must be 
analyzed with a model which reflects the physical properties of the 
sample. In our case, the model consists in Ag NPs embedded in a 
PVA film on a silicon substrate. As previously shown [9-10], the 
effective dielectric function (    ) of the film can be described by 

using the shape distributed effective medium theory (SDEMT): 
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f is the volume fraction of Ag NPs.    and     are the dielectric 
function of PVA matrix and silver, respectively. The coefficient   is 
given by: 
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         is the normalized distribution of the depolarization 
factors    of NP which is directly related to the distribution of NP 
shape. These parameters must respect the following sum rule: 
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In the following, we assume that the distribution          is 
described by a Gaussian distribution centred on the locus of 
spherical NP: 
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  and C are the standard deviation and the normalization factor of 
the distribution, respectively. Three parameters must be 
determined for each pixel positions: f,   and the film thickness h. 
The spatial variations of f,   and h deduced from ellipsometric 
measurements by using the LM algorithm are depicted in Figure 1 
a-c. These maps highlight the inhomogeneities of nanocomposite 
film at the microscale. This spatial inhomogeneities are probably 
related to the NPs growth mechanism and especially the diffusion 
and aggregation of NPs in the film. Some statistical parameters can 
be extracted from ellipsometric maps. The mean value of f, h and   
are 4.75%, 253 nm and 0.099, respectively. These results are close 

to the f, h and   values of 4.14%, 253 nm and 0.99 by using a 
classical ellipsometer, without spatial resolution. The standard 
deviation of  f, h and   are 0.72%, 15 nm and 0.017, respectively. 
The root mean square error between the measured and modeled 
spectra is estimated to 0.013 0.019. This value is in the same 
order of magnitude as the accuracy of the ellipsometer confirming 
the validity of the model.  

 

Figure 1: Specially-resolved parameters of the optical model : (a)(b) Ag 
NP volume fraction ; (c)(d)  Film thickness ; (e) and (f) Width of the 
normal distribution of the depolarization factors. (a)(c)(e) images: are 
obtained from a LM inversion. (b)(d)(f) images are obtained from ANN. 

Despite local information on the sample can be deduced from 
imaging ellipsometry, the analysis of the ellipsometric maps with 
the LM algorithm requires 15 days computing time. Thus, this 
procedure is too time consuming to be used for routine 
characterizations. Other optimization algorithm should be found to 
overcome this issue. Since ANN is a universal and parsimonious 
approximator [26], it can be considered as a promising candidate 
to solve these kinds of problem with a shorter computing time. As 
a proof of concept, we implement in Matlab multilayer perceptron 
(Figure 2(a)) composed of a single hidden layer and an output 
layer of neurons. The calculations are performed with a multi-core 
personal computer (Intel Core i7 7700k, 4 cores, 3.6 GHz). The 
layers are linked together by weighted synaptic connections. Each 
neuron   applies a specific transfer function   to its weighted 
inputs: 
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     is the weight of the synapse which links the input    and the 

neuron m. The transfer functions of the hidden neurons and 
output neurons are sigmoid and linear functions, respectively. The 
input vector consists in the ellipsometric parameters Is and Ic. The 
number of hidden neurons is arbitrary set to 30. The output layer 
is composed of 3 neurons. The outputs of the ANN are f,   and h. 
The relationship between the input and output of the ANN is 
learned during the training step. This step requires a large number 



of input/output data.  400000 samples are randomly generated 
from a uniform distribution by taking the parameters f,   and h in 
the following ranges. 

          , 
               , 

            . 
 
The generation of these data takes almost 6h. Then, the 
ellipsometric spectra of these samples were simulated by using 
our model. These couples of input/output data were then split into 
three corpuses: the training data (280000 couples), the validation 
data (80000 couples), and the test data (40000 couples). The ANN 
was then trained with the training data by using the back 
propagation Levenberg–Marquardt algorithm [27]. During the 
training step, the synaptic weights were adjusted to minimize the 
error between the training data and the ANN output. To avoid the 
overfitting, the training was stopped by using the early stopping 
technique, i.e. until the error evaluated from the validation data 
increases. The training of the ANN takes almost 3h. Once trained, 
the ANN can be reused to analyze several ellipsometric images 
without any further training step. The performances of the ANN 
were evaluated on the test data. Figure 2(b)(c)(d) shows the value 
of f,   and h determined by the ANN as a function of the 
corresponding value of the test data. Linear variation is found 
between the f,   and h values predicted by the ANN and the 
nominal ones. The slope and intercept value are close to 1 and 0, 
respectively. The root mean square error on f,   and h are 
estimated to 0.1%, 2 nm and 0.003, respectively. These results 
obtained on test data, confirm the high level of operating 
performance of the ANN. Nevertheless, this performance was 
evaluated on virtual samples.  

 

Figure 2: (a) Schematic representation of the ANN used in this work. 
Comparison between the (b) f, (c) h, and (d)  values estimated by the 
ANN and the theoretical values of the test data. The linear regressions 
are represented by the red dashed line. 

It is therefore important to evaluate the performance of our ANN 
on an experimental ellipsometric map. Figure 1(d)(e)(f) shows the 
f,   and h maps deduced from the analysis of the ellipsometric map 
with the ANN. These maps are similar to those obtained by the LM 

algorithm. To give a more quantitative comparison, the results 
determined by the ANN for each pixel are against those deduced 
from the ANN (Figure 3). Each point of Figure 3 is located along the 
identity line. The root mean square error between the f, h and  , as 
estimated by ANN and LM are 0.3%, 4.8 nm and 0.008, 
respectively. In addition, both methods give similar f, h and   
distributions. Thus, it can be concluded that the ANN globally 
reproduces the results obtained by the LM. The mean value of the 
root mean square error between the measured and the modeled 
spectra from the ANN is estimated to 0.014 0.024. This value is 
close to that obtained by the LM, suggesting that the LM and ANN 
have the same accuracy. We can also remark that for 9 pixels, the 
LM falls into a local minimum located at   0.3. However, the 
ANN gives other solutions with a smaller root mean square error 
for these pixels. It probably converges toward the global minima. 
Indeed, as shown by several works ANN is more robust than LM to 
local minima [21, 24]. 

 

Figure 3: Comparison between the (a) f, (b) h, and (c)  values and 
histogram estimated by the ANN and LM.  Each dot represents 1 pixel 
of the ellipsometric map. The red dashed line represents the identity 
line. 

 

In summary, a new method based on an ANN is introduced to 
analyze spectroscopic ellipsometric maps. This method, applied to 
silver NPs in PVA film, allows investigating the spatial variation of 
film thickness, volume fraction and the shape distribution of NPs. 
This neural and LM data processing gives similar results with the 



same accuracy. However, the computing time required for the 
analysis of the 842460 spectra of  and  which composed the 
ellipsometric map decreases from 15 days for the LM to 1s for the 
ANN. This can be considered as real drastic improvement for in-
line SE imaging characterization.  In addition, once trained, the 
ANN can be reused without any further training step. As also 
reported by several works [21, 24], ANN is less sensitive to local 
minima of the error function than LM. Finally, the ANN 
ellipsometric map processing is fairly flexible and can be easily 
applied to other kind of samples., although requiring a specific 
training for each class of sample.    
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