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CHAPTER FIVE

MROM-p: An Interactive Activation,
Multiple Readout Model of
Orthographic and Phonological
Processes in Visual Word Recognition

Arthur M. Jacobs
Philipps University of Marburg

Arnaud Rey
Laboratoire de Neurosciences Cognitives - CNRKS

Johannes C. Ziegler
Jonathan Grainger ,
CREPCO-CNRS & Université de Provence

The world is worded before it is sentenced.
—Variation on a theme by Humboldt

READING, WORD RECOGNITION,
AND THE LEXICAL DECISION TASK

The world of words is just as wondrous as the world of syntax, or even
more so. For not only are people as infinitely creative with words as
they are with phrases and sentences, but memorizing individual words
demands its own special virtuosity. '

- —S. Pinker, The Language Instinct

The subject of this chapter is reading, one of the finest achievements of human
civilization and one of the most complex activities of the human mind.
Explaining the whys and hows of reading skill represents an outstanding
intellectual challenge for cognitive scientists. Word recognition is the funda-
mental process underlying reading skill; it provides a favorable focus for
experimental reading research. At the level of word representations, all lower
and higher level processes involved in reading seem to meet. Word repre-
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sentations are the central building blocks of language learning and processing
(Miller, 1993). Here, sensory, orthographic, phonological, morphological,
semantic, and syntactic operations converge and diverge. The problem is to
find how these central representations are organized and how they interact
with both lower and higher level processes that depend on task or language
contexts. Solving this problem necessarily involves a multistep approach.
Before tackling, for example, word or sentence production problems that
reflect being “infinitely creative with words,” we try to solve the problems of
the perceptual and mnestic organization of lexical memory, that are the basis
of the “special virtuosity.” Before tackling problems of morphosemantic and
-syntactic processing of words, we try to answer simpler questions about
orthographic and phonological processing.

Psychologists have studied word recognition and reading by using ex-
perimental techniques that still require methodological and theoretical uni-
fication (Jacobs & Grainger, 1994; see also discussion section). The most
widely used modern experimental method for investigating visual and audi-
tory word recognition is the lexical decision task (LDT). Like any other
experimental technique, the LDT provides only indirect and incomplete
information about the processes underlying word recognition and therefore
requires cognitive modeling as a complement to experimental analyses. This
chapter focuses on such a model of word recognition performance as as-
sessed by the LDT.

ORTHOGRAPHIC AND PHONOLOGICAL PROCESSING:
A MODEL-GUIDED, MULTILINGUISTIC, MULTITASK
PERSPECTIVE MOTIVATED BY THREE SKEPTICISMS

From an evolutionary perspective, writing and reading evolved because
humans needed a convenient means of coding and decoding oral language
for purposes of storage, transmission, and tradition. As a means of externali-
zation of thoughts, writing and reading presumably had already withstood a
test on the scale of survival values. Inalphabetic writing systems, the individual
elements of the alphabet correspond to the elementary sounds of the spoken
language. The degree of this correspondence (its consistency) is variable and

!0rthographic processing refers to the use of orthographic information (i.e., knowledge of
the spellings of words). In alphabetic languages such as English, French, or German, we assume
that such knowledge is letter based. Knowledge of how to spell a word is thought to be stored
as a set of abstract representations that code both the identity and position of a word’s
component letters. Phonological processing refers to the use of phonological information (i.e.,
knowledge of the sounds of language) in processing written and oral language. The question
of which functional units code this knowledge is more complex than for orthographic
processing, as discussed in the text.
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the object of much linguistic and psycholinguistic research. In some places
many-to-many (homomorphic) mappings evolved (e.g., English and French),
whether “naturally,” following invasions, or via spelling reforms. In other
places something closer to one-to-one (isomorphic) mappings between script
and sound evolved (e.g., Serbo-Croatian or Spanish). This considerable
variation across languages in the degree of correlation or the consistency of
the spelling-to-sound and sound-to-spelling mappings (“deep” vs. “shallow”
orthographies) has provided a rich playground for cross-linguistic experimen-
tal studies of reading skills (Frost, Katz, & Bentin, 1987). Such studies have
their costs, but for understanding the reading process, they are more interest-
ing than are monolinguistic studies. Moreover, the considerable cross-linguis-
tic variations in consistency also provide a challenge for researchers who aim
at building computational multilingual, multitask models of reading (Carreiras,
Perea, & Grainger, 1997; Jacobs, 1995; Ziegler, 1996; see also chap. 6). Our
research program, of which the present modeling efforts are an integral part,
is multilinguistic, because we are skeptical about the view that the reading
process can be understood by studying'él single language. Instead, as many
examples have shown, cross-linguistic research can avoid the dangers of
premature or false conclusions drawn from the results of monolinguistic work
(Hageége, 1986; Lass, 1995; MacWhinney, Bates, & Kliegl, 1984; Marcus,
Brinkmann, Clahsen, Wiese, & Pinker, 1995; Van Orden & Goldinger, 1994).
Currently, our research program includes three languages (French, German,
and English), and indirectly encompasses three others (Dutch, Spanish, and
Italian) via scientific collaborations.

Orthographic-phonological processing is well suited to illustrate the bene-
fits of both multilinguistic research (Frost et al., 1987) and model-guided
multitask research (Grainger & Jacobs, 1996). Well-planned combinations
of multilinguistic and multitask research could quickly advance our under-
standing of the constraints involved in reading (Jacobs, 1995; Ziegler, 1996).
Under the optimality assumption, would we expect users of English orthog-
raphy to develop the same reading strategies (and underlying representations
and processes) as do users of French?? The authors of some recent descriptive
statistical studies on spelling-to-sound and sound-to-spelling consistency for
English and French (Stone, Vanhoy, & Van Orden, 1997, Ziegler, Jacobs, &
Stone, 1996; Ziegler, Stone, & Jacobs, 1997) estimated that about 72% of all
English monosyllabic words are feedback inconsistent (i.e., their phonologic
bodies can be spelled in multiple ways) whereas about 31% are feedforward

%Regardless of the reasons for the variability in the spelling-to-sound and sound-to-spelling
mappings, evolutionary perspectives of cognitive psychology (e.g., Shepard, 1994) must start
with the premise that users of variable linguistic environments optimally adapt(ed) to their
corresponding orthography-to-phonology and phonology-to-orthography mappings. Such an
optimality assumption facilitates formal analyses (Massaro & Friedman, 1990), which are applied
here to the domain of orthographic and phonological processing in different tasks and languages.
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inconsistent (i.e., their spelling body has more than one pronunciation). In
comparison, about 79% of all monosyllabic French words are feedback in-
consistent, whereas only 12% are feedforward inconsistent. In view of this
data, could we expect users of English and French to have problems in
tasks that require a solid spelling knowledge (e.g., proofreading or LDT),
but users of French to have fewer problems in naming tasks than do users
of English? What about users of “shallow” orthographies, such as German?
Do they fare well regardless of task demands? If so, they could serve as a
control group for comparison with the performance of the two other popu-
lations and thus could make the estimation of language-dependent effect
sizes possible (Jacobs, 1995; Ziegler, 1996).

We are also skeptical about the view that the reading process can be
understood by using a single experimental paradigm. Different reading tasks
(e.g., LDT, naming task, perceptual identification task) capture both identical
and different aspects of the reading process, but there is no model-free way
to determine which of those aspects is relevant to an understanding of the
reading process and which is purely task specific. Pursuing our stratagem
of modeling functional overlap illustrated in Figure 5.1 (Grainger & Jacobs,
1996; Jacobs, 1994; Jacobs & Grainger, 1994), we attempted to gain an
understanding of phonological processes that might be common to silent
reading and reading aloud, as assessed by the LDT, perceptual identification,
and naming task.

Finally, we are skeptical about the view that reading can be fully under-
stood by viewing it as a one-way process, which exclusively proceeds from

/ Perceptual \
Identification

Lexical
Decision

Word
Recognition

FIG. 5.1. Venn diagram illustrating the concept of functional overlap (for
details, see Grainger & Jacobs, 1996; Jacobs, 1994; Jacobs & Grainger, 1994).
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print to sound. In practice, this classical view has led to a separation of
models, methods, factors (variables), and effects stressing either orthographic
or phonological aspects. An example is the separation of experimental psy-
chologists in “orthographic” and “phonological” camps. For example, the
orthographic camp prefers the LDT, orthographic variables (e.g., measures
of orthographic neighborhood), and models that focus on the explanation
of orthographic effects. In contrast, the phonological camp favors the naming
task, phonological variables (e.g., consistency measures), and models that
focus on the explanation of phonological effects (see recent special section
of the Journal of Experimental Psychology: Human Perception and Per-
Sformance, 1994, on modeling visual word recognition). If the reading system
-is interpreted as an interactive, dynamic system (Grossberg & Stone, 1986;
Korte, 1923; Rumelhart, 1977; Stone et al,, 1997; Van Orden & Goldinger,
1994), models, methods, and measures must be developed to adequately
reflect and help analyze the functioning of such a complex nonlinear system.?
According to our view, reading is a two-way system: Phonological informa-
tion and phonological skills influence orthographic processing, and ortho-
graphic information and orthographic skills also influence phonological
processing (Dijkstra, Roelofs, & Fieuws, 1995; Jakimik, Cole, & Rudnicky,
1985; Wagner & Torgesen, 1987; Ziegler & Ferrand, 1997; Ziegler, Montant,
& Jacobs, 1997, Ziegler, Van Orden, & Jacobs, 1997). From this perspective,
single-task approaches to reading, measures of orthographic neighborhood
(Coltheart, 1978), one-way metrics of spelling-to-sound consistency (Rosson,
1985; Treiman, Mullennix, Bijeljac-Babic, & Richmond-Welty, 1995; Venezky
& Massaro, 1987), or monotask models of performance must necessarily
remain incomplete approximations. The study of bidirectional consistency
effects (Stone et al., 1997; Ziegler et al., 1996; Ziegler, Montant, & Jacobs,
1997), which we discuss here, and our present attempt to model them
represent a step beyond this one-way approach to reading.

A PRINCIPLED APPROACH TO COGNITIVE MODELING

Our approach to understanding the reading process by help of formal cog-
nitive models follows a set of pragmatic stratagems and principles that are
outlined in several recent works (Grainger & Jacobs, 1996; Jacobs, 1994;
Jacobs & Grainger, 1994) and further discussed by Grainger and Jacobs
(chap. 1). The most relevant stratagem for the present chapter is nested
modeling: the idea that a new model should either include the old one as

3A view now shared by extant former representants of traditional modular, noncomputa-
tional, feedforward models of the reading process (e.g., Coltheart, Curtis, Atkins, & Haller, 1993;
Coltheart & Rastle, 1994; for a different view, see Massaro & Cohen, 1994).
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a special case by providing formal demonstrations of the inclusion or dismiss
it after falsification of the core assumptions of the old model. The develop-
ment of our Multiple Read Out Model (MROM) gives a detailed example of
nested modeling in the domain of orthographic processing in lexical decision
and perceptual identification tasks (Grainger & Jacobs, 1996). Here we have
further pursued our efforts at nested modeling of visual word recognition
by including elementary phonological processes in the MROM that thus
becomes the MROM-p. ‘

SUBJECT AREA

In this section, we use two empirical phenomena that are considered as
evidence for bidirectional orthographic-phonological influences on visual
word recognition, the pseudobomophone effect and the bidirectional con-
sistency effect, as empirical touchstones to test the MROM-p.

The Pseudohomophone Effect

The first phenomenon is the classical pseudohomophone effect. As regards
the LDT, it refers to the observation that nonwords sounding like words
when read aloud (e.g., BRANE) are more difficult to reject than are
nonpseudohomophonic control stimuli (e.g., FRANE; Rubenstein, Lewis, &
Rubenstein, 1971). Since the precursor of our present model, the MROM
(briefly discussed in the next section), does not include any phonological
processes, it should not be able to simulate the pseudohomophone effect
in the LDT if the effect is genuinely phonological. Thus, the first critical test
for the MROM-p was to evaluate its ability to capture the pseudohomophone
effect. As a testing ground, we chose the classical set of data by Coltheart,
Davelaar, Jonasson, and Besner (1977) and a set of data from a later repli-
cation study by Seidenberg, Petersen, MacDonald, and Plaut (1996).

The Feedforward and Feedback Consistency Effects

&>

The second phenomenon, only recently discovered, provides perhaps even
stronger experimental evidence for an interaction between orthographic and
phonological processes in visual word recognition. It combines two effects:
the traditional feedforward consistency effect and the newly discovered feed-
back consistency effect (Stone et al., 1997; Ziegler & Ferrand, 1997; Ziegler,
Montant, & Jacobs, 1997).

Effects of spelling-to-sound (feedforward) consistency have been studied
extensively in the naming task, a task requiring overt pronunciation. The
standard result is that naming latencies are longer, pronunciation errors more
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frequent, or both, for inconsistent words that have multiple spelling-to-
sound mappings than for consistent words whose spelling bodies are always
pronounced the same. Thus, a feedforward inconsistent word whose
body has several possible pronunciations like -OUGH in COUGH, DOUGH,
THROUGH, BOUGH, TOUGH is harder to pronounce than a consistent
word like DUCK that has a unique spelling body (-UCK). The known con-
ditions favorable to obtaining this effect (see Ziegler, Montant, & Jacobs,
1997) include inconsistent words of low frequency (Andrews, 1982; but see
Jared, 1997) and words with a consistency ratio smaller than .5 (i.e., the
ratio given by the summed frequency of friends—words with the same
spelling pattern and the same pronunciation—and the summed frequency
of enemies—words with the same spelling pattern but a different pronun-
ciation; Jared, 1997; Jared, McRae, & Seidenberg, 1990; Treiman et al., 1995).

In contrast, in the LDT, feedforward inconsistency effects are much less
clear. To the extent that the LDT does not require an overt pronunciation,
it is also less likely to be sensitive to feedforward consistency (Jared et al.;
1990). Two studies (Brown, 1987; Jared et al., 1990) that used more carefully
controlled stimuli than did older studies failed to find an effect. In contrast,
Stone et al. (1997) provided one of the first experimental demonstrations of
a feedforward consistency effect in the LDT using English-speaking partici-
pants (see Pugh, Rexer, & Katz, 1994, for an earlier demonstration). Stone
et al. (1997) found that mean LDT latency to feedforward inconsistent words
was 48 milliseconds longer than for feedforward consistent words when all
words were feedback consistent. For words that were feedback inconsistent
(i.e., whose phonological body maps onto more than one spelling, such as
/-ip/ in DEEP and HEAP), the effect decreased to 8 milliseconds. This finding
suggests that previous studies might have failed to detect the effect because
they did not control for feedback consistency. Ziegler et al. (in press-a)
replicated this effect in French. They obtained effects similar to Stone et al.:
A 53-millisecond feedforward consistency effect when words were feedback
consistent decreased to 12 milliseconds when feedback inconsistent words
were used. To the extent that this effect can be' successfully replicated and
because the LDT requires no overt pronunciation, the feedforward consis-
tency effect in the LDT provides stronger evidence for bidirectional influ-
ences of orthographic-phonological processes in visual word recognition
than do the results from the naming task reported earlier.

Effects of sound-to-spelling (feedback) consistency are a recent discovery
in psycholinguistics. Feedback consistency effects have been reported in the
visual and auditory LDT and the naming task (Stone et al., 1997; Ziegler &
Ferrand, 1997; Ziegler, Montant, & Jacobs, 1997). For the present chapter, we
concentrate on the effect reported by Stone and collaborators. In two lexical
decision experiments, Stone etal. found a reliable feedback consistency effect.
In their Experiment 2, they used a factorial design that included four types of
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words: bidirectionally consistent words such as DUCK, in which the spelling
body (-UCK) could be pronounced only one way and the pronunciation body
(/-uk/) could be spelled only one way; feedforward inconsistent words such
as MOTH, in which the spelling body could be pronounced more than one
way (e.g., BOTH), but the pronunciation body (/-oth/) could be spelled only
one way; feedback inconsistent words such as HURL, in which the spelling
body could be pronounced only one way, but the pronunciation body could
be spelled more than one way (e.g., GIRL); and bidirectionally inconsistent
words such as WORM, in which the spelling body could be pronounced more
than one way (e.g., DORM) and the pronunciation body could be spelled more
than one way (e.g., FIRM). Stone et al. found that lexical decision performance
was equally affected (longer reaction times [RTs] and more errors) for
feedforward inconsistent words, feedback inconsistent words, and bidirec-
tionally inconsistent words. Only words that were both feedforward and
feedback consistent produced better performance. Bidirectionally inconsis-
tent words did not affect performance beyond what was obtained for words
that were inconsistent in only one way.

Ziegler, Montant, and Jacobs (1997) replicated Stone et al.’s results in
English in more carefully controlled conditions in French. They excluded
the possibility that the feedback consistency effect obtained in English re-
sulted from a failure to match feedback consistent and inconsistent items
on orthographic neighborhood variables. This replication is of particular
interest. Because statistical analyses showed that the structure of French and
English with respect to feedback inconsistency is highly similar for these
two languages (Ziegler, Jacobs, & Stone, 1996, 1997), similar feedback con-
‘'sistency effects were predicted for English and French. Their results, like
those of Stone et al.,, suggested that visual word perception is affected by
both feedforward and feedback consistency.

An important aspect of this effect is that feedback inconsistency might
explain small, unreliable consistency effects in previous studies. Ziegler et
al. (1996) analyzed all French words that would traditionally have been
classified as consistent on the basis of spelling to phonology correspond-
ences (87.6% of all monosyllabic words). In traditional experiments on con-
sistency effects, these consistent items have served as control items against
which the processing cost of inconsistent items has been tested. Ziegler,
Stone, and Jacobs (1997) calculated that 77.4% of these presumably consistent
items were, however, feedback inconsistent, Thus, small, unreliable consis-
tency effects in previous studies might have resulted from the possibility
that the major part of the presumably consistent control items was feedback
inconsistent. Another interesting aspect of feedback inconsistency is that it
should be an important variable for cross-linguistic research on spelling. If
multiple possibilities of mapping phonology onto spelling affect spelling
performance, it should be harder in a feedback inconsistent language (e.g.,
French) than in a relatively feedback consistent language (e.g., Spanish).
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In view of these arguments, it seems clear that psycholinguistic experiments
should be controlled for feedback consistency, and further research is needed
to specify the influence of this effect. The present attempt to give a formal
account of this effect, if successful, provides us not only with a tool for making
predictions, but also with a formal means for stimulus selection and control,
For example, simulations by MROM-p could be used in the planning phase of
an experiment—together with statistical analyses—to ensure that the stimuli
are well matched on the feedback consistency variable.

To our knowledge, no computational model has yet explained either the
pseudohomophone effect or the feedforward and feedback consistency ef-
fects in the LDT. There are preformal (verbal or boxological) accounts of
both effects in the literature, but we do not consider them here (for arguments
about the strengths and weaknesses of, and the complementarity between,
different model formats, see Jacobs & Grainger, 1994). Any model that does
not assume automatic activation of—and feedback from—phonological rep-
resentations in the visual LDT would not have predicted feedforward and
feedback consistency effects to start with. In contrast, models of the reso-
nance—interactive activation (IA) family (for a classification of models, see
Jacobs & Grainger, 1994) suggest such an effect naturally, without going
through the trouble of adding auxiliary assumptions (Stone et al.,, 1997;
Ziegler, Montant, & Jacobs, 1997). The present simulation studies will tell
us whether this intuition matches the computational evidence.

MODEL PRESENTATION

Model History

The scientific adventure of IA models of cognitive processing has a rich history.
The conceptual ingredients that characterize this family of models can be
traced back to many authors in fields such as biological cybernetics, artificial
intelligence, and psychology (e.g., Arbib & Kaplan, 1979; Erman & Lesser,
1975; Grossberg, 1976, 1980; Levin, 1976; Marslen-Wilson & Welsh, 1978;
Morton, 1969; Rumelhart, 1977). As far as word recognition is concerned, the
adventure started for us with the publication of the two papers by McClelland
and Rumelhart (1981) and Rumelhart and McClelland (1982), in which all the
different conceptual ingredients were synthesized in an original and formal
way that allowed direct applications to psycholinguistic studies.

Why did we choose this model format and type? Before the interactive
activation model (IAM), basically two model formats were used in the word
recognition literature: verbal (V-type) models (any model that is expressed
verbally or graphically without making use of closed form or algorithmic
formulations) and mathematical (M-type) models (models that use closed
form expressions to represent the modeled section of reality). The 1AM
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introduced algorithmic (A-type) models (models that are implemented in
form of a simulation program, including production systems and neural nets
of the localist or distributed families) to the field.

Apart from well-known innovative aspects that distinguished it from its
precursors (Jacobs & Grainger, 1992), the 1AM offered three possibilities that
neither V-type nor M-type models could provide as a whole. First, it pos-
sessed dynamics and thus offered the two possibilities of time-dependent
predictions and interval-scaled modeling of RT as a dependent variable.*
McClelland and Rumelhart (1981) and Rumelhart and McClelland (1982) had
exploited only the first of these possibilities. We were interested in the
second as RT is the major dependent variable in psycholinguistic research
(mainly because of the popularity of the LDT and naming task). Second,
the IAM possessed a (toy) lexicon that made item-specific (fine-grained)
predictions possible. This fact seemed a logical necessity in a field that has
to evaluate its empirical effects with respect to subject- and item-specific
data. In addition, for those who believe in the virtues of strong scientific
inference (see chap. 1), fine-grained analyses are a necessity: Falsificationism
and strong inference are not the only research strategies, but they seem to
be the best ones whenever theorists deal with specific assumptions that can
be tested at the level of fine-grained analyses (Jacobs & Grainger, 1994;
Massaro & Cowan, 1993). Third, contrary to other models, the IAM, rather
than being definitive, possessed rich structural potential and appeared to
include the promise of interesting further developments. For a reasonable
application of the strategies of nested and canonical modeling, structural
potential is a necessary (but not a sufficient) condition (Grainger & Jacobs,
1996). The 1AM, as the prototype of a canonical resonance model (Stone &
Van Orden, 1994), allows the testing of system and design principles, to
which we can attribute explanatory credit and blame independently of other
aspects of the model (chap. 1).

In sum, by its original combination of formal preciseness, structural-com-
putational richness, and computational transparency (a feature that distin-
guishes it from most parallel distributed processing [PDP] models), the IAM
intuitively seemed the right model at the right time to allow falsifiable quan-
titative predictions and the discovery of new phenomena via simulations.
An example of the latter, the so-called fieighborhood frequency effect, is
discussed next.

Predicting a New Phenomenon: The Discovery
of the Neighborhood Frequency Effect

Only theories tell us what can be observed.
—Variation on a theme by Einstein

4For a critique of interval-scaled RT models, see Van Orden and Goldinger (1994). For a
reply, see Jacobs and Grainger (1994).
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The ability to predict a new phenomenon (and the conditions under which
it must or must not appear) is one of the higher criteria for model evaluation
(Gigerenzer, Hoffrage, & Kleinbolting, 1991; Jacobs & Grainger, 1994). One
feature of connectionist models in general, and the IAM in particular, is that
they are rich enough to allow emergence of effects that have not yet been
observed. '

Playing with a variant of the original IAM, one of the present authors
discovered that the neighborhood frequency effect in visual word recognition
is possible in the model system. Looking at the activation function for the
word blur, he observed an attenuation of the rise of this function during
the early phase (a crossover between the functions for blur and blue),
because blur, a low-frequency word, shares all but one letter with blue, a
high-frequency word.

The activation functions for blurtype words reach a criterion level of
activation (arbitrarily defined for response generation in the model) more
slowly than do low-frequency wordg that have no high-frequency ortho-
graphic neighbors (e.g., idle; see Figure 5.2). Further simulations with the
IAM showed that a selection of low-frequency words with many high-fre-
quency neighbors (e.g., beal) did not differ from low-frequency words with
a single high-frequency neighbor in terms of the number of cycles required
to reach criterion activation levels. This simulation result was important with
respect to our application of strong scientific inference in model testing. In
contrast to the IAM, serial search~verification models of visual word recog-

USSR T, | . wanegren  Dlur
RIS 1 |
- sle 7a g blue %
0.8 0.8
0.7 4 0.7 -
% 0.6 - % 0.6
B 0.5 F: 0.5 -
< 0.4 4 L 04-
E 0.3 4 E 0.3 4
< 024 < 02-
0.1 4 0.14
0 - 0 -
0.1 1 T T -0,1 T T T
0 5 10 15 20 0 5 10 15 20
CYCLES » CYCLES

FIG. 5.2. Panels 2a and 2b show two simulations obtained with the target
words IDLE and BLUR, respectively. Both these words have orthographic
neighbors (IDLY, ISLE, and BLUE, respectively) and the same frequency (15
per million), but only BLUR has a higher frequency neighbor. Consequently,
IDLE reaches the response threshold two cycles earlier than does BLUR (i.e.,
17 vs. 19 cycles).
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nition (Forster, 1976; Paap, Newsome, McDonald, & Schvaneveldt, 1982)
predicted a further decrement in performance to such stimuli. The pattern
predicted by the IAM was observed by Grainger, O'Regan, Jacobs, and Segui
(1989, 1992) and Grainger (1990). Although subsequent research has com-
plicated the neighborhood frequency story (e.g., Sears, Hino, & Lupker,
1995), the important point is that the IAM simulations, using the same stimuli
as in the human experiments, accurately predicted the observed pattern for
that particular stimulus set.

Thus the 1AM, which, like all connectionist models, has structural and
processing features that were built-in specifically to create known empirical
phenomena (e.g., the resting level parameter that creates the frequency
effect; cf. Dell, 1988), predicted an unknown effect that has now been
observed under a variety of conditions (Grainger & Jacobs, 1996). This
finding provides an encouraging example for solving the recurring episte-
mological issue of a theory-centered approach as seemingly opposed to a
result-centered approach (Greenwald & Pratkanis, 1988) by showing that a
model can specify the conditions under which previously unobtainable re-
sults occur. This demonstration is clearly theory centered for one of the two
complementary result-centered approaches (i.e., the design approach), ad-
vocated by Greenwald and Pratkanis in their attack on theory-centered ap-
proaches to psychology.

Model Structure

The MROM

‘It is useful to give a short description of the MROM here (see Grainger
& Jacobs, 1996, for more details). The MROM is an extension of the IAM
incorporating the design principle of multiple readout, which states that a
response in a given experimental task is generated (read out) when at least
one of the codes appropriate for responding in that task reaches a critical
activation level. This principle’is particularly relevant to our explanation of
performance in the LDT. With respect to this task, we hypothesized that
unique word identification is not the only process that can lead to a correct
Yes decision in the LDT and that an extralexical process controls the pro-
duction of No responses. In the functional context of LDT, word—nonword
discrimination requires that participants use a reliable source of information
that allows them to make rapid and accurate judgments about the “word-
likeness” of stimuli (e.g., their familiarity; Balota & Chumbley, 1984). In the
MROM, we postulated three processes underlying a speeded binary lexical
decision response. Two of the processes use intralexical information to gen-
erate a Yes response, and the third uses extralexical information to generate
a No response. The two intralexical sources of information are the overall
(global) activity in the orthographic lexicon, operationalized in the simulation
model as the sum of the activation levels of all word units (hereafter referred
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to as ©) and the (local) activity of functional units in the lexicon, operation-
alized as the activation level of individual word units (L). The extralexical
source of information is time (#) from stimulus onset. In the MROM, a cri-
terion value set on each of the three information dimensions determines the
type (yes/no) and speed of a response. The criterion on the (local) p dimension
is referred to as M, the criterion on the (global) ¢ dimension as X, and the
temporal deadline as T. Figure 5.3 illustrates how these three response
criteria combine to determine the type and speed of a response in the LDT.

If either the local M or the global X response criterion is reached before
the T criterion, the response is positive; otherwise, the response is negative.
Errors to word stimuli (false negatives) therefore arise when the T criterion
is set too low, both the M and Z response criteria are set too high, or both.
Errors to nonword stimuli (false positives) arise in exactly the opposite
circumstances ¢(high T criterion, low M criterion or low Z criterion, or both).
In the example in Figure 5.3, both the M and the I response criteria are
reached before the T criterion, a result giving rise to a positive lexical decision
response. The speed of this response i determined by the earliest moment
in time that either the M criterion is reached (i.e., a specific word has been
identified) or the X criterion is reached (i.e., a fast guess has occurred). RT
for a negative response is given simply by the value of the T criterion.

M criterion

UNIT ACTIVITY (u)

TIME (1)

FIG. 5.3. Application of the multiple readout model to the lexical decision
task. Three response criteria (M, Z, T) are set on three information dimensions:
unit activity in the mental lexicon (W), summed lexical activity (¢), and time
(). Increases in {1 and ¢ over time follow the sigmoid function of an interactive
activation network (McClelland & Rumelhart, 1981). In general, word recogni-
tion is said to occur when the M criterion is reached, whereas a positive lexical
decision response can be triggered when either the M or the Z criterion is
reached before the T criterion. A negative lexical decision response is given in
the converse situation.
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The MROM-p

The starting point for the MROM-p’s coding scheme is the V-type
(boxological) model of orthographic-phonological processing by Ferrand
and Grainger (1994, see also 1996). This model (see Figure 5.4) was em-
pirically motivated by results from a series of masked priming studies (Fer-
rand & Grainger, 1992, 1993, 1994) and represents the simplest possible
(global) phonological coding scheme in an IA-type architecture that includes
sublexical phonological structure. Typical of V-type models, Ferrand and
Grainger did not specify the nature of the phonological processing units.

According to the principles of canonical and nested modeling (chap. 1),
we started the construction of the MROM-p with the original structure, proc-
essing assumptions, and parameters of the MROM. These elements had
already been kept constant in our previous “English” and “French” extensions
of the IAM, the semistochastic IAM or SIAM (Jacobs & Grainger, 1992), the
letter-frequency model (Grainger & Jacobs, 1993), the dual readout model
or DROM (Grainger & Jacobs, 1994), the semistochastic IAM for the frag-
mentation task or SIAM-FRAG (Ziegler, Rey, & Jacobs, in press), and the
MROM (Grainger & Jacobs, 1996).

Multilength Lexicon and the Coding of Letter-in-Word Position.
In our previous IA models, we used the simplification of a length-specific
lexicon representing a single word length (either four or five letters). In
view of the absence of an isomorphism between the size of orthographic
and phonological representations (i.e., grapheme and phoneme units), the
present “English” MROM-p is equipped with a much richer lexicon (albeit
still a very simplified one) than the MROM, including all three- to five-letter
monosyllabic English words extracted from the CELEX database (Baayen,

Orthographic | Phonological

Lexicon Lexicon

Sublexical Sublexical
orthographic phonologlcal
units units
Visual / sses@ Inhibition ‘s Auditory
Stimulus _> excltation Stimulus

FIG. 5.4. Ferrand and Grainger’'s model (1994).
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Piepenbrock, & van Rijn, 1993).°> This process led to an orthographic lexicon
of 2,494 words (for a detailed description of the cleaning procedure applied
on this database to extract the selected lexicon, see the Appendix).

This multilength lexicon raises the issue of how to code letter-in-word
position and the relation between word units of different lengths. Some
recent empirical studies have suggested that the cognitive system uses rela-
tive rather than absolute position coding (Grainger & Jacobs, 1993; Peressotti
& Grainger, 1995; see also chap. 1). Thus, letters in a word are not supposed
to be represented in terms of their absolute position in the word (i.e., U at
the third position in BLUE), but in terms of their relative position, which is
calculated from the word boundaries (e.g., U is one position before the final
letter, and L is one position after the initial letter in BLUE; i.e., U = final -
1, and L = initial + 1, respectively). This coding scheme allows us to establish
more plausible similarity relations between words of different lengths than
the original position coding scheme of the IAM allowed.® As an example,
the stimulus WORD is encoded as W in initial position, O in initial plus one,
D in final position, and R in final minus one. This coding scheme was
applied to the orthographic lexicon and to the coding of the input stimuli
presented to the model. Table 5.1 gives a general description of our coding
scheme for three- to five-letter words.

Whole-Word Phbonological Lexicon. In MROM-p we assumed that
each orthographic representation of a word has a corresponding whole-word
phonological representation. The phonological lexicon containing these rep-
resentations is smaller than is the orthographic one because of homophones
that have distinct orthographic entries but share the same phonological code.
There are 2,323 whole-word phonological representations in contrast to
2,494 orthographic word units. Connections were established between each
whole-word orthographic unit and its corresponding whole-word
phonologic unit, and specific values of resting level activation (i.e., coding
frequency of occurrence) were given to each unit using the CELEX frequency
count (see Appendix for a description of the procedure).

Pbonological Units. We assumed that a reader’s cognitive systém pos-
sesses some elementary phonological representations or coding units, and
~ that these basic phonological units, or phonemes, are grouped according to

>Focusing on monosyllabic words is a simplification that has been adopted in most experimental
and modeling studies in the field. In future work, this practice must be revised.

%The evaluation of the plausibility of this coding scheme requires further investigation and,
probably, further refinements. The use of a more structured coding scheme, introducing a
grapheme level composed of functional pronunciation units as proposed by Berndt, D’Autrechy,
and Reggia (1994; Berndt, Reggia, & Mitchum, 1987), is a possible candidate for such refinements,
but more constraining results are needed to specify the nature and boundaries of such units.
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TABLE 5.1
General Description of Relative Position
Coding Scheme for Three- to Five-Letter Words

Word Length L Initial L Initial + 1 L Initial+ 2 L Final - 1 L Final

4 | L L, — Ly Ly
3 L, L, — — Ly

bl

a consonant, vowel, consonant (CVC) or, more precisely, an onset, nucleus,
coda (ONC) scheme. This scheme was motivated both by current linguistic
theory (e.g., Wiese, 1996) and by empirical data (Dell, 1988). We chose this
subsyllabic organization as a pragmatic, parsimonious compromise. Higher
sublexical phonological structures, like rime units, for example, are less
flexible and less general. Lower structures, like ungrouped phoneme strings,
for example, complicate the connectivity between letter and phoneme units.

The phonemic representation level thus contains onset, nucleus, and coda
positions. These units can code single phonemes or phoneme clusters. Fur-
thermore, a “silent phoneme” is added at the onset and coda positions to
represent monosyllabic words that have no pronounced consonant at their
beginning or end. As an example, the stimulus GOOD is phonologically
coded as /gUd/ and decomposed as Onset equals /g/; Nucleus equals /U/;
Coda equals /d/. Similarly, BLUE /blu/ is decomposed as Onset equals /bl/;
Nucleus equals /u/; Coda equals /*/ (the asterisk represents the silent pho-
neme in the coda position). Table 5.2 shows the MROM-p’s three sets of
phonological units, which include all possible phonemes or combinations
of phonemes contained in the phonological lexicon of the model at each
position.

Connections Between Letters and Pbonological Units. Figure 5.5
illustrates our connection scheme for linking orthographic and phonological
units, a tentative solution to the problem of discovering an optimal graph-

TABLE 5.2
Description of Three Sets of Pfionological Units
ONSET *, b, bl, br, d, D, dr, dw, f, fl, fr, g, gl, gr, h, ], k, kI, kr, kw, |, m, n, p, pl,
51 units pr, 1, s, S, sk, skr, skw, sl, sm, sn, sp, spl, spr, Sr, st, str, sw, t, T, Tr, tr,
W, vV, W, z, _ :

NUCLEUS 1,2 3,4,56,7,89 # 38, @E,ilij#j$ i1, i3, i5 i7. 8 i9 iE, ji, iQ, ju,
34 units jV, l{’ Qr u, U) V, { ‘
CODA *, b, d, D, dst, dT, Dz, dz, f, fT, ft, g, gz, h, J, k, ks, ksT, kst, m, md, mf,
78 units mp, mps, mt, mz, kt, |, Ib, Id, If, Ik, Im, In, Ip, IS, Is, It, IT, lv, Iz, 1 , n, N,
nd, ndz, nJ, Nk, Nks, nS, ns, nt, nT, nts, nz, nZ, Nz, n_, p, ps, pt, pT, R, s,
S, sk, s
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Sublexical phonological units

0 N c

X%

Sublexical orthographic units

FIG. 5.5. Connectivity between letter and phonological unit levels.

eme-to-phoneme correspondence (GPC) scheme for IA-type models. To be
consistent with the (system) principle of spreading activation of IA models,
we carried out an exhaustive analysis of the present lexicon and recorded
all links between each letter-grapheme at each relative position and between
each phonological unit at the ONC positions. The results were stored in
large matrices that code the GPCs, such as the fact that B in initial position
(as in BLUE) is connected to the phonological unit /bl/ at the onset position.
Similarly, for the same word, L at the initial plus one position is connected
to /bl/ in onset, U at the final minus one is connected to /u/ in nucleus,
and so on. Thus, in terms of the spreading activation mechanism of the
model, when a letter like B is activated in initial position, it sends excitation
to all corresponding phoneme units in onset position, for example, /b/, /bl/,
and /bR/. Figure 5.6 gives an illustration of what we might call the phonemic
space in the MROM-p. It shows activation functions of the phonological
units at the ONC positions obtained for the target word BLUE.

Parameter Tuning. In our parameter-tuning approach, we also fol-
lowed the strategy of nested modeling. Because this strategy demands that
MROM is an integral part of MROM-p, we faced the problem of having to
find new parameters for the phonological substructures of the model while
keeping the original parameters of MROM as constant as possible. Because
adding new interactive substructures to the original IAM leads to a new
global dynamic system, the original parameter set had to be adjusted (the
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FIG. 5.6. Activation functions of phonological units at the onset, nucleus, and
coda positions for the target word BLUE.

old one led to catastrophic model behavior). Table 5.3 gives the parameter
set fixed for the present simulation studies on the basis of the parameter-
tuning studies discussed later. We acknowledge that more work has to be
done to precisely determine the role of each parameter for the model dy-
namics. Furthermore, although connectionist modelers in general seem to
ignore the issue, we acknowledge that a central aim for future work in the
field must be to solve the nontrivial problem of the identifiability of complex
A-type models in general and models of the IA family in particular.
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TABLE 5.3

Parameter Set Used in Simulation Studies
Connections Alpba Gamma
Feature unit—Letter unit 005 15
Letter unit—Feature unit 0 0
Feature unit—Feature unit ' 0 0
Letter unit—Letter unit 0 0
Letter unit—Lexical orth. unit 035 02
Lexical orth. unit—Letter unit 0 0
Lexical orth. unit—Lexical orth. unit 0 2
Letter unit—Sublex. phono. unit A1 .004
Sublex. phono. unit—Letter unit 0 0
Sublex. phono. unit—Sublex. phono. unit 0 05
Sublex. phono. unit—Lexical phono. unit 1 02
Lexical phono. unit—Sublex. phono. unit 3 2
Lexical phono. unit—Lexical phono. unit 0 2
Lexical orth. unit—Lexical phono. unit 1 0
Lexical phono. unit—Lexical orth. unit ) 2 0

*

Note. Alpha refers to the weight of excitatory connections; gamma refers to the weight of
inhibitory connections.

Simulation Metbod. In the following studies, we simulated effects ob-
tained in the LDT. Because the task-specific mechanisms of the LDT have
been well specified in the MROM (Grainger & Jacobs, 1996), the same design
principles (i.e., principles that determine the behavior of a class of models
and the observed dependent variables) were adopted here. At this stage,
we did not carry out full-blown simulations. The present version of MROM-p
is still prototypical, a fact implying that the present study provides no cri-
teria-oriented falsification test of the MROM-p but rather a test of its appro-
priateness as a working model of phonological coding (see discussion sec-
tion). Full-blown simulations would have necessitated, for example, use of
stochastic response thresholds and of many simulated subjects equal to the
number of subjects in the real experiments (Grainger & Jacobs, 1996). Con-
sequently, rather than response (time) distributions, we simply obtained
activation functions for each item used in the simulated experiments. For
each experimental condition, the mean of these activation functions was
calculated across the different items. The resulting activation functions (and
derived mean RT bar charts) are presented as illustrations of how the model
can quantitatively account for the experimental data.

For the task-specific readout procedure, the MROM-p follows the design
principle of the MROM in that No responses are produced by monitoring
the global orthographic activity generated by the stimuli and Yes responses
are generated by looking at the orthographic unit activity (for simplicity, we
did not consider the possible role of global orthographic activity on Yes
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trials here; compare Figure 5.3). The rationale for this decision is given by
Ferrand and Grainger (1996), who discussed the qualitative predictions of
MROM-p for a masked priming LDT. In accord with the assumptions of
Grainger and Jacobs (1996), the results of Ferrand and Grainger suggested
that in an LDT using pseudohomophones, participants use readout from the
orthographic lexicon, because readout from the phonologic lexicon would
lead to too many false positive errors.

Model Predictions and Tests

Testing Strategy

The literature provides no generally accepted testing policy for complex
A-type models. The situation is anarchic; for example, consider PDP or
artificial neural network (ANN) learning models. Whereas classical mathe- .
matical learning theory provided a wealth of testing principles for M-type
modelers (Tack, 1976; see also Myung & Pitt, chap. 10, this volume), ANN
or A-type modelers today seem little concerned with this issue (Prechelt,
1996; Simon & Kaplan, 1989). Surely, the “fit-or-die” strategy of classical
learning theory has both statistical, inferential pitfalls (Collyer, 1985, 1986)
and epistemological drawbacks (Greenwald & Pratkanis, 1988; Lakatos &
Musgrave, 1970). On the other hand, the question arises whether the current
anarchic or laissez-faire testing strategy for computational A-type models
will eventually give the positive results anticipated by laissez-faire anarcho-
epistemologists like Feyerabend (1975).

Without any claims that the testing strategy adopted here is the right or
optimal one, we nevertheless prefer a critical-rational, (mildly) Popperian
approach. Such an explicit approach can be constructively criticized and
thus potentially advances our enterprise. Our testing approach is made up
of the following five steps, inspired by testing procedures in psychometrics
and mathematical psychology.

1. Parameter tuning studies: During the initial phase of model construc-
tion, these tests check the global appropriateness of the architectural and
parametric model assumptions in a simple way to see whether the model
is not fundamentally flawed (e.g., does not include parameter configurations
that produce catastrophic model behavior). The meaning of “in a simple
way” depends very much on each model builder’s implicit assumptions and
preferences. We have found no systematic, explicit approaches for parameter
tuning in complex A-type models in the literature (cf. McClelland & Rumel-
hart, 1988). We can provide only motivated examples for how we proceeded.

2. Estimator set studies: In analogy with classical procedures of cross-
validation in psychometrics, an estimator study provides the data set from
which model parameters are estimated (cf. Collyer, 1986). For the present
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purposes, the difficult questions of how parameters of M-type and A-type
models are best estimated and how such models’ identifiability can best be
determined must be put aside (see chaps. 1 & 10). Once a new model has
stood the test of Step 1, it is economical to run it against already available
data from the literature in Step 2 before carrying out tlme intensive new
experiments. We adopt this method here.

3. Criterion set studies: In analogy with the procedures of psychometrics,
a criterion set study provides data with which the model predictions are
compared once the parameters have been fixed after the estimator set study.
With a criterion of descriptive or behavioral accuracy (for a discussion of
this criterion, see Jacobs & Grainger, 1994), the criterion set study provides
the first serious cross-validation test of the model. We provide two such
tests here: The first uses data about the same effect as that used in the
estimator set study, but from a different empirical study. The second test
uses data about a different effect from a different study.

4. Strong inference studies: In chaptgr 1, we discuss the stratagem of
strong scientific inference in detail. This relatively costful but worthwhile
testing phase involves formal, criterion-guided comparisons of alternative
models against the same data sets. We cannot provide such testing here (for
a typical approach, see Massaro & Friedman, 1990).

5. Model refinement or replacement: As theoretically firm believers but
practically mild (nondogmatic, non-naive) users of a theory-building ap-
proach adhering to Popper’s (1935) and Platt’s (1964) principles (see chap.
1), we would continue with a process of model refinement (after which we
return to Step 1) as long as the model is only mildly discredited and no
better alternative is available. In view of the current state of the art in
modeling visual word recognition (Jacobs & Grainger, 1994), in a pluralistic
perspective of canonical modeling (Stone & Van Orden, 1993, 1994; see
also chap. 1), such an adoption of a hybrid between “falsificationism” and
“refinementism” seems in order. We are nevertheless aware of the dangers
of confirmation bias (Greenwald & Pratkanis, 1988) and believe that even-
tually IA-type models—including the present one—will be no longer refined
but replaced by better models. At present, we have reasons to believe that
IA-type models have a lot to offer (Jacobs & Grainger, 1994). The present
volume is perhaps the nicest expression of and justification for this belief.

The MROM as Null Model

~ In the following model tests, we used the MROM as a null model of
phonological effects. That is, as the MROM has no explicit phonological
processing units, it should not predict any difference between stimuli having
phonological properties, such as pseudohomophones, and supposedly con-
trol stimuli that lack these properties. The MROM could very well produce
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“pseudophonological” effects when the pseudohomophones differ on di-
mensions other than phonological ones from the controls, for instance, when
they were badly matched for orthographic neighborhood properties. To the
extent that the MROM provides a successful model of orthographic neigh-
borhood effects in word recognition (Grainger & Jacobs, 1996), it can also
be used as a tool for precisely selecting stimuli, for example, for avoiding
pseudophonological effects. In contrast, if we included adequate phonologi-
cal processing units in the MROM-p, it should predict clear differences be-
tween control stimuli and pseudohomophones, for example. In the. present
MROM simulations, the parameters governing the phonological parts of
MROM-p were simply set to zero.

Step 1: Parameter-Tuning Studies: The Pseudobomopbone Test.
Once the initial parameter-tuning procedure gave satisfactory results, a first
simple test of the ability of MROM-p to account for phonological effects
consisted in presenting the model with “watertight” pseudohomophone stim-
uli, whose correct pronunciation is empirically confirmed (Van Orden,
Johnston, & Hale, 1988). As an example, we presented both MROM and
MROM-p with stimulus triples, such as FEEL (base word), FEAL (pseudoho-
mophone), and FEEP (control). Figure 5.7 shows activation functions for
both MROM and MROM-p at the level of orthographic word units, which
we take to be the critical level for assessing interactive phonological effects
in the LDT (Ferrand & Grainger, 1996). The simulation results are clear-cut.
Whereas stimuli like FEEL generate sufficient lexical activity in both MROM
and MROM-p to be correctly recognized, FEAL and FEEP generate the same
lexical activity in MROM but not in MROM-p. Here, pseudohomophones
like FEAL generate activity intermediate between real words like FEEL and
control pseudowords like FEEP. Thus, in stochastic simulations under data-
limited conditions (i.e., brief, backward-masked stimulus exposure), MROM-p
occasionally (i.e., depending on the noise level) identifies FEAL as FEEL (Ziegler
& Jacobs, 1995; Ziegler, Van Orden, & Jacobs, 1997). We took this result as
suggesting that MROM-p’s architectural-parametric assumptions were ade-
quate and fixed the parameters to the values yielding this result (see Table 5.3).

R

Step 2: Estimator Set Study: Coltheart et al. (1977) Test. Although
the previous study hinted at the appropriateness of MROM-p’s structural-
parametrical assumptions, it was no serious estimator set study. For this, we
chose the stimuli and data of the classical study of Coltheart et al. (1977,
Experiment 1, table 1, and app. A), which provided one of the first falsifi-
cations of serial search models of word recognition (Forster, 1976). This
study had already given good service in this respect during the construction
phase of SIAM (Jacobs & Grainger, 1992).
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FIG. 5.7. Activation functions for the most activated word unit (local activity)
with the MROM and the MROM-p for a®pseudohomophone (feal), an ortho-
graphic control (feegp), and their base word (feel).

The crucial result of Coltheart et al. for the present purposes concerns
the longer mean latencies for correct No responses to pseudohomophones
than to control pseudowords in the LDT. Coltheart et al. observed a 62-mil-
lisecond difference in the subject analysis and a 35-millisecond difference
in the item analysis. Instead of using Coltheart's data for a full-blown pa-
rameter-fitting study, as we could have done with an M-type model, here
we simply checked whether the MROM-p, as structurally and parametrically
defined during the previous test phase, could simulate the data from
Coltheart et al. If not, we would have gone through another phase of pa-
rameter tuning or model restructuring.

Figure 5.8a gives the mean overall lexical (orthographic) activity over
time, according to MROM, the critical information dimension determining
No responses (Grainger & Jacobs, 1996), generated by the 30 base words,
30 pseudohomophones, and 30 control pseudowords of the Coltheart et al.
study contained in our lexicon (18 of the stimuli had to be excluded because
their base word was bisyllabic or absent in our model lexicon). In MROM,
both pseudohomophones and control pseudowords generate the same ac-
tivity, which yields identical mean No RTs. In contrast, in MROM-p, overall
lexical activity nicely reflects the differences between pseudohomophones
and controls. Because pseudohomophones generate more activity than do
controls, No responses to them take longer to reject. This finding is shown
in the bar charts of Figure 5.8b, which captures the pattern of results obtained
by Coltheart and collaborators.
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FIG. 5.8. Simulations run with Coltheart et al.'s (1977) stimuli. Figure 5.8a
shows the mean overall orthographic activity over time for pseudohomo-
phones, orthographic controls, and base words, obtained with the MROM and
MROM-p. Figure 5.8b gives obtained and predicted effects on RTs to pseudo-
homophones and orthographic controfs.

Step 3: Criterion Set Studies: Study 1—Seidenberg et al (1996)
Test. As a first criterion set test of MROM-p’s ability to capture the pseudo-
homophone effect in the LDT, we ran simulations using the stimuli of a
study comparing pseudohomophone effects in the LDT and the naming task
(Seidenberg et al., 1996). These authors observed a 31-millisecond inhibitory
pseudohomophone effect on mean No RTs in the LDT. This criterion set
study used the parameter set fixed during the previous two steps and pro-
vided a cross-validation test of MROM-p for the same experimental effect
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as used in the estimator set study, but obtained in an independent study
with different stimuli and subjects.

Figure 5.9 summarizes our simulation results. The activation curves show
the same trends as those for the Coltheart et al. study. In MROM, both
pseudohomophones and control pseudowords generated the same activity,
whereas in MROM-p, overall lexical activity reflected the experimentally
observed differences between pseudohomophones and controls. Thus, con-
trary to the MROM, MROM-p captures the well-replicated pseudohomophone
effect in the LDT using the parameters from the estimator set study. This is
first encouraging evidence for the descriptive accuracy, (cross) validity, and
generality of the model. A stronger test involves confronting the model not
only with data different from the estimator set study, such as in the previous
test, but also with a different effect, that is, data from the manipulation of
experimental factors different from the estimator set study. Thus, in the
second criterion set study, the model is not tested with respect to the pseudo-
homophone effect (i.e., a difference jn LDT latencies to nonword stimuli)
but with respect to two effects of LDT latencies to words: the feedforward
and feedback consistency effects described earlier.

Criterion Set Study 2—Stone et al. (1997) Test. The critical feature
of this second criterion set study is that it tests the model with data exhibiting
a different effect coming from an independent study. If the MROM-p suc-
cessfully simulates the feedforward and feedback consistency effects for
word stimuli found by Stone and collaborators with the parameter set that

——g-— Base Word
~—a===  Orthographic Control
-+=»@+--- Pseudohomophone
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FIG. 5.9. Mean overall orthographic activation functions for Seidenberg et al.’s
(1996) stimuli obtained with the MROM and MROM-p for pseudohomophones,
orthographic controls, and base words.
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simulated the pseudohomophone effect for nonword stimuli, we can hy-
pothesize that both effects are different manifestations of the same underlying
interactive mechanisms.

Figure 5.10 summarizes the results of our simulations using the word
stimuli of Stone et al. (1997). The figure gives mean individual lexical (or-
thographic) activity over time for the four groups of word stimuli used in

1. FR&FB - Consistent
2. FR-cons & FB-inc
3, FP-inc & FB-cons
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FIG. 5.10. Simulations with Stone et al.'s (1997) stimuli. Panel 5.10a shows
mean orthographic unit activity over time for the four categories of words, for
both the MROM and MROM-p. Panel 5.10b gives response time obtained (ms)
and predicted (cycles) to the four word groups: 1 = Feedforward and Feedback
consistent; 2 = Feedforward consistent and Feedback inconsistent; 3 = Feed-
forward inconsistent and Feedback consistent; 4 = Feedforward and Feedback
inconsistent,
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this study. The correct mean RTs and rounded error rates obtained by Stone
et al. are indicated in the following: feedforward and feedback consistent
(e.g., COIN, STAB: 732 ms, 2%), feedforward consistent and feedback in-
consistent (HEAP, MOAN: 778 ms, 9%), feedback consistent and feedforward
inconsistent (PINT, COUCH: 780 ms, 9%), and doubly inconsistent (NEAT,
SWARM: 770 ms, 15%). The data of Stone et al.’s Experiment 2 indicate an
overall 20-millisecond feedforward consistency effect (775 ~ 755 ms) and
an 18-millisecond feedback consistency effect (774 — 756 ms).

Figure 5.10 shows that the MROM fails to capture these bidirectional
consistency effects: It wrongly predicted that doubly inconsistent words (and
feedforward inconsistent-feedback consistent words) are processed faster
than are fully consistent words. According to MROM, feedforward consistent
and feedback inconsistent words yielded the slowest processing. In contrast,
MROM-p captured Stone et al’s data pattern much better, although not
perfectly. In MROM-p, fully consistent words were processed fastest and
doubly inconsistent words were slowest with the two monodirectionally
inconsistent words being intermediate. *Thus, although in Stone et al.’s data,
the difference between the three inconsistent word groups was not impor-
tant, MROM-p predicted a difference between monodirectionally and bidi-
rectionally inconsistent words. Thus the model predicts a pattern actually
closer to the one observed by Ziegler, Montant, and Jacobs (1997) in French:
In contrast to the finding of Stone et al., these authors observed that doubly
inconsistent words produced slightly longer RTs than did one-way incon-
sistent words. In light of this incompatibility in the empirical results and because
Ziegler et al.’s study used more carefully controlled stimulus materials than
did Stone et al.’s, it would be premature to conclude that the MROM-p failed
this second criterion set test. Tests using the French stimuli of Ziegler et al.
(19972) must wait until a French version of the MROM-p is available.

As an additional guard against a possible confirmation bias, we ran an-
other test of the model using the nonword stimuli of Stone et al. (1997).
The interesting result for RTs to nonwords was the absence of a significant
difference between feedback consistent and feedback inconsistent non-
words. If MROM-p captures this null effect, we can be more confident that
its failure to simulate the null difference in RTs to doubly inconsistent versus
one-way inconsistent words does not represent a fundamental problem with
the model. The data in Figure 5.11 show that this is the case.

Thus, MROM-p successfully stood the second criterion set test. This result
allowed us to hypothesize that the pseudohomophone and bidirectional
consistency effects are different stimulus-specific manifestations of interactive
processes operating between orthographic and phonological representations
and that the present MROM-p provides a viable “model-system” in which
such effects can be understood at sufficient levels of clarity, transparency,
formality, and precision.
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FIG. 5.11. Simulation of Stone et al.’s (1997) nonword data.
Model Evaluation

In this section, we follow the tentative criteria for model comparison and
evaluation proposed by Jacobs and Grainger (1994), in particular, potential
and actual descriptive accuracy, horizonfal and vertical generality, and sim-
plicity and falsifiability.

Potential and Actual Descriptive Accuracy

The first aspect of this accuracy criterion is potential descriptive accuracy.
Does the model allow predictions at the level of scale at which the dependent
variables of interest are actually measured? For example, when the dependent
variable that reflects the effect is interval scaled (e.g., a frequency effect
measured in ms), a model has potential descriptive accuracy if it allows
predictions on the scale of milliseconds. Any current psychological A-type
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model can achieve this only indirectly, for example, by transforming cycle
times into RTs via regression analyses.

Despite complex considerations about measurement problems, we think
that A-type modelers should take this issue seriously and provide a means
by which model users can formally compare the values of the dependent
variable(s) they want to study with- those of the model’s output. This process
is necessary to develop standards for evaluating the relative goodness-of-fit
for competing models. Why should “eyeballing” or “hand waving” be ac-
cepted as alternatives to model-to-data fitting for complex A-type models
when such methods are not accepted for any other formal model format?
Massaro and Friedman (1990) provided an encouraging example for evalu-
ating the descriptive accuracy of a set of comparable M- and A-type models
when percentage correct is the dependent variable. As concerns the more
complex issue of predicting RT means and distributions with A-type models,
first steps toward progress in this direction have been made in some recent
studies (Grainger & Jacobs, 1996; Jﬁlcobs & Grainger, 1992).

Like its precursor, the MROM, the present MROM-p has potential descrip-
tive accuracy for a variety of dependent variables, including RT means and
distributions for both correct and incorrect responses, as well as hit or false
alarm rate for the LDT and percentage correct for perceptual identification
tasks (see Grainger & Jacobs, 1996).

As concerns the actual descriptive accuracy of the MROM-p, the tests are
encouraging but not conclusive. To be conclusive, we would need to test
the model in both a deeper and broader fashion, similar to our extensive
tests of the MROM. Deeper tests would imply providing graphs showing
linear regression between predicted and observed mean RTs for item or
- participant analyses, as well as distributional and error analyses (Grainger
& Jacobs, 1996). Broader tests would imply running simulations of tasks
other than the LDT (e.g., perceptual identification tasks).

In accord with Step 4 of the testing strategy previously proposed, the
MROM-p should be tested in competition with comparable, alternative mod-
els on the same broad range of tasks and dependent variables before any
conclusions about its actual descriptive accuracy can be made. The time is
not now ripe for this, but we hope that easily comparable, broadly testable
variants of the MROM-p and, for example, the dual-route cascaded model
(Coltheart & Rastle, 1994) are soon available.

Even if quantitative, strong inference comparisons between models of
phonological processing in visual word recognition become possible in the
near future, a problem remains: Finding that one model fits the data better
than competing models does not establish the best fitting model as the
probable source of the data (Collyer, 1985, 1986). Developing methods to
overcome Collyer's almost totally neglected problem represents one of the
interesting challenges for A-type (and M-type) model builders in the future.
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Horizontal and Vertical Generality

Jacobs and Grainger (1994) distinguished between horizontal and vertical
generality. Horizontal generality refers to a model'’s ability to generalize across
different stimulus sets, configurations (stimulus generality), or both, different
tasks (task generality), or response types and measures (response generality).
Vertical generality refers to a model’s ability to generalize across different
scales of the modeled process, such as (macrostructural) static-asymptotic
behavior versus microstructural dynamics, or different types or sizes of a
processing structure, such as the number of entries in the lexicon of a
simulation model. Vertical generality has received little attention in compari-
son with horizontal generality, but it might become an important issue in a
field that provides more and more complex algorithmic models, some of which
might have severe limitations for scaling up (e.g., distributed connectionist
models; Feldman-Stewart & Mewhort, 1994; Jacobs & Grainger, 1994).

We have discussed the vertical generality of the SIAM elsewhere (Jacobs
& Grainger, 1994). By virtue of nested modeling (i.e., SIAM is an integral
part of MROM, which is an integral part of MROM-p) and because MROM-p
includes a richer lexicon than does MROM, MROM-p has higher vertical
generality. As for horizontal generality, again thanks to our application of
the nested modeling strategy, we can say the following: Because MROM
has stood an extensive series of tests in different tasks and languages (and
thus has reasonable horizontal generality) and to the extent that we can
show that the MROM-p behaves at least qualitatively like the MROM (e.g.,
as for the simulations of the nonword data in Figure 5.11), the MROM-p has
a higher degree of horizontal generality than does the MROM because it
allows adequate simulation of stimuli processing that the MROM cannot
account for (i.e., pseudohomophones and inconsistent words). Apart from
this verified higher stimulus generality, it remains to be seen to what extent
the MROM-p also includes the promise of higher task generality, the capacity
to simulate data from tasks other than the LDT or the perceptual identification
task (the naming task).

Simplicity and Falsifiability »

This criterion is one of the trickiest in model evaluation (Jacobs & Grain-
ger, 1994). The current state of affairs and our adoption of a moderate
“Popperianism” make evaluation relatively easy: It is premature to make any
sensible statement about the simplicity and falsifiability of the MROM-p.
Popper (1935) linked the criterion for simplicity to that of falsifiability (i.e.,
a model’s ability to generate predictions that can be falsified), in proposing
that, with two models in the same domain with equal success, we should
prefer the simpler. He defined simplicity as a property that places the greatest
restrictions on the world, that is, on how the empirical data can turn out to
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be.” Thus, we should prefer the model that is more easily falsified (cf. Estes,
1975; Massaro & Cowan, 1993), but only when we already have two viable
models (or model variants) for which equal success has been established
in the same domain. As concerns the present subject area, this is not the
case, and we can only postpone evaluation with respect to this criterion.

Notwithstanding the repeatedly appearing critique of connectionist mod-
els as being too powerful (Massaro, 1988) and therefore not falsifiable in
any easy way, a nontrivial question about falsifiability can be answered here:
Is the MROM-p falsifiable at all? Following other theoreticians, we have
proposed that any A-type model should offer a clear answer to the question:
What cannot be or happen, if the model is correct? In other words, which
effects or phenomena does the model exclude? An example is given by
Grainger and Jacobs (1996), who showed that if the MROM is correct, a
facilitatory effect of orthographic neighborhood density (as measured by
Coltheart's V) is possible in both the Yes—No and Go-No-Go variants of the
LDT, but not in the perceptual identification task. Thus, replicable experi-
mental demonstrations of a facilitatary N effect in the perceptual identifica-
tion tasks would falsify the MROM.

Another example was given earlier (see Figure 5.8). According to the
MROM as included in the present MROM-p, a phonological pseudohomo-
phone effect in the LDT is impossible, because the MROM possesses no
phonological processing units whatsoever. Thus, although the MROM was
explicitly designed to deal with orthographic processing in the LDT and
other reading tasks that do not include pseudohomophonic stimuli, the
simulation data in Figure 5.8, for example, present a falsification of the
(nonphonological) MROM. Evidently, simply falsifying a model by using
“conditions outside its explicitly stated validity space (domain of application)
is not necessarily useful. As we have demonstrated in this chapter, using
the MROM as a null model against which to test models of phonological
coding is a more useful variant of falsification studies.

In a field that lacks universal laws, we cannot expect models to have
universal validity (cf. Newell, 1990). On the other hand, we can hardly want
to continue with models that accurately account only for a single effect, as
measured by a single variable in a single task, but whose validity stops there
(cf. Jacobs & Grainger, 1994; Newell, 1990; Roberts & Sternberg, 1993).

The MROM-p is also falsifiable in several nontrivial respects. Like the
MROM, it allows making qualitative predictions that can be tested in a
straightforward way. An example was discussed by Ferrand and Grainger
(1996). They used a prequantitative version of MROM-p (called a bimodal

"For Popper’s simplicity-falsifiability criterion to work, certain rules have to be respected
in this game of non-naive, undogmatic falsificationism and strong inference (e.g., constraints
on the use of auxiliary assumptions; see Popper, 1935, 1966, 1972). Otherwise, the strength of
Popper's approach can easily be turned into weakness (¢f. Feyerabend, 1975).
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extension of the MROM) to make qualitative predictions about the existence
and direction of priming effects in a masked priming LDT manipulating
prime type (homophones, pseudohomophones, or unrelated controls) and
list composition (pseudohomophones, legal pseudowords, or illegal non-
words). The strongest qualitative prediction of MROM-p, the one ‘most easily
falsifiable, was that it predicts a null effect with homophone primes in the
presence of illegal nonwords.? The rationale for this finding is that the pres-
ence of illegal nonwords encourages participants to use the X criterion,
because such nonwords can easily be discriminated from words on the basis
of summed lexical-orthographic activity; homophone primes generate high
levels of orthographic inhibition when readout is from the orthographic M
criterion. The facilitatory effects from increased use of the X criterion (i.e.,
the fast guess mechanism producing decreases in RT) is canceled by the
inhibitory effects of homophone primes. A null effect is the predicted result.
In Ferrand and Grainger’s (1996) experiment, this result was the case.

DISCUSSION AND OUTLOOK

Although a complete, criteria-oriented evaluation of the MROM-p is impos-
sible at present, the results of our partial evaluation stand the general test
criterion that we had fixed as our objective, that is, whether the present
MROM-p is an appropriate prototype for developing a general model of
phonological coding in visual word recognition. The model presented here
is definitely a prototype, not in the sense of representing an ideal, but in
the sense of being a working model. If we accept the principles of model
development we adhere to, the model has some virtues. In the constraint
of nested modeling, it represents what we think to be the simplest possible
localist connectionist network that allows an account of two critical empirical
effects indicating the influence of phonological processes in what is still the
most widely used reading task in experimental psychology and psycholin-
guistics—the LDT.

»

8A word on null effects and their significance for theory building is in order, because many
psychologists are firm believers in the virtues of null hypothesis testing (but see Gigerenzer &
Murray, 1987; Rouanet, 1996; Van Orden, Aitchison, & Podgornik, 1996). With models permitting
quantitative predictions with reasonable precision, a null effect is a strong prediction to make.
Perhaps the most famous example is the prediction of the null effect of the speed of light in
Michelson and Morley’s experiments by Einstein's special theory of relativity (Spielberg &
Anderson, 1985). No known psychological A-type model can be compared with Einstein’s
theory: We simply want to make clear that the existence of theoretical tools allowing quantitative
predictions of empirical effects frees us from the use of null hypothesis testing as exclusive
inferential method. Thus, contrary to standard practice, accepting the null hypothesis can
become a valid inference whenever there is sufficient faith in the validity and precision of a
formal model or theory.
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Moreover, the MROM-p, like our other work involving A-type modeling, is
essentially a heuristic device in the sense discussed in chapter 1. It provides a
heuristic, algorithmic description of phonological coding, but—needless to
say—it falls short of presenting a computational theory in Marr’s sense (1982).
Few theoreticians in the field of cognitive science have achieved, or come
close to, a computational theory (Marr, 1982; see also Jacobs, 1994; Pylyshyn,
1989), and the fields of memory or reading research are still not fully prepared
for such an enterprise (Humphreys, Wiles, & Dennis, 1994; Jacobs, 1994).
Nevertheless, these areas are open to some theoretical unification.

Neither the recent special section of the Journal of Experimental Psychol-
ogy: Human Perception and Performance (Jacobs & Grainger, 1994) on
modeling visual word recognition nor any other literature we have come to
know since provides a computational model that can formally account for
the pseudohomophone and bidirectional consistency effects in the LDT we
have simulated here. At least one other model, however, has the potential
to provide such an account, the dual route cascaded (DRC) model (Coltheart
& Rastle, 1994). Because both the prefent model and the DRC belong to
the family of localist connectionist models (and therefore are easily compa-
rable) but differ with respect to one crucial structural feature—the presence
of a GPC rule mechanism in the DRC—there might be some exciting strong
inference studies ahead, but for such studies to be efficient, certain meth-
odological issues have to be solved.

Future work on the MROM-p will involve adding phonological repre-
sentations to multilingual models such as the bilingual 1AM presented by
Dijkstra and Van Heuven in chapter 6. How do multilingual speaker-readers
deal with the different sets of spelling-to-sound correspondences in each
language? If we postulate, as here, that the phonological coding component
of the MROM-p is automatic¢ and strategically nonmodifiable, how do bilin-
gual readers deal with the potential interference caused by automatically
generating all correspondences in both languages? The notion of language
node introduced by Grainger and Dijkstra (1992; see also chap. 6) provides
one solution to this problem. Top-down inhibition from the unattended
language node to the corresponding word units (i.e., all words in the un-
attended language) would block resonance between irrelevant phoneme
units and word units in the unattended language. Clearly, much exciting

‘theoretical and empirical work is yet to be done in the multilingual domain.

Going Beyond MROM-p: A Challenge
for Cognitive Modelers in “Word-Nerd” World

Science, even more profoundly than politics, is the art of the possible.
It does only what can be done next. ‘ ’
—A. Newell, Unified Theories of Cognition
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The 1994 special section of the JEP:HPP entitled “Modeling Visual Word
Recognition” gives an impression of the empirical and theoretical richness
of this classical field of experimental cognitive psychology. Is it time for
some serious effort of theoretical unification? Whoever thinks that this ques-
~tion is idle might look at table 1 in our editorial of that special section
(Jacobs & Grainger, 1994), which gives a selective overview of 15 models
of visual word recognition starting with Morton’s (1969) logogen model.
Originally, our taxonomic work started with the ambition to give as complete
as possible a synopsis of models of word recognition to be used for the
tasks of theoretical unification and development of standards for model
comparison and evaluation. That aim was clearly too ambitious! Even the
published version is far too complex to have a fair chance of being used
in the way we wanted it to (previous versions of the table, including more
than 40 different models of the past 30 years, were worse!).

Nevertheless, we continue to think that the answer to our question is a
clear Yes. Perhaps pressure for theoretical unification in the word recognition
literature is not as high as in the general field of cognitive science. As Newell
(1990, p. 25) stated: “In my view, it is time to get going on producing unified
theories of cognition—before the data base doubles again and the number
of visible clashes [i.e., between theory and data] increases by the square or
cube.” On the other hand, if Newell (1990) could convincingly present four
harbingers of unified theories of cognition, why should we not be able to
agree on a limited number of harbinger models that have the potential to
become unified models of word recognition? After all, we are dealing with
only a small part of the cake of cognition (although perhaps with one of
the most complex parts). Models of the steadily growing IA family (like the
present volume) are clearly among the harbinger candidates, and because
we have already argued for this goal (Jacobs & Grainger, 1994), we do not
repeat ourselves (see chap. 1). Suffice it to say that the present results
showing the generalizability of the original IAM to conditions involving
phonological processing are clearly in favor of our view.

To facilitate theoretical integration in the “word-nerd” field, the following
challenge has to be met: Agree on a minimal set of standards for model
comparison and evaluation. This challeénge has two facets. First, it involves
agreement on a minimal set of standard effects and tasks, which any model
of word recognition that competes for “harbingership” should be able to
predict in a way that can enter into strong inference competition. In Jacobs
and Grainger (1994, table 1), we made a minimalistic proposal of four such
effects. Whether they were the right ones or whether they have to be aug-
mented by other effects is a question that can be solved only by ongoing
published scientific debate.

The second and more problematic facet of this challenge is to agree on
a minimal set of criteria for model evaluation and on a standard way of
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applying the criteria. Among other things, this problem implies the tricky
question of complex A-type models being made comparable, in at least
several critical features or dimensions (e.g., the “currency” problem discussed
by Massaro & Friedman, 1990). This issue is nontrivial (cf. Estes, 1975), as
model builders who have problems of keeping different variants of their
own models comparable over the years of development admit (for some
examples, see Jacobs & Grainger, 1994). Our stratagem of nested modeling
might appear to lead us close to what Newell (1990) called the “Popperian
damnation,” the risk of killing theories via falsificationism before we can
know their true potential. Apart from the fact that Newell’s interpretation of
Popper’s ideas is naive and uninformed, nested modeling is a valuable
method to tackle this basic problem: By facilitating unification of a single
model or family of models, nested modeling should also facilitate unification
of competing models. Even Newell (1990)—not to be suspected of being a
Popperian—urged cognitive theoreticians to start by unifying their own theo-
ries before attacking a grand unified theory of cognition, which according
to our view, can result only from strong inference competition in a pluralistic,
pragmatic, but principle-oriented modeling perspective. Nested modeling
can considerably contribute to that unification.

We think that the establishment of a set of standard criteria for model
comparison and evaluation serves this aim of theoretical integration. Standard
criteria need not at all exclude parallel anarcho-creative modeling enterprises
a la Feyerabend (1975). Why should we not give the venture a try?’

APPENDIX

Cleaning procedure for all three-, four-, and five-letter English words taken
from the Celex database (Baayen, Piepenbrock, & van Rijn, 1993):

All three-, four-, and five-letter English words were extracted from the
Celex database.

All words with a written (Fwrit) and a spoken (Fspok) frequency smaller
than or equal to one per million were excluded.

Abbreviations, proper names, and so on were excluded.

Homograph entries were reduced according to the following procedure:
Homophonic homographs (e.g., verb/noun: to beat, the beaf) were

°It is indeed a nontrivial problem to lay out an epistemological position that tries to benefit
from the creative tension between the charming, anarchic, and droll island occupied by
Feyerabend and the rigorous, critical-rational, but also liberal-Socratian, castle constructed by
Popper.
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reduced to a single entry in the orthographic and phonologic lexicons.
Fwrit and Fspok were summed across the multiple homograph entries.
Nonhomophonic homographs (e.g., lead, lead) were kept as two separate
entries in the phonological lexicon and one entry in the orthographic
lexicon. Their written frequencies (Fwrit) were summed; their spoken
frequencies (Fspok) were kept separate (not summed). Nonhomophonic
homograph alternatives with identical frequencies but slight variations in
their phonology depending on regional or contextual constraints were
reduced to one standard entry in both lexicons according to Harrap’s
Dictionary. (Those multiple entries are alternative pronunciations; they
must be separated from real nonhomophonic homographs because they
have identical frequencies.)

For all homophones (e.g., sea, see; n = 444), the spoken frequencies
(Fspok) were summed.

All words with two or more syuables were excluded.

All words with a grapheme decomposition of two were excluded (e.g.
mayor, with /m8R/ as phonological code, with may-or as graphemic
decomposition).

This cleaning procedure resulted in an orthographic lexicon consisting
of 2,494 entries (409 three-letter words, 1,151 four-letter words, and 933
five-letter words). .

The readout procedure used in these simulation studies follows the design
principles described by Grainger and Jacobs (1996). For the Coltheart et al.
(1977) and Seidenberg et al. (1996) tests as well as the second Stone et al.
(1997) test, the critical dependent variable was correct RT to nonwords. In the
MROM, a No response is generated when neither the activation of a lexical
unit (. value) nor the global lexical activity (svalue) has reached the response
criteria (M and Z, respectively) before the temporal deadline (T criterion).
Thus, RT for a No response is given simply by the value of the T criterion. This
value is a function of the global lexical activity (¢) generated by the target
stimulus. A high global lexical activity is interpreted as a high probability that
the target stimulus is a word. Practigally, we assume that during the early
phases of stimulus processing, the computed ¢ value indexes the likelihood
that the stimulus is a word. A high ¢ value encourages participants to set a
longer deadline, that is, a higher T criterion (Coltheart et al., 1977; Jacobs &
Grainger, 1992). For the present simulations, we monitored the ¢ value at
Processing Cycle 15 for each stimulus. In the MROM-p simulations, if 6(15) >
0.33, then T = 27 cycles, or else T = 25 cycles, For the MROM simulations, if
c(15) > 0.3, then T = 27 cycles, or else T = 25 cycles.

For the first Stone et al. (1997) test, the critical dependent variable was
correct RT words. In the MROM, a Yes response is generated when either
the activation of a lexical unit (U value) or the global lexical activity (¢
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value) has reached the response criteria (M and X, respectively) before the
temporal deadline (T criterion). For simplicity, in the present simulations
we did not consider the possible role of global orthographic activity on Yes
responses. Thus, the RT was computed by determining when the activation
of lexical units reached the X criterion. This criterion was 0.67 for the MROM-
p and 0.47 for the MROM. These values correspond to 90% of the asymptotic
activation values for lexical units in each model (Jacobs & Grainger, 1992).
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