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Abstract The aim of the paper is to introduce an alternative notion of two-scale convergence which
gives a more natural modeling approach to the homogenization of partial differential equations
with periodically oscillating coefficients: while removing the bother of the admissibility of test
functions, it nevertheless simplifies the proof of all the standard compactness results which made
classical two-scale convergence very worthy of interest: bounded sequences in L2

] [Y,L2(Ω)] and
L2

] [Y,H1(Ω)] are proven to be relatively compact with respect to this new type of convergence. The
strengths of the notion are highlighted on the classical homogenization problem of linear second-
order elliptic equations for which first order boundary corrector-type results are also established.
Eventually, possible weaknesses of the method are pointed out on a nonlinear problem: the weak
two-scale compactness result for S2-valued stationary harmonic maps.

A.M.S. subject classification: 35B27, 35B40, 74Q05
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1 Introduction andMotivations

The aim of the paper is to study a new notion of two-scale convergence1 which is very natural and, in
our opinion, gives a more straightforward approach to the homogenization process: while removing
the bother of the admissibility of test functions [1, 12], it nevertheless simplifies the proof of all
standard compactness results which made classical two-scale convergence (introduced in [14, 1])
very worthy of interest.

Attempts to overcome the question of admissibility of test functions arising in the definition of
two-scale convergence have been the subject of various authors [6, 13, 17]. Among them, the periodic
unfolding method is considered one of the most successful. The idea, as well as its nomenclature,
is introduced [6] where the authors exploit a natural, although purely mathematical, intuition to
recover two-scale convergence as a classical functional weak convergence in a suitable larger space.
This recovery process is achieved by introducing the so-called unfolding operator which, roughly
speaking, turns a sequence of 1-scale functions into a sequence of 2-scale functions.

On the other hand, as it is simple to show by playing with Lebesgue differentiation theorem, the
recovery process is not univocal, and many alternatives are possible. In guessing the one presented
below, we did not rely on mathematical intuition only, but we found inspiration from the physics
of the homogenization process. That is why we think it is important to dwell on some preliminary
considerations before giving definitions, theorems and proofs.

1A deep bibliographic research, shows that the idea here presented is suggested in an paper (of the late seventies
and so well before the introduction of the notion of two-scale convergence) by Papanicolau and Varadhan [15] in
the context of stochastic homogenization.
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The paper is organized as follows: in Section 2 we explain the idea behind the proposed approach
which will be formalized in Section 3. In Section 4 we establish compactness results for the new
notion of two-scale convergence which play a central role in the homogenization process. In Section 5
we test the effectiveness of our notion of convergence on the «classical» model problem in the theory
of homogenization, i.e the one associate to a family of linear second-order elliptic partial differential
equation with periodically oscillating coefficients. Section 6 is devoted to the so-called first-order
corrector results which aim to improve the convergence of the solution gradients by adding corrector
term. In Section 7 we introduce the well-known boundary layer terms which aim to compensate
the fast oscillation of the family of solutions near the boundary. Eventually, in Section 8 we test
the approach on a nonlinear problem: we prove a weak two-scale compactness result for S2-valued
stationary harmonic map, and make some remarks which point out some possible weaknesses of this
alternative notion of two-scale convergence.

2 The cell averaging approach to periodic homogenization

2.1 The classical two-scale convergence approach to periodic homogenization

Let us focus on the classical model problem in homogenization: a linear second-order partial differ-
ential equation with periodically oscillating coefficients. Such an equations models, for example, the
stationary heat conduction in a periodic composite medium [1, 7]. We denote by Ω the material do-
main (a bounded open set in RN ) and by Y := [0, 1]N the unit cell of RN . Denoting by f ∈ L2(Ω) the
source term and enforcing a Dirichlet boundary condition for the unknown uε, the model equation
reads as

− div(Aε∇uε) = f in Ω, uε = 0 on ∂Ω, (1)

where, for any ε > 0, we have defined Aε by Aε(x) := A(x/ε), with A (the so-called matrix of
diffusion coefficients) an L∞ and Y -periodic matrix valued function, which is uniformly coercive, i.e.
such that for two positive constants 0 < α 6 β one has (for a.e. y ∈ Y ) α|ξ|2 6 A(y)ξ · ξ 6 β|ξ|2 for
every ξ ∈ RN . Here we have supposed A depending on the periodic variable only although later we
will work with the more general case in which A depends on the x variable too. The weak formulation
of problem (1) reads as: ∫

Ω

Aε∇uε · ∇ϕ =

∫
Ω

fϕ, (2)

and according to Lax-Milgram theorem for each ε > 0 there exists a unique weak solution uε ∈ H1
0 (Ω)

of (2). The family of solutions (uε)ε∈R+ and the family of fluxes (ξε)ε∈R+ := (Aε∇uε)ε∈R+ , constitute
bounded subsets respectively of H1

0 (Ω) and L2(Ω). Thus there exist subfamilies (that we still denote
by (uε)ε∈R+ and (ξε)ε∈R+) and elements u0 ∈ H1

0 (Ω), ξ0 ∈ L2(Ω) such that ∇uε ⇀ ∇u0 and ξε ⇀ ξ0
weakly in L2(Ω). Hence, passing to the limit in (2), we get (ξ0,∇ϕ)L2(Ω) = (f, ϕ)L2(Ω), where the
limit flux ξ0 is the weak limit of the product of the weakly convergent sequences ∇uε ⇀ ∇u0 and
Aε ⇀ 〈A〉Y . The identification of the limit flux ξ0 in terms of u0 and A is the first aim in the
mathematical theory of periodic homogenization.

A procedure for the homogenization of problem (1) appeared in 1989 by the means of the so-called
two-scale convergence. This notion, introduced for the first time by Nguetseng in [14], was later
named «two-scale convergence» by Allaire [1] who further developed the notion by giving more
direct proofs of the main compactness results. To better understand the idea behind the classical
two-scale approach, let us recall the following compactness results [1], from which the notion of
two-scale convergence originates:

Proposition 1 (Nguetseng [14], Allaire [1]) If (uε)ε∈R+ is a bounded sequence in L2(Ω), there
exists u0 ∈ L2 (Ω× Y ), such that, up to a subsequence

lim
ε→0

∫
Ω

uε(x)ϕ(x, x/ε)dx =

∫
Ω×Y

u0(x, y)ϕ(x, y)dx dy (3)
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Figure 1: If we assume that the heterogeneities are evenly distributed inside the media Ω, we can
model the material as periodic. As illustrated in the figure, this means that we can think of the
material as being immersed in a grid of small identical cubes Yε, the side-length of which is ε.

for any test function2 ϕ ∈ D[Ω, C∞] (Y )]. Moreover, if (uε)ε∈R+ is a bounded sequence in H1(Ω), then
there exist functions u0 ∈ H1(Ω) and u1 ∈ L2[Ω, H1

] (Y ) /R] such that, up to a subsequence

lim
ε→0

∫
Ω

∇uε(x) · ψ(x, x/ε)dx =

∫
Ω×Y

(∇xu0(x) +∇yu1(x, y)) · ψ(x, y)dx dy (4)

for any test function ψ ∈ D[Ω, C∞] (Y )]N .

It is then natural to give the following (see [1])

Definition 1 (Allaire [1]) A sequence of functions uε in L2(Ω) two-scale converges to a limit u0 ∈
L2 (Ω× Y ) if, for any function ϕ ∈ D[Ω, C∞] (Y )] we have

lim
ε→0

∫
Ω

uε(x)ϕ(x, x/ε)dx =

∫
Ω×Y

u0(x, y)ϕ(x, y)dx dy. (5)

In that case we write uε
2s−→ u0. We say that the sequence (uε) strongly two-scale converges to a limit

u0 ∈ L2 (Ω× Y ), if uε
2s−→ u0 and ‖u0‖L2(Ω×Y ) = limε→0 ‖uε‖L2(Ω).

It is now immediate to understand the role played by two-scale convergence in the homogenization
process. Indeed, by writing (2) in the form∫

Ω

∇uε(x) ·AT
(x
ε

)
∇ϕε(x)dx =

∫
Ω

f(x)ϕε(x)dx, (6)

and choosing the right shape for the test functions ϕε, it is possible to interpret the left-hand side of
the previous relation as the product of a strongly two-scale convergent sequence (namely AT

ε∇ϕε(x))
with the weakly two-scale convergent sequence ∇uε, from which weak two-scale convergence of the
product, and hence the homogenized equation, easily follows (cfr. [1, 7] for details).

2As it is classical in the field, we index by ] spaces that consist of periodic functions.
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Figure 2: More realistic is to think of the material as being immersed in a grid of small identical cubes
Yε, up to an unknown translation of size smaller than ε. We thus consider all possible translations,
which we take into account by the introduction of a new variable.

Unfortunately, for this procedure to be possible it is essential to add a technical hypothesis: the
sequence of coefficients (Aε) must be admissible in the sense that (cfr. [1])

lim
ε→0
‖Aε‖L2(Ω) = ‖A‖L2(Ω×Y ). (7)

It turns out that this is a subtle notion. Indeed, for a given function ψ ∈ L2
] [Y,L

2(Ω)] there is
no reasonable way to give a meaning to the «trace» function x 7→ ψ(x, x/ε). The complete space
of admissible functions is not known much more precisely. Functions in Lp[Ω, C] (Y )] as well as
Lp] [Y,C(Ω)] are admissible, but it is unclear how much the regularity of ψ can be weakened: we refer
to [1] for an explicit construction of a non admissible function which belongs to C[Ω, L1

] (Y )].

2.2 The cell averaging idea

The «classical» approach to periodic homogenization originates by the modeling assumption that
since the heterogeneities are evenly distributed inside the media Ω, we can think of the material as
being immersed in a grid of small identical cubes Yε, the side-length of which is ε (see Figure 1). If
we denote by Ωa := Ω + a, with a ∈ RN , a translated copy of Ω such that Ω∩Ωa 6= ∅, this modeling
approach assumes that, at scale ε, the contribution of the diffusion coefficients at any x ∈ Ω ∩ Ωa,
is given by A(x/ε) both if we focus on the problem −div(Aε∇uε) = f in Ω and on the problem
(fa := f(x− a)) −div(Aε∇uε) = fa in Ωa. Although this assumption is mathematically reasonable
when ε tends to be very small, it is nevertheless the reason why the two-scale convergence produces
«two-variables» functions starting from a family of «one-variable» functions.

On the other hand, it is clear that a more realistic approach consists in taking into account the
effects of the diffusion coefficients Aε := A(x/ε) via a family of displacement of length at most ε,
i.e. via the family of diffusion coefficients (Aε ( · + εy))(ε,y)∈R+×Y = (A(y + ·/ε))(ε,y)∈R+×Y , and
hence (see Figure 2) via the family of boundary value problems depending on the cell-size parameter
ε ∈ R+ and on the translation parameter y ∈ Y . The new homogenized problem then goes through
the following two steps: for every ε ∈ R+ find (in a suitable sense) a Y -periodic solution uε(x, y) of
the Dirichlet problem

− div(Aε(x+ εy)∇uε(x, y)) = f(x) in Ω, uε(x, y) = 0 on ∂Ω; (8)
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then take the average 〈uε〉Y as a more realistic modelization of the solution associated, at scale ε, to
evenly distributed heterogeneities inside the media Ω.

In this framework the homogenization process demands for the computation of the limiting be-
haviour, as ε → 0, of the family of two variable solutions uε(x, y), i.e. for an asymptotic expansion
of the form

uε(x, y) = u0

(
x, y +

x

ε

)
+ ε u1

(
x, y +

x

ε

)
+ ε2 u2

(
x, y +

x

ε

)
+ · · · , (9)

in which u0 is the solution of the homogenized equation and u1 is the so-called first order corrector
(cfr. the analogues definitions in [1, 7]).

We are now in position to explain the new approach. To this end, let us introduce the operator

Fε : u ∈ L2
] [Y,L

2(Ω)] 7→ u(x, y − x/ε) ∈ L2
] [Y,L

2(Ω)]. (10)

Due to the Y -periodicity of A, the variational formulation of (8) reads as the problem of finding
uε ∈ L2

] [Y,H
1
0 (Ω)] such that∫

Ω×Y
A(y)Fε (∇xuε) (x, y) · Fε (∇xψε) (x, y)dxdy =

∫
Ω×Y

f(x)Fε(ψε)(x, y)dxdy (11)

for every ψε ∈ L2
] [Y,H

1
0 (Ω)]. Therefore, if Fε (∇xuε) ⇀ v weakly in L2

] [Y,L
2(Ω)], then for every

couple of «test functions» ψ,ψ ∈ L2
] [Y,L

2(Ω)] such that for some family ψε ∈ L2
] [Y,H

1
0 (Ω)] we have

Fε(ψε)→ ψ and Fε (∇xψε)→ ψ strongly in L2
] [Y, L

2(Ω)], passing to the limit in (11), we finish with
the «homogenized equation»∫

Ω×Y
A(y)v(x, y) ·ψ(x, y)dxdy =

∫
Ω×Y

f(x)ψ(x, y)dxdy. (12)

Of course, to find an explicit expression for the homogenized equation, and more generally to build
a kind of two-scale calculus, it is important to investigate the interconnections between the conver-
gence of the families uε and Fε(uε) in L2

] [Y,H
1(Ω)], and to understand which are the subspaces of

L2
] [Y,H

1(Ω)] which are reachable by strong convergence of family of the type Fε(ϕε) in L2
] [Y,H

1(Ω)].
This and many other important aspects of the question are the object of the next two sections.

3 The alternative approach to two-scale convergence

3.1 Notation and preliminary definitions

In what follows we denote by Y = [0, 1]N the unit cell of RN and by Ω an open set of RN . For any
measurable function u defined on Y we denote by 〈u〉Y the integral average of u.

By C∞] [Y,D(Ω)] we mean the vector space of test functions u : Ω×RN → R such that the section
u(x, ·) ∈ C∞] (Y ) for every x ∈ Ω, and the section u(·, y) ∈ D(Ω) for every y ∈ RN . Similarly
we denote by L2

] [Y,L
2(Ω)] the Hilbert space of Y -periodic distributions which are in L2 (Ω× Y ),

and by L2
] [Y,H

1(Ω)] the Hilbert subspace of L2
] [Y, L

2(Ω)] constituted of distributions u such that
∇xu ∈ L2

] [Y, L
2(Ω)].

Next, we denote by L2[Ω;H1
] (Y )] the Hilbert space of Y -periodic distributions u ∈ D′

(
Ω× RN

)
such that u(·, y) ∈ L2(Ω) for a.e. y ∈ Y and u(x, ·) ∈ H1

loc

(
RN
)
for a.e. x ∈ Ω.

Finally, in the next Proposition 2, we denote by E ′][Y,D′(Ω)] the algebraic dual of C∞] [Y,D(Ω)],
and for any u ∈ E ′][Y,D′(Ω)] and anyψ ∈ C∞] [Y,D(Ω)]N we define the partial gradient∇xu by the po-
sition 〈∇xu,ψ〉 := −〈u,divxψ〉 and the ε-cell shifting of u by the position 〈u(x, y−x/ε),ψ(x, y)〉 :=
〈u(x, y),ψ(x, y + x/ε)〉.

5



3.2 Cell averaging two-scale convergence

Motivated by the considerations made in subsection 2.2 we give the following

Definition 2 Let Ω ⊆ RN be an open set and Y the unit cell of RN . For any ε > 0, we define the
ε-cell shift operator Fε by the position

u ∈ L2
] [Y,L

2(Ω)] 7→ Fε(u) := u(x, y − x/ε) ∈ L2
] [Y,L

2(Ω)], (13)

i.e. as the composition of u with the diffeomorphism (x, y) ∈ Ω× RN 7→ (x, y − x/ε) ∈ Ω× RN . We
then denote by F∗ε the algebraic adjoint operator which maps u(x, y) to u(x, y + x/ε).

Definition 3 A sequence of L2
] [Y,L

2(Ω)] functions (uε)ε∈R+ is said to weakly two-scale converges to
a function u0 ∈ L2

] [Y,L
2(Ω)], if Fε(uε) ⇀ u0 weakly in L2

] [Y,L
2(Ω)], i.e if and only if

lim
ε→0+

∫
Ω×Y

uε

(
x, y − x

ε

)
ψ(x, y)dxdy =

∫
Ω×Y

u0(x, y)ψ(x, y)dxdy, (14)

for every ψ ∈ L2
#[Y,L2(Ω)]. In that case we write uε � u0 weakly in L2

] [Y,L
2(Ω)]. We say that

uε � u0 strongly in L2
] [Y,L

2(Ω)] if Fε(uε)→ u0 strongly in L2
] [Y, L

2(Ω)].

Remark 1 We have stated the definition in the framework of square summable functions. Never-
theless, almost all of what we say here and hereinafter easily extends, with obvious modifications, to
the setting of Lp spaces.

Remark 2 Since the notion of two-scale convergence relies on the classical notion of weak conver-
gence in Banach space, we immediately get, among others, boundedness in norm of weakly two-scale
convergent sequences. This aspect is not captured by the classical notion of two-scale convergence
which, by testing convergence on functions in D[Ω, C∞] (Y )], i.e. having compact support in Ω, may
cause loss of information on any concentration of «mass» near the boundary of the sequence (uε)ε∈R+

(cfr. [12]).

We now state some properties of the operator Fε, which are simple consequence of the definitions,
and will be used extensively (and sometime tacitly) in the sequel:

Proposition 2 Let ε > 0. The operator Fε is an isometric isomorphism of L2
] [Y,L

2(Ω)] and the
following relations hold:

• If ψ ∈ C∞] [Y,D(Ω)]N then Fε(ψ) ∈ C∞] [Y,D(Ω)]N and one has

divx Fε(ψ) = Fε (divxψ)− 1

ε
Fε (divy ψ) , divy Fε(ψ) = Fε (divy ψ) . (15)

Next, let us denote by E ′][Y,D′(Ω)] the algebraic dual of C∞] [Y,D(Ω)]:

• If u ∈ E ′][Y,D′(Ω)] then Fε(u) ∈ E ′][Y,D′(Ω)] and one has

〈∇x[Fε(u)],ψ〉 =

〈
Fε (∇xu)− 1

ε
Fε (∇yu) ,ψ

〉
, 〈Fε (∇yu) ,ψ〉 = 〈∇y[Fε(u)],ψ〉 , (16)

for any ψ ∈ C∞] [Y,D(Ω)]N .

Proof For every u ∈ L2
#[Y,L2(Ω)], by the translational invariance of the integral over Y with

respect to the section u(x, ·) ∈ L2 (Y ), we get

‖Fε(u)‖L2(Ω×Y ) =

(∫
Ω×Y

|u(x, y − x/ε)|2
)1/2

= ‖u‖L2(Ω×Y ). (17)
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Relation (15) is a standard computation. Equation (16) is a direct consequence of (15). Indeed for
any ψ ∈ C∞] [Y,D(Ω)]N we have

〈∇x[Fε(u)],ψ〉 := −〈u, F∗ε (divxψ)〉 (18)

= −
〈
u, divx F∗ε (ψ)− 1

ε
divy F∗ε (ψ)

〉
, (19)

and this last expression is nothing else than (16). 2

4 Compactness results

As already pointed out, one of the greatest strengths of the new notion of two-scale convergence
is in the simplification we gain in proving compactness results for that notion. In that regard it
is important to remark that one of the main contributions given by Allaire in [1] was to give a
concise proof of the nowadays classical compactness results associated to two-scale convergence, by
the means of Banach-Alaoglu theorem and Riesz representation theorem for Radon measures (cfr.
Theorem 1.2 in [1]).

4.1 Compactness in L2
] [Y,L

2(Ω)]

As as previously announced, the proof of the following compactness result is completely straightfor-
ward (cfr. Theorem 1.2 in [1]).

Theorem 1 From every bounded subset (uε)ε>0 of L2
] [Y, L

2(Ω)] is possible to extract a weakly two-
scale convergent sequence.

Proof According to Proposition 2, Fε is an isometric isomorphism of L2
] [Y,L

2(Ω)] in it, and therefore
also (Fε(uε))ε>0 is a bounded subset of L2

] [Y, L
2(Ω)]. Therefore there exists an u0 ∈ L2

] [Y,L
2(Ω)]

and a subsequence extracted from (uε), still denoted by (uε), such that Fε(uε) ⇀ u0 in L2
] [Y,L

2(Ω)],
i.e. such that uε � u0 in L2

] [Y,L
2(Ω)]. 2

4.2 Compactness in L2
] [Y,H

1(Ω)]

The following compactness results are the counterparts of the well-known corresponding results for
the classical notion two-scale convergence (cfr. Proposition 1.14 in [1]).

Proposition 3 Let (uε) be a sequence in L2
] [Y,H

1(Ω)] such that for some (u0,v) ∈ L2
] [Y,L

2(Ω)]N+1

one has
uε � u0 in L2

] [Y, L
2(Ω)] , ∇xuε � v in L2

] [Y,L
2(Ω)]N , (20)

then u0(x, y) = 〈u0(x, ·)〉Y , i.e. the two-scale limit u0 does not depends on the y variable. Moreover
there exists an element u1 ∈ L2[Ω;H1

] (Y )] such that v = ∇xu0 +∇yu1.

Proof The relation ∇xuε � v in L2
] [Y,L

2(Ω)]N means, in particular, that for ε → 0 one has
〈Fε (∇xuε) ,ψ〉 → 〈v,ψ〉 for any ψ ∈ C∞] [Y,D(Ω)]N . Moreover, from (15) we get∫

Ω×Y
∇x[Fε(u)](x, y) ·ψ(x, y)dxdy = −

∫
Ω×Y

Fε(uε)(x, y) divxψ(x, y)dxdy

−1

ε

∫
Ω×Y

Fε(uε)(x, y) divy ψ(x, y)dxdy (21)

=

∫
Ω×Y

Fε (∇xu) (x, y) ·ψ(x, y)dxdy

−1

ε

∫
Ω×Y

Fε (∇yu) (x, y) ·ψ(x, y)dxdy, (22)

7



for any ψ ∈ C∞] [Y,D(Ω)]N . Let us investigate the implications of (21) and (22). Since Fε(uε) ⇀ u0

and Fε (∇xuε) ⇀ v, multiplying both members of relation (21) by ε and then letting ε→ 0 we get∫
Ω×Y

u0(x, y) divy ψ(x, y)dxdy = 0 ∀ψ ∈ C∞] [Y,D(Ω)]N , (23)

from which the independence of the two-scale limit u0 from the y variable follows. Thus for the limit
function we have u0(x, y) = 〈u0(x, ·)〉Y for every y ∈ Y .

On the other hand, from (22), for every ψ ∈ C∞] [Y,D(Ω)]N such that divy ψ = 0 we have∫
Ω×Y

(
Fε (∇xuε) (x, y)−∇x[Fε(uε)](x, y)

)
·ψ(x, y)dxdy = 0. (24)

Since Fε(uε) ⇀ u0 in L2
] [Y,L

2(Ω)] one has ∇x[Fε(uε)] → ∇xu0 in the sense of distribution; thus
multiplying both members of the previous relation by ε and then letting ε→ 0 we get (by hypothesis
∇xuε � v) ∫

Ω×Y
(v(x, y)−∇xu0(x, y)) ·ψ(x, y)dxdy = 0, (25)

for every ψ ∈ C∞] [Y,D(Ω)]N such that divy ψ = 0. According to DeRham’s theorem, which in
our context can be easily proved by means of Fourier series on Y (see e.g. [10] p.6), the orthogonal
complement of divergence-free functions are exactly the gradients, and therefore there exists a u1 ∈
L2[Ω;H1

] (Y )] such that ∇yu1 = v −∇xu0. This concludes the proof. 2

Proposition 4 Let (uε) be a sequence in L2
] [Y,H

1(Ω)] such that for some (u0,v) ∈ [L2 (Ω× Y )]N+1

one has

uε � u0 in L2
] [Y,L

2(Ω)] and ε∇xuε � v in L2
] [Y, L

2(Ω)]N , (26)

then v = ∇yu0.

Proof As in the proof of Proposition 3 we have:∫
Ω×Y

Fε (ε∇xuε) (x, y) ·ψ(x, y)dxdy = −ε
∫

Ω×Y
Fε(uε)(x, y) divxψ(x, y)dxdy

−
∫

Ω×Y
Fε(uε)(x, y) divy ψ(x, y)dxdy. (27)

Let us investigate the implications of (27). Since Fε (ε∇xuε) ⇀ v in [L2 (Ω× Y )]N one has that
∇x[Fε(uε)] ⇀ ∇xu0 in [D′ (Ω× Y )]N . Then taking the limit for ε→ 0 in relation (27) and integrating
by parts, we get 〈v −∇yu0,ψ〉 = 0 in D′ (Ω× Y ) and therefore v = ∇yu0. 2

4.3 Test functions reachable by strong two-scale convergence

As pointed out at the end of subsection 2.2, in order to identify the system of homogenized equations it
is important to understand the subspaces of L2

] [Y,H
1(Ω)] which are reachable by strong convergence

in L2
] [Y,H

1(Ω)] (cfr. Lemma 1.13 in [1]). Although this question become a simple observation in our
framework, we will make constantly use of the following result which therefore state as a proposition
in order to reference it when used.

Proposition 5 The following statements hold:

1. For every ϕ ∈ D(Ω) there exists a sequence of functions (ϕε)ε>0 of L2
] [Y,H

1(Ω)] such thatFε(ϕε) =

ϕ and Fε (∇xϕε) = ∇xϕ for every ε > 0, so that obviously ϕε � ϕ strongly L2
] [Y,L

2(Ω)] and
∇xϕε � ∇xϕ strongly in L2

] [Y,L
2(Ω)]N .
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2. Similarly, for every ψ ∈ D (Ω× Y ) there exists a sequence of functions (ψε) ∈ L2
] [Y,H

1(Ω)] such
that Fε(ψε) = ψ and εFε (∇xψε) = ∇yψ + ε∇xψ for every ε > 0. In particular ψε � ψ strongly
in L2

] [Y,L
2(Ω)] and ε∇xψε � ∇yψ strongly in L2

] [Y,L
2(Ω)]N .

Proof For every ϕ ∈ D(Ω) the constant family of functions defined by the position ϕε(x, y) :=
ϕ(x)⊗ 1(y) is in L2

] [Y, L
2(Ω)], and is such that Fε(ϕε) = ϕ. Therefore Fε(ϕε) strongly converges to

ϕ in L2 (Ω× Y ) and Fε (∇xϕε) = ∇xϕ strongly converges to ∇xϕ in L2
] [Y,L

2(Ω)]N .
For the second part of the statement we note that for every ψ ∈ D (Ω× Y ) the family ψε(x, y) :=

ψ(x, y+x/ε) is in L2
] [Y, L

2(Ω)], and is such thatFε(ψε) = ψ. Hence ψε � ψ0 strongly in L2
] [Y,L

2(Ω)].
Moreover εFε (∇xψε) = ∇y[Fε(ψε)] + ε∇x[Fε(ψε)] = ∇yψ+ ε∇xψ so that ε∇xψε � ∇yψ strongly in
L2
] [Y,L

2(Ω)]. 2

5 The «classical» homogenization problem

In the mathematical literature, the elliptic equation introduced in subsection 2.1, Eq. (1), it is
nowadays simply referred to as the classical homogenization problem. This classical problem has
achieved the role of «benchmark problem» for new methods in periodic homogenization: Whenever
a new method for periodic homogenization emerges, it is customary to test it by the ease it allows
to solve the classical homogenization problem. This is exactly the aim of this section. Of course,
as pointed out in subsection 2.2, our testing problem is slightly different as the matrix of diffusion
coefficients is now a function depending on a parameter. Nevertheless, and this is a really important
point, the homogenized equations we get are exactly the ones arising from the homogenization of the
classical homogenization problem.

5.1 The «classical» homogenization problem

Let Ω be a bounded open set of RN . Let f be a given function in L2(Ω). For every y ∈ Y we consider
the following linear second-order elliptic equation

− divx[A(x, y + x/ε)∇xuε(x, y)] = f(x) in Ω (28)
uε(x, y) = 0 on ∂Ω, (29)

where A ∈ [L∞
(
Ω× RN

)
]N

2

is a (not necessarily symmetric) matrix valued function defined on
Ω × Y and Y -periodic in the second variable. We also suppose A to be uniformly elliptic, i.e.
there exists a positive constants α > 0 such that α|ξ|2 6 A(x, y)ξ · ξ for any ξ ∈ RN and every
(x, y) ∈ Ω× Y .

Following [1] we give the following

Definition 4 The homogenized equation is defined as

− div[Ahom(x)∇u0(x)] = f(x) in Ω (30)
u(x) = 0 on ∂Ω (31)

where the matrix Ahom is given by

Ahom = 〈A(x, ·) (IN +∇yχ(x, ·))〉Y , (32)

where χ := (χ1, χ2, . . . , χN ) is the so-called vector of correctors where for every i ∈ NN the function
χi is the unique solution in the space L∞[Ω, H1

] (Y ) /R] of the cell problem:

− divy[A(x, y) (∇yχi(x, y) + ei)] = 0. (33)

We then have

9



Theorem 2 For every ε ∈ R+ there exists a unique solution uε ∈ L2
] [Y,H

1
0 (Ω)] of the problem

(28)-(29).

1. The sequence (uε)ε∈R+ of L2
] [Y,H

1
0 (Ω)] solutions is such that

uε � u0 , ∇xuε � ∇xu0 +∇yu1 in L2
] [Y,L

2(Ω)] (34)

where (u0, u1) is the unique solution in H1
0 (Ω) × L2[Ω, H1

] (Y )/R] of the following two-scale
homogenized system:

− divy[A(x, y) (∇xu0(x) +∇yu1(x, y))] = 0 in Ω× Y, (35)

−divx[

∫
Y

A(x, y) (∇xu0(x) +∇yu1(x, y)) dy] = f(x) in Ω× Y. (36)

2. Furthermore, the previous system in equivalent to the classical homogenized and cell equations
through the relation

u1(x, y) = ∇u0(x) · χ(x, y). (37)

Proof 1) We write the weak formulation of problem (28)-(29) on the space L2
] [Y ;H1

0 (Ω)]:∫
Y×Ω

A(x, x/ε+ y)∇xuε(x, y) · ∇xψε(x, y)dxdy =

∫
Y×Ω

f(x)ψε(x, y)dxdz, (38)

with ψε ∈ L2
] [Y,H

1
0 (Ω)]. Once endowed the space L2

] [Y,H
1
0 (Ω)] with the equivalent norm u ∈

L2
] [Y,H

1
0 (Ω)] 7→ ‖∇xu‖2Ω×Y , due to Lax-Milgram theorem, for every ε > 0 there exists a unique

solution uε ∈ L2
] [Y,H

1
0 (Ω)] and moreover

‖∇xuε‖L2(Ω×Y ) 6
cΩ
α
‖f‖L2(Ω) (39)

where we have denote by cΩ the Poincaré constant for the space H1
0 (Ω). As a consequence of the

uniform bound (with respect to ε) expressed by (39), taking into thanks to the reflexivity of the
space L2

] [Y,H
1
0 (Ω)] and Proposition 3, there exists a subsequence extracted from (uε)ε∈R+ , and still

denoted by (uε)ε∈R+ , such that

uε � u0 , ∇xuε � ∇xu0 +∇yu1 in L2
] [Y,L

2(Ω)], (40)

for a suitable u0 ∈ H1
0 (Ω) and u1 ∈ L2[Ω, H1

] (Y )].
Next we note that in terms of the operator Fε, the previous equation (38) reads as∫

Y×Ω

Fε (∇xuε) (x, y) ·AT(x, y)Fε (∇xψε) (x, y)dxdy =

∫
Y×Ω

f(x)ψε(x, y)dxdy

=

∫
Y×Ω

f(x)Fε(ψε)(x, y)dxdy. (41)

Now, we already know that Fε (∇xuε) ⇀ ∇xu0 +∇yu1 in L2
] [Y,L

2(Ω)]. We then observe that (cfr.
Proposition 5) for every ϕ ∈ D(Ω), there exists a sequence ψε of L2

] [Y,L
2(Ω)] functions such that

Fε(ψε)→ ϕ and Fε (∇xψε)→ ∇xϕ strongly in L2
] [Y, L

2(Ω)]. Therefore passing to the limit for ε→ 0
in equation (41), we get∫

Y×Ω

A(x, y)
(
∇xu0(x) +∇yu1(x, y)

)
· ∇xϕ(x)dxdy =

∫
Ω

f(x)ϕ(x)dx, (42)

which, due to the arbitrariness of ϕ ∈ D(Ω), in distributional form reads as (36).
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On the other hand, for every ψ ∈ D (Ω× Y ) there exists (cfr. Proposition 5) a family (ψε)
of L2

] [Y,L
2(Ω)] functions such that εFε (∇xψε) → ∇yψ strongly in L2 (Ω× Y ) so that, multiplying

both members of (41) for ε > 0 and passing to the limit for ε→ 0 we get∫
Y×Ω

A(x, y) (∇xu0(x) +∇yu1(x, y)) · ∇yψ(x, y)dxdy = 0 (43)

which, due to the arbitrariness of ψ ∈ D(Ω), in distributional form reads as (35).
We have thus proved that from any extracted subsequence from (uε)ε∈R+ it is possible to extract a

further subsequence which two-scale convergence to the solution of the system of equations (42),(43).
Since the system of equations (42),(43) has only one solution (u0, u1) ∈ H1

0 (Ω)×L2[Ω, H1
] (Y )/R], as it

is immediate to check via Lax-Milgram theorem, the entire sequence (uε)ε∈R+ two-scale convergence
to u0. 2

Proof 2) The homogenization process has led to two partial differential equations, namely (35) and
(36). Let us observe that the distributional equation (35) can be equivalently written as

− divy[A(x, y) ∇yu1(x, y))] = divy A(x, y) · ∇u0(x), (44)

where we have denoted by divy A = (divy A1, divy A2, . . . , divy AN ) the vector whose components
are the divyof the columns A1, A2, . . . , AN of A. It is completely standard (see [16]) to show that
there exist a unique solution u1 ∈ L2[Ω, H1

] (Y )/R] of the cell problem (44). Moreover, we observe
that (as consequence of Lax-Milgram theorem), for every i ∈ NN and for a.e. x ∈ Ω there exists a
unique solution χi(x, ·) ∈ H1

] (Y )/R of the distributional equation

− divy[A(x, y) ∇yχi(x, y))] = divy Ai(x, y), (45)

and the stability estimates ‖χi(x, ·)‖H1
] (Y ) 6

1
α‖Ai‖L∞(Ω×Y ) holds a.e. in Ω. Therefore for every

i ∈ NN we have χi ∈ L∞[Ω, H1
] (Y ) /R] so that the unique solution of (45) can be expressed as

u1(x, y) = ∇xu0(x) · χ(x, y) (46)

with χ(x, y) := (χ1(x, y), χ2(x, y), . . . , χN (x, y)). After that, substituting (46) into (36) we get the
classical homogenized equation:

f(x) = −divx
(
〈A(x, ·) (IN +∇yχ(x, ·))〉Y ∇xu0(x)

)
= −divx (Ahom(x)∇xu0(x)) , (47)

with

Ahom(x) :=

∫
Y

A(x, y) (IN +∇yχ(x, y)) dy. (48)

Note that equation (47) is well-posed in H1
0 (Ω) since it is easily seen that Ahom is bounded and

coercive (see [16]). The proof is complete. 2

6 Strong Convergence in H1(Ω): A corrector result

In the classical framework of two-scale convergence, the so-called corrector results aim to improve the
convergence of the solution gradients ∇xuε by adding corrector terms. A typical corrector result has
the effect of transforming a weak convergence result into a strong one [1, 2, 16]. In our context, as we
shall see in a moment, the role of the corrector term is replaced by the average over the unit cell Y of
the family of solutions uε (cfr. Theorem 2 for the notations). We thus get a rigorous justification of
the two first term in the asymptotic expansion (9) of the solution uε of the homogenization problem.
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Theorem 3 For every ε ∈ R+ let uε ∈ L2
] [Y,H

1
0 (Ω)] be the unique solution of the homogenization

problem (28)-(29), and (u0, u1) ∈ H1
0 (Ω) × L2[Ω, H1

] (Y )/R] the unique solution of the homogenized
system of equations (35)-(36). Then for ε→ 0 we have

‖〈uε〉Y − u0‖H1(Ω) → 0. (49)

In particular 〈∇xuε〉Y −∇xu0 → 0 strongly in L2(Ω).

Remark 3 Let us recall that in the classical setting and under some more restrictive assumptions
on the matrix A and on the regularity of the homogenized solution u0, it is possible to prove (cfr.
[3, 16] that ‖uε(x)−u(x)−εu1(x, x/ε)‖H1(Ω) ∈ O (

√
ε). This estimate, although generically optimal,

is considered to be surprising since one could expect to get O(ε) if the next order term in the ansatz
was truly ε2u2(x, x/ε). As is well known, this worse-than-expected result is due to the appearance of
boundary correctors, which must be taken into account to have O(ε) estimates. On the other hand,
in our framework this this phenomenon disappears because of 〈u1〉Y = 0. Indeed, in the average,
the «classical» first order corrector term u1 does not play any role in the asymptotic expansion of
uε given by (9), and as we shall see in the next section, the first order significant (not null average)
corrector is the so-called boundary corrector vε (cfr. [3] and next section), for which we get the more
natural result ‖〈∇xuε −∇xu0 − ε∇xvε〉Y ‖L2(Ω)

∈ O(ε).

Proof Let us observe that using u0 and u1 as test functions in (42) and (43) we get∫
Y×Ω

A(x, y) (∇xu0(x) +∇yu1(x, y)) · ∇yu1(x, y)dxdy = 0 (50)∫
Y×Ω

A(x, y)[∇xu0(x) +∇yu1(x, y)] · ∇xu0(x)dxdy =

∫
Ω

f(x)u0(x)dx. (51)

We then observe that (α is the ellipticity constant of the matrix A) for any u ∈ L2
] [Y,L

2(Ω)] one has
‖〈u〉Y ‖Ω 6 ‖u‖Ω×Y and hence, since 〈u1〉Y = 0 we have

α ‖〈∇xuε〉Y −∇xu0‖2L2(Ω)
= α

∥∥〈Fε (∇xuε)−∇yu1 −∇xu0〉Y
∥∥2

L2(Ω)
(52)

6 α

∫
Ω×Y

|Fε (∇xuε)− (∇xu0 +∇yu1)|2 . (53)

By the uniformly ellipticity of A and (53) we continue to estimate

α ‖〈∇xuε〉Y −∇xu0‖2L2(Ω)
6

∫
Ω×Y

AFε (∇xuε) · Fε (∇xuε)

+

∫
Ω×Y

A (∇xu0 +∇yu1) · (∇xu0 +∇yu1)

−
∫

Ω×Y
Fε (∇xuε) ·

(
A+AT

)
(∇yu1 +∇xu0) (54)

=

∫
Ω×Y

f(x)uε(x, y)dxdy +

∫
Ω×Y

A (∇xu0 +∇yu1) · (∇xu0 +∇yu1)

−
∫

Ω×Y
Fε (∇xuε) ·

(
A+AT

)
(∇yu1 +∇xu0) , (55)

the second equality being a consequence of the fact that uε is the solution of the problem (28)-(29).
Taking into account (50) and (51) we then get

α ‖〈∇xuε〉Y −∇xu0‖2L2(Ω)
6

∫
Ω×Y

f(x)uε(x, y)dxdy +

∫
Ω

f(x)u0(x)dx

−
∫

Ω×Y
Fε (∇xuε) ·

(
A+AT

)
(∇yu1 +∇xu0) . (56)
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Since (A+AT ) (∇yu1 +∇xu0) ∈ L2
] [Y,L

2(Ω)], it is a test function for the two-scale convergence, so
that (again from (50) and (51))

− lim
ε→0

∫
Ω×Y

Fε (∇xuε) ·
(
A+AT

)
(∇yu1 +∇xu0) = −2

∫
Ω×Y

A (∇xu0 +∇yu1) · (∇xu0 +∇yu1)

= −2

∫
Ω

f(x)u0(x)dx. (57)

Finally, to infer (49), we simply observe that due to the Y periodicity of uε one has∫
Ω×Y

f(x)uε(x, y)dxdy =

∫
Ω×Y

f(x)F(uε)(x, y)dxdy (58)

with uε � u0. The proof is completed. 2

7 Higher Order Correctors: Boundary Layers

In what follows assume that the matrix of diffusion coefficients A is symmetric and depends on the
«periodic variable» only, i.e. A ∈ L∞] (Y ), A = AT and of course A uniformly elliptic with α > 0
as constant of ellipticity. By the uniqueness of the solution of the cell problem (33) it is easily seen
that in these hypotheses also the vector of correctors (see Definition 4) depends on the «periodic
variable» only, i.e. χ ∈ [H1

] (Y )]N .
In the previous section (see Theorem 3) we have seen that the sequence of the averaged solutions

〈uε〉Y strongly converge to u0 in H1(Ω), i.e. that ‖〈∇xuε −∇xu0〉‖H1(Ω) ∈ O(1). To have higher
order estimates, especially near the boundary of Ω, one has to introduce supplementary terms, called
boundary layers [11], which roughly speaking aim to compensate the fast oscillation of the family
of solutions uε near the boundary ∂Ω. More precisely, in this section we show that under suitable
hypotheses one has

‖〈∇xuε −∇xu0 − ε∇xvε〉Y ‖L2(Ω)
∈ O(ε), (59)

where vε is the solution of the boundary layer problem:

divx

(
A
(
y +

x

ε

)
∇xvε(x, y)

)
= 0 in Ω× Y (60)

vε(x, y) = u1(x, y + x/ε) on ∂Ω× Y. (61)

We also investigate the validity of the following stronger estimate

‖〈∇xuε −∇xu0〉Y ‖L2(Ω)
∈ O(ε). (62)

Quite remarkably, as we are going to show in the next subsection, in the one-dimensional case the
stronger estimate (62) holds under the same hypotheses of the weaker estimate (59).

7.1 Higher Order Correctors in dimension one

In the one-dimensional setting Y = [0, 1] and Ω ⊆ R is an open interval: Ω := (0, ω) with ω > 0.
We then denote by a ∈ L∞] (Y ) the unique coefficient of the matrix valued function A. Finally for
the generic «1D function» function u ∈ L2

] [Y,H
1
0 (Ω)] we shall denote by u′ ∈ L2

] [Y,L
2(Ω)] the weak

derivative with respect to the x variable.

Theorem 4 Let (u0, u1) ∈ H1
0 (Ω)×L2[Ω, H1

] (Y )/R] be the unique solution of the homogenized system
of equations (35)-(36). The following estimate holds

‖〈u′ε〉Y − u′0‖L2(Ω) 6 2ε · |a|∞|χ∞|
α

(|u′0|∞ + ‖u′′0‖L2(Ω)). (63)
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We will need the following two lemmas

Lemma 1 For any ε > 0 let uε ∈ L2
] [Y,H

1
0 (Ω)] be the unique solution of the problem (28)-(29).

Define the error function

eε(x, y) := uε(x, y)− u0(x)− ε [u1

(
x, y +

x

ε

)
− vε(x, y) ], (64)

where vε ∈ L2
] [Y,H

1(Ω)] is the unique solution of the boundary layer problem (60)-(61). The following
estimate holds:

‖e′ε‖L2(Ω×Y ) 6 ε ·
|a|∞|χ∞|

α
‖u′′0‖L2(Ω) ∈ O(ε). (65)

Proof In the 1D setting, the homogenized equation (30) read as ahomu
′′
0(x) = −f(x) with ahom :=

〈a−1(·)〉−1
Y > 0 and therefore u0 ∈ H2

0 (Ω). Indeed, as a consequence of Theorem 2 (see eq. (37)), the
unique solution u1 ∈ L2[Ω, H1

] (Y )/R] of (35) can be expressed in the tensor product form u1(x, y) =

χ(y)u′0(x), where χ is the unique (null average) solution in H1
] (Y ) /R of (33). A direct integration

of the cell equation (33) leads to (taking into account the periodicity of u1 and averaging over Y)
a(y)(1 + ∂yχ(y)) = ahom with ahom := 〈a(y)(1 + ∂yχ(y))〉Y = 〈a−1(·)〉−1

Y .
Since ahomu

′′
0(x) = −f(x) from (28) we get [ahomu

′
0(x)]′ = [a

(
y + x

ε

)
u′ε(x, y)]′. Hence, taking

into account the equation satisfied by vε, a direct computation shows that for a.e. y ∈ Y the function
eε(·, y) satisfies the distributional equation

−
(
a
(
y +

x

ε

)
e′ε(x, y)

)′
= εF ′ε(x, y) inD′(Ω), (66)

with Fε(x, y) := a
(
y + x

ε

)
χ
(
y + x

ε

)
u′′0(x). For every ϕε ∈ L2

] [Y,H
1
0 (Ω)], the variational form in

L2
] [Y,H

1
0 (Ω)] of (66) reads as∫

Ω×Y
a
(
y +

x

ε

)
e′ε(x, y) · ϕ′ε(x, y)dxdy = −ε

∫
Ω×Y

Fε(x, y) · ϕ′ε(x, y)dxdy. (67)

Since eε ∈ L2
] [Y,H

1
0 (Ω)] evaluating the variational equation (67) on the test function ϕε(x, y) :=

eε(x, y) and recalling that a > α we finish with (65). 2

Lemma 2 Let vε ∈ L2
] [Y,H

1(Ω)] solve the boundary value problem (60)-(61). Then the following
uniform estimate (with respect to ε) holds:

‖v′ε(x, y)‖L2(Ω×Y ) 6
2

α
|a|∞|χ|∞|u′0|∞. (68)

Proof Let us integrate (60). We get v′ε(x, y) = cε(y)a−1(y+x/ε) for some measurable real function
cε. Taking into account boundary conditions (61), we compute

cε(y) =
χ(y + ω/ε)u′0(ω)− χ(y)u′0(0)

|Ω|〈a−1(y + ·/ε)〉Ω
. (69)

Next we note that
〈
a−1

(
y + ·

ε

)〉−1

Ω
6 |a|∞ for a.e. y ∈ R. Hence, observing that since f ∈ L2(Ω)

one has u0 ∈W 1,∞(Ω), we finish with the estimate α|Ω||v′ε(x, y)| 6 2|a|∞|χ|∞|u′0|∞ from which (68)
immediately follows. 2

We can now prove Theorem 4.
Proof [of Theorem 4] Observing that

〈
[u1

(
x, y + x

ε

)
]′
〉
Y

= 0 we compute

‖〈u′ε〉Y − u′0‖L2(Ω) =

∥∥∥∥〈u′ε(x, y)− u0(x)− ε[u1

(
x, y +

x

ε

)
]′
〉′
Y

∥∥∥∥
L2(Ω)

(70)

6 ‖〈e′ε(x, y)〉Y ‖Ω + ε ‖〈v′ε(x, y)〉Y ‖L2(Ω) (71)

6 ‖e′ε‖L2(Ω×Y ) + ε‖v′ε‖L2(Ω×Y ). (72)

Hence taking into account estimates (65) and (68) we get the result. 2
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7.2 Higher Order Correctors in N dimensions

This section is devoted to the proof of estimate (59).

Theorem 5 Let (u0, u1) ∈ H1
0 (Ω)×L2[Ω, H1

] (Y )/R] be the unique solution of the homogenized system
of equations (35)-(36). Define the error function by the position

eε(x, y) := uε(x, y)− u0(x)− ε [u1

(
x, y +

x

ε

)
− vε(x, y) ], (73)

vε ∈ L2
] [Y,H

1(Ω)] being the unique solution of the boundary layer problem (60)-(61). If u0 ∈ H2(Ω)
then ‖〈∇xeε〉Y ‖Ω ∈ O(ε). More precisely, the following estimate holds

‖〈∇xuε〉Y −∇xu0 + ε 〈∇xvε〉Y ‖L2(Ω)
6 εcA‖u0‖H2(Ω), (74)

for a suitable constant cα > 0 depending on the matrix A only.

Proof Let us set uε1(x, y) := u0(x)+εu1(x, y), where u1(x, y) = ∇xu0(x) ·χ(y) as shown in Theorem
2. We have (let us denote by Hx := ∇x∇x the partial hessian operator)

∇x[uε1

(
x, y +

x

ε

)
] = [I +∇yχ

(
y +

x

ε

)
]∇xu0 + εHx[u0](x)χ

(
y +

x

ε

)
. (75)

Hence

Ahom∇xu0(x)−A
(
y +

x

ε

)
∇x[uε1

(
x, y +

x

ε

)
] = A0

(
y +

x

ε

)
∇xu0 − εh

(
x, y +

x

ε

)
, (76)

where, for notational convenience, we have introduce the functions

h(x, y) := A(y)Hx[u0](x)χ(y) , A0(y) := Ahom − ahom(y) (77)

with ahom(y) := A(y)[I + ∇yχ(y)]. Let us note that 〈A0〉Y = 0, because Ahom = 〈ahom(·)〉Y . By
taking the distributional divergence of both members of the previous equation (76), recalling that
divx

(
A
(
y + x

ε

)
∇xvε(x, y)

)
= 0, that due to (28) and (30) one has

divx[A
(
y +

x

ε

)
∇xuε(x, y)] = divx (Ahom(x)∇xu0(x)) , (78)

and that vε ∈ L2
] [Y,H

1(Ω)] is the solution of the boundary layer problem (60)-(61), we get

divx

(
A
(
y +

x

ε

)
∇x[eε(x, y)]

)
= divx

(
A0

(
y +

x

ε

)
∇xu0

)
− εdivx[h

(
x, y +

x

ε

)
]. (79)

Next, let us recall that in the space L2
sol (Y ) of solenoidal and periodic vector fields, defined by

the position L2
sol (Y ) :=

{
p ∈ L2 (Y ) : div p(y) = 0

}
the following Helmholtz-Hodge decomposition

holds (cfr. [10]): if p ∈ L2
sol (Y ) there exists a skew-symmetric matrix ω :=

(
ω1 | ω2 | · · · | ωN

)
∈

[H1
] (Y )]N×N such that

〈ω〉Y = 0 , p = 〈p〉Y +

N∑
j=1

∂jω
j = 〈p〉Y + curlω, (80)

with curl : ω 7→ curlω := ∂1ω
1 + · · · + ∂Nω

N . Note that divy A0(y) = 0 because A0 solves
the cell equation (33). On the other hand, 〈A0〉Y = 0 and therefore due to the Helmholtz-Hodge
decomposition there exist skew-symmetric matrices (ωi)i∈NN

∈ [H1
] (Y )]N×N such that A0(y)ei =

curlωi(y) for every i ∈ NN . From the scaling relation

ε · curlx[ωi(y + x/ε)] = curlωi(y + x/ε), (81)
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recalling that for any g ∈ H1
] (Y ) ,ω ∈ [H1

] (Y )]N×N one has curl(gω) = ω∇g + gcurlω in D′, we
have

A0

(
y +

x

ε

)
∇xu0(x) = ε

∑
i∈NN

∂iu0(x)curlx[ωi(y + x/ε)]

= ε
∑
i∈NN

curlx[∂iu0(x)ωi(y + x/ε)]− ε
∑
i∈NN

ωi(y + x/ε)∂i∇xu0(x)

= ε
∑
i∈NN

curlx[∂iu0(x)ωi(y + x/ε)]− εη(x, y + x/ε), (82)

with η(x, y) :=
∑
i∈NN

ωi(y)∂i∇xu0(x) ∈ L2
] [Y,L

2(Ω)] and 〈η〉Y = 0. Passing to the divergence in
the previous relations, we get divx

(
A0

(
y + x

ε

)
∇xu0(x)

)
= εdivx(η(x, y + x/ε)). Hence, equation

(79) simplifies to

divx

(
A
(
y +

x

ε

)
∇x[eε(x, y)]

)
= −εdivx F ε(x, y) in D′ (Ω× Y ) , (83)

with F ε(x, y) := η(x, y + x/ε) + h
(
x, y + x

ε

)
∈ L2

] [Y,L
2(Ω)]N and {F ε}ε∈R+ a bounded subset of

L2
] [Y,L

2(Ω)]N . The previous equation (83) reads in variational form as∫
Ω×Y

A
(
y +

x

ε

)
∇xeε(x, y) · ∇xϕε(x, y)dxdy = −ε

∫
Ω×Y

F ε(x, y) · ∇xϕε(x, y)dxdy, (84)

for any ϕε ∈ L2
] [Y,H

1
0 (Ω)]. Since vε solves the boundary layer problem (60)-(61), we have eε ∈

L2
] [Y,H0(Ω)] and therefore, testing (84) on eε we finish, for some suitable constant cA > 0 depending

on A only, with (74). 2

8 Weak two-scale compactness for S2-valuedHarmonic maps

The aim of this section is to prove a weak two-scale compactness result for S2-valued harmonic maps,
and make some remarks which point out possible weaknesses of this alternative notion of two-scale
convergence.

In what follows Ω is a bounded and Lipschitz domain of R3 and we shall make use of the following
notations: W (Ω) := L∞(Ω) ∩H1(Ω) and W0(Ω) := L∞(Ω) ∩H1

0 (Ω).

8.1 Harmonic maps equation

We want to focus on the homogenization of the family of harmonic map equations arising as the
Euler-Lagrange equations associated to the family of Dirichlet energy functionals

Eε(uε) :=

∫
Ω×Y

aε(x, y)∇xuε(x, y) · ∇xuε(x, y)dxdy , aε(x, y) := a
(
x, y +

x

ε

)
, (85)

all defined in L∞] [Y,W
(
Ω,S2

)
]3. Here, as usual, the coefficient a ∈ L∞] (Y,L∞(Ω)) is a positive

function bounded from below by some positive constant. The stationary condition on Eε with respect
to tangential variations in L∞] [Y,W0(Ω)]3 conducts to the equation of harmonic maps∫

Ω×Y
aε(x, y)∇xuε(x, y)∇xηε(x, y)dxdy = 0 (86)

which must be satisfied for every ηε ∈ L∞] [Y,W0(Ω)]3 such that ηε(x, y) ∈ Tuε(x,y)S
2 a.e. in Ω× Y .

16



Theorem 6 For every ε ∈ R+ let uε ∈ L∞] [Y,W
(
Ω,S2

)
]3 be a solution of the harmonic map equation

(86). If (uε)ε∈R+ � u0 weakly in L2
] [Y,H

1(Ω)]
3 and u0 takes values on S2, then u0 is still an harmonic

map. More precisely, u0 ∈W
(
Ω,S2

)3 satisfies the following homogenized harmonic map equation∫
Ω

Ahom(x)∇u0(x)∇ϕ(x)dx = 0 ∀ϕ ∈ Tu0
S2 (87)

in which
Ahom(x) :=

∫
Y

a(x, y) (I +∇yχ(x, y)) dy, (88)

and χ := (χ1, χ2, χ3) ∈ L2[Ω, H1
] (Y )]3 is the unique null average solution of the cell problems (i ∈ N3)

divy (a(x, y) (∇yχi(x, y) + ei)) = 0. (89)

Remark 4 In stating Theorem 6 we have assumed that the weak limit u0 still takes values on the
unit sphere of R3. Indeed, and this is a drawback of the alternative two-scale notion, although the
introduction of the y variable in (86) overcomes the problem of the admissibility of the coefficient aε,
it introduces a loss of compactness into the family of energy functionals Eε defined in (85). Indeed, in
the space L2

] [Y,H
1
(
Ω,S2

)
]
3, Rellich–Kondrachov theorem does not apply, and therefore any uniform

bound on the family Eε does not assure compactness of minimizing sequences.

Remark 5 The same result still holds, with minor modifications, if we replace S2 with Sn−1. More-
over an analogue result holds if one replace the energy density aε |∇xuε|2 with the energy density∑
i∈N3

Ai,ε∇xui,ε · ∇xui,ε in which every Aε,i is a definite positive symmetric matrix. On the other
hand, the proof does not work anymore when the image manifold is arbitrary. Indeed, for Sn−1 val-
ued maps, we can exploit a result of Chen [5] which permits to equivalently write the Euler-Lagrange
equation (86) as an equation in divergence form. Unfortunately, this conservation law heavily re-
lies on the invariance under rotations of Dirichlet energy for maps into Sn−1. As a matter of fact,
when the target manifold is arbitrary, even the less general problem concerning weak compactness
for weakly harmonic maps remains open [9].

We shall make use of the following Lemma which, although more than sufficient for addressing
our problem, can still be rephrased to cover more general situations. Note that an equivalent result,
in the context of classical two-scale convergence, has already been proved in [4].

Lemma 3 LetM ⊂ RN be a regular closed orientable hypersurface, and let (uε)ε∈R+ be a family of
L2
] [Y,H

1(Ω)]N vector fields such that uε(x, y) ∈ M a.e. in Ω× Y . If for some u0 ∈ L2
] [Y,L

2(Ω)]N ,
ξ ∈ L2

] [Y, L
2(Ω)]N×N one has

uε � u0 strongly in L2
] [Y, L

2(Ω)]N , ∇xuε � ξ in L2
] [Y, L

2(Ω)]N×N , (90)

then u0(x, y) = 〈u0(x, ·)〉Y , i.e. the two-scale limit u0 does not depends on the y variable. Moreover
there exists an element u1 ∈ L2[Ω, H1

] (Y )]N such that

∇xuε � (∇xu0 +∇yu1) weakly in L2
] [Y, L

2(Ω)]N (91)

with u0(x) ∈M and u1(x, y) ∈ Tu0(x)M for a.e. (x, y) ∈ Ω× Y .

Remark 6 Here, as already observed in Remark 4, we have to assume strong two-scale convergence
since the boundedness of the family (uε)ε∈R+ in L2

] [Y,H
1(Ω)]N does not imply strong convergence

in L2
] [Y,L

2(Ω)]N of a suitable subsequence, which is an essential requirement in order to prove that
the limit function u0 takes values onM.
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Proof Since uε � u0 in L2
] [Y,L

2(Ω)]N the first part of the theorem (namely (91)) is nothing else
that Proposition 3. It remains to prove the second part. To this end let us recall (cfr. [8]) that since
M is a regular closed orientable surface there exists an open tubular neighbourhood U ⊆ RN ofM
and a function g : U → R which has zero as a regular value and is such that M = g−1(0). Since
uε � u0 strongly in L2

] [Y, L
2(Ω)]N we have 0 = g(uε(x, y)) � g(u0(x)) strongly in L2

] [Y, L
2(Ω)]N

and therefore g(u0(x)) = 0 a.e. in Ω. Next we observe that for any ε ∈ R+ we have g(uε) = 0 and
hence ∇xuε(x, y).n(uε(x, y)) = 0 for a.e. (x, y) ∈ Ω× Y . Passing to the two-scale limit we so get

0 =

∫
Ω×Y

Fε ([∇xuε]n(uε)) (x, y) ·ψ(x, y)dxdy

ε→0−−−→
∫

Ω×Y
[∇xu0(x) +∇yu1(x, y)]n(u0(x)) ·ψ(x, y)dxdy = 0 (92)

for every ψ ∈ L∞] [Y,W (Ω)]N . In particular, by taking ψ(x, y) := ϕ(x)⊗1(y), since 〈∇yu1(x, y)〉Y =
0 we have ∇xu0(x)n(u0(x)) = 0 a.e. in Ω. Thus from (92) we get∫

Ω×Y
∇y(u1(x, y) · n(u0(x))) ·ψ(x, y)dxdy = 0 ∀ψ ∈ L∞] [Y,W0(Ω)]N

and hence for some c ∈ R we have u1 · n(u0) = c a.e. in Ω× Y . But since u1 is null average on Y ,
so is u1 · n(u0) and therefore necessarily c = 0. 2

Proof [of Theorem 6] For any ψε ∈ L∞] [Y,W0(Ω)]3 we set ηε := uε×ψε in equation (86). We then
have ∇xuε∇xηε =

∑
i∈N3

∂xi
ψε · (∂xi

uε × uε) and therefore

∑
i∈N3

∫
Ω×Y

a(x, y)[Fε(uε)×Fε
(
∂uε
∂xi

)
] · ∂ψε
∂xi

dxdy = 0 ∀ψε ∈ L∞] [Y,W0(Ω)]3 (93)

By mimicking the proof of Proposition 5, it is simple to get that for every η ∈ W0(Ω)3 there exists
a family (ψε)ε∈R+ of L∞] [Y,W0(Ω)]3 functions such that ψε � η and ∇xψε � ∇xη strongly in
L2
] [Y,L

2(Ω)]3, so that taking into account Proposition 3, passing to the two-scale limit in (93) we get

∑
i∈N3

∫
Ω×Y

a(x, y)[u0(x)×
(
∂u0

∂xi
(x) +

∂u1

∂yi
(x, y)

)
] · ∂η
∂xi

(x)dxdy = 0 ∀η ∈W0(Ω)3. (94)

On the other hand, again by by mimicking the proof of Proposition 5, we get that for every ψ1 ∈
L∞] [Y,W0(Ω)]3 there exists a family (ψε)ε∈R+ of L∞] [Y,W0(Ω)]3 functions such that ε∇xψε � ∇yψ1

strongly in L2
] [Y,L

2(Ω)]3. Hence, from Proposition 3, passing to the two-scale limit in (93) we get

∑
i∈N3

∫
Ω×Y

[u0(x)× a(x, y)

(
∂u0

∂xi
(x) +

∂u1

∂yi
(x, y)

)
] · ∂ψ1

∂yi
(x, y)dx = 0 (95)

for every ψ1 ∈ L∞] [Y,W0(Ω)]3. In particular, for any ψ ∈ L∞] [Y,W0(Ω)]3, by setting ψ1(x, y) :=
u0(x)×ψ(x, y) and taking into account that due to Lemma 3 u1(x, y) · u0(x) = 0 a.e. in Ω× Y we
finish with the classical cell equation∑

i∈N3

∫
Ω×Y

a(x, y)

(
∂u0

∂xi
(x) +

∂u1

∂yi
(x, y)

)
· ∂ψ
∂y1

(x, y)dx = 0 ∀ψ ∈ L∞] [Y,W0(Ω)]3. (96)

The solution of the previous equation is classical. Indeed, due to Lax-Milgram lemma, the cell
problem (96), which in distributional form reads as

− divy (a(x, y)∇yu1(x, y)) = divy(a(x, y)∇u0(x)), (97)
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has a unique null average solution in L2[Ω, H1
] (Y )]3. Moreover, if for every i ∈ N3 we denote by χi

the unique null average solution in L2[Ω, H1
] (Y )] of the scalar cell problem (89), by the defining the

vector valued function χ := (χ1, χ2, χ3) ∈ L2[Ω, H1
] (Y )]3 we get that the vector field

u1(x, y) :=
∑
j∈N3

(
χ(x, y) · ∇xuj0(x)

)
ej (98)

is the unique null average solution in L2[Ω, H1
] (Y )]3 of the cell problem (97). Next we note that from

(98) we get ∇u0(x) + ∇yu1(x, y) = (I +∇yχ(x, y))∇xu0(x) and hence, evaluating (94) on vector
fields of the form η(x) := u0(x)× ϕ(x) with ϕ ∈ W0(Ω)3 and ϕ(x) ∈ Tu0(x)S

2 we finish with (87).
2

Remark 7 In general, if we do not assume any positivity condition on the coefficient a, it is not
possible to reduce the domain equation (94) and the cell equation (96) to a single homogenized
equation (like the one obtained in Theorem 6). Nevertheless the two-scale limit u0 will be a solution
of the system of two distributional equations

divx

(
u0(x)×

∫
Y

a(x, y) (∇xu0(x) +∇yu1(x, y)) dy

)
= 0 in D′(Ω) (99)

divy
(
a(x, y)

(
∇u0(x) +∇yu1(x, y)

))
= 0 in D′ (Ω× Y ) . (100)
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