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FEM-BEM COUPLING FOR ELECTROMAGNETISM

WITH THE SPARSE CARDINAL SINE DECOMPOSITION ∗, ∗∗

Francois Alouges1, Matthieu Aussal2 and Emile Parolin3

Abstract. This paper presents a FEM-BEM coupling method suitable for the numerical simulation of
the electromagnetic scattering of objects composed of dielectric materials and perfect electric conduc-
tors. The originality of the approach lies in part in the use of the newly proposed Sparse Cardinal Sine
Decomposition (SCSD) method for the BEM part of the computation and the fact that the simulation
software is almost entirely written in Matlab.

The performance of the method is illustrated by the computation of the electromagnetic scattering
by an UAV-like object with two RAM regions proposed in the workshop ISAE EM 2016.

Résumé. Cet article présente une méthode de couplage de type FEM-BEM adaptée à la simula-
tion numérique des problèmes de diffraction électromagnétique d’objets composés de parties parfaite-
ment conductrices et de matériaux diélectriques. L’originalié de l’approche réside, d’une part, dans
l’utilisation de la nouvelle méthode décomposition creuse en sinus cardinal (SCSD) pour la partie BEM
et, d’autre part, dans le fait que le programme de calcul est presqu’entièrement écrit en Matlab.

La performance de la méthode est illustrée par le calcul de la diffraction électromagnétique d’un
objet en forme d’UAV contenant deux régions absorbantes tel qu’il a été proposé au workshop ISAE
EM 2016.

Introduction

It has by now become common to solve scattering electromagnetic problems in harmonic regime with the
so-called Boundary Element Method (BEM). It permits, with quite a good precision, to represent the electro-
magnetic field in the unbounded region around the scattering object with a discretization only realized at the
surface of the scattering object. This reduces a three-dimensional problem to a bi-dimensional one. However,
with the development of such methods, the main difficulty that one encounters is that these formulations lead
classically to linear systems that involve dense matrices (in contrast with volumic finite element methods, for
instance). Several methods, among which the most famous are probably the FMM (Fast Multipole Method)
(see e.g. [9, 16]) or H−matrices (see [11]), have been used to circumvent this difficulty. Those methods operate
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3 Centre de Mathématiques Appliquées, Ecole polytechnique et CNRS, UMR 7641, Route de Saclay, 91128 Palaiseau Cedex,
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by compressing the representation of the underlying linear system. This enables to store an approximation of
the matrix while speeding up the time of a matrix-vector multiplication.

More recently a new compression technique, the Sparse Cardinal Sine Decomposition (SCSD), was developed
for the same goal [1, 4], and applied to point to point gravitational interactions or acoustic scattering [2]. A
more recent application to the Stokes problem must also be pointed out [3].

The purpose of the paper is therefore twofold:

• On the one hand, we describe the application of the SCSD to the simulation of electromagnetic scattering
problem using the BEM and more precisely the coupling of the method with the discretization of
dielectric regions using the more classical finite element method.

• On the other hand we show the performances of a computation code that we have written in Matlab,
based on this method, on an industrial test case. In particular, we provide the user with the results
obtained for the workshop ISAE EM 2016, where the electromagnetic scattering of a complex object,
consisting both of a perfect electric conductor and dielectric regions, has to be computed.

This paper is organized as follows. Section 1 is devoted to the classical integral equation BEM framework
for electromagnetic scattering and the coupling with a volumic finite element discretization for the dielectric
materials. Section 2 explains the fundamentals of the SCSD, and eventually Section 3 provides the reader with
the results on classical numerical tests for validation together with the test case coming from the workshop
ISAE EM 2016.

1. Problem formulation

The problem that we have in mind is the electromagnetic scattering in the three dimensional space R3 of
an object which is partly a perfect electric conductor (PEC) and partly composed of a dielectric material. We
suppose that the obstacle is lit by an incident electromagnetic plane wave (Einc, Hinc). The object generates an
outgoing scattered wave (Esc, Hsc), and we call

(Etot, Htot) = (Einc, Hinc) + (Esc, Hsc)

the total electromagnetic field in the exterior domain, that we denote by Ω+. There exists also a transmitted
electromagnetic field, which we call (Etr, Htr), in the dielectric domain, denoted by Ω−d . Let Ω−PEC represent the
PEC domain, we note ΓPEC the interface vacuum-PEC, Γd the interface vacuum-dielectric, and Σ the interface
between the PEC and the dielectric domains. A sketch of the problem under consideration is given in Figure 1.

ΣΓPEC Γd

Ω+ Ω−PEC Ω−d

(Etr, Htr)
(Einc, Hinc)

(Esc, Hsc)

Figure 1. Sketch of the problem.

All fields satisfy the harmonic Maxwell equations with a wave number depending on the electric permittivity
and magnetic permeability of the considered medium. In the following, we denote the wavenumber of the
vacuum by k and the wavenumber of the dielectric material by kd. We also introduce εr and µr respectively
the relative permittivity and the relative permeability of the dielectric material so that we have kd =

√
εrµrk.
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In the sequel, we derive the equations that we solve in the last part of the paper. The vacuum is taken
into account through an integral equation from the surfacic currents (electric and magnetic) at the surface of
the object, while the dielectric part of the object is solved through a volumetric finite element method applied
to Maxwell equations. The final coupling is obtained by using adequate transmission conditions, namely the
continuity of the tangential traces of the electromagnetic fields, at the interfaces between the different domains.

1.1. Harmonic Maxwell equations

Maxwell equations in the harmonic regime read{
∇× Ê − iωµĤ = 0,

∇× Ĥ + iωεÊ = 0
(1)

where ω is the frequency, µ and ε are respectively the magnetic permeability and the electric permittivity and
Ê and Ĥ stand for the (time Fourier transform of the) electric and magnetic fields. Notice that we use the

time convention where the electric and magnetic fields are sought as exp(−iωt)Ê and exp(−iωt)Ĥ respectively.
Introducing the wavenumber k = ω

c and wave speed c = 1√
εµ together with the dimensionless quantities

E =
√
εÊ , H =

√
µĤ , (2)

we may rewrite Maxwell equations as {
∇× E − ikH = 0,
∇×H + ikE = 0.

(3)

We assume that the three electromagnetic fields (Einc, Hinc), (Esc, Hsc) and (Etr, Htr) satisfy those equations,
while the physicality of electromagnetic scattered fields in the unbounded domain is enforced through the Silver-
Muller radiation condition

∣∣∣∣Esc −Hsc ×
~r

r

∣∣∣∣ ≤ c

r2
for r → +∞ . (4)

The equations for each of the electric and magnetic fields are obtained by taking the curl of both equations
in (3) and substitute back with the other one. One obtains{

∇×∇× E − k2E = 0,
∇×∇×H − k2H = 0.

(5)

Eventually, we define the (dimensionless) electric and magnetic currents on the surface of the scattering
object by {

J = Htot × n,
M = Etot × n,

(6)

n being the outer normal to the surface.

1.2. Integral Representation Theorem and Integral Equations

The heart of the BEM lies in the integral representation of an electromagnetic field (E,H) that solves (3) in

Ω+ and inside Ω− = R3 \Ω+, and which satisfies furthermore the Silver-Muller condition (4). One has, calling
Γ = ∂Ω+ the surface of the object (see e.g. [5, 6, 15,22])(

E
H

)
=

(
Kk Tk
−Tk Kk

)(
[E]× n
[H]× n

)
(7)
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where the boundary operators Tk and Kk, are given by

Tku(y) := ik

∫
Γ

Gk(x− y)u(x)dγ(x) +
i

k
∇
∫

Γ

Gk(x− y)∇Γ · u(x)dγ(x), (8)

Kku(y) := ∇×
∫

Γ

Gk(x− y)u(x)dγ(x) (9)

and the relation (7) only holds for any y /∈ Γ.
In (8) and (9), we have also denoted by

Gk(r) =
1

4πr
eikr (10)

the free space Helmholtz Green kernel in R3, and by [·] the jump

[u] := γ−u− γ+u, (11)

where the trace operators γ± are given by

γ±u(y) := lim
x→y, x∈Ω±

u(x), y ∈ Γ, (12)

and n is the unit outer normal to Γ.
Defining eventually for y ∈ Γ the boundary operators

Tku(y) := ik

∫
Γ

Gk(x− y)u(x) dγ(x) +
i

k
∇
∫

Γ

Gk(x− y)∇Γ · u(x) dγ(x), (13)

Kku(y) := ∇×
∫

Γ

Gk(x− y)u(x) dγ(x) , (14)

we also have that those operators satisfy (if the surface Γ is smooth enough)

γ± (Tku) = Tku, (15)

γ± (Kku) = Kku∓
1

2
n× u (16)

while the traces of the electromagnetic field obey

γ±
(
E
H

)
=

(
Kk ∓ 1

2n× Tk
−Tk Kk ∓ 1

2n×

)(
[E]× n
[H]× n

)
. (17)

A priori, the previous formula only applies when the wavenumber k (which depends on the permittivity ε
and the permeability µ) is identical in Ω+ and Ω−. This is not the case in our problem for which there exists
three domains (Ω+,Ω−PEC,Ω

−
d ) with, for each, different parameters.The application of the preceding formalism

to our context is precisely the subject of the following sub-section.

1.3. Boundary formulation at the surface of the object

In order to be able to use the previous results, we choose to prolong the exterior scattered field (Esc, Hsc)
by the opposite of the incident field (−Einc,−Hinc) which is a particular solution of Maxwell’s equations.
Introducing the electric and magnetic currents on Γ

J = Htot × n = (Hsc +Hinc)× n, M = Etot × n = (Esc + Einc)× n , (18)
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and taking the interior trace in the integral equations (17) we readily obtain that (M,J) satisfies(
Kk + 1

2n× Tk
−Tk Kk + 1

2n×

)(
−M
−J

)
=

(
−Einc

−Hinc

)
. (19)

Notice that on the interface ΓPEC between the vacuum Ω+ and the PEC domain Ω−PEC the equations can
be simplified by using the characteristics of the PEC material. Indeed, there is no electric field Etot = 0 inside
Ω−PEC. The continuity of the tangential component of the electric field at the interface ΓPEC then yields M = 0
on this interface.

Anticipating on the following, and for purposes of conditioning in the system to solve, we combine both
equations in (19) and consider only J as the unknown. We obtain(

αTk + β

(
n×Kk −

1

2
Id

))
J = F, (20)

for two real α, β ∈ R and where we introduced

F = αEinc + βn×Hinc −
(
α

(
Kk +

1

2
n×
)
− βn× Tk

)
M . (21)

The quantity M (which is only non-zero on Γd) will be later determined from the coupling with the dielectric
interior domain.

Multiplying (20) by a test function J ′ to reformulate this equation in a variational form leads, after integration
on Γ, to ∫

Γ

(
αTk + β

(
n×Kk −

1

2
Id

))
J · J ′ dγ =

∫
Γ

F · J ′ dγ. (22)

This is the equation, written only in the unknown J , that we will consider at the interface Γ = Γd ∪ΓPEC. The
evaluation of the right-hand-side, and its dependence with M will be made clear later.

1.4. Volumic formulation in the dielectric domain

We now obtain a variational formulation for the interior dielectric domain. Using Maxwell’s equation for the
electric field Etr in (5), multiplying by a test function E′ and integrating by parts over Ω−d gives∫

Ω−
d

(
∇× Etr

)
·
(
∇× E′

)
− k2

dEtr · E′ dΩ = −
∫

Γd

[
n×

(
∇× Etr

)]
· E′ dγ

= ikd

∫
Γd

Jtr · E′ dγ (23)

using the first equation in (3), and where we have denoted by Jtr = Htr × n the electric interior current.
Note that the boundary integral on the right-hand side of the equation is taken only on Γd. This is justified

by the continuity of the tangential component of Etr on the interface Σ which imposes Etr × n = 0 on Σ and
therefore does not require testing.

Equation (23) is solved in the interior of the dielectric domain to compute the unknown Etr knowing the
boundary current Jtr.

1.5. Coupling

The final coupling between the boundary and volumic formulations is obtained by considering the transmis-
sion conditions at the interface between the different domains. The continuity of the tangential components of
the electric and magnetic fields on the surface Γd can be written as
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γ− (Etr × n) =
√
εrγ

+
(

(Esc + Einc)× n
)
, on Γd, (24)

γ− (Htr × n) =
√
µrγ

+
(

(Hsc +Hinc)× n
)
, on Γd. (25)

Recall that we have chosen to prolong the exterior field (Esc, Hsc) by the opposite of incident field (−Einc,−Hinc)
this can be rewritten readily as

Etr × n =
√
εrM, and Jtr =

√
µrJ. (26)

Equations (22) and (23), with the two previous coupling relations, form a complete system with the two
unknowns J and Etr. The right-hand side of equation (23) can be rewritten to obtain the final interior equation
as ∫

Ω−
d

(
∇× Etr

)
·
(
∇× Et

)
− k2

dEtr · E′ dΩ =
√
µrikd

∫
Γd

J · E′ dγ. (27)

The right-hand-side of equation (22) can be rewritten to obtain the final boundary equation as∫
Γd∪ΓPEC

(
αTk + β

(
n×Kk −

1

2
Id

))
J · J ′ dγ

=

∫
Γd∪ΓPEC

(αEinc + βn×Hinc) · J ′ dγ

− 1
√
εr

∫
Γd∪ΓPEC

((
α
(
Kk +

1

2
n×

)
− βn× Tk

)
(Etr × n)

)
· J ′ dγ. (28)

1.6. Discretization and solving strategy

The solving strategy involves formally assembling two systems:

• The first system arises from the volumic FEM discretization of Maxwell equations for the electric field
inside the dielectric region as given by equation (27). This is a sparse system.

• The second system and arises from the BEM discretization of the scattering problem on Γ as given
by equation (28). This is a dense system. However, instead of assembling the dense matrix, the fast
SCSD [1] method is used to speed-up the computations.

To properly discretize the equations, the electric current J is represented using (div-conforming) Rao-Wilton-
Glisson finite elements while the electric field Etr is represented by using (rot-conforming) Nédélec edge finite
elements on tetrahedra.

The coupled system (27,28) in the two unknowns J and Etr is solved iteratively using a Schur complement
approach. The main unknown J is used as the iterate and the field Etr is computed exactly at each iteration
using Matlab’s mldivide function (backslash), which amounts to solve the underlying system by a LU factor-
ization. The iterative solver is a Multi Generalized Conjugate Residual (MGCR) algorithm [17,18], allowing for
simultaneous resolution of all incidences and polarisations for a given frequency. The algorithm is not restarted
during convergence. We moreover use as preconditioner of the system the sparse local correction matrix aris-
ing in the SCSD method, after performing an incomplete LU decomposition. Eventually, in our numerical
computations we take α = −0.5 and β = 1 in (28).
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2. Sparse Cardinal Sine Decomposition

As explained in [1,2,4] the SCSD is a method that is suitable for compressing matrices coming from the dis-
cretization of convolution kernels like the ones coming from the discretization of Tk and Kk. For the computation
presented before, we need to use the Helmholtz kernel

G(r) =
eikr

4πr
.

Following the strategy developed in [1], we therefore expand the kernel as a series of cardinal sines

eikr

4πr
∼
∑
p

αp
sin(λpr)

r
(29)

which is accurate to within a given precision, with r in a given interval [rmin, rmax], and where the weights (αp)p
and the frequencies (λp)p need to be chosen. Let us notice that the choice of rmax comes from the maximal
interaction distance between two points in the mesh, or in other words, an upper bound of the diameter of the
object. The parameter rmin, instead, is tuned in order to optimize local versus global computations. Indeed,
the formula (29) being inaccurate for r < rmin, one needs to compute a (sparse) correction matrix that handles
the interactions between points that are at a distance smaller to rmin. Depending on the choice of rmin, the
local matrix will be bigger (for larger rmin) while the expansion (29) possesses less terms. On the other hand,
for smaller rmin the series (29) contains more terms leading to an increasing cost of the evaluation of large
interactions, while the local corrections are reduced. The fine tuning of rmin that leads to a numerical cost
for computing local corrections that is comparable to the one for computing interactions at large distances, is
explained in [1, 2, 4].

For Helmholtz kernel, it turns out that a good strategy consists in considering the real part and the imaginary
part separately and writing

cos(kr) ∼
P−1∑
p=0

αp

(
sin
(
(k + (2p+ 1)δ)r

)
− sin

(
(k − (2p+ 1)δ)r

))
(30)

where δ = π
rmin+rmax

. It can be shown (see [1]) that the above formula is valid to within a numerical precision

ε if P = − log(ε)rmax

2rmin
, and the coefficients (αp)0≤p<P are computed in a least square sense, that is to say, by

minimizing

∫ rmax

rmin

(
cos(kr)−

P−1∑
p=0

αp

(
sin
(
(k + (2p+ 1)δ)r

)
− sin

(
(k − (2p+ 1)δ)r

)))2

dr . (31)

Notice that this amounts to solve a linear system.
For P small enough, the above procedure gives a family of frequencies (λp) symmetrically distributed around

k. If P is too big (namely when one desires a very high precision or the quotient rmax/rmin is very large), the
frequencies that appear in formula (30) are likely to become negative. To simplify the formula, we thus restrict
δ to be of the form δ = k

2N for an integer N < P , and make use of the fact that the sine is an odd function.
This allows us to rewrite equivalently (30) as

cos(kr) ∼
N+P−1∑
p=0

α′p sin

(
2p+ 1

2N
kr

)
(32)
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in which only N+P coefficients (α′p)0≤p≤N+P−1 appear (instead of 2P ). These coefficients can still be computed
using the least square procedure explained above.

Once (30) is obtained, we have a decomposition of the kernel as

eikr

r
∼
N+P−1∑
p=0

α′p

(
sin
(

2p+1
2N kr

)
r

)
+ i

sin kr

r
(33)

which is nothing than a decomposition in cardinal sines. This enables, following the strategy of [1, 2, 4] to
write the discrete convolution kernel using the Type 3 Non Uniform FFT [10, 12, 19], at a computational cost
proportional to N log(N) where N is the number of unknowns.

3. Numerical results

In this section, a number of numerical examples are presented in order to validate and demonstrate the
performance of the proposed method for solving electromagnetic scattering problems for obstacles composed
both of PEC and dielectric materials. The software used for the numerical computations is a Matlab code
referred to as MyBEM. It includes a full BEM and FEM code with suitable finite elements for electromagnetic
scattering (Raviart-Thomas and Nédélec finite elements) and an implementation of the SCSD method.

3.1. Validation

The first example shown here serves as validation and consists in the scattering of a 300-MHz plane wave
by a sphere of radius R = 0.8 m. Two subcases are considered: the PEC case and the dielectric-layer case.
For the latter, there is an absorbing dielectric material with relative permittivity εr = 1.5 + 0.1i and relative
permeability µr = 2.5 + 1.8i between the radius R = 0.8 m and the radius R = 1 m. The two configurations do
not correspond exactly to the equations we have written previously, but are special cases. Our interest here is
to only validate the software by comparing to analytical solutions.

The validation consists in evaluating the bistatic radar cross section (RCS) of these two objects. Given a
viewing direction r, the RCS in square meters is defined as

RCS := lim
|r|→∞

4πr2 |Esc(r)|2

|Einc(r)|2
. (34)

The bistatic RCS is computed from this definition by keeping the incident direction fixed and varying the
viewing direction r. To be able to compute this quantity from the numerical solutions one need to evaluate the
scattered electric field Esc(r) for large values of |r|. In the far field, one can obtain an asymptotic expansion of
the integral representation (19). The electric field Esc reads, for large arguments |r|,

Esc(r) =
eik|r|

|r|
E∞sc

(
r

|r|

)
+O

(
1

|r|2

)
, (35)

E∞sc = K∞k M + T ∞k J (36)

with

T ∞k u(r) := − ik
4π
r ×

∫
Γ

e−ikr·xu(x)× r dγ(x), (37)

K∞k u(r) := − ik
4π
r ×

∫
Γ

e−ikr·xu(x) dγ(x), (38)

and M and J are solutions of the integral equation considered.
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The bistatic RCS as a function of the angle α between the incident and viewing directions is reported in
Figures 2 and 3 for the two subcases and two polarisations (vertical VV and horizontal HH). We note the perfect
agreement between the bistatic RCS computed with the numerical solutions and the analytic solutions.

Figure 2. Bistatic RCS of the scattering of a 300-MHz plane wave by a PEC sphere of radius
R = 0.8 m for VV and HH polarisations.

We now turn to another validation case that falls exactly in the category of problems we previously described.
The geometry used is a cylinder aligned with the x-axis, with radius R = 0.0381 m and total length L = 0.1524
m. The portion of the cylinder with positive x-coordinates is a PEC of length a = 0.1016 m, while the other
portion is a dielectric material of length b = 0.0508 m. The dielectric material has a relative permittivity
εr = 2.6 and relative permeability µr = 1. The obstacle is lit by a 3-Ghz plane wave and we compute the
monostatic RCS for two polarisations.

The monostatic RCS of the electromagnetic scattering by this obstacle is computed from the definition (34)
of the RCS with incident direction and viewing direction r opposite to each other (transmitter and receiver
co-located). The monostatic RCS as a function of the angle between the x-axis and the viewing direction for
the two polarisations is reported in Figures 4 and 5. The computed RCS are again in very good agreement with
the results given in the literature [14].

3.2. ISAE workshop test case

We now give a description of the results obtained on the test case number 3 of the workshop ISAE 2016,
entitled RCS and radar imaging for an UAV-like with two RAM regions. The test case consists in computing
the electromagnetic scattering of an UAV-like object. The UAV is assumed to be a perfect electric conductor
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Figure 3. Bistatic RCS of the scattering of a 300-MHz plane wave by a PEC sphere with an
absorbing dielectric layer between the radius R = 0.8 m and the radius R = 1 m for VV and
HH polarisations.

(PEC) except in two regions, the nose and a slot, which are filled with an absorbing material with relative
permittivity εr = 1.5 + 0.1i and relative permeability µr = 2.5 + 1.8i. The geometry of the object is rather
complicated and contains many small details, making the test case both interesting and challenging.

The surface mesh was provided by J. Simon from Onera. The two volume regions were constructed from
this surface mesh, using the software GMSH [13]. In our simulations, the mesh of the UAV is composed of:

• Two volume meshes discretizing the two dielectric regions, containing 80 135 tetrahedra in total;
• One surface mesh for the exterior interface Γd ∪ ΓPEC between the vacuum and the obstacle, and

containing 192 604 triangles in total;
• Two surface meshes for the interfaces Σ between the two dielectric regions and the PEC region, and

containing 3 052 triangles in total.

The mesh is represented in Figure 6, using GMSH. A close-up view of the nose of the aircraft is given in Figure
7.

There are 288 906 degrees of freedom in total for the unknown J , 101 178 degrees of freedom in total for the
unknown Etr, 16 578 of which are on the exterior surface Γd.

For the target described above, the monostatic RCS is simulated:

• for the frequency range f = 2.5 to 4.0 GHz, with δf = 30 MHz (i.e. 51 frequencies),
• for the azimuth angle Φ = -15 to 15 deg, with δΦ = 0.5 deg (i.e. 61 angles),
• for θ = 100 deg,
• for both polarizations (VV-polarization and HH-polarization).
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Figure 4. Monostatic RCS of the scattering of a 3-GHz plane wave by a cylinder partially
composed of a dielectric material. VV polarisation.

The frequency-mean monostatic RCS is given in Figure 8 for the two polarisations. The Inverse Synthetic
Aperture Radar (ISAR) image is also computed from the monostatic data. We define it here for −2 ≤ x ≤ 2.5
and −2 ≤ y ≤ 2 as

ISAR(x, y) =
∑
Φ

∑
f

Esc(Φ, f)ei
2πf
c 2r(x,y), (39)

with

r(x, y) =
√

(x−R cos Φ)2 + (y +R sin Φ)2, (40)

where R is here set arbitrary to 100. The ISAR images for both polarisations are provided in Figures 9 and 10.
The results presented are in good agreement with those obtained by the other participants of the workshop.

The results given are obtained on two different machines which characteristics are given in Table 1. The use
of the machine in the second column in Table 1 was required to be able to address the highest frequencies (from
3.58 GHz up to 4GHz) which are more memory consuming.

Some performance information on the resolution of the electromagnetic scattering by the UAV are given in
Table 2. The performance data depends on the frequency considered and the machine used, hence justifying
the fact that we only provide ranges. The runs on the first machine are slightly faster, albeit the slower clock
rate, than the runs on the second one. This is likely explained by the different Matlab version. We finally note
that if these computations had been done sequentially on these two machines, we arrive at a total computing
time of around 24 days for the whole test case.
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Figure 5. Monostatic RCS of the scattering of a 3-GHz plane wave by a cylinder partially
composed of a dielectric material. HH polarisation.

Machine 1 Machine 2
Processor Intel Xeon E5-2650 v2 Intel Xeon E5-2667 v3

CPUs Max/Used 16/12 16/12
Cache 20 M 20 M

Frequency 2.6 GHz 3.2 GHz
Memory 64 Go 128 Go

Matlab version R2015b R2013a
Table 1. Machine and software characteristics.

Machine 1 Machine 2
Frequency range 2.5 - 3.55 GHz 3.58 - 4 GHz
Assembling time 20 - 40 min 55 - 80 min
Iteration count 524 - 741 717 - 813

Time per iteration ∼50 s ∼60 s
Total 8 - 11 h 13.5 - 15.5 h

Table 2. Iteration information and timings per resolution/frequency (122 RHS).

4. Conclusion

We presented in this paper an approach to solve FEM-BEM coupling problems for electromagnetism scatter-
ing by obstacles composed of different materials: a perfect electric conductor and a dielectric. We reformulated
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Figure 6. The mesh of the UAV that was used, with the two volumic regions.

Figure 7. The mesh of the UAV. Close-up view on the nose

the problem with two unknowns, the electric current on the surface of the scatterer and the electric field inside
the dielectric material, coupled in two equations discretised respectively via the boundary element method and
the volumic finite element method. The BEM part is efficiently computed by using the novel Sparse Cardinal
Sine Decomposition method. A test case of industrial interest has been successfully solved using the proposed
approach which has been implemented in a Matlab code.
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Figure 8. Mean monostatic RCS of the UAV-like object.
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Figure 10. ISAR image - VV polarisation.


