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QUASI-LOCAL AND FREQUENCY-ROBUST PRECONDITIONERS FOR THE
HELMHOLTZ FIRST-KIND INTEGRAL EQUATIONS ON THE DISK

Francois Alouges1 and Martin Averseng2,*

Abstract. We propose preconditioners for the Helmholtz scattering problems by a planar, disk-shaped
screen in R3. Those preconditioners are approximations of the square-roots of some partial differential
operators acting on the screen. Their matrix-vector products involve only a few sparse system resolu-
tions and can thus be evaluated cheaply in the context of iterative methods. For the Laplace equation
(i.e. for the wavenumber 𝑘 = 0) with Dirichlet condition on the disk and on regular meshes, we prove
that the preconditioned linear system has a bounded condition number uniformly in the mesh size.
We further provide numerical evidence indicating that the preconditioners also perform well for large
values of 𝑘 and on locally refined meshes.
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1. Introduction

We consider the problem of acoustic scattering by a disk-shaped screen

D :=
{︀
𝑥 = (𝑥1, 𝑥2, 0) ∈ R3 such that |𝑥|2 := 𝑥2

1 + 𝑥2
2 < 1

}︀
in R3, and its numerical simulation using the boundary element method (BEM). Calling 𝑘 ≥ 0 the wavenumber,
with the convention that 𝑘 = 0 for the Laplace equation, the problem can usually be rephrased as

𝑉𝑘𝜆 = 𝑓 or 𝑊𝑘𝜇 = 𝑔 (1)

depending whether one considers a Dirichlet or Neumann boundary condition on the disk D. Here 𝜆 and 𝜇
respectively stand for the jumps of the Neumann and Dirichlet traces of the scattered field across D, while the
weakly singular operator 𝑉𝑘 : ̃︀𝐻−1/2(D) → 𝐻1/2(D) and the hypersingular operator 𝑊𝑘 : ̃︀𝐻1/2(D) → 𝐻−1/2(D)
are defined by

𝑉𝑘𝜙 :=
∫︁

D
𝐺𝑘(𝑥− 𝑦)𝜙(𝑦) d𝜎(𝑦), 𝑊𝑘𝜙 := − 𝜕

𝜕𝑛𝑥

∮︁
D

𝜕

𝜕𝑛𝑦
𝐺𝑘(𝑥− 𝑦)𝜙(𝑦) d𝜎(𝑦), (2)
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*Corresponding author: martin.averseng@univ-angers.fr

c○ The authors. Published by EDP Sciences, SMAI 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/m2an/2023105
https://www.esaim-m2an.org
https://orcid.org/0000-0003-2899-1427
https://orcid.org/0000-0002-0836-3848
mailto:martin.averseng@univ-angers.fr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0


794 F. ALOUGES AND M. AVERSENG

with 𝐺𝑘(𝑥) :=
𝑒𝑖𝑘|𝑥|

4𝜋|𝑥|
(the precise definitions are given in Sect. 3). Having computed 𝜆 or 𝜇, the scattered field

is finally explicitly obtained on R3 ∖ D through a classical representation formula (see e.g. [12, 34]).
Solving the problem with the BEM involves the resolution of linear systems with the matrices V𝑘 or W𝑘

defined by
(V𝑘)𝑖,𝑗 := ⟨𝑉𝑘𝜙𝑗 , 𝜙𝑖⟩ and (W𝑘)𝑖,𝑗 := ⟨𝑊𝑘𝜓𝑗 , 𝜓𝑖⟩,

where the boundary element basis {𝜙𝑖}1≤𝑖≤𝑁1 ⊂ ̃︀𝐻−1/2(D) and {𝜓𝑖}1≤𝑖≤𝑁2 ⊂ ̃︀𝐻1/2(D) are sets of functions
defined on a mesh of the screen D, and the brackets stand for the duality products in ̃︀𝐻−1/2(D) × 𝐻1/2(D)
and 𝐻−1/2(D)× ̃︀𝐻1/2(D) respectively. In the boundary element method, due to the non-local structure of the
Green kernel 𝐺𝑘, the matrices V𝑘 and W𝑘 are fully populated, preventing a priori the use of fine meshes on the
scatterer. However, in the past thirty years, several acceleration methods (e.g. the Fast Multipole Method [20,38],
and H-Matrices [21]) have been developed that enable to compute the matrix-vector products 𝑥 ↦→ V𝑘𝑥,W𝑘𝑥
in quasi-linear complexity. This allows to use iterative solvers for solving the underlying linear systems.

Nevertheless, when the problem of scattering by a bidimensional screen is considered, several difficulties still
appear:

– The solutions of the integral equations have a well-known singularity at the edge of the screen (see e.g. [13]).
In order to capture this singularity, the mesh needs to be refined locally near this edge [27].

– The condition number of the matrices V𝑘 and W𝑘 increases when the mesh is getting finer and this effect
is aggravated by local mesh refinements, see e.g. [19].

Although preconditioning techniques for integral equations is a well established subject (see for instance
[4, 5, 11, 41] and references therein), the extension of those ideas to singular domains has only be considered
recently, e.g. by the authors in [3] (see also [10, 18, 24, 26]). The first goal of this work is to generalize the
approach of [3] for 3D scattering problems on the disk D by introducing preconditioners that are robust both
with respect to the mesh parameters and the wavenumber 𝑘.

By now, there is a well established strategy to ensure robustness with respect to the mesh parameters. For
example, in the case of the operator 𝑉𝑘, it is sufficient to find an isomorphism 𝑃 : 𝐻1/2(D) → ̃︀𝐻−1/2(D),
together with a “stable discretisation” (see Sect. 4), to define a preconditioning matrix ̂︀P associated to 𝑃 .
Then, it can be shown that the condition number of ̂︀PV𝑘 is bounded by a constant that depends on 𝑘 and 𝑃 ,
but is otherwise independent of the mesh width. This property is often referred to as optimal preconditioning1.

Nevertheless, an optimal preconditioner only guarantees a ℎ-uniform bound on the condition number for a
given, fixed 𝑘. There is no expected behavior when one considers different – and more specifically high – wave
numbers. In practice, classical optimal preconditioners constructed for the Laplace equation (𝑘 = 0) behave
poorly at high frequency (this is for example illustrated by our numerical results, cf. Tab. 15).

To counteract this negative behavior, the idea is thus to propose a family of operators (𝑃𝑘)𝑘>0, that depend
on the wavenumber 𝑘, such that the iterative resolution of the linear system associated to the matrix ̂︀P𝑘V𝑘

involves a small number of iterations for a large range of values of 𝑘. Unfortunately, we are not aware of a general
theory to estimate the number of iterations uniformly with respect to 𝑘 (not even in the more favourable case
of the scattering by a smooth surface without boundary), so for the time being, we must rely on numerical
experiments to demonstrate the efficiency of the strategy (although we note that some 𝑘-explicit bounds on the
number of iterations for second-kind integral equations have recently been shown, e.g. in [15]).

Let us now briefly outline the contents of this paper. Introducing the weight

𝜔(𝑥) :=
√︁

1− 𝑥2
1 − 𝑥2

2, for 𝑥 ∈ D, (3)

1Note that strictly speaking a bound on the condition number does not directly imply a bound on the number of iterations in
the iterative resolution of linear systems with non-normal matrices.
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the main result of the paper is that

𝑃0 :=
1
𝜔

(︂
−𝜔 div𝜔∇+

1
4

Id
)︂ 1

2

, 𝑄0 := 𝜔(− div𝜔∇𝜔)−
1
2

are spectrally equivalent to 𝑉 −1
0 , and 𝑊−1

0 , respectively. Above and in what follows, Id stands for the identity
operator, and 𝜔 div𝜔∇ and div𝜔∇𝜔 are understood as

(𝜔 div𝜔∇)𝑢(𝑥) = 𝜔(𝑥) div(𝜔(𝑥)∇𝑢(𝑥)), (div𝜔∇𝜔)𝑢(𝑥) = div(𝜔(𝑥)∇(𝜔(𝑥)𝑢(𝑥))). (4)

In other words, 𝜔 represents the multiplicative operator (𝜔𝑢)(𝑥) := 𝜔(𝑥)𝑢(𝑥). The operators 𝑃0 and 𝑄0 provide
us with isomorphisms 𝐻−1/2(D) → ̃︀𝐻−1/2(D) and 𝐻−1/2(D) → ̃︀𝐻1/2(D) that, as we shall see, are cheaply
evaluated when it comes to Galerkin discretization, and can be used efficiently as preconditioners for 𝑉0 and
𝑊0 respectively.

In order to proceed we introduce in Section 2 a scale of Hilbert spaces that conveniently replaces the classical
Sobolev scale. This generalizes to the case of the disk in 3D, the scale introduced in [3] for open curves in 2D.
Section 3 is then devoted to show the claimed result, i.e. the spectral equivalence of 𝑉 −1

0 and 𝑃0 on the one
hand and 𝑊−1

0 and 𝑄0 on the other hand. For 𝑘 > 0, our previous work [3] in dimension 2 suggests to generalize
the preceding operators as:

𝑃𝑘 :=
1
𝜔

(︀
−𝜔 div𝜔∇− 𝑘2𝜔2

)︀ 1
2 , 𝑄𝑘 := 𝜔

(︀
−div𝜔∇𝜔 − 𝑘2𝜔2

)︀− 1
2 .

The details on the Galerkin discretization, the efficient computation of the square roots, and the proofs of the
uniform estimates of the condition number with respect to the mesh parameters are provided in Section 4.
Eventually, the performance of the proposed preconditioners are reported in Section 5, and the implementation
is openly available [7].

2. Weighted functional analysis on the disk

We now introduce some Hilbert scales 𝒯 𝑠 and 𝒰𝑠 of functions on D that are weighted versions of Sobolev
spaces especially well suited for the analysis of the considered problem. In those scales, the operators −𝜔 div𝜔∇
and −div𝜔∇𝜔 are positive self-adjoint, allowing to define their square roots (as well as of some shifted versions),
which are the main ingredient in our preconditiong strategy.

We start by introducing 𝐿2
1
𝜔

and 𝐿2
𝜔 the weighted 𝐿2 spaces defined by

𝐿2
1
𝜔

:=

{︃
𝑢 ∈ 𝐿1

𝑙𝑜𝑐(D,C)

⃒⃒⃒⃒
⃒ ‖𝑢‖21𝜔 :=

∫︁
D

|𝑢(𝑥)|2

𝜔(𝑥)
d𝑥 < +∞

}︃
,

𝐿2
𝜔 :=

{︂
𝑢 ∈ 𝐿1

𝑙𝑜𝑐(D,C)
⃒⃒⃒⃒
‖𝑢‖2𝜔 :=

∫︁
D
𝜔(𝑥)|𝑢(𝑥)|2 d𝑥 < +∞

}︂
,

with 𝜔 given by equation (3).
Those spaces, when equipped with the respective scalar products

∀(𝑢, 𝑣) ∈
(︁
𝐿2

1
𝜔

)︁2

, (𝑢, 𝑣) 1
𝜔

:=
∫︁

D

𝑢(𝑥) 𝑣(𝑥)
𝜔(𝑥)

d𝑥,

∀(𝑢, 𝑣) ∈
(︀
𝐿2

𝜔

)︀2
, (𝑢, 𝑣)𝜔 :=

∫︁
D
𝜔(𝑥)𝑢(𝑥) 𝑣(𝑥) d𝑥,

are Hilbert spaces.
Complete orthogonal families of these spaces are given by the following proposition (see [25,36]).
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Proposition 2.1. Let Λ = {(𝑙,𝑚) ∈ N× Z | −𝑙 ≤ 𝑚 ≤ 𝑙 and 𝑙 −𝑚 is even}, and let 𝑇𝑚
𝑙 and 𝑈𝑚

𝑙 be the func-
tions defined for (𝑙,𝑚) ∈ Λ and 𝑥 = (𝜌, 𝜙) by

𝑇𝑚
𝑙 (𝑥) = 𝑌 𝑚

𝑙 (arcsin(𝜌), 𝜙) and 𝑈𝑚
𝑙 (𝑥) =

𝑌 𝑚
𝑙+1(arcsin(𝜌), 𝜙)

𝜔(𝑥)

where the function 𝑌 𝑚
𝑙 (𝜃, 𝜙), (𝜃, 𝜙) ∈ [0, 𝜋]× [0, 2𝜋) are the classical spherical harmonics. The set {𝑇𝑚

𝑙 }(𝑙,𝑚)∈Λ

(resp. {𝑈𝑚
𝑙 }(𝑙,𝑚)∈Λ) is a complete orthogonal family of 𝐿2

1
𝜔

(resp. 𝐿2
𝜔). The functions 𝑇𝑚

𝑙 and 𝑈𝑚
𝑙 satisfy in

particular for all (𝑙1,𝑚1) and (𝑙2,𝑚2) in Λ,∫︁
D

𝑇𝑚1
𝑙1

(𝑥)𝑇𝑚2
𝑙2

(𝑥)
𝜔(𝑥)

d𝑥 =
1
2
𝛿𝑙1=𝑙2𝛿𝑚1=𝑚2 ,

∫︁
D
𝜔(𝑥)𝑈𝑚1

𝑙1
(𝑥)𝑈𝑚2

𝑙2
(𝑥) d𝑥 =

1
2
𝛿𝑙1=𝑙2𝛿𝑚1=𝑚2 . (5)

The functions 𝑇𝑚
𝑙 and 𝑈𝑚

𝑙 enjoy further properties. We provide the reader with a few of them that will
turn out to prove useful in the following. Spherical harmonics are the restriction to the sphere of harmonic
homogeneous polynomials in (𝑥1, 𝑥2, 𝑥3). Using this convention, one can write 𝑌 𝑚

𝑙 as

𝑌 𝑚
𝑙 (𝑥1, 𝑥2, 𝑥3) = 𝜂𝑚

𝑙 𝑒
𝑖𝑚𝜑𝑃𝑚

𝑙 (𝑥3)

= 𝜂𝑚
𝑙 (𝑥1 + 𝑖𝑥2)𝑚 d𝑙+𝑚

d𝑡𝑙+𝑚

[︁(︀
𝑡2 − 1

)︀𝑙]︁
|𝑡=𝑥3

,

where 𝜂𝑚
𝑙 = (−1)𝑚

√︁
(2𝑙+1)

4𝜋
(𝑙−𝑚)!
(𝑙+𝑚)! is a normalization coefficient that ensures

∫︀
S2 |𝑌 𝑚

𝑙 |2 d𝜎 = 1, (𝑥1, 𝑥2) =
(𝜌 cos(𝜑), 𝜌 sin(𝜑)) and 𝑃𝑚

𝑙 stand for the associated Legendre polynomials.
Using that, on the sphere, we have 𝑥2

3 = 1 − 𝑥2
1 − 𝑥2

2 = 𝜔(𝑥)2, we can rewrite the spherical harmonics as
polynomials for which the degree in the 𝑥3 variables does not exceed 1. The 𝑇𝑚

𝑙 are obtained from the spherical
harmonics that have a degree 0 in 𝑥3, while the 𝑈𝑚

𝑙 are the ones obtained from the spherical harmonics of
degree exactly 1 in 𝑥3. Consequently, we deduce that the functions 𝑇𝑚

𝑙 and 𝑈𝑚
𝑙 are polynomial functions in

(𝑥1, 𝑥2), and a closer analysis shows that their degree is precisely 𝑙. We therefore deduce the following lemma,
denoting by 𝐶∞(D) the set of restrictions to D of functions in 𝐶∞(R2).

Lemma 2.2. For all (𝑙,𝑚) ∈ Λ, the functions 𝑇𝑚
𝑙 and 𝑈𝑚

𝑙 are in 𝐶∞(D).

A uniform bound can also be obtained by noticing that the spherical harmonics 𝑌 𝑚
𝑙 satisfy the addition

formula
𝑙∑︁

𝑚=−𝑙

𝑌 𝑚
𝑙 (𝜃, 𝜙)𝑌 𝑚

𝑙 (𝜃′, 𝜙′) =
2𝑙 + 1

4𝜋
𝑃𝑙(𝑎 · 𝑎′)

where 𝑃𝑙 = 𝑃 0
𝑙 is the Legendre polynomial of degree 𝑙 and 𝑎 and 𝑎′ are the points of the sphere with spherical

coordinates (𝜃, 𝜙) and (𝜃′, 𝜙′) respectively. Applying this identity for 𝑎 = 𝑎′ = (𝜌 cos(𝜙), 𝜌 sin(𝜙),
√︀

1− 𝜌2), and
since 𝑃𝑙(1) = 1, we conclude that for any 𝑥 = (𝜌 cos(𝜙), 𝜌 sin(𝜙), 0) ∈ D, and for any 𝑙 ∈ N,

𝑙∑︁
𝑚=−𝑙

𝑚−𝑙 even

|𝑇𝑚
𝑙 (𝑥)|2 ≤

𝑙∑︁
𝑚=−𝑙

|𝑌 𝑚
𝑙 (arcsin 𝜌, 𝜙)|2 =

2𝑙 + 1
4𝜋

·

In particular, this implies the bound, ∀𝑥 ∈ D, ∀(𝑙,𝑚) ∈ Λ,

|𝑇𝑚
𝑙 (𝑥)| ≤

√︂
2𝑙 + 1

4𝜋
· (6)
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As a consequence of Proposition 2.1, any function 𝑢 ∈ 𝐿2
1
𝜔

and 𝑣 ∈ 𝐿2
𝜔 may be expanded in a Fourier-like series

as
𝑢(𝑥) =

∑︁
(𝑙,𝑚)∈Λ

𝑢̂𝑚
𝑙 𝑇

𝑚
𝑙 (𝑥), 𝑣(𝑥) =

∑︁
(𝑙,𝑚)∈Λ

𝑣𝑚
𝑙 𝑈

𝑚
𝑙 (𝑥),

where the series are converging in 𝐿2
1
𝜔

and 𝐿2
𝜔, respectively, and

∀(𝑙,𝑚) ∈ Λ, 𝑢̂𝑚
𝑙 = 2

∫︁
D

𝑢(𝑥)𝑇𝑚
𝑙 (𝑥)

𝜔(𝑥)
d𝑥, 𝑣𝑚

𝑙 = 2
∫︁

D
𝜔(𝑥)𝑣(𝑥)𝑈𝑚

𝑙 (𝑥) d𝑥.

The following Parseval equalities also hold:∫︁
D

|𝑢(𝑥)|2

𝜔(𝑥)
d𝑥 =

1
2

∑︁
(𝑙,𝑚)∈Λ

|𝑢̂𝑚
𝑙 |

2
,

∫︁
D
𝜔(𝑥)|𝑣(𝑥)|2 d𝑥 =

1
2

∑︁
(𝑙,𝑚)∈Λ

|𝑣𝑚
𝑙 |

2
. (7)

We now use the following key lemma that enables us to define a scales of Hilbert spaces, comparable to the
Sobolev spaces.

Lemma 2.3. For all (𝑙,𝑚) ∈ N× Z such that −𝑙 ≤ 𝑚 ≤ 𝑙, there holds

− (𝜔 div𝜔∇)𝑇𝑚
𝑙 =

[︀
𝑙(𝑙 + 1)−𝑚2

]︀
𝑇𝑚

𝑙 , (8)

−(div𝜔∇𝜔)𝑈𝑚
𝑙 =

[︀
(𝑙 + 1)(𝑙 + 2)−𝑚2

]︀
𝑈𝑚

𝑙 . (9)

We stress that the operators appearing on the left hand sides are understood as in equation (4).

Proof. We introduce the projected moments ℒ+ and ℒ−, defined for a regular enough function 𝑢 defined on D
by

ℒ±𝑢(𝜌, 𝜙) := 𝑒±𝑖𝜙

(︂
±𝜕𝑢
𝜕𝜌

+ 𝑖
1
𝜌

𝜕𝑢

𝜕𝜙

)︂
·

Furthermore, we denote by 𝜔ℒ±𝜔 : 𝐶∞(D) → 𝐶∞(D) the operator defined by

(𝜔ℒ±𝜔)𝜙(𝑥) := 𝜔(𝑥)ℒ±(𝜔(𝑥)𝜙(𝑥)) = 𝜔2(𝑥)ℒ±𝜙(𝑥)∓ 𝜌𝑒±𝑖𝜙𝑢(𝑥).

Those operators are studied in [36], and their properties can be rephrased in our notation as follows: for all
(𝑙,𝑚) ∈ Λ,

ℒ±𝑇𝑚
𝑙 =

√︀
𝑙(𝑙 + 1)−𝑚2 ∓𝑚 𝑈𝑚±1

𝑙−1 , (10)

𝜔ℒ±𝜔𝑈𝑚
𝑙 =

√︀
(𝑙 + 1)(𝑙 + 2)−𝑚2 ∓𝑚 𝑇𝑚±1

𝑙+1 . (11)

One easily checks that

∇ =
1
2

(︂
ℒ+ − ℒ−

−𝑖ℒ+ − 𝑖ℒ−

)︂
, 𝜔∇𝜔 =

1
2

(︂
𝜔ℒ+𝜔 − 𝜔ℒ−𝜔

−𝑖𝜔ℒ+𝜔 − 𝑖𝜔ℒ−𝜔

)︂
, (12)

which leads to the identities

𝜔 div𝜔∇ = − (𝜔ℒ+𝜔)ℒ− + (𝜔ℒ−𝜔)ℒ+

2
,

div𝜔∇𝜔 = −ℒ+(𝜔ℒ−𝜔) + ℒ+(𝜔ℒ−𝜔)
2

,

and the result follows from equations (10) and (11). �
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Definition 2.4 (Function spaces 𝒯 𝑠 and 𝒰𝑠). Let 𝒯 and 𝒰 be the complex vector spaces of formal series

𝒯 =

⎧⎨⎩ ∑︁
(𝑙,𝑚)∈Λ

𝑢̂𝑚
𝑙 𝑇

𝑚
𝑙

⃒⃒⃒⃒
⃒⃒ (𝑢̂𝑚

𝑙 )(𝑙,𝑚)∈Λ ∈ CΛ

⎫⎬⎭, 𝒰 =

⎧⎨⎩ ∑︁
(𝑙,𝑚)∈Λ

𝑣𝑚
𝑙 𝑈

𝑚
𝑙

⃒⃒⃒⃒
⃒⃒ (𝑣𝑚

𝑙 )(𝑙,𝑚)∈Λ ∈ CΛ

⎫⎬⎭.
For all 𝑠 ∈ R, we define the following Hilbert spaces:

𝒯 𝑠 := {𝑢 ∈ 𝒯 | ‖𝑢‖𝒯 𝑠 <∞}, 𝒰𝑠 := {𝑣 ∈ 𝒰 | ‖𝑣‖𝒰𝑠 <∞},

where

‖𝑢‖2𝒯 𝑠 :=
1
2

∑︁
(𝑙,𝑚)∈Λ

|𝑢̂𝑚
𝑙 |

2

(︂
1
4

+ 𝑙(𝑙 + 1)−𝑚2

)︂𝑠

, ‖𝑣‖2𝒰𝑠 :=
1
2

∑︁
(𝑙,𝑚)∈Λ

|𝑣𝑚
𝑙 |

2(︀(𝑙 + 1)(𝑙 + 2)−𝑚2
)︀𝑠
.

Note that, when 𝑠 ≥ 𝑡, 𝒯 𝑠 ⊂ 𝒯 𝑡 and 𝒰𝑠 ⊂ 𝒰 𝑡. We adopt the notation

𝒯 −∞ := ∪𝑠∈R𝒯 𝑠, 𝒯 ∞ := ∩𝑠∈R𝒯 𝑠, 𝒰−∞ := ∪𝑠∈R𝒰𝑠, 𝒰∞ := ∩𝑠∈R𝒰𝑠.

For 𝑠 ≥ 0, the convergent series in 𝒯 𝑠 and 𝒰𝑠 are identified to their limits in 𝐿2
1
𝜔

(D) and 𝐿2
𝜔(D) respectively,

and in this case, one has

𝑢̂𝑚
𝑙 =

∫︁
D

𝑢(𝑥)𝑇𝑚
𝑙 (𝑥)

𝜔(𝑥)
d𝑥, 𝑣𝑚

𝑙 =
∫︁

D
𝜔(𝑥)𝑣(𝑥)𝑈𝑚

𝑙 (𝑥) d𝑥. (13)

In this sense, 𝐿2
1
𝜔

⊂ 𝒯 𝑠 and 𝐿2
𝜔 ⊂ 𝒰𝑠 for all 𝑠 ≤ 0. Note that for (𝑢, 𝑣) ∈ 𝐿2

1
𝜔

× 𝐿2
𝜔

̂︁(𝑢)
𝑚

𝑙 = (−1)𝑚𝑢̂𝑚
𝑙 ,

|(𝑢)
𝑚

𝑙 = (−1)𝑚𝑢̌𝑚
𝑙 ,

and this is taken as the definition of the complex conjugation on 𝒯 𝑠 and 𝒰𝑠.

Notice the factor 1
4 in the definition of the 𝒯 𝑠 norm and space that is conveniently taken for a reason that

will appear clearer later (see Lem. 3.2). The following lemma shows that 𝐶∞(D) is a subset of 𝒯 𝑠 and 𝒰𝑠 for
all 𝑠 ∈ R:

Lemma 2.5. Let 𝑢 ∈ 𝐶∞(D) and 𝑠 ∈ R. Then 𝑢 ∈ 𝒰𝑠 and there exists 𝐶𝑠 > 0 and 𝑁𝑠 ∈ N such that

‖𝑢‖𝒰𝑠 ≤ 𝐶𝑠 max
|𝛼|≤𝑁𝑠

‖𝜕𝛼𝑢‖𝐿∞(D)

where 𝛼 = (𝛼1, 𝛼2) ∈ N2 is a multi-index, |𝛼| := 𝛼1+𝛼2 and 𝜕𝛼𝑢 = 𝜕𝛼1
𝑥1
𝜕𝛼2

𝑥2
. The same statement holds replacing

𝒰𝑠 by 𝒯 𝑠.

Proof. Let 𝑢 ∈ 𝐶∞(D). We remark that 𝑢 ∈ 𝐿2
𝜔 and therefore

𝑢̌𝑚
𝑙 = 2

∫︁
D
𝜔(𝑥)𝑢(𝑥)𝑈𝑚

𝑙 (𝑥) d𝑥

is well-defined. Now, noticing that

𝑈𝑚
𝑙 (𝑥) =

−1
((𝑙 + 1)(𝑙 + 2)−𝑚2)

[(div𝜔∇𝜔)𝑈𝑚
𝑙 ](𝑥)
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and using the previous equality, an integration by parts gives

𝑢̌𝑚
𝑙 =

−2
((𝑙 + 1)(𝑙 + 2)−𝑚2)

∫︁
D
𝜔(𝑥)[(div𝜔∇𝜔)𝑢](𝑥)𝑈𝑚

𝑙 (𝑥) d𝑥,

where we have used that 𝜔 vanishes on 𝜕D to suppress the boundary terms.
This argument can be repeated to obtain, for any 𝑝 ∈ N,

𝑢̌𝑚
𝑙 = (−1)𝑝 2

((𝑙 + 1)(𝑙 + 2)−𝑚2)𝑝

∫︁
D
𝜔(𝑥)[(div𝜔∇𝜔)𝑝

𝑢](𝑥)𝑈𝑚
𝑙 (𝑥) d𝑥.

We now remark that ∇𝜔 = 𝑥
𝜔 , which entails that, for 𝑢 regular enough,

(div𝜔∇𝜔)𝑢(𝑥) = 2𝑢(𝑥)− 𝑥 · ∇𝑢(𝑥) + 𝜔2(𝑥)∆𝑢(𝑥).

A simple reasoning by induction shows that (div𝜔∇𝜔)𝑝 is a partial differential operator of the form

(div𝜔∇𝜔)𝑝 =
∑︁
|𝛼|≤2𝑝

𝑐𝛼(𝑥)𝜕𝛼,

where, for all multi-index 𝛼 such that |𝛼| ≤ 2𝑝, 𝑐𝛼 ∈ 𝐶∞(D). (In fact, the coefficients 𝑐𝛼 are polynomials in 𝑥.)
Thus for all 𝑝, there exists a constant 𝐾𝑝 > 0 such that

|𝑢̌𝑚
𝑙 | ≤

𝐾𝑝 max|𝛼|≤2𝑝‖𝜕𝛼𝑢‖𝐿∞(D)

((𝑙 + 1)(𝑙 + 2)−𝑚2)𝑝
·

For any 𝑠 ∈ R, we may take 𝑝 sufficiently large to ensure that

𝐾𝑠 :=
∑︁

(𝑙,𝑚)∈Λ

((𝑙 + 1)(𝑙 + 2)−𝑚2)𝑠−2𝑝 < +∞.

We thus deduce that 𝑢 ∈ 𝒰𝑠 and
‖𝑢‖𝒰𝑠 ≤ 𝐶𝑠 max

|𝛼|≤2𝑝
‖𝜕𝛼𝑢‖𝐿∞(D)

where 𝐶𝑠 =
√
𝐾𝑠𝐾𝑝. With the same method of proof, one can show the analogous result for 𝒯 𝑠. �

It is easy to check that the sequence of truncated series of an element of 𝒯 𝑠 or 𝒰𝑠 converges to this element
in the same space. Hence the set of finite linear combinations of {𝑇𝑚

𝑙 }(𝑙,𝑚)∈Λ (resp. {𝑈𝑚
𝑙 }(𝑙,𝑚)∈Λ) is dense in

𝒯 𝑠 (resp. 𝒰𝑠) for all 𝑠 ∈ R. It follows from this, Lemmas 2.5 and 2.2 that 𝐶∞(D) is also dense in 𝒯 𝑠 and 𝒰𝑠 for
all real 𝑠.

Lemma 2.6. For all 𝑠′ < 𝑠, the inclusions 𝒯 𝑠 ⊂ 𝒯 𝑠′ and 𝒰𝑠 ⊂ 𝒰𝑠′ are compact and dense.

Proof. The fact that the inclusions are dense follows from the previous remark. Let us show the claim concerning
the compact inclusion 𝒯 𝑠 ⊂ 𝒯 𝑠′ . The proof of the result for the spaces 𝒰𝑠 goes along similar lines. Let 𝑠 ∈ R
and 𝑠′ = 𝑠− 𝛿 for some 𝛿 > 0. We have to show that 𝒯 𝑠 is compactly embedded in 𝒯 𝑠−𝛿, or equivalently, that
if (𝑢𝑛)𝑛 is a sequence that weakly converges to 0 in 𝒯 𝑠, then (𝑢𝑛)𝑛 strongly converges to 0 in 𝒯 𝑠−𝛿. Writing

𝑢𝑛 =
∑︁

(𝑙,𝑚)∈Λ

(𝑢̂𝑚
𝑙 )𝑛

𝑇𝑚
𝑙 ,

the weak 𝒯 𝑠 convergence entails that both the following statements hold:

∃𝐶 > 0, ∀𝑛 ∈ N, ‖𝑢𝑛‖2𝒯 𝑠 =
∑︁

(𝑙,𝑚)∈Λ

(︂
1
4

+ 𝑙(𝑙 + 1)−𝑚2

)︂𝑠

|(𝑢̂𝑚
𝑙 )𝑛|2 < 𝐶, (14)
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∀(𝑙,𝑚) ∈ Λ, lim
𝑛→+∞

(𝑢̂𝑚
𝑙 )𝑛 = 0. (15)

Now, let 𝜀 > 0 and 𝐿(𝜀) ∈ N be such that (︂
1
4

+ 𝐿(𝜀)
)︂−𝛿

≤ 𝜀, (16)

we infer, noticing that, for all (𝑙,𝑚) ∈ Λ, 1
4 + 𝑙(𝑙 + 1)−𝑚2 ≥ 1

4 + 𝑙,

‖𝑢𝑛‖2𝒯 𝑠−𝛿 =
∑︁

(𝑙,𝑚)∈Λ

(︂
1
4

+ 𝑙(𝑙 + 1)−𝑚2

)︂𝑠−𝛿

|(𝑢̂𝑚
𝑙 )𝑛|2

=
∑︁

(𝑙,𝑚)∈Λ,𝑙≤𝐿(𝜀)

(︂
1
4

+ 𝑙(𝑙 + 1)−𝑚2

)︂𝑠−𝛿

|(𝑢̂𝑚
𝑙 )𝑛|2 +

∑︁
(𝑙,𝑚)∈Λ,𝑙≥𝐿(𝜀)+1

(︂
1
4

+ 𝑙(𝑙 + 1)−𝑚2

)︂𝑠−𝛿

|(𝑢̂𝑚
𝑙 )𝑛|2

≤
∑︁

(𝑙,𝑚)∈Λ,𝑙≤𝐿(𝜀)

(︂
1
4

+ 𝑙(𝑙 + 1)−𝑚2

)︂𝑠−𝛿

|(𝑢̂𝑚
𝑙 )𝑛|2 + 𝐶𝜀

using (14) and (16). By equation (15), we can now take 𝑛 sufficiently large so that the first sum is smaller than
𝜀, concluding the proof. �

Lemma 2.7. For each 𝑠 ∈ R, the inner products (·, ·)𝜔 and (·, ·) 1
𝜔

extend continuously to sesquilinear forms
𝒰𝑠 × 𝒰−𝑠 and 𝒯 𝑠 × 𝒯 −𝑠 respectively, and those extensions satisfy

∀(𝑢, 𝑣) ∈ 𝒰𝑠 × 𝒰−𝑠, (𝑢, 𝑣)𝜔 =
1
2

∑︁
(𝑙,𝑚)∈Λ

𝑢̌𝑚
𝑙 𝑣

𝑚
𝑙 , (17)

∀(𝑢, 𝑣) ∈ 𝒯 𝑠 × 𝒯 −𝑠, (𝑢, 𝑣) 1
𝜔

=
1
2

∑︁
(𝑙,𝑚)∈Λ

𝑢̂𝑚
𝑙 𝑣

𝑚
𝑙 . (18)

Proof. First, if 𝑢 and 𝑣 are finite linear combinations of the functions (𝑈𝑚
𝑙 )(𝑙,𝑚)∈Λ, then it follows immediately

from equations (5) and (13) that

(𝑢, 𝑣)𝜔 =
1
2

∑︁
(𝑙,𝑚)∈Λ

𝑢̌𝑚
𝑙 𝑣

𝑚
𝑙 .

By density of such finite linear combinations in 𝒰𝑠, it only remains to prove that the sesquilinear map

(𝑢, 𝑣) ∈ 𝒰𝑠 × 𝒰−𝑠 ↦→ 1
2

∑︁
(𝑙,𝑚)∈Λ

𝑢̌𝑚
𝑙 𝑣

𝑚
𝑙

is continuous. This is indeed the case by the Cauchy–Schwarz inequality:⃒⃒⃒⃒
⃒⃒ ∑︁
(𝑙,𝑚)∈Λ

𝑢̌𝑚
𝑙 𝑣

𝑚
𝑙

⃒⃒⃒⃒
⃒⃒
2

≤
∑︁

(𝑙,𝑚)∈Λ

(︀
(𝑙 + 1)(𝑙 + 2)−𝑚2

)︀𝑠|𝑢̌𝑚
𝑙 |

2
∑︁

(𝑙,𝑚)∈Λ

(︀
(𝑙 + 1)(𝑙 + 2)−𝑚2

)︀−𝑠|𝑣𝑚
𝑙 |

2 = ‖𝑢‖2𝒰𝑠‖𝑣‖2𝒰−𝑠 .

The proof concerning the second inner product is similar. �

Lemma 2.8. For every 𝑠 ∈ R, the maps 1
𝜔 : 𝒯 −𝑠 → (𝒯 𝑠)′ and 𝜔 : 𝒰−𝑠 → (𝒰𝑠)′, defined by

∀(𝑢, 𝑣) ∈ 𝒯 −𝑠 × 𝒯 𝑠

(︂
1
𝜔
𝑢

)︂
(𝑣) := (𝑢, 𝑣) 1

𝜔
, ∀(𝑢, 𝑣) ∈ 𝒰−𝑠 × 𝒰𝑠, (𝜔𝑢)(𝑣) := (𝑢, 𝑣)𝜔,

are bijective isometries. With a slight abuse of notation, we also denote 𝜔 =
(︀

1
𝜔

)︀−1 : (𝒯 𝑠)′ → 𝒯 −𝑠.
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The proof, mainly relying on the Riesz representation theorem, presents no difficulty, so we omit it.

Lemma 2.9. For every 𝑠 ∈ R, the operators

∇ : 𝐶∞
(︀
D
)︀
→
(︀
𝐶∞

(︀
D
)︀)︀2

, div :
(︀
𝐶∞

(︀
D
)︀)︀2 → 𝐶∞

(︀
D
)︀
,

have unique extensions as linear continuous maps

∇ : 𝒯 𝑠 →
(︀
𝒰𝑠−1

)︀2
, div : (𝒯 𝑠)2 → 𝒰𝑠−1.

Proof. We perform the proof for the operator ∇, the other being similar. First, if such a linear continuous
extension exists, it is unique by density of 𝐶∞(D) in 𝒯 𝑠 for all 𝑠 ∈ R. For 𝑢 ∈ 𝐶∞(D) and 𝑗 ∈ {1, 2}, let
𝑣 = 𝜕𝑥𝑗𝑢 ∈ 𝐿2

𝜔. Using integration by parts and the identities (11) and (12), we find

𝑣𝑚
𝑙 =

(︀
𝜕𝑥𝑗𝑢, 𝑈

𝑚
𝑙

)︀
𝜔

= −
(︀
𝑢, (𝜔𝜕𝑥𝑗

𝜔)𝑈𝑚
𝑙

)︀
1
𝜔

=
1
2

⎧⎪⎨⎪⎩
−
√︀

(𝑙 + 1)(𝑙 + 2)−𝑚2 −𝑚
(︀
𝑢, 𝑇𝑚+1

𝑙+1

)︀
1
𝜔

+
√︀

(𝑙 + 1)(𝑙 + 2)−𝑚2 +𝑚
(︀
𝑢, 𝑇𝑚−1

𝑙+1

)︀
1
𝜔

if 𝑗 = 1,

𝑖
√︀

(𝑙 + 1)(𝑙 + 2)−𝑚2 −𝑚
(︀
𝑢, 𝑇𝑚+1

𝑙+1

)︀
1
𝜔

+ 𝑖
√︀

(𝑙 + 1)(𝑙 + 2)−𝑚2 +𝑚
(︀
𝑢, 𝑇𝑚−1

𝑙+1

)︀
1
𝜔

if 𝑗 = 2,

=
1
4

⎧⎪⎨⎪⎩
−
√︀

(𝑙 + 1)(𝑙 + 2)−𝑚2 −𝑚𝑢̂𝑚+1
𝑙+1 +

√︀
(𝑙 + 1)(𝑙 + 2)−𝑚2 +𝑚𝑢̂𝑚−1

𝑙+1 if 𝑗 = 1,

𝑖
√︀

(𝑙 + 1)(𝑙 + 2)−𝑚2 −𝑚𝑢̂𝑚+1
𝑙+1 + 𝑖

√︀
(𝑙 + 1)(𝑙 + 2)−𝑚2 +𝑚𝑢̂𝑚−1

𝑙+1 if 𝑗 = 2.

Naturally, we use this expression as a definition for 𝜕𝑥𝑗
𝑢 when 𝑢 ∈ 𝒯 −∞. Using simple estimates, such as

𝑚 ≤ (𝑙 + 1)(𝑙 + 2)− (𝑚+ 1)2 when (𝑙,𝑚) ∈ Λ, we deduce that there exists a constant 𝐶 > 0 such that

∀(𝑙,𝑚) ∈ Λ,
(︀
(𝑙 + 1)(𝑙 + 2)−𝑚2

)︀ 𝑠
2

⃒⃒⃒
­(𝜕𝑥𝑗

𝑢)
𝑚

𝑙

⃒⃒⃒
≤ 𝐶

(︂
1
4

+ (𝑙 + 1)(𝑙 + 2)− (𝑚+ 1)2
)︂ 𝑠+1

2 ⃒⃒
𝑢̂𝑚+1

𝑙+1

⃒⃒
+ 𝐶

(︂
1
4

+ (𝑙 + 1)(𝑙 + 2)− (𝑚− 1)2
)︂ 𝑠+1

2 ⃒⃒
𝑢̂𝑚−1

𝑙+1

⃒⃒
.

This implies the desired continuity. �

Lemma 2.10. For every 𝑢 ∈ 𝑇 1, there holds∫︁
D
𝜔(𝑥)|∇𝑢(𝑥)|2 d𝑥 =

1
2

∑︁
(𝑙,𝑚)∈Λ

(︀
𝑙(𝑙 + 1)−𝑚2

)︀
|𝑢̂𝑚

𝑙 |
2
. (19)

Proof. The two quadratic functionals

𝑢 ↦→
∫︁

D
𝜔(𝑥)|∇𝑢(𝑥)|2 d𝑥, 𝑢 ↦→

∑︁
(𝑙,𝑚)∈Λ

(︀
𝑙(𝑙 + 1)−𝑚2

)︀
|𝑢̂𝑚

𝑙 |
2

are continuous on 𝒯 1. The continuity of the first functional is a special case of Lemma 2.9 with 𝑠 = 0 (noting
that 𝒰0 = 𝐿2

𝜔), while the second one stems from the definition of the 𝒯 1 norm. Therefore, it suffices to show that
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those functionals coincide on the dense subset of 𝒯 1 consisting of the finite linear combinations of {𝑇𝑚
𝑙 }(𝑙,𝑚)∈Λ.

If 𝑢 is such a function, it is in particular twice differentiable, so we have by integration by parts∫︁
D
𝜔(𝑥)|∇𝑢(𝑥)|2 d𝑥 =

∫︁
D

𝑢(𝑥)[−(𝜔 div𝜔∇)𝑢](𝑥)
𝜔(𝑥)

d𝑥 = (𝑢, 𝑣) 1
𝜔
,

where 𝑣 = −(𝜔 div𝜔∇)𝑢. Using now Lemma 2.3, we have

𝑣 =
∑︁

(𝑙,𝑚)∈Λ

(𝑙(𝑙 + 1)−𝑚2)𝑇𝑚
𝑙

and the result follows from the Parseval equality (18). �

The following weighted Poincaré inequality holds. To the best of our knowledge, this result is not of the kind
that one may encounter in standard literature about weighted Poincaré inequalities, such as [28,35].

Theorem 2.11. For all functions 𝑢 ∈ 𝑇 1, there holds∫︁
D

|𝑢(𝑥)− 𝑢𝜔|2

𝜔(𝑥)
d𝑥 ≤

∫︁
D
𝜔(𝑥)|∇𝑢(𝑥)|2 d𝑥, (20)

where

𝑢𝜔 =
(︂∫︁

D

1
𝜔(𝑥)

d𝑥
)︂−1 ∫︁

D

𝑢(𝑥)
𝜔(𝑥)

d𝑥.

Proof. It is easy to check that 𝑢𝜔 = 𝑢̂0
0𝑇

0
0 since 𝑇 0

0 is constant on D. We deduce the expression∫︁
D

|𝑢(𝑥)− 𝑢𝜔|2

𝜔(𝑥)
d𝑥 =

1
2

∑︁
(𝑙,𝑚)∈Λ,𝑙 ̸=0

|𝑢̂𝑚
𝑙 |

2
.

For (𝑙,𝑚) ∈ Λ with 𝑙 ̸= 0, we have 1 ≤ 𝑙(𝑙 + 1)−𝑚2 so∫︁
D

|𝑢(𝑥)− 𝑢𝜔|2

𝜔(𝑥)
d𝑥 ≤ 1

2

∑︁
(𝑙,𝑚)∈Λ

(︀
𝑙(𝑙 + 1)−𝑚2

)︀
|𝑢̂𝑚

𝑙 |
2
.

The right hand side is equal to
∫︀

D 𝜔(𝑥)|𝑢(𝑥)|2 d𝑥 by Lemma 2.10, which proves the claim. �

Lemma 2.12. Let
𝑋 := −𝜔 div𝜔∇+

1
4

Id, 𝑌 := −div𝜔∇𝜔. (21)

Then 𝑋 is a positive self-adjoint, unbounded operator on 𝐿2
1
𝜔

, with domain 𝒯 2. Similarly, 𝑌 is a positive self-

adjoint, unbounded operator on 𝐿2
𝜔 with domain 𝒰2. They satisfy

𝑋

⎛⎝ ∑︁
(𝑙,𝑚)∈Λ

𝑢̂𝑚
𝑙 𝑇

𝑚
𝑙

⎞⎠ =
∑︁

(𝑙,𝑚)∈Λ

(︂
1
4

+ 𝑙(𝑙 + 1)−𝑚2

)︂
𝑢̂𝑚

𝑙 𝑇
𝑚
𝑙 ,

𝑌

⎛⎝ ∑︁
(𝑙,𝑚)∈Λ

𝑢̌𝑚
𝑙 𝑈

𝑚
𝑙

⎞⎠ =
∑︁

(𝑙,𝑚)∈Λ

((𝑙 + 1)(𝑙 + 2)−𝑚2)𝑢̌𝑚
𝑙 𝑈

𝑚
𝑙 .

For all 𝛼, 𝑠 ∈ R, the operators 𝑋𝛼 : 𝒯 𝑠 → 𝒯 𝑠−2𝛼 and 𝑌 𝛼 : 𝒰𝑠 → 𝒰𝑠−2𝛼 are continuous and

‖𝑢‖2𝒯 𝑠 =
1
2

(︁
𝑋𝑠/2𝑢, 𝑢

)︁
1
𝜔

, ‖𝑢‖2𝒰𝑠 =
1
2

(︁
𝑌 𝑠/2𝑢, 𝑢

)︁
𝜔
.
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Proof. For finite linear combinations of 𝑇𝑚
𝑙 or 𝑈𝑚

𝑙 , the formulas for 𝑋 and 𝑌 are direct consequences of
Lemma 2.3. The formulas in the general case follow by density. The proofs of the self-adjointness of 𝑋 and 𝑌
follow standard arguments and we omit them for conciseness. The formulas for the 𝒯 𝑠 and 𝒰𝑠 norms follow
directly from the definitions. �

To conclude this section, we point out a characterization of the spaces 𝒯 ∞ and 𝒰∞. This plays no role in the
remainder of the article, but the result is worth mentioning.

Theorem 2.13. There holds 𝒯 ∞ = 𝒰∞ = 𝐶∞(D).

The proof is given in Appendix A.

3. Parametrices for the integral operators

In this section, we define operators 𝑃𝑘 and 𝑄𝑘 which will play the role of approximate inverses, or (weak)
parametrices for the boundary integral operators 𝑉𝑘 and 𝑊𝑘. They stand for the continuous versions of our
proposed preconditioners, to be discretized in our numerical scheme. We start our discussion with the Laplace
equation, i.e. 𝑘 = 0.

3.1. Laplace layer potentials

We consider the following two sesquilinear forms 𝒟(D)×𝒟(D):

𝑏𝑉 (𝑢, 𝑣) :=
∫︁

D

∫︁
D

𝑢(𝑥) 𝑣(𝑦) d𝑥 d𝑦
4𝜋‖𝑥− 𝑦‖

,

𝑏𝑊 (𝑢, 𝑣) :=
∫︁

D

∫︁
D

curl𝑢(𝑥) · curl 𝑣(𝑦) d𝑥d𝑦
4𝜋‖𝑥− 𝑦‖

,

where curl𝑢(𝑥) :=
(︂
𝜕𝑥2𝑢
−𝜕𝑥1𝑢

)︂
. They are well defined for smooth and compactly supported functions 𝑢 and 𝑣 on

D, and it is well-known that they extend uniquely to symmetric positive definite sesquilinear forms [42]

𝑏𝑉 : ̃︀𝐻−1/2(D)× ̃︀𝐻−1/2(D) → C, 𝑏𝑊 : ̃︀𝐻1/2(D)× ̃︀𝐻1/2(D) → C.

The spaces 𝐻𝑠(D) and ̃︀𝐻𝑠(D) are the Sobolev spaces of complex distributions defined e.g. in Chapter 3 of [31].
The associated operators 𝑉 : ̃︀𝐻−1/2(D) → 𝐻1/2(D) and 𝑊 : ̃︀𝐻1/2(D) → 𝐻−1/2(D) such that

𝑏𝑉 (𝑢, 𝑣) = ⟨𝑉 𝑢, 𝑣⟩, 𝑏𝑊 (𝑢, 𝑣) = ⟨𝑊𝑢, 𝑣⟩,

are known as the weakly singular and hypersingular integral operators. Here again, the notation ⟨·, ·⟩ stand for
both the duality pairings between 𝐻−1/2(D) and ̃︀𝐻1/2(D) on the one hand, and between ̃︀𝐻−1/2(D) and 𝐻1/2(D)
on the other hand.

The fact that 𝑏𝑉 and 𝑏𝑊 are positive definite allows us to consider them as the inner products of ̃︀𝐻−1/2(D)
and ̃︀𝐻1/2(D), respectively. Furthermore, we endow 𝐻1/2(D) and 𝐻−1/2(D) with the dual norms:

‖𝑢‖𝐻1/2(D) := sup
𝑣∈ ̃︀𝐻−1/2(D)

|⟨𝑢, 𝑣⟩|
‖𝑣‖ ̃︀𝐻−1/2(D)

and ‖𝑢‖𝐻−1/2(D) := sup
𝑣∈ ̃︀𝐻1/2(D)

|⟨𝑢, 𝑣⟩|
‖𝑣‖ ̃︀𝐻1/2(D)

.

This is is equivalent to the norm defined via the Sobolev-Slobodeckij semi-norm, see Theorem 3.30 from [31].
The spaces 𝒯 𝑠 and 𝒰𝑠 provide a good framework to analyze 𝑉 and 𝑊 . The main reason is the following

result:
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Proposition 3.1 (See [25,37]). For any (𝑙,𝑚) ∈ Λ, one has

𝑉

(︂
𝑇𝑚

𝑙

𝜔

)︂
=

𝑇𝑚
𝑙

2𝜆𝑚
𝑙

and 𝑊 (𝜔𝑈𝑚
𝑙 ) =

𝜆𝑚
𝑙+1

2
𝑈𝑚

𝑙

where

𝜆𝑚
𝑙 = 2

Γ
(︀

𝑙+𝑚+2
2

)︀
Γ
(︀

𝑙−𝑚+2
2

)︀
Γ
(︀

𝑙+𝑚+1
2

)︀
Γ
(︀

𝑙−𝑚+1
2

)︀
and Γ(𝑡) =

∫︀ +∞
0

𝑠𝑡−1𝑒−𝑠 d𝑠 is the Gamma function.

The following estimate shows that (𝜆𝑚
𝑙 )2 and the symbols of the weighted Laplacians (see Lem. 2.3), are

equivalent:

Lemma 3.2. One has the inequalities

1 ≤ (𝜆𝑚
𝑙 )2

1
4 + 𝑙(𝑙 + 1)−𝑚2

≤
√

3, 𝑙 ∈ N, −𝑙 ≤ 𝑚 ≤ 𝑙, (22)

1 ≤ (𝜆𝑚
𝑙 )2

𝑙(𝑙 + 1)−𝑚2
≤
√

3, 𝑙 ∈ N*, −𝑙 ≤ 𝑚 ≤ 𝑙. (23)

Proof. We start with the following improved version of Gautschi’s inequality [29]:

∀(𝑥, 𝑠) ∈ R*+ × (0, 1),
(︁
𝑥+

𝑠

2

)︁1−𝑠

≤ Γ(𝑥+ 1)
Γ(𝑥+ 𝑠)

≤

(︃
𝑥− 1

2
+

√︂
𝑠+

1
4

)︃1−𝑠

.

We apply this inequality for 𝑠 = 1
2 , and notice that it remains true when 𝑥 = 0. We may therefore take 𝑥 = 𝑙±𝑚

2
to obtain (︂

𝑙 +𝑚+
1
2

)︂(︂
𝑙 −𝑚+

1
2

)︂
≤ (𝜆𝑚

𝑙 )2 ≤
(︁
𝑙 −𝑚+

√
3− 1

)︁(︁
𝑙 +𝑚+

√
3− 1

)︁
.

Remarking that (︂
𝑙 +𝑚+

1
2

)︂(︂
𝑙 −𝑚+

1
2

)︂
= 𝑙(𝑙 + 1)−𝑚2 +

1
4

yields the left-hand side of the inequalities (22) and a fortiori (23).
For the right-hand side inequalities, we observe that for 𝑙 ≥ 2 and −𝑙 ≤ 𝑚 ≤ 𝑙, one has(︁

𝑙 +
√

3− 1
)︁2

−𝑚2 = 𝑙(𝑙 + 1)−𝑚2 +
(︁

2
√

3− 3
)︁
𝑙 + 4− 2

√
3

≤ 𝑙(𝑙 + 1)−𝑚2 +
(︁

2
√

3− 3
)︁
𝑙 +
(︁

4− 2
√

3
)︁ 𝑙

2
≤
√

3
(︀
𝑙(𝑙 + 1)−𝑚2

)︀
using that 𝑙(𝑙+ 1)−𝑚2 ≥ 𝑙. This establishes the right hand side inequality of (23) for 𝑙 ≥ 2, and one can check
that the same inequality also holds for 𝑙 = 1. This also implies a fortiori the right hand side inequality of (22)
for 𝑙 ̸= 0, and again, one can check that it remains valid for 𝑙 = 0. �

Lemma 3.3. There holds ̃︀𝐻−1/2(D) =
(︁
𝒯 1/2

)︁′
, ̃︀𝐻1/2(D) =

(︁
𝒰−1/2

)︁′
(24)

with the following norm equivalences:

∀𝑢 ∈
(︁
𝒯 1/2

)︁′
, 3−1/4‖𝑢‖(𝒯 1/2)′ ≤

√
2‖𝑢‖ ̃︀𝐻−1/2(D) ≤ ‖𝑢‖(𝒯 1/2)′ , (25)

∀𝑢 ∈ 𝒰1/2, 3−1/4‖𝑢‖𝒰1/2 ≤
√

2‖𝜔𝑢‖ ̃︀𝐻1/2(D) ≤ ‖𝑢‖𝒰1/2 . (26)
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Proof. Consider 𝐿 ∈ N and a function 𝑢 of the form

𝑢 =
∑︁

(𝑙,𝑚)∈Λ

𝑢̂𝑚
𝑙 𝑇

𝑚
𝑙 , (27)

where 𝑢̂𝑚
𝑙 = 0 for 𝑙 ≥ 𝐿. Putting 𝑣 = 𝑢

𝜔 , we have, from Proposition 3.1:

𝑉 𝑣 =
∑︁

(𝑙,𝑚)∈Λ

𝑢̂𝑚
𝑙

2𝜆𝑚
𝑙

𝑇𝑚
𝑙

hence 𝑉 𝑣 ∈ 𝐶∞(D). It follows that 𝑣 ∈ ̃︀𝐻−1/2(D) and

‖𝑣‖2̃︀𝐻−1/2 =
∫︁

D
(𝑉 𝑣)(𝑥)

𝑢(𝑥)
𝜔(𝑥)

d𝑥 =
∑︁

(𝑙,𝑚)∈Λ

|𝑢̂𝑚
𝑙 |

2

2𝜆𝑚
𝑙

,

by the orthogonality properties of the 𝑇𝑚
𝑙 seen in the previous section. In view of the estimate (22), this implies

1
2
√

3
‖𝑢‖2𝒯 −1/2 ≤

⃦⃦⃦⃦
1
𝜔
𝑢

⃦⃦⃦⃦2

̃︀𝐻−1/2(D)

≤ 1
2
‖𝑢‖2𝒯 −1/2 . (28)

Finally, by the density of finite linear combinations of the form (27) in 𝒯 −1/2, it follows that 1
𝜔𝒯

−1/2 = ̃︀𝐻−1/2(D)
with the norm equivalence (28) holding for all 𝑢 ∈ 𝒯 −1/2, where 1

𝜔 is understood as in Lemma 2.8. Since
1
𝜔𝒯

−1/2 = (𝒯 1/2)′, this proves the first norm equivalence (25). The proof of the second one is similar. �

Corollary 3.4. There holds
𝐻1/2(D) = 𝒯 1/2, 𝐻−1/2(D) = 𝒰1/2

with the following norm equivalences:

∀𝑢 ∈ 𝒯 1/2, ‖𝑢‖𝒯 1/2 ≤
1√
2
‖𝑢‖𝐻1/2 ≤ 3

1
4 ‖𝑢‖𝒯 1/2 , (29)

∀𝑢 ∈ 𝒰−1/2, ‖𝑢‖𝒰−1/2 ≤
1√
2
‖𝑢‖𝐻−1/2 ≤ 3

1
4 ‖𝑢‖𝒰−1/2 . (30)

We can now state the main result of this article. Recall the definitions of the operators 𝑋 and 𝑌 in equa-
tion (21).

Theorem 3.5. The operator 𝑃 = 1
𝜔𝑋

1
2 maps 𝐻1/2(D) to ̃︀𝐻−1/2(D) bijectively and for all 𝑢 ∈ ̃︀𝐻−1/2(D), there

holds
1
2
‖𝑢‖2𝐻1/2(D) ≤ ⟨𝑃𝑢, 𝑢⟩ ≤

√
3

2
‖𝑢‖2𝐻1/2(D).

The operator 𝑄 = 𝜔𝑌 −1/2 maps 𝐻−1/2(D) to ̃︀𝐻1/2(D) bijectively and for all 𝑢 ∈ 𝐻−1/2(D), there holds

1
2
‖𝑢‖2𝐻−1/2(D) ≤ ⟨𝑄𝑢, 𝑢⟩ ≤

√
3

2
‖𝑢‖2𝐻−1/2(D).

Proof. By Lemma 2.12, we have, for all 𝑢 ∈ 𝒯 1/2, ‖𝑢‖2𝒯 1/2 = (
√
𝑋𝑢, 𝑢) 1

𝜔
= ⟨𝑃𝑢, 𝑢⟩. The result follows by

applying the second norm equivalence of Lemma 3.3. The proof for the second claim is similar. �

The previous result paves the way for a preconditioning strategy to solve the integral equation (1), that we
present in Section 4.



806 F. ALOUGES AND M. AVERSENG

3.2. Helmholtz layer potentials

We now seek corrections of the weighted Laplacians −(𝜔 div𝜔∇) and −(div𝜔∇𝜔) in order to capture the
behavior associated to non-zero wavenumbers. Let us first state a surprising commutation:

Theorem 3.6. For any function 𝑢 ∈ 𝐶∞(D), there holds(︀
−𝜔 div𝜔∇− 𝑘2𝜔2

)︀
𝑉𝑘,𝜔𝑢 = 𝑉𝑘,𝜔

(︀
−𝜔 div𝜔∇− 𝑘2𝜔2

)︀
𝑢,

where 𝑉𝑘,𝜔 = 𝑉𝑘
1
𝜔 is the composition of the Helmholtz weakly-singular operator with the multiplication by 1/𝜔.

Proof. We observe that 𝜔 div𝜔∇ is a self adjoint operator with respect to the scalar product (·, ·) 1
𝜔

. Therefore,
for any 𝑢 ∈ 𝒞∞(D), one has

𝑉𝑘,𝜔(𝜔 div𝜔∇𝑢) =
∫︁

D

𝐺𝑘(𝑥− 𝑦)(𝜔(𝑦)∇𝑦 · (𝜔(𝑦)∇𝑦))𝑢(𝑦)
𝜔(𝑦)

d𝜎𝑦

=
∫︁

D

(𝜔𝑦 div𝑦 𝜔𝑦∇𝑦𝐺𝑘)(𝑥− 𝑦)𝑢(𝑦)
𝜔(𝑦)

d𝜎𝑦.

Let us denote
[𝑉𝑘,𝜔,∆𝜔] = 𝑉𝑘,𝜔(𝜔 div𝜔∇)𝑢− (𝜔 div𝜔∇)𝑉𝑘,𝜔𝑢.

The previous computations then lead to

[𝑉𝑘,𝜔,∆𝜔]𝑢 =
∫︁

D

∆(𝑥, 𝑦)𝑢(𝑦)
𝜔(𝑦)

d𝜎𝑦

with
∆(𝑥, 𝑦) = [𝜔𝑦 div𝑦 𝜔𝑦∇𝑦 − 𝜔𝑥 div𝑥 𝜔𝑥∇𝑥]𝐺𝑘(𝑥− 𝑦).

Using now the expression
𝜔 div𝜔∇𝜑(𝑥) = 𝜔2(𝑥)∆𝜑(𝑥)− 𝑥 · ∇𝜑(𝑥)

we obtain
∆(𝑥, 𝑦) = ∆𝑥𝐺𝑘(𝑥− 𝑦)

(︀
𝜔(𝑦)2 − 𝜔(𝑥)2

)︀
+ (𝑥+ 𝑦) · ∇𝑥𝐺𝑘(𝑥− 𝑦). (31)

We stress the fact that the Laplacian ∆𝑥 used until now is the bidimensional Laplacian, which should not be
mistaken with the three dimensional Laplacian of the Helmholtz equation, that we shall denote by ∆3D. The
Green function 𝐺𝑘(𝑥) satisfies the Helmholtz equation

∆3D
𝑥 𝐺𝑘 + 𝑘2𝐺𝑘 = 𝛿0

where 𝛿0 is the Dirac mass at 0. Since 𝐺𝑘 is a radial function, we may rewrite this latter equation, with a slight
abuse of notation, as

𝐺′′𝑘(𝑟) +
2
𝑟
𝐺′𝑘(𝑟) + 𝑘2𝐺𝑘(𝑟) = 𝛿0.

We deduce that

∇𝑥𝐺𝑘(𝑥) = 𝐺′𝑘(𝑟)
𝑥

𝑟

= −𝑥
(︂
𝐺′′𝑘(𝑟) +

1
𝑟
𝐺′𝑘(𝑟) + 𝑘2𝐺𝑘(𝑟)− 𝛿0

)︂
= −𝑥

(︀
∆𝑥𝐺𝑘(𝑥) + 𝑘2𝐺𝑘(𝑥)

)︀
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with 𝑟 = ‖𝑥‖, using that 𝑥𝛿0 = 0. Plugging this expression in (31), we are led to

∆(𝑥, 𝑦) =
(︁
𝜔2(𝑦)− 𝜔2(𝑥) + ‖𝑦‖2 − ‖𝑥‖2

)︁
∆𝑥𝐺𝑘(𝑥− 𝑦) + 𝑘2

(︁
‖𝑦‖2 − ‖𝑥‖2

)︁
𝐺𝑘(𝑥− 𝑦).

Since 𝜔(𝑥) =
√︁

1− ‖𝑥‖2, the first term vanishes, and remarking that ‖𝑦‖2 − ‖𝑥‖2 = 𝜔2(𝑥)− 𝜔2(𝑦), we may
write

[𝑉𝑘,𝜔,∆𝜔]𝑢 = 𝑘2

∫︁
𝐷

(︀
𝜔2(𝑥)− 𝜔2(𝑦)

)︀
𝐺𝑘(𝑥− 𝑦)𝑢(𝑦)

𝜔(𝑦)
d𝜎𝑦

= 𝑘2
(︀
𝜔2𝑉𝑘,𝜔 − 𝑉𝑘,𝜔𝜔

2
)︀
𝑢

which proves the claim. �

To generalize our method for 𝑘 ̸= 0, we propose the operators

𝑃𝑘 =
1
𝜔

(︀
−𝜔 div𝜔∇− 𝑘2𝜔2

)︀ 1
2 , 𝑄𝑘 = 𝜔

(︀
−div𝜔∇𝜔 − 𝑘2𝜔2

)︀− 1
2 , (32)

to play the role of parametrices for 𝑉𝑘 and 𝑊𝑘, respectively. The insights that motivate this choice are the
following:

– Taking 𝜔 ≡ 1 and ignoring the singularity of the screen D, the formula for 𝑃𝑘 leads back to pseudo-differential
approximations of the Dirichlet-to-Neumann (DtN) map which was successfully used for preconditioning
purposes, see [4, 5]. In the case of a flat screen, the DtN is simply a constant times the inverse of 𝑉𝑘, so the
definition of 𝑃𝑘 can be thought of as a generalization of this DtN approximation in the presence of an edge
singularity.

– Using compact perturbation arguments, one can show that 𝑃𝑘 and 𝑄𝑘 have the right mapping properties,
i.e. 𝑃𝑘 : 𝐻1/2(D) → ̃︀𝐻−1/2(D), and 𝑄𝑘 : 𝐻−1/2 → ̃︀𝐻1/2(D), are continuous, and continuously invertible for
all but a countable set of values 𝑘 ∈ R+.

– The above commutation implies that 𝜔𝑃𝑘 and 𝑉𝑘,𝜔 can be diagonalized in a common basis of eigenfunctions
(one can check that the eigenfunctions of 𝑃𝑘 turn out to be oblate spheroidal wave functions [14]). Hence,
the product 𝑉𝑘𝑃𝑘 = 𝑉𝑘,𝜔(𝜔𝑃𝑘) is diagonal in this basis, while a priori 𝑉𝑘𝑃0 is not. This hints at the fact that
−𝑘2𝜔2 is the “correct” 𝑘-dependent perturbation to add under the square-root. Perhaps, some fine eigenvalue
estimates could show that 𝑉𝑘𝑃𝑘 is close to a multiple of identity, although the required asymptotic results
do not seem at reach for now.

– There is a striking analogy with the two-dimensional case [3], where a pseudo-differential analysis shows
that, for the 2D analogs of 𝑃𝑘 and 𝑄𝑘, −𝑘2𝜔2 is the order zero perturbation of that leads to the most
smoothing remainders 𝑅 and 𝑅′ in the formulas 𝑉𝑘𝑃𝑘 = 𝐼𝑑/2 + 𝑅, 𝑊𝑘𝑄𝑘 = 𝐼𝑑/2 + 𝑅′, as measured in a
suitable pseudo-differential scale [6].

– Eventually, the numerical evidence presented in Section 5 is very convincing.

Yet, a more rigorous justification of those choices remains to be proposed.

4. Galerkin discretization and preconditioners

4.1. Variational problems

Given some data 𝑓 ∈ 𝐻−1/2(D) and 𝑔 ∈ 𝐻1/2(D) and a wavenumber 𝑘 ≥ 0, we consider the following two
variational formulations of the integral equation (1):

Find 𝜆 ∈ ̃︀𝐻−1/2(D) such that ∀𝜆′ ∈ ̃︀𝐻−1/2(D), ⟨𝑉𝑘𝜆, 𝜆
′⟩ = ⟨𝑓, 𝜆′⟩, (33)

Find 𝜇 ∈ ̃︀𝐻1/2(D) such that ∀𝜇′ ∈ ̃︀𝐻1/2(D), ⟨𝑊𝑘𝜇, 𝜇
′⟩ = ⟨𝑔, 𝜇′⟩. (34)
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We introduce two sequences of subspaces 𝒱𝑁 ⊂ ̃︀𝐻−1/2(D) and 𝒲𝑀 ⊂ ̃︀𝐻1/2(D) for 𝑁,𝑀 ∈ N, and define
the approximate solutions (𝜆𝑁 )𝑁∈N and (𝜇𝑀 )𝑀∈N to the variational problems (33) and (34) by the Galerkin
method as

𝜆𝑁 ∈ 𝒱𝑁 , ∀𝜆′ ∈ 𝒱𝑁 , ⟨𝑉𝑘𝜆𝑁 , 𝜆
′⟩ = ⟨𝑓, 𝜆′⟩, (35)

𝜇𝑀 ∈ 𝒲𝑀 , ∀𝜇′ ∈ 𝒲𝑀 , ⟨𝑊𝑘𝜇𝑀 , 𝜇′⟩ = ⟨𝑔, 𝜇′⟩. (36)

We introduce two basis {𝜙𝑁
𝑖 }1≤𝑖≤dim𝒱𝑁

and {𝜓𝑀
𝑖 }1≤𝑖≤dim𝒲𝑀

of 𝒱𝑁 and 𝒲𝑀 . The vectors Λ𝑁 and 𝑈𝑀 of
coefficients of 𝜆𝑁 and 𝜇𝑀 in those respective basis are obtained by solving the systems

V𝑘Λ𝑁 = 𝐹𝑁 , (37)
W𝑘𝑈𝑀 = 𝐺𝑀 , (38)

where V𝑘 and W𝑘 are the Galerkin matrices defined by

(V𝑘)𝑖𝑗 =
⟨︀
𝑉𝑘𝜙

𝑁
𝑖 , 𝜙𝑗

𝑁
⟩︀
, 1 ≤ 𝑖, 𝑗 ≤ dim𝒱𝑁 , (39)

(W𝑘)𝑖𝑗 =
⟨
𝑊𝑘𝜓

𝑀
𝑖 , 𝜓𝑗

𝑀
⟩
, 1 ≤ 𝑖, 𝑗 ≤ dim𝒲𝑀 , (40)

with the column vectors

(𝐹𝑁 )𝑖 =
⟨
𝑓, 𝜙𝑁

𝑖

⟩
, 1 ≤ 𝑖 ≤ dim𝒱𝑁 , (𝐺𝑀 )𝑖 =

⟨
𝑔, 𝜓𝑀

𝑖

⟩
, 1 ≤ 𝑖 ≤ dim𝒲𝑀 . (41)

The purpose of this section is to specify the choices of spaces 𝒱𝑁 and 𝒲𝑀 and their basis, and to define
preconditioners ̂︀P𝑘 and ̂︀Q𝑘 for the dense linear systems (37) and (38) respectively. Furthermore, we estimate
the condition number of the preconditioned linear system ̂︀P𝑘V𝑘 in the special case of quasi-uniform meshes
and 𝑘 = 0.

In the remainder of this paper, the subscript 𝑘 is omitted when 𝑘 = 0, i.e. we write 𝑉 , 𝑊 , ̂︀P, ̂︀Q instead of
𝑉0, 𝑊0, ̂︀P0, ̂︀Q0 and so on.

4.2. Abstract condition number estimate

In this paragraph, we fix 𝑁 ∈ N and consider a subspace 𝒳𝑁 ⊂ 𝐻1/2(D) with dim𝒳𝑁 = dim𝒱𝑁 . Let
𝑝 : 𝒳𝑁 ×𝒳𝑁 → C be a sesquilinear form that is continuous and coercive in the 𝒯 1/2 norm on 𝒳𝑁 , i.e. such that

∃𝑐𝑝(𝑁), 𝐶𝑝(𝑁) > 0, ∀𝜃 ∈ 𝒳𝑁 , 𝑐𝑝(𝑁)‖𝜃‖2𝒯 1/2 ≤ 𝑝(𝜃, 𝜃) ≤ 𝐶𝑝(𝑁)‖𝜃‖2𝒯 1/2 . (42)

We introduce a basis {𝜃𝑁
𝑖 }1≤𝑖≤dim𝒳𝑁

of 𝒳𝑁 and define the square 𝑁 ×𝑁 matrices

P :=
(︀
𝑝
(︀
𝜃𝑁

𝑖 , 𝜃
𝑁
𝑗

)︀)︀
1≤𝑖,𝑗≤𝑁

, D :=
(︁⟨
𝜙𝑁

𝑖 , 𝜃
𝑁
𝑗

⟩)︁
1≤𝑖,𝑗≤𝑁

. (43)

With those definitions, let ̂︀P := D−1PD−𝑇 . (44)

To analyze the preconditioning matrix ̂︀P, the key quantity, besides the constants 𝑐𝑝(𝑁) and 𝐶𝑝(𝑁) appearing in
(42) is the following inf-sup stability constant (where the arguments in the infimum and supremum are always
required to be non-zero)

𝜎(𝒱𝑁 ,𝒳𝑁 ) := inf
𝜙∈𝒱𝑁

sup
𝜃∈𝒳𝑁

⃒⃒⟨︀
𝜙, 𝜃

⟩︀⃒⃒
‖𝜙‖ ̃︀𝐻−1/2‖𝜃‖𝐻1/2

· (45)

Indeed, we have the following result:
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Theorem 4.1. There holds

𝜅
(︁̂︀PV

)︁
≤

√
3

𝜎(𝒱𝑁 ,𝒳𝑁 )2
𝐶𝑝(𝑁)
𝑐𝑝(𝑁)

where 𝜅(M) is the condition number of the matrix M, defined as the ratio of the largest to the smallest singular
value of M.

Proof. By Theorem 2.1 from [23], we have

𝜅(P̂V) ≤ ‖𝑎‖‖𝑝‖‖𝑑‖2

𝑐𝐴𝑐𝑃 𝑐2𝐷
(46)

where 𝑎 : 𝒱𝑁 × 𝒱𝑁 → C and 𝑑 : 𝒱𝑁 ×𝒲𝑁 → C are the sesquilinear forms defined by

∀𝜙 ∈ 𝒱𝑁 , 𝑎(𝜙,𝜙) = ‖𝜙‖2̃︀𝐻−1/2 , 𝑑(𝜙, 𝜃) :=
⟨︀
𝜙, 𝜃

⟩︀
,

and the constants appearing in the estimate are chosen so that

𝑐𝐴‖𝑢‖2̃︀𝐻−1/2 ≤ 𝑎(𝑢, 𝑢) ≤ ‖𝑎‖‖𝑢‖2̃︀𝐻−1/2 ,

|𝑑(𝑢, 𝑣)| ≤ ‖𝑑‖‖𝑢‖ ̃︀𝐻−1/2‖𝑣‖𝒯 1/2 ,

𝑐𝑃 ‖𝑢‖2𝒯 1/2 ≤ 𝑝(𝑢, 𝑢) ≤ ‖𝑝‖‖𝑢‖2𝒯 1/2 ,

inf
𝜙𝑁∈𝒱𝑁

sup
𝜃∈𝒳𝑁

|𝑑(𝜙𝑁 , 𝜃)|
‖𝜃‖𝒯 1/2‖𝜙𝑁‖ ̃︀𝐻−1/2

≥ 𝑐𝐷.

Since 𝑎(𝑢, 𝑢) = ‖𝑢‖2̃︀𝐻−1/2 , we can take 𝑐𝐴 = ‖𝑎‖ = 1. Similarly, in view of (42), we can use 𝑐𝑃 = 𝑐𝑝(𝑁) and we
have ‖𝑝‖ ≤ 𝐶𝑝(𝑁). By the norm equivalence stated in Corollary 3.4,

|𝑑(𝜙, 𝜃)| ≤ ‖𝜙‖ ̃︀𝐻−1/2‖𝜃‖𝐻1/2 ≤ 31/4
√

2‖𝜙‖ ̃︀𝐻−1/2‖𝜃‖𝒯 1/2 ,

hence ‖𝑑‖ ≤ 31/4
√

2. Furthermore, combining the same norm equivalence with equation (45), we get

∀𝜙𝑁 ∈ 𝒱𝑁 , sup
𝜃∈𝒳𝑁

|𝑑(𝜙𝑁 , 𝜃)|
‖𝜃‖𝒯 1/2

≥
√

2
31/4

𝜎(𝒱𝑁 ,𝒳𝑁 )‖𝜙𝑁‖ ̃︀𝐻−1/2 .

Hence we may take 𝑐𝐷 =
√

2
31/4𝜎(𝒱𝑁 ,𝒲𝑁 ). It remains to inject those values in the estimate (46) to conclude the

proof. �

To apply this result concretely, we are going to

(i) specify spaces 𝒱𝑁 , 𝒳𝑁 and estimate the constant 𝜎(𝒱𝑁 ,𝒳𝑁 ) of equation (45),
(ii) propose an explicit sesquilinear form 𝑝 which satisfies (42), and estimate the ratio 𝐶𝑝(𝑁)/𝑐𝑝(𝑁).

4.3. Stable discretization with uniform meshes

We describe a stable discretization involving spaces of continuous piecewise linear functions, both for the
operator and the preconditioner, over a sequence of globally quasi-uniform and shape-regular triangular meshes.
We prove that this family of subspaces provides a uniformly stable discretization, see Lemma 4.6. The extension
of the theory to more general discretizations is left for future work.

Let us consider a sequence of polygons (𝑃𝑁 )𝑁∈N, with all of their vertices in 𝜕D. We denote by ℎ𝑁 the
maximal distance between two consecutive vertices of D𝑁 and assume that

lim
𝑁→∞

ℎ𝑁 = 0.
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This way, the polygons 𝑃𝑁 asymptotically cover D. Let 𝒯𝑁 be a triangulation of 𝑃𝑁 , with the property that
every vertex in the boundary of 𝒯𝑁 is a vertex of 𝑃𝑁 . For a triangle 𝜏 ∈ 𝒯𝑁 , we denote by ℎ𝜏 its diameter and
by ∆𝜏 its area. We make the following assumptions:

∀𝑁 ∈ N, ∀𝜏 ∈ 𝒯𝑁 ,𝑐 ≤
ℎ𝜏

ℎ𝑁
≤ 𝐶 (global quasi-uniformity), (47)

∀𝑁 ∈ N, ∀𝜏 ∈ 𝒯𝑁 ,
∆𝜏

ℎ2
𝜏

≥ 𝑐 (uniform shape-regularity). (48)

Here and in what follows, 𝑐 > 0 and 𝐶 > 0 denote generic constants that are independent of 𝑁 and of the choice
of a specific triangle 𝜏 ∈ 𝒯𝑁 . For each 𝑁 ∈ N, we choose 𝒱𝑁 as the finite-dimensional subspace of ̃︀𝐻−1/2(D)
consisting of all functions 𝜙 : D → C such that

– 𝜙|𝜏 is an affine function for each 𝜏 ∈ 𝒯𝑁 .
– 𝜙 is continuous on 𝑃𝑁 .
– 𝜙 vanishes in D ∖ 𝑃𝑁 .

To define 𝒳𝑁 ⊂ 𝒯 1/2, we proceed as follows. If a triangle 𝜏 ∈ 𝒯𝑁 has two vertices 𝐴 and 𝐵 in 𝜕D, we define
𝑈𝜏 as the region of D enclosed on the one hand by the (smallest) arc of 𝜕D linking 𝐴 to 𝐵, and on the other
hand by the straight line segment [𝐴,𝐵]. For each 𝜏 ∈ 𝒯𝑁 , we then define a corresponding open set 𝐾𝜏 ⊂ D by

𝐾𝜏 =

{︃
𝜏 if 𝜏 has at most one vertex in 𝜕D,
𝜏 ∪ 𝑈𝜏 otherwise.

Hence, the domains 𝐾𝜏 are either triangles, or triangles with one side replaced by an arc of 𝜕D. The set
{𝐾𝜏}𝜏∈𝒯𝑁

is a partition of D, in the sense that ⋃︁
𝜏∈𝒯𝑁

𝐾𝜏 = D.

With these definitions, let

𝒳𝑁 :=
{︀
𝜃 ∈ 𝐶0(D)

⃒⃒
𝜃|𝐾𝜏

is affine for each 𝜏 ∈ 𝒯𝑁

}︀
.

We have 𝒳𝑁 ⊂ 𝒯 1/2 = 𝐻1/2(D) (while this is not true of 𝒱𝑁 ).
For every element 𝜙 ∈ 𝒱𝑁 , we denote by 𝐸𝑁𝜙 the unique element of 𝒳𝑁 which coincides with 𝜙 on 𝑃𝑁 .

Lemma 4.2. One has the estimate

∀𝑁 ∈ N, ∀𝜙 ∈ 𝒱𝑁 , ‖𝜙− 𝐸𝑁𝜙‖2𝐿2(D) ≤ 𝐶ℎ𝑁‖𝜙‖2𝐿2(D).

Proof. We start by writing

‖𝜙− 𝐸𝑁𝜙‖2𝐿2(D) =
∑︁

𝑒∈𝜕𝒯𝑁

∫︁
𝑈𝑒

⃒⃒
𝜙|𝜏(𝑒)(𝑥)

⃒⃒2 d𝑥.

Fix an edge 𝑒 ∈ 𝜕𝒯𝑁 , and let 𝜏(𝑒) be the triangle of 𝒯𝑁 incident to 𝑒. Then 𝜙|𝜏(𝑒) can be written in the form

𝜙|𝜏(𝑒)(𝑥) = ⟨𝐴, 𝑥− 𝐶⟩+ 𝜙(𝐶)

where 𝐶 is the vertex of 𝜏 not in 𝑒 and the vector 𝐴 satisfies

‖𝐴‖2 ≤ 𝐶ℎ𝜏

⃦⃦
𝜙|𝜏(𝑒)

⃦⃦
∞

∆𝜏(𝑒)
≤ 𝐶

⃦⃦
𝜙|𝜏(𝑒)

⃦⃦
∞

ℎ𝜏(𝑒)
,
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where we used the shape-regularity assumption (48). Furthermore, one has the crude estimate ‖𝑥− 𝐶‖2 ≤ 2ℎ𝜏(𝑒)

for 𝑥 ∈ 𝑈𝑒 := 𝐾𝜏(𝑒) ∖ 𝜏(𝑒). Hence, we conclude

‖𝜙− 𝐸𝑁𝜙‖2𝐿2(D) ≤ 𝐶
∑︁

𝑒∈𝜕𝒯𝑁

⃦⃦
𝜙|𝜏(𝑒)

⃦⃦2

∞|𝑈𝑒|. (49)

We have |𝑈𝑒| ≤ 𝐶ℎ3
𝜏(𝑒), and, using a local inverse inequality,⃦⃦

𝜙|𝜏(𝑒)

⃦⃦2

∞ ≤ 𝐶ℎ−2
𝜏(𝑒)

∫︁
𝜏(𝑒)

|𝜙(𝑥)|2 d𝑥.

Injecting those estimates in equation (49) and using the global quasi-uniformity assumption (47) gives the result.
�

We have the following approximation property in 𝒳𝑁 .

Lemma 4.3. For each 𝑢 ∈ 𝐻1/2(D) and for each 𝑁 ∈ N, there exists 𝜃 ∈ 𝒳𝑁 satisfying

‖𝑢− 𝜃‖𝐿2(D) +
√︀
ℎ𝑁‖𝑢− 𝜃‖𝐻1/2(D) ≤ 𝐶

√︀
ℎ𝑁‖𝑢‖𝐻1/2(D).

This result is standard for polygonal meshes, and the extension to our context, where the mesh includes some
rounded triangles at the edge, presents no difficulty, so we omit the proof. The same goes for the next lemma:

Lemma 4.4. For all 𝜙 ∈ 𝒱𝑁 , one has √︀
ℎ𝑁‖𝜙‖𝐿2(D) ≤ 𝐶‖𝜙‖ ̃︀𝐻−1/2(D),

and for all 𝜃 ∈ 𝒳𝑁 , one has √︀
ℎ𝑁‖𝜃‖𝐻1/2(D) ≤ 𝐶‖𝜃‖𝐿2(D).

By a classical argument, a global inverse inequality in combination with an approximation property ensures
stability of the 𝐿2 projection operator in the energy norm (see e.g. the proof of Lem. 1 from [9]). Hence

Corollary 4.5. Let 𝜋𝑁 : 𝐿2(D) → 𝒳𝑁 be the 𝐿2 projection onto 𝒳𝑁 . Then there exists a constant 𝐶𝜋 > 0 such
that

∀𝑢 ∈ 𝐻1/2(D), ‖𝜋𝑁𝑢‖𝐻1/2(D) ≤ 𝐶𝜋‖𝑢‖𝐻1/2(D).

Lemma 4.6. There exists a constant 𝜎0 > 0 and an index 𝑁0 ∈ N such that for all 𝑁 ≥ 𝑁0,

𝜎(𝒱𝑁 ,𝒳𝑁 ) ≥ 𝜎0,

where 𝜎(𝒱𝑁 ,𝒳𝑁 ) is the inf-sup constant defined in equation (45).

Proof. Let 𝜙 ∈ 𝒱𝑁 and let 𝜃 = 𝜋𝑁𝑉 𝜙. One has ‖𝜃‖𝐻1/2 ≤ 𝐶𝜋‖𝜙‖ ̃︀𝐻−1/2(D) by Corollary 4.5. Moreover, one can
write ⟨︀

𝜙, 𝜃
⟩︀

=
⟨︀
𝑣𝑗 , 𝑉 𝜙

⟩︀
+
⟨︀
𝑣𝑗 , (𝐼𝑑 − 𝜋𝑁 )𝑉 𝜙

⟩︀
= ‖𝜙‖2̃︀𝐻−1/2 +

⟨︀
(𝐼𝑑 − 𝐸𝑁 )𝜙, (𝐼𝑑 − 𝜋𝑁 )𝑉 𝜙

⟩︀
,

using the orthogonality properties of 𝜋𝑁 . Hence, using Lemmas 4.2–4.4, we find⃒⃒⟨︀
𝜙, 𝜃

⟩︀⃒⃒
≥ ‖𝜙‖2̃︀𝐻−1/2 −

√
ℎ𝑁‖𝜙‖ ̃︀𝐻−1/2‖𝑉 𝜙‖𝐻1/2 =

(︁
1−

√︀
ℎ𝑁

)︁
‖𝜙‖2̃︀𝐻−1/2 .

Therefore, we have established ⃒⃒⟨︀
𝜙, 𝜃

⟩︀⃒⃒
‖𝜙‖ ̃︀𝐻−1/2‖𝜃‖𝐻1/2

≥ 1−
√
ℎ𝑁

𝐶𝜋

which proves the lemma since ℎ𝑁 → 0 when 𝑁 →∞. �
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4.4. Sesquilinear form 𝑝

We define a discrete weighted Laplacian 𝑋𝑁 : 𝒳𝑁 → 𝒳𝑁 in the following way: for 𝜃 ∈ 𝒳𝑁 , 𝑋𝑁𝜃 is the
element of 𝒳𝑁 satisfying

∀𝜃′ ∈ 𝒳𝑁 , (𝑋𝑁𝜃, 𝜃
′) 1

𝜔
= (𝑋𝜃, 𝜃′) 1

𝜔
=

1
4

∫︁
D

𝜃(𝑥)𝜃′(𝑥)
𝜔(𝑥)

d𝑥+
∫︁

D
𝜔(𝑥)∇𝜃(𝑥) · ∇𝜃′(𝑥) d𝑥.

This operator is self-adjoint and positive definite with respect to the scalar product (·, ·) 1
𝜔

. For 𝑠 ∈ [0, 1], let

‖𝜃‖2𝑁,𝑠 := (𝑋𝑠
𝑁𝜃, 𝜃) 1

𝜔

which plays the role of a discrete 𝒯 𝑠 norm on 𝒳𝑁 . Let 𝒳 𝑠
𝑁 denote the finite dimensional Hilbert space defined by

(𝒳𝑁 , ‖·‖𝑁,𝑠). Reasoning with eigenfunctions of 𝑋𝑁 in 𝒳𝑁 , it is easy to check that (𝒳 𝑠
𝑁 )0≤𝑠≤1 is an interpolation

scale. The identity operator is continuous (with norm 1) from 𝒳 𝑠
𝑁 to 𝒯 𝑠 for 𝑠 = 0 and 𝑠 = 1. By interpolation,

we deduce the following estimate:

Lemma 4.7. For all 𝑠 ∈ [0, 1], there holds

∀𝜃 ∈ 𝒳𝑁 , ‖𝜃‖𝒯 𝑠 ≤ ‖𝜃‖𝑁,𝑠.

On the other hand, the fact that the 𝒯 𝑠 norm controls the ‖·‖𝑁,𝑠 norm can be shown by exhibiting a stable
projection operator, as we show below. Here again, the argument is inspired by the proof of Lemma 1 from [9]:

Lemma 4.8. For each 𝑁 ∈ N, let Π𝑁 : 𝐿2
1
𝜔

→ 𝒳𝑁 be a linear operator satisfying the following assumptions:

(i) ∃𝐶0 > 0 : ∀𝑁 ∈ N, ∀𝑢 ∈ 𝒯 0, ‖Π𝑁𝑢‖𝒯 0 ≤ 𝐶0‖𝑢‖𝒯 0 ,
(ii) ∃𝐶1 > 0 : ∀𝑁 ∈ N, ∀𝑢 ∈ 𝒯 1, ‖Π𝑁𝑢‖𝒯 1 ≤ 𝐶1‖𝑢‖𝒯 1 ,
(iii) ∀𝜃 ∈ 𝒳𝑁 , Π𝑁𝜃 = 𝜃.

Then, for all 𝑠 ∈ [0, 1], there holds

∀𝜃 ∈ 𝒳𝑁 , ‖𝜃‖𝑁,𝑠 ≤ 𝐶1−𝑠
0 𝐶𝑠

1‖𝜃‖𝒯 𝑠 .

Proof. By (i) and (ii), it follow by interpolation that for all 𝑠 ∈ [0, 1]:

∀𝑢 ∈ 𝒯 𝑠, ‖Π𝑁𝑢‖𝑁,𝑠 ≤ 𝐶1−𝑠
0 𝐶𝑠

1‖𝑢‖𝒯 𝑠 .

The conclusion is immediate by restriction to 𝒳𝑁 , using (iii). �

It turns out that such an operator Π𝑁 is provided by the 𝐿2
1
𝜔

-orthogonal projection 𝜋𝑁,𝜔 onto 𝒳𝑁 . Obviously,

𝜋𝑁,𝜔 satisfies the properties (i) and (iii), while the 𝒯 1-stability (ii) is shown in Theorem 1 of [8]. Hence, we have
the following result:

Theorem 4.9. Define the sesquilinear form 𝑝 by

𝑝(𝜃, 𝜃′) :=
(︁
𝑋

1/2
𝑁 𝜃, 𝜃′

)︁
1
𝜔

. (50)

Then 𝑝 satisfies
∀𝜃 ∈ 𝒳𝑁 ‖𝜃‖2𝒯 1/2 ≤ 𝑝(𝜃, 𝜃) ≤ 𝐶𝜋‖𝜃‖2𝒯 1/2 .

Gathering the previous results, we have thus established the existence of a uniform bound on the condition
number of the preconditioned system ̂︀PV, with ̂︀P defined in equation (44) and 𝑝 defined by equation (50).

Corollary 4.10. There exist an index 𝑁0 > 0 and a constant 𝜅0 > 0 such that for all 𝑁 ≥ 𝑁0,

𝜅
(︁̂︀PV

)︁
≤ 𝜅0.



QUASI-LOCAL AND FREQUENCY-ROBUST PRECONDITIONERS 813

4.5. Computation of the preconditioner

For the basis {𝜙𝑁
𝑖 }1≤𝑖≤dim𝒱𝑁

of 𝒱𝑁 , we choose the classical nodal basis associated with the vertices of the
triangulation 𝒯𝑁 . Moreover, we put

𝜃𝑁
𝑖 := 𝐸𝑁𝜙

𝑁
𝑖 , 1 ≤ 𝑖 ≤ dim𝒳𝑁

and this in turn provides a basis for 𝒳𝑁 . Notice that both basis consist of real-valued functions, hence the
complex conjugation is irrelevant in what follows. With those definitions, the matrix D is sparse and well-
conditioned, so the evaluation of D−1 is cheap (in fact, D is nothing else than the standard mass matrix on the
triangulation 𝒯𝑁 of the polygonal domain 𝑃𝑁 ). To evaluate the preconditioner ̂︀P = D−1PD−𝑇 , the main task
is therefore to compute P.

To this aim, we first remark that the matrix M𝑋 of the linear operator 𝑋𝑁 : 𝒳𝑁 → 𝒳𝑁 in the basis
{𝜃𝑁

𝑖 }1≤𝑖≤dim𝒳𝑁
is given by

M𝑋 = I−1
1
𝜔

X 1
𝜔

where I 1
𝜔

and X 1
𝜔

are the (dim𝒳𝑁 )× (dim𝒳𝑁 ) weighted “mass” and “stiffness” matrices defined by

(︁
I 1

𝜔

)︁
𝑖𝑗

=
∫︁

D

𝜃𝑁
𝑖 (𝑥)𝜃𝑁

𝑗 (𝑥)
𝜔(𝑥)

d𝑥,
(︁
X 1

𝜔

)︁
𝑖𝑗

:=
1
4

∫︁
D

𝜃𝑁
𝑖 (𝑥)𝜃𝑁

𝑗 (𝑥)
𝜔(𝑥)

d𝑥+
∫︁

D
𝜔(𝑥)∇𝜃𝑁

𝑖 (𝑥) · ∇𝜃𝑁
𝑗 (𝑥) d𝑥,

for 𝑖, 𝑗 in {1, . . . ,dim(𝒳𝑁 )}. Those matrices can be computed using accurate quadrature rules for integrals of
the form ∫︁

𝐾𝜏

𝑓(𝑥)
𝜔(𝑥)

d𝑥, 𝜏 ∈ 𝒯𝑁 .

We spare the reader with the technical details about the construction of such quadratures, and instead refer to
our openly available implementation [7].

The matrix P is equal to
P = I 1

𝜔

√︀
M𝑋 = I 1

𝜔

√︁
I−1

1
𝜔

X 1
𝜔
. (51)

To evaluate the matrix square root, we use the approach of [22]. This involves a formula of the form

√︀
M𝑋 ≈

𝑄∑︁
𝑞=1

𝑎𝑞(𝐼𝑑 + 𝑏𝑞M𝑋)−1M𝑋 =
𝑄∑︁

𝑞=1

𝑎𝑞

(︁
I 1

𝜔
+ 𝑏𝑞X 1

𝜔

)︁−1

X 1
𝜔

for some carefully chosen coefficients 𝑎𝑞 and 𝑏𝑞, with 𝑏𝑞 > 0. It is shown in [22] that, under suitable hypotheses
on M𝑋 , the error in Froebenius norm of this approximation converges exponentially fast to 0 with respect to
𝑄. In the end, the approximation of P is thus given by

P ≈ I 1
𝜔

𝑄∑︁
𝑞=1

𝑎𝑞

(︁
I 1

𝜔
+ 𝑏𝑞X 1

𝜔

)︁−1

X 1
𝜔
. (52)

In all of our tests, we take 𝑄 = 5. The matrix I 1
𝜔

+ 𝑏𝑞X 1
𝜔

is sparse and symmetric positive definite. Hence, the
systems (︁

I 1
𝜔

+ 𝑏𝑞X 1
𝜔

)︁
𝑈 = 𝐿

can be solved efficiently. Furthermore, the evaluation of the sum can be done in parallel. This allows for a cheap
computation of the matrix-vector product 𝑋 ↦→ P𝑋.

The previous subsections provide a complete description of our approach for preconditioning the Galerkin
problem associated to the Laplace weakly-singular integral equation on uniform meshes. In the next sections,
we indicate briefly how we tackle hypersingular equations and non-zero wavenumbers.
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4.6. Extension to the hypersingular equation

Let us define
𝒲𝑁 := {𝜙 ∈ 𝒱𝑁 | 𝜙 = 0 on 𝜕D𝑁} ⊂ ̃︀𝐻1/2(D),

and let 𝒴𝑁 := 𝐸𝑁𝒲𝑁 . Let {𝜓𝑁
𝑖 }1≤𝑖≤dim𝒲𝑁

be the nodal basis of 𝒲𝑁 and let {𝜈𝑁
𝑖 }1≤𝑖≤dim𝒴𝑁

be the basis of
𝒴𝑁 defined by

𝜈𝑁
𝑖 = 𝐸𝑁𝜓

𝑁
𝑖 , 1 ≤ 𝑖 ≤ dim𝒴𝑁 .

Let ̃︀D be the matrix of the duality pairing on 𝒲𝑁 × 𝒴𝑁 , that is

̃︀D𝑖𝑗 :=
⟨
𝜓𝑁

𝑖 , 𝜈
𝑁
𝑗

⟩
, 1 ≤ 𝑖, 𝑗 ≤ dim𝒲𝑁 . (53)

Consider a well-chosen sesquilinear form 𝑞 : 𝒴𝑁 ×𝒴𝑁 , with the concrete definition given below. We then define

Q𝑖𝑗 := 𝑞
(︀
𝜈𝑁

𝑖 , 𝜈
𝑁
𝑗

)︀
, 1 ≤ 𝑖, 𝑗 ≤ dim𝒴𝑁 .

We propose to use the matrix ̂︀Q := ̃︀D−1Q̃︀D−𝑇 (54)

as a preconditioner for the Galerkin matrix W of the hypersingular operator on 𝒲𝑁 .
For the sesquilinear form 𝑞, we consider again another discrete weighted Laplacian 𝑌𝑁 : 𝒴𝑁 → 𝒴𝑁 such that

for each 𝜈 ∈ 𝒴𝑁 , 𝑌𝑁𝜈 is the element of 𝒴𝑁 satisfying

∀𝜈′ ∈ 𝒴𝑁 , (𝑌𝑁𝜈, 𝜈)𝜔 = (𝑌 𝜈, 𝜈′)𝜔 =
∫︁

D

(𝜔∇𝜔 𝜈(𝑥)) · (𝜔∇𝜔 𝜈′(𝑥))
𝜔(𝑥)

d𝑥.

Since 𝑌𝑁 is positive definite in the scalar product (·, ·)𝜔, we may define

𝑞(𝜈, 𝜈′) :=
(︁
𝑌
−1/2
𝑁 𝜈, 𝜈′

)︁
𝜔
, 𝜈, 𝜈′ ∈ 𝒴𝑁 .

Notice again that the matrix M𝑌 of the linear operator 𝑌𝑁 : 𝒴𝑁 → 𝒴𝑁 is given by

M𝑌 = I−1
𝜔 Y𝜔,

where I𝜔 and Y𝜔 are the (dim𝒴𝑁 )× (dim𝒴𝑁 ) weighted mass and stiffness matrices defined by

(I𝜔)𝑖𝑗 =
∫︁

D
𝜔(𝑥) 𝜈𝑁

𝑖 (𝑥) 𝜈𝑁
𝑗 (𝑥) d𝑥, (Y𝜔)𝑖𝑗 :=

∫︁
D

(︀
𝜔∇𝜔 𝜈𝑁

𝑖 (𝑥)
)︀
·
(︀
𝜔∇𝜔 𝜈𝑁

𝑗

)︀
(𝑥)

𝜔(𝑥)
d𝑥,

for 𝑖, 𝑗 in {1, . . . ,dim(𝑌𝑁 )}. Hence, there holds

Q = I𝜔

(︀
I−1
𝜔 Y𝜔

)︀−1/2
= I𝜔

(︀
I−1
𝜔 Y𝜔

)︀1/2(︀
I−1
𝜔 Y𝜔

)︀−1
= I𝜔

√︁
I−1
𝜔 Y𝜔Y−1

𝜔 I𝜔. (55)

For the efficient computation of the square root, the approach of the previous section also applies here, and
leads to an approximation of the form

Q ≈ I𝜔

𝑄∑︁
𝑞=1

𝑎𝑞(I𝜔 + 𝑏𝑞Y𝜔)−1I𝜔. (56)
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4.7. Positive wavenumber

When 𝑘 > 0, we proposed in Section 3.2 to use the operators

𝑃𝑘 =
1
𝜔

(︀
−𝜔 div𝜔∇− 𝑘2𝜔2

)︀ 1
2 , 𝑄𝑘 = 𝜔

(︀
−𝜔 div𝜔∇− 𝑘2𝜔2

)︀− 1
2 ,

as parametrices for 𝑉𝑘 and 𝑊𝑘, respectively. For the Galerkin discretization, we proceed by analogy with the two
previous sections. Namely, we introduce discrete weighted Laplacians 𝑋𝑘,𝑁 : 𝒳𝑁 → 𝒳𝑁 and 𝑌𝑘,𝑁 : 𝒴𝑁 → 𝒴𝑁

defined by the variational problems

∀𝜃, 𝜃′ ∈ 𝒳𝑁 , (𝑋𝑘,𝑁𝜃, 𝜃
′) 1

𝜔
= (𝑋𝑘𝜃, 𝜃

′) 1
𝜔
,

∀𝜈, 𝜈′ ∈ 𝑌𝑁 , (𝑌𝑘,𝑁𝜈, 𝜈
′)𝜔 = (𝑌𝑘𝜈, 𝜈

′)𝜔,

where

𝑋𝑘 = −𝜔 div𝜔∇− 𝑘2𝜔2 − 𝑖𝜀(𝑘)𝐼𝑑
𝑌𝑘 = −div𝜔∇𝜔 − 𝑘2𝜔2 − 𝑖𝜂(𝑘)𝐼𝑑,

for some functions 𝜀(𝑘) > 0 and 𝜂(𝑘) > 0 to be specified later, where 𝑖 is the imaginary unit and 𝐼𝑑 the identity
operator. In practice, this addition of a purely imaginary part to the spectrum turns out to be important for
the performance of the method. The idea is borrowed from [5], where a similar approach is used to improve the
approximation of a Dirichlet-to-Neumann operator in the spectral region corresponding to so-called “grazing
modes” (i.e. |𝜉| ∼ 𝑘). This idea of “shifting” the Laplacian for preconditioning is also encountered in related
contexts, see e.g. [16].

Clearly, 𝑋𝑘,𝑁 and 𝑌𝑘,𝑁 are diagonalizable since they are the sum of a Hermitian operator (in the scalar
products (·, ·) 1

𝜔
and (·, ·)𝜔, respectively) and a multiple of the identity. Hence, using functional calculus, we can

define 𝑓(𝑋𝑘,𝑁 ) and 𝑔(𝑌𝑘,𝑁 ) for any well-defined functions 𝑓 and 𝑔 over the spectrum of 𝑋𝑘,𝑁 and 𝑌𝑘,𝑁 . In this
sense, let

𝑝𝑘(𝜃, 𝜃′) :=
(︁

(𝑋𝑘,𝑁 )1/2
𝜃, 𝜃′

)︁
1
𝜔

, ∀(𝜃, 𝜃′) ∈ 𝒳𝑁 ×𝒳𝑁

𝑞𝑘(𝜈, 𝜈′) :=
(︁

(𝑌𝑘,𝑁 )−1/2
𝜈, 𝜈′

)︁
𝜔
, ∀(𝜈, 𝜈′) ∈ 𝒴𝑁 × 𝒴𝑁 .

The symbol
√
· here stands for the principal square root, with branch cut along the negative real axis, while for

any complex number 𝑧 ∈ C, 𝑧−1/2 is understood as
√
𝑧/𝑧.

Let P𝑘 and Q𝑘 be the matrices of size (dim𝒳𝑁 )× (dim𝒳𝑁 ) and (dim𝒴𝑁 )× (dim𝒴𝑁 ) respectively, defined
by

(P𝑘)𝑖𝑗 := 𝑝𝑘

(︀
𝜃𝑁

𝑖 , 𝜃
𝑁
𝑗

)︀
, 1 ≤ 𝑖, 𝑗 ≤ dim𝒳𝑁 , (57)

(Q𝑘)𝑖𝑗 := 𝑞𝑘
(︀
𝜈𝑁

𝑖 , 𝜈
𝑁
𝑗

)︀
, 1 ≤ 𝑖, 𝑗 ≤ dim𝒴𝑁 . (58)

Then, we define the preconditioners

̂︀P𝑘 := D−1P𝑘D−𝑇 , (59)̂︀Q𝑘 := ̃︀D−𝑇 Q𝑘D−1. (60)

The matrices M𝑋,𝑘 and M𝑌,𝑘 of 𝑋𝑘,𝑗 and 𝑌𝑘,𝑗 in the basis {𝜃𝑖}1≤𝑖≤dim𝒳𝑁
and {𝜈𝑖}1≤𝑖≤𝒴𝑁

are respectively
given by

M𝑋,𝑘 = I−1
1
𝜔

(︁
X 1

𝜔
− 𝑘2W 1

𝜔
− 𝑖𝜀(𝑘)I 1

𝜔

)︁
, M𝑌,𝑘 = I−1

𝜔

(︀
Y𝜔 − 𝑘2W𝜔 − 𝑖𝜂(𝑘)I𝜔

)︀
,
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where X 1
𝜔

, I 1
𝜔

, X𝜔 and I𝜔 are defined in the two previous subsections, and where W 1
𝜔

and W𝜔 are respectively
the (dim𝒳𝑁 )× (dim𝒳𝑁 ) and (dim𝒴𝑁 )× (dim𝒴𝑁 ) square matrices defined by(︁

W 1
𝜔

)︁
𝑖𝑗

=
∫︁

D
𝜔𝜃𝑁

𝑖 (𝑥)𝜃𝑁
𝑗 (𝑥) d𝑥, (W𝜔)𝑖𝑗 =

∫︁
D
𝜔(𝑥)3𝜈𝑁

𝑖 (𝑥)𝜈𝑁
𝑗 (𝑥) d𝑥.

We deduce that

P𝑘 = I 1
𝜔

√︂
I−1

1
𝜔

(︁
X 1

𝜔
− 𝑘2W 1

𝜔
− 𝑖𝜀(𝑘)I 1

𝜔

)︁
= 𝑖𝑘I 1

𝜔

√︁
𝐼𝑑 − I−1

1
𝜔

A(𝑘)/𝑘2,

where
A(𝑘) =

(︁
X 1

𝜔
+ 𝑘2

(︁
I 1

𝜔
−W 1

𝜔

)︁
− 𝑖𝜀(𝑘)I 1

𝜔

)︁
.

To evaluate the square-root, we can no longer resort to the method of [22] since the spectrum of the matrix
under the square root now occupies a region of the complex plane that is not confined to the positive real axis.
We instead follow [5] and use the rational approximation of the function 𝑋 ↦→ 𝑖𝑘

√︀
1−𝑋/𝑘2 root developed in

[32]. This again takes the form

𝑖𝑘
√︀

1−𝑋/𝑘2 ≈ 𝑎0(𝑘) +
𝑄∑︁

𝑞=1

𝑎𝑞(𝑘)𝑋
1 + 𝑏𝑞(𝑘)𝑋

for some explicit (complex) coefficients 𝑎𝑞(𝑘) and 𝑏𝑞(𝑘) (we use the value 𝜃 = 𝜋
3 , as advocated in [5], for the

branch-cut rotation angle). The domain of convergence and the accuracy of this approximation is discussed
in many places, for instance [30]. Choosing 𝜀(𝑘) > 0 ensures that the spectrum of A(𝑘) is within the zone of
convergence of this approximation. In practice, 𝑄 = 15 terms is more than enough in all of our tests. This leads
to

P𝑘 ≈ 𝑎0(𝑘)A(𝑘) + I 1
𝜔

𝑄∑︁
𝑞=1

𝑎𝑞(𝑘)
(︁
I 1

𝜔
+ 𝑏𝑞(𝑘)A(𝑘)

)︁−1

A(𝑘). (61)

For Q𝑘, we write

Q𝑘 = 𝑖𝑘I𝜔(M𝑌,𝑘)−1
√︁
𝐼𝑑 − I−1

𝜔 B(𝑘)/𝑘2

where
B(𝑘) = Y𝜔 + 𝑘2(I𝜔 −W𝜔)− 𝑖𝜂(𝑘)I𝜔.

This leads to the approximation

Q𝑘 ≈ I𝜔

(︀
B(𝑘)− 𝑘2𝐼𝑑

)︀−1

{︃
𝑎0(𝑘)B(𝑘) + I 1

𝜔

𝑄∑︁
𝑞=1

𝑎𝑞(𝑘)
(︁
I 1

𝜔
+ 𝑏𝑞(𝑘)B(𝑘)

)︁−1

B(𝑘)

}︃
. (62)

Those approximations of P𝑘 and Q𝑘 have exactly the same form as equations (52) and (56), so, for the same
reason, the matrix vector products 𝑋 ↦→ P𝑘𝑋 and 𝑋 ↦→ Q𝑘𝑋 can be evaluated cheaply. By trial and error, we
have found that the functions

𝜀(𝑘) = 0.45𝑘, 𝜂(𝑘) = 0.55𝑘

give good results, although, once again, we are unable to provide any theoretical foundation for those choices so
far. The fact that the formulas (61) and (62) are well defined, i.e. that the required matrix inverses exist is also
left open. This can probably be established by elementary arguments as in Lemma 8 of [3]. In our experiments,
the matrices to be inverted are always fairly well-conditioned.

Remark 4.11. In principle, one can generalize the analysis to different geometries, using the same ideas as
in Section 5 from [26]. That is, for a screen Γ that has a bi-Lipschitz parametrization by the unit disk D, one
may transform, via pullback, the integral equation on Γ into a new integral equation on D, with a perturbed
operator, which has nevertheless the same mapping properties as the usual BIOs on D (this follows from the 𝐿2

and 𝐻1 continuity of bi-Lipschitz pullbacks). The analysis then carries over without modifications.
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Remark 4.12. We have chosen to discretize all operators with continuous piecewise linear functions, including
the weakly singular operator 𝑉𝑘. In contrast, in [26], piecewise constant functions are used for the weakly
singular operator, and the corresponding preconditioner is discretized over a set of piecewise linear functions
on the barycentric refinement, with suitable modifications at vertices near the boundary of the screen (see
Sect. 4.1.1 of the above reference).

The main reason that we see for sticking to piecewise constant functions instead of continuous piecewise
linear functions is that the approximation properties of the latter in ̃︀𝐻−1/2(D) have not been studied to the
best of our knowledge (the standard analysis is for discontinuous piecewise polynomials, see e.g. [40]).

However, when the right-hand side of the weakly singular integral equation is smooth, which is the case e.g.
for scattering problems, the solutions to the integral equations are in 𝐶∞(D) with a square-root singularity
at the edge. It is then likely that continuous linear functions do just as well as discontinuous piecewise linear
functions to approximate such a density2. In this case, this would mean that the convergence in ℎ of the Galerkin
method is faster for piecewise linear functions than for piecewise constant functions (especially for a refined
mesh, see [43], Sect. 3.2). We also note that the vector space of continuous piecewise linear functions on the
screen is typically of smaller dimension than that of piecewise constant functions (as meshes of disks have about
twice as many elements as vertices). With those ideas in mind, piecewise linear functions seem to be quite a
good choice for discretization in practice.

5. Numerical experiments

5.1. Overview

We now present some numerical evidence to support the use of the preconditioners ̂︀P𝑘 and ̂︀Q𝑘, defined in
equations (44), (59), (54) and (60), for the linear systems (37) and (38).

We present results on quasi-uniform meshes as well as on graded meshes, with a grading parameter of 𝛽 = 2.
For both types of meshes, we use a sequence of 9 refinement levels leading to meshes with over a million vertices.
The main characteristics of those meshes are summarized in Tables 1 and 2. For the graded mesh, we report the
measure in degree of the smallest angle between two edges of a triangle in the mesh. This is an indicator of the
shape-regularity of this sequence of meshes. The uniform and graded meshes of levels 4 and 5 are represented in
Figures 1 and 2, respectively. We remind the reader that, due to the singularity of the jumps 𝜆 and 𝜇 associated
to the edge of D, graded meshes are in theory preferable to uniform meshes in our context to speed-up the
convergence of the Galerkin method [27].

To calculate the Galerkin matrices of the layer potentials, we use the Matlab toolbox GypsiLab [2]. The
singular integrals are evaluated via semi-analytic methods. On fine meshes, the Galerkin matrices V𝑘 and W𝑘

do not fit in memory. In those cases, we use compression by the Fast Multipole Method (both for 𝑘 = 0 and
𝑘 > 0) [20,38], with the open-source Matlab wrappers of FMMLIB3D [17].

In all cases, the linear systems as well as their preconditioned versions are solved using GMRES [39], restarted
every 20 iterations, with a tolerance 𝜀GMRES = 10−6. We interrupt GMRES if it did not converge after 200
iterations (i.e. 10 outer iterations each consisting of 20 inner iterations). This rather low threshold allows for
all the numerical tests presented below to be reproducible in around 3 days of computation.

For 𝑘 = 0, and when the full matrices fit in memory (levels 1–4), we report the condition number 𝜅 of both
the linear systems matrices and their preconditioned versions. In this case, the Galerkin matrices and their
preconditioners are symmetric, so 𝜅 governs the speed of convergence of the GMRES iteration.

For large matrices (levels 5–9), computing the condition number is no longer feasible. Besides, for 𝑘 > 0,
the Galerkin matrices and their preconditioners are not normal, hence the condition number cannot be used to
predict the behavior of GMRES (see e.g. [33]). Hence, in this case, we directly report the number of iterations
needed in GMRES. The time it takes to solve iteratively the linear systems highly depends on the machine

2Recent papers e.g. [44] have emphasized the role of broken Bramble–Hilbert lemmas to prove that continuous Lagrange piecewise
polynomials have the same approximation power as discontinuous ones. This analysis is only available for second order elliptic PDEs
for now.
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Table 1. Characteristics of the uniform meshes used in the experiments. The parameter ℎmin

(resp. ℎmax) is the length of the shortest (resp. longest) edge in the mesh.

Refinement
level

ℎmax ℎmin
Number of
vertices

Number of
triangles

1 0.47 0.29 40 59
2 0.23 0.14 136 232
3 0.13 0.079 421 770
4 0.067 0.041 1462 2790
5 0.034 0.021 5431 10 602
6 0.017 0.011 20 907 41 303
7 8.7e−3 5.4e−3 83 038 165 056
8 4.4e−3 2.7e−3 328,935 655 838
9 2.2e−3 1.3e−3 1 313 387 2 622 713

Table 2. Characteristics of the graded meshes used in the experiments. The parameter ℎmin

(resp. ℎmax) is the length of the shortest (resp. longest) edge in the mesh, while 𝜃min is the
measure in degrees of the smallest angle between two edges of a triangle of the mesh.

Refinement
level

ℎmax ℎmin 𝜃min
Number of
vertices

Number of
triangles

1 0.75 0.25 9.0 32 37
2 0.47 0.0625 8.4 153 204
3 0.34 0.020 8.2 541 773
4 0.21 6.9e−3 8.2 1815 2724
5 0.11 2.1e−3 8.2 6983 10 923
6 0.068 6.25e−4 8.2 26 000 41 945
7 0.037 1.8e−4 8.2 99 418 164 428
8 0.020 5.3e−5 8.2 376 760 635 589
9 0.011 1.5e−05 8.2 1 455 784 2 496 568

used for the calculations. Nevertheless, we still report timings for our machine in order to give a rough idea of
the speedups that can be expected when using our method. When GMRES does not reach the tolerance after
200 iterations, we report the time taken to perform those 200 iterations, although the system should not be
considered as being solved. All floating point numbers are rounded to 2 significant digits.

When the full matrices fit in memory, the computation of the matrix square roots are done using the Matlab
function sqrtm. For larger matrices and when 𝑘 = 0, we use the approximations (52) and (56) based on
[22]. For 𝑘 > 0, we use instead the approximations (61) and (62) based on the rational approximation of
𝑋 ↦→ 𝑖𝑘

√︀
1−𝑋/𝑘2 from [32].

For the matrix W𝑘, we compare the performance of our square-root preconditioner with the Calderón pre-
conditioner [11]3 ̂︀C𝑘 := ̃︀D−𝑇 ̃︀V𝑘

̃︀D−1, (63)

where ̃︀V𝑘 is the Galerkin matrix of the weakly singular operator over the space𝒲𝑁 , that is, the space of piecewise
linear elements on the triangulation 𝒯𝑁 with Dirichlet conditions on 𝜕𝒯𝑁 . The Calderón preconditioner turns
out to be particularly efficient in our tests, probably due to the fact that the screen D is flat. Indeed, because of
this, the double layer potential vanishes on D, so that, sloppily speaking, i.e. pretending that D were a smooth

3We could also consider a Calderón preconditioner for V𝑘, but this is slightly less straightforward, since 𝑊 has a non-trivial
kernel on the finite-element space of piecewise linear functions with no Dirichlet conditions on 𝜕D.
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Figure 1. Uniform meshes of levels 𝑛 = 4 (left) and 𝑛 = 5 (right).

Figure 2. Non-uniform meshes of levels 𝑛 = 5 (left) and 𝑛 = 6 (right).

closed surface in R3, the Calderón formula ([34], Thm. 3.1.3) would read

𝑉𝑘𝑊𝑘 = 𝑊𝑘𝑉𝑘 =
1
4
𝐼𝑑.

5.2. Results

We now report and discuss our numerical results. They are obtained on a computer running on 8 cores with
multi-threading, with a clock rate of 3.8 GHz, and with 32 GB of RAM.

Laplace equation on uniform meshes

In Tables 3 and 4 below, we report the performance of ̂︀P as a preconditioner for V on a sequence of uniform
meshes.

Results for the Laplace hypersingular equation on uniform meshes are reported in Tables 5 and 6.
Those results confirm the expectations that ̂︀P and ̂︀Q are excellent preconditioners for V and W on uniform

meshes. For levels 1–4, they lead to condition numbers below 2, and for levels 5–9, the number of GMRES
iterations required to reach the tolerance never exceeds 7. Table 5 highlights the difference with the Calderon
preconditioner ̂︀C, which is known to suffer form the so-called “duality mismatch” (the fact that 𝐻1/2(D) and
𝐻−1/2(D) are not dual to each other). This property translates into a slow increase in the condition number,
see e.g. [41], Proposition 3 of [11]. Despite this, the resolution time with the Calderón preconditioner is roughly
similar to that of our square-root preconditioners in our setting, with a slight advantage for the former.
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Table 3. Condition numbers of the matrices V, D−1V (mass matrix preconditioner) and ̂︀PV
(square-root preconditioner) assembled on uniform meshes.

Refinement
level

𝜅(V) 𝜅(D−1V) 𝜅( ̂︀𝑃V)

1 82.9215 13.1953 1.3956
2 184.2518 26.3687 1.411
3 355.0135 48.6967 1.4514
4 686.7896 93.3797 1.4814

Table 4. Number of iterations 𝑛 and time 𝑡 in seconds needed for the iterative resolution
of the hypersingular equation (37) for 𝑘 = 0, on uniform meshes, with the right-hand side
𝐹𝑁 corresponding to the function 𝑓(𝑥) = 1/𝜔(𝑥) in equation (41). Columns 2–3 and 4–5
correspond to the resolution without preconditioner, and with our square-root preconditioner̂︀P, respectively.

Refinement
level

No prec.
Square-root
prec.

𝑛 𝑡 𝑛 𝑡

5 128 9.0 6 2.0
6 >200 45 6 6.0
7 >200 180 6 26
8 >200 730 6 130
9 >200 2.9e3 7 785

Table 5. Condition numbers of the matrices W, ̂︀CW (Calderón preconditioner) and ̂︀QW
(square-root preconditioner), assembled on uniform meshes.

Refinement
level

𝜅(W) 𝜅
(︁
D̃−1W

)︁
𝜅
(︁
̂︀𝐶W
)︁

𝜅
(︁
̂︀𝑄W
)︁

1 2.4226 6.5229 1.8971 1.3051
2 4.5353 13.8201 2.4223 1.4149
3 8.3698 25.5514 3.1051 1.488
4 16.0808 49.177 4.2366 1.5601

Laplace equation on graded meshes

We report in Tables 7 and 8 the preconditioning performance for the weakly singular operator on graded
meshes.

From those results, it seems that a result such as Theorem 4.1 is not verified on our sequence of graded
meshes, as the condition number of ̂︀PV now seems to increase with mesh refinement. The condition number
improvement nevertheless remains drastic, and the number of GMRES iterations required to solve the system
on finer levels remains small, as shown in Table 8.

Notice that without preconditioner, the desired tolerance is never reached with 200 iterations. The weakly
singular operator is so ill-conditioned on the graded meshes that the GMRES residuals almost stagnate. On the
finest levels, the required number of iterations is probably much larger than 200, so the speedup allowed by our
preconditioners is underestimated by the figures of Table 8.
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Table 6. Number of iterations 𝑛 and time 𝑡 in seconds needed for the iterative resolution
of the hypersingular equation (38) for 𝑘 = 0, on uniform meshes, with the right-hand side
𝐺𝑁 corresponding to the function 𝑔(𝑥) = 𝜔(𝑥) in equation (41). Columns 2–3, 4–5 and 6–7
correspond to the resolution without preconditioner, with the Calderón preconditioner ̂︀C, and
with our square-root preconditioner ̂︀Q, respectively.

Refinement
level

No prec.
Calderón
prec.

Square-root
prec.

𝑛 𝑡 𝑛 𝑡 𝑛 𝑡

5 22 3.4 7 2.2 5 2.2
6 30 15 6 6.8 5 6.8
7 57 110 6 29 5 29
8 107 850 7 140 5 140
9 183 6.0e3 7 650 5 740

Table 7. Condition numbers or the matrices V, D−1V (mass-matrix preconditioner), and ̂︀PV
(square-root preconditioner) assembled on graded meshes.

Refinement
level

𝜅(V) 𝜅
(︀
D−1V

)︀
𝜅
(︁
̂︀𝑃V
)︁

1 700 20 2.4
2 1.6e4 99 3.2
3 1.7e5 330 4.8
4 1.5e6 1.0e3 9.6

Table 8. Number of iterations 𝑛 and resolution time 𝑡 in seconds for the iterative resolution
of the weakly singular equation (37) for 𝑘 = 0 on graded meshes, with the right-hand side
𝐹𝑁 corresponding to the function 𝑓(𝑥) = 1/𝜔(𝑥) in equation (41). Columns 2–3 and 4–5
correspond to the resolution without preconditioner, and with our square-root preconditioner̂︀P, respectively.

Refinement
level

No prec.
Square-root
prec.

𝑛 𝑡 𝑛 𝑡

5 >200 14 7 2.3
6 >200 50 8 7.1
7 >200 200 8 28
8 >200 750 8 120
9 >200 3.1e3 8 530

In Tables 9 and 10, we report the results concerning the hypersingular operator.
In contrast to the case of the weakly-singular equation, the preconditioner 𝑄̂ seems to lead to a uniformly

bounded condition number even on graded meshes. The difference with the Calderón is again noticeable, and
this time, it is also reflected in the resolution time. On the finest graded mesh, the square-root preconditioner
speeds up the resolution by a factor 2 compared to the Calderón preconditioner, and allows to solve a problem
on a mesh with 2.5 millions of elements in less than 10 min (while almost 2 h without preconditioner weren’t
enough to reach the desired tolerance).
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Table 9. Condition numbers or the matrices W, ̂︀CW (Calderón preconditioner), and ̂︀QW
(square-root preconditioner) assembled on graded meshes.

Refinement
level

𝜅(W) 𝜅
(︁
̂︀𝑄W
)︁

𝜅
(︁
̂︀𝐶W
)︁

1 1.4 1.2 1.7
2 3.3 1.3 2.5
3 7.45 1.4 3.3
4 15 1.4 4.1

Table 10. Number of iterations 𝑛 and time 𝑡 in seconds needed for the iterative resolution of
the hypersingular equation (38) for 𝑘 = 0, on graded meshes, with the rhs 𝐺𝑁 corresponding
to the function 𝑔(𝑥) = 𝜔(𝑥) in equation (41). Columns 2–3, 4–5 and 6–7 correspond to the
resolution without preconditioner, with the Calderón preconditioner 𝐶, and with our square-
root preconditioner 𝑄̂, respectively.

Refinement
level

No prec.
Calderón
prec.

Square-root
prec.

𝑛 𝑡 𝑛 𝑡 𝑛 𝑡

5 38 5.6 9 2.5 5 2.0
6 58 31.7 10 10 5 6.0
7 86 180 10 41 5 24
8 131 1.1e3 11 180 5 100
9 >200 6.5e3 12 820 5 430

Table 11. Number of iterations 𝑛 and resolution time 𝑡 in seconds for the iterative resolution of
the weakly singular equation (37) on uniform meshes, with the right-hand side 𝐹𝑁 corresponding
to the Dirichlet trace of the plane wave (64). Columns 2–3 and 4–5 correspond to the resolution
without preconditioner, and with our square-root preconditioner ̂︀P𝑘, respectively.

Refinement
level

𝑘
No prec.

Square-root
prec.

𝑛1 𝑡1 𝑛2 𝑡2

1 1.1 20 0.1 8 0.8
2 2.1 40 0.43 8 1.2
3 3.9 69 1.45 7 1.4
4 7.4 124 8.4 8 2.3
5 14.5 167 47 8 5.6
6 29 >200 220 7 19.2
7 57 >200 900 7 85.5
8 115 >200 3.65e3 8 488
9 228 >200 1.5e4 10 3.55e3
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Table 12. Number of iterations 𝑛 and resolution time 𝑡 in seconds for the iterative resolution of
the hypersingular equation (38) on uniform meshes, with the right-hand side 𝐺𝑁 corresponding
to the Neumann trace of the plane wave (64). Columns 2–3, 4–5 and 6–7 correspond to the
resolution without preconditioner, with the Calderón preconditioner ̂︀C𝑘 and with our square-
root preconditioner ̂︀Q𝑘, respectively.

Refinement
level

𝑘
No prec.

Square-root
prec.

Calderón
prec.

𝑛1 𝑡1 𝑛2 𝑡2 𝑛3 𝑡3

1 1.1 7 0.1 6 0.8 6 0.1
2 2.1 11 0.4 6 1.2 7 0.4
3 3.9 20 1.3 7 1.7 8 0.8
4 7.4 43 8.9 7 3.3 9 2.9
5 14.5 51 44 7 9.9 8 11
6 29 59 200 7 38.5 8 44
7 57 69 950 8 190 7 162
8 115 81 4.5e3 9 985 7 670
9 228 94 2.1e4 12 6.4e3 7 2.8e3

Helmholtz equation on uniform meshes

We now turn our attention to the case of a non-zero wavenumber 𝑘 > 0. In what follows, we have chosen
𝑘 = 1/(2ℎmax) for the uniform meshes, and 𝑘 = 1/ℎmax for the graded meshes, where ℎmax is the length of the
longest edge in the mesh. With those choices, the mesh accurately represents the wavelengths as small as 2𝜋/𝑘.
In Table 11 below, we report the preconditioning performance for the weakly singular operator. We consider
the scattering by D of a plane wave of wavenumber 𝑘 illuminating the disk with an angle 𝜋/4 with respect to
the vertical axis. In other words, the right-hand sides of equations (37) and (38) are chosen as Dirichlet and
Neumann traces, respectively, of the plane wave

∀𝑥 ∈ R3, 𝑢inc(𝑥) := 𝑒
𝑖𝑘

𝑥1+𝑥3√
2 . (64)

We report the results on uniform meshes in Table 11 (weakly-singular operator) and Table 12 (hypersingular
operator) below.

The results of this section demonstrate the robustness of our preconditioners with respect to the wavenumber
on uniform meshes. However, in Table 12, we see that the Calderón preconditioner still performs better than
our square-root preconditioner, both from the point of view of resolution time and number of iterations.

Helmholtz equation on uniform meshes

We now report results for the Helmholtz equation on graded meshes (Tabs. 13 and 14).
The performance of our preconditioners on graded meshes seems to be even better than on uniform meshes.

In this case, our square-root preconditioner outperforms the Calderón preconditioner.

Different corrections

Finally, we would like to illustrate the practical importance of the corrective term −𝑘2𝜔2 in the definitions 𝑃𝑘

and 𝑄𝑘. For this, we compare our preconditioner 𝑃𝑘 with three alternatives. The first one is ̂︀P (the preconditioner
used for 𝑘 = 0). The second and third ones are based on the operators

𝑇𝑘 :=
1
𝜔

(︀
−𝜔 div𝜔∇− 𝑘2Id

)︀ 1
2 , Λ𝑘 :=

(︀
−∆− 𝑘2Id

)︀ 1
2 (65)
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Table 13. Number of iterations 𝑛 and resolution time 𝑡 in seconds for the iterative resolution of
the weakly singular equation (37) on graded meshes, with the right-hand side 𝐹𝑁 corresponding
to the Dirichlet trace of the plane wave (64). Columns 2–3 and 4–5 correspond to the resolution
without preconditioner, and with our square-root preconditioner ̂︀P𝑘, respectively.

Refinement
level

𝑘
No prec.

Square-root
prec.

𝑛 𝑡 𝑛 𝑡

1 1.3 17 0.1 8 0.8
2 2.1 >200 1.3 8 0.9
3 2.9 >200 4.0 8 1.5
4 4.7 >200 9.4 8 2.2
5 8.5 >200 41 8 4.6
6 15 >200 160 8 16
7 27 >200 630 8 64
8 50 >200 2.4e3 8 280
9 91 >200 9.5e3 9 1.3e3

Table 14. Number of iterations 𝑛 and resolution time 𝑡 in seconds for the iterative resolution
of the hypersingular equation (38) on graded meshes, with the rhs 𝐺𝑁 corresponding to the
Neumann trace of the plane wave (64). Columns 2–3, 4–5 and 6–7 correspond to the resolu-
tion without preconditioner, with the Calderón preconditioner ̂︀C𝑘 and with our square-root
preconditioner ̂︀Q𝑘, respectively.

Refinement
level

𝑘
No prec.

Calderón
prec.

Square-root
prec.

𝑛 𝑡 𝑛 𝑡 𝑛 𝑡

1 1.3 5 0.1 4 0.1 5 0.6
2 2.1 12 0.1 8 0.3 6 0.9
3 2.9 20 1.0 9 0.9 6 1.6
4 4.7 36 5.0 11 2.4 6 2.4
5 8.5 84 51 11 10 7 7.4
6 15 137 320 12 43 7 26
7 27 >200 1.9e3 12 170 7 110
8 50 >200 7.2e3 12 670 8 480
9 91 >200 2.9e4 12 2.7e3 9 2.3e3

The operators 𝑇𝑘 and Λ𝑘 are converted into preconditioners ̂︀T𝑘 and ̂︀Λ𝑘 for V𝑘 in the same way as ̂︀P𝑘 is
derived from P𝑘, see Section 4. Using ̂︀P in place of ̂︀P𝑘 amounts to ignoring the 𝑘-dependency of V𝑘. The
preconditioner ̂︀T𝑘 is a naive attempt to include a 𝑘-dependency in the preconditioner. Finally, the preconditioner̂︀Λ𝑘 corresponds to the approximation of the DtN map from [5] for a smooth surface. Using this preconditioner
amounts to ignoring the edge singularity of the screen by formally putting 𝜔 ≡ 1.

We report the performance of those preconditioners on uniform and graded meshes in Table 15.

The results clearly show that, among other attempts, our square-root preconditioner is the most robust both
to the increase of the condition number and to mesh grading.
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Table 15. Number of iterations 𝑛 for the iterative resolution of the weakly-singular equation
(38) on uniform meshes (left) and graded meshes (right), with the right-hand side 𝐹𝑁 corre-
sponding to the Dirichlet trace of the plane wave (64). In each table, columns 3, 4, 5 and 6
correspond to the resolution with the preconditioners, ̂︀P𝑘, ̂︀P, ̂︀T𝑘 and ̂︀Λ𝑘, respectively.

Uniform meshes

̂︀P𝑘
̂︀P ̂︀T𝑘

̂︀Λ𝑘

Level 𝑘 𝑛 𝑛 𝑛 𝑛

1 1.1 8 7 10 10
2 2.1 8 8 15 11
3 3.9 7 11 26 12
4 7.4 8 21 44 13
5 14.5 8 51 68 15
6 29 7 87 95 17
7 57 7 157 128 20
8 115 8 >200 152 25

Graded meshes

̂︀P𝑘
̂︀P ̂︀T𝑘

̂︀Λ𝑘

Level 𝑘 𝑛 𝑛 𝑛 𝑛
1 1.3 8 8 10 10
2 2.1 8 10 16 15
3 2.9 8 11 20 19
4 4.7 8 14 30 28
5 8.5 8 35 51 38
6 15 8 53 78 56
7 27 8 99 116 89
8 50 8 163 >200 143

Appendix A. Proof of Theorem 2.13

We remark that the identity on associated Legendre polynomials 𝑃𝑚
𝑙 (see [1], Eq. (8.5.3))

∀𝑡 ∈ R, 𝑡𝑃𝑚
𝑙 (𝑡) =

1
(2𝑙 + 1)

(︀
(𝑙 + 1−𝑚)𝑃𝑚

𝑙+1(𝑡) + (𝑙 +𝑚)𝑃𝑚
𝑙−1(𝑡)

)︀
,

permits us to deduce a simple algebraic property that connects the functions (𝑇𝑚
𝑙 ) and (𝑈𝑚

𝑙 ).

Lemma A.1. For all (𝑙,𝑚) ∈ Λ there holds

𝑇𝑚
𝑙 = 𝑗𝑚

𝑙+1𝑈
𝑚
𝑙 + 𝑗𝑚

𝑙 𝑈
𝑚
𝑙−2 (A.1)

𝑈𝑚
𝑙 =

𝑗𝑚
𝑙+2𝑇

𝑚
𝑙+2 + 𝑗𝑚

𝑙+1𝑇
𝑚
𝑙

𝜔2
(A.2)

where

𝑗𝑚
𝑙 =

⎧⎪⎨⎪⎩
0 if 𝑙 = 0,√︂
𝑙2 −𝑚2

4𝑙2 − 1
otherwise,

(A.3)

and taking the convention 𝑈𝑚
−2 = 𝑈𝑚

−1 = 0 in equation (A.1).

We omit the proof of this lemma which is a simple calculation. We deduce

Lemma A.2. For all 𝑠 ≥ 0, 𝒯 𝑠 is continuously embedded in 𝒰𝑠.

Proof. We define a map 𝐼 : 𝒯 → 𝒰 by

𝐼

⎛⎝ ∑︁
(𝑙,𝑚)∈Λ

𝑢̂𝑚
𝑙 𝑇

𝑚
𝑙

⎞⎠ =
∑︁

(𝑙,𝑚)∈Λ

(︀
𝑗𝑚
𝑙+1𝑢̂

𝑚
𝑙 + 𝑗𝑚

𝑙+2𝑢̂
𝑚
𝑙+2

)︀
𝑈𝑚

𝑙 ,

with the coefficients 𝑗𝑚
𝑙 given in equation (A.3). The map 𝐼 is continuous from 𝒯 𝑠 to 𝒰𝑠 for all 𝑠 ∈ R since for all

(𝑙,𝑚) ∈ Λ, one has |𝑗𝑚
𝑙 | ≤ 1. Moreover, by equation (A.1), 𝐼 coincides with the identity operator Id : 𝐿2

1
𝜔

→ 𝐿2
𝜔

on the dense subset of 𝐿2
1
𝜔

consisting of finite linear combinations of the functions {𝑇𝑚
𝑙 }(𝑙,𝑚)∈Λ. Hence, 𝐼𝑢 = 𝑢

for all 𝑢 ∈ 𝐿2
1
𝜔

⊃ 𝒯 𝑠, and the result follows. �
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Next, we establish continuous inclusions 𝒰𝑠 ⊂ 𝒯 𝑠−1 for 𝑠 ≥ 1. This turns out to be more delicate: roughly
speaking, we need to proceed to the inversion of the formula (A.1) expressing 𝑇𝑚

𝑙 in terms of 𝑈𝑚
𝑙 and 𝑈𝑚

𝑙−2,
with careful estimation of the underlying coefficients. We start with the following technical lemma:

Lemma A.3. (1) Let (𝑙,𝑚) ∈ Λ. Then

𝑈𝑚
𝑙 =

𝑙∑︁
𝑘=|𝑚|

𝑙−𝑘 even

(−1)
𝑙−𝑘
2 𝜅𝑙,𝑚,𝑘𝑇

𝑚
𝑘 (A.4)

where the coefficients 𝜅𝑙,𝑚,𝑘 are defined whenever |𝑚| ≤ 𝑘 ≤ 𝑙 and 𝑙, 𝑘 and 𝑚 all share the same parity, as
follows.
– For all (𝑙,𝑚) ∈ Λ,

𝜅𝑙,𝑚,𝑙 =
1
𝑗𝑚
𝑙+1

· (A.5)

– For all |𝑚| ≤ 𝑘 ≤ 𝑙 such that 𝑘, 𝑙 and 𝑚 have the same parity,

𝜅𝑙+2,𝑚,𝑘 =
𝑗𝑚
𝑙+2

𝑗𝑚
𝑙+3

𝜅𝑙,𝑚,𝑘. (A.6)

Thus,

𝜅𝑙,𝑚,𝑘 =

⎛⎜⎝ 𝑙∏︁
𝜈=𝑘+2
𝑙−𝜈 even

𝑗𝑚
𝜈

⎞⎟⎠
⎛⎜⎝ 𝑙∏︁

𝜈=𝑘
𝑙−𝜈 even

𝑗𝑚
𝜈+1

⎞⎟⎠
−1

. (A.7)

(2) For all |𝑚| ≤ 𝑘 ≤ 𝑙 − 2 with 𝑘, 𝑙,𝑚 of the same parity, there holds

𝜅𝑙,𝑚,𝑘 =
𝑗𝑚
𝑘+2

𝑗𝑚
𝑘+1

𝜅𝑙,𝑚,𝑘+2. (A.8)

(3) These coefficients satisfy

𝜅𝑙,𝑚,𝑘 ≤

{︃
1

𝑗𝑚
𝑘+1

if 𝑚 ̸= 0,

2 if 𝑚 = 0.

Proof. The formula (A.4) is readily obtained by induction by combining equation (A.1) with equa-
tions (A.5) and (A.6). The formula (A.7) can be easily proven by induction from equations (A.5) and (A.6).
From (A.7), (A.8) follows immediately. Then, writing

(︀
𝑗𝑚
𝑙+1

)︀2 =
(𝑙 + 1)2 −𝑚2

(2𝑙 + 1)(2𝑙 + 3)

=
1
4

+
(︂

1
4
−𝑚2

)︂
1

(2𝑙 + 1)(2𝑙 + 3)

defined when (𝑙 + 1) ≥ |𝑚|, we notice that for 𝑚 ̸= 0 (resp. 𝑚 = 0), the sequence (𝑗𝑚
𝑙+1)𝑙 increases (resp.

decreases) with respect to 𝑙. We deduce, since

𝜅𝑙+2,𝑚,𝑘

𝜅𝑙,𝑚,𝑘
=
𝑗𝑚
𝑙+2

𝑗𝑚
𝑙+3

,
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that for 𝑚 ̸= 0, the sequence (𝜅𝑙,𝑚,𝑘)𝑙 decreases with respect to 𝑙, and thus

𝜅𝑙,𝑚,𝑘 ≤ 𝜅𝑘,𝑚,𝑘 =
1

𝑗𝑚
𝑘+1

·

For 𝑚 = 0, we can write

𝜅𝑙,0,𝑘 =
1
𝑗0𝑙+1

(︂
𝑗0𝑙
𝑗0𝑙−1

)︂
· · ·
(︂
𝑗0𝑘+2

𝑗0𝑘+1

)︂
≤ 1
𝑗0𝑙+1

≤ lim
𝑙→∞

1
𝑗0𝑙+1

= 2.

�

We further need two intermediate results. The first is a more explicit estimate of 𝜅𝑙,𝑚,𝑘 presented in the
following lemma.

Lemma A.4. For all integers such that 𝜅𝑙,𝑚,𝑘 is defined, there holds

𝜅𝑙,𝑚,𝑘 ≤ 2

√︀
(𝑙 + 1)(𝑙 + 2)−𝑚2

𝑙 + 1− |𝑚|
· (A.9)

Proof. Only the case 𝑚 ̸= 0 deserves attention. By Lemma A.3 above, 𝜅𝑙,𝑚,𝑘 ≤ 1
𝑗𝑚
𝑘+1

≤ 1
𝑗𝑚
𝑙+1

since 𝑗𝑚
𝑙 is increasing

with respect to 𝑙. We then write

1
𝑗𝑚
𝑙+1

=

√︃
(2𝑙 + 1)(2𝑙 + 3)
(𝑙 + 1)2 −𝑚2

≤
2(𝑙 + 1)

√︀
(𝑙 + 1)2 −𝑚2

(𝑙 + 1)2 −𝑚2
≤ 2

√︀
(𝑙 + 1)2 −𝑚2

𝑙 + 1− |𝑚|

from which (A.9) follows. �

Second, we need an adjoint Cesarò estimate. It is well-known that the Cesarò operator𝐾 defined for 𝑣 ∈ 𝑙2(N*)
by

(𝐾𝑣)𝑛 =
1
𝑛

𝑛∑︁
𝑘=1

𝑣𝑘,

is continuous in 𝑙2(N*). Therefore, its adjoint 𝐾*, defined by

(𝐾*𝑣)𝑛 =
+∞∑︁
𝑘=𝑛

𝑣𝑘

𝑘
,

is also continuous. Hence, there exists a constant 𝐶𝐾 > 0 such that for all 𝑣 ∈ 𝑙2(N), there holds

+∞∑︁
𝑛=1

⃒⃒⃒⃒
⃒
+∞∑︁
𝑘=𝑛

𝑣𝑘

𝑘

⃒⃒⃒⃒
⃒
2

≤ 𝐶𝐾‖𝑣‖2𝑙2 .

Here we rewrite this inequality for sequences 𝑣 of the form (𝑣𝑙)𝑙≥|𝑚|. In this case, one can check by manipulations
on the indices that the previous implies

+∞∑︁
𝑙=|𝑚|

⃒⃒⃒⃒
⃒
+∞∑︁
𝑘=𝑙

𝑣𝑘

𝑘 + 1− |𝑚|

⃒⃒⃒⃒
⃒
2

≤ 𝐶 ′𝐾

+∞∑︁
𝑙=|𝑚|

|𝑣𝑙|2 (A.10)

for some constant 𝐶 ′𝐾 > 0 independent of 𝑚. We are now in a position to prove the inclusion of 𝒰𝑠 into 𝒯 𝑠−1

for 𝑠 ≥ 1:
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Lemma A.5. For all 𝑠 ≥ 1, 𝒰𝑠 is continuously embedded in 𝒯 𝑠−1.

Proof. Let 𝑠 > 1
2 . To 𝑢 ∈ 𝒰𝑠 given by

𝑢 =
∑︁

(𝑙,𝑚)∈Λ

𝛽𝑚
𝑙 𝑈

𝑚
𝑙 ,

we associate the element ̃︀𝐼𝑢 of 𝒯 defined by

̃︀𝐼𝑢 :=
∑︁

(𝑙,𝑚)∈Λ

𝛼𝑚
𝑙 𝑇

𝑚
𝑙 ,

where

𝛼𝑚
𝑘 =

+∞∑︁
𝑙=𝑘

𝑙−𝑘 even

(−1)
𝑙−𝑘
2 𝜅𝑙,𝑚,𝑘𝛽

𝑚
𝑙 . (A.11)

We claim that for all 𝑠 > 1
2 , ̃︀𝐼 maps 𝒰𝑠 to 𝒯 𝑠−1 continuously and satisfies

∀𝑢 ∈ 𝒰𝑠, 𝐼 ̃︀𝐼𝑢 = 𝑢, (A.12)

where 𝐼 is the operator defined in Lemma A.2.
Firstly, the sum on the rhs of equation (A.11) converges absolutely for 𝑠 > 1

2 . Indeed, applying Lemma A.3
and the Cauchy–Schwarz inequality, we have

+∞∑︁
𝑙=𝑘

𝑙−𝑘 even

⃒⃒⃒
(−1)

𝑙−𝑘
2 𝜅𝑙,𝑚,𝑘𝛽

𝑚
𝑙

⃒⃒⃒
≤ 1
𝑗𝑚
𝑘+1

⎯⎸⎸⎸⎷ +∞∑︁
𝑙=|𝑚|

𝑙−𝑚 even

[(𝑙 + 1)(𝑙 + 2)−𝑚2]𝑠|𝛽𝑚
𝑙 |

2

⎯⎸⎸⎸⎷ +∞∑︁
𝑙=|𝑚|

𝑙−𝑚 even

[(𝑙 + 1)(𝑙 + 2)−𝑚2]−𝑠 .

The first sum is ‖𝑢‖𝒰𝑠 , and the second one is finite for 𝑠 > 1
2 . This shows that ̃︀𝐼𝑢 is well-defined.

Secondly, one has for all (𝑘,𝑚) ∈ Λ,

𝑗𝑚
𝑘+1𝛼

𝑚
𝑘 + 𝑗𝑚

𝑘+2𝛼
𝑚
𝑘+2 = 𝑗𝑚

𝑘+1

⎛⎜⎝ +∞∑︁
𝑙=𝑘

𝑙−𝑘 even

(−1)
𝑙−𝑘
2 𝜅𝑙,𝑚,𝑘𝛽

𝑚
𝑙

⎞⎟⎠+ 𝑗𝑚
𝑘+2

⎛⎜⎝ +∞∑︁
𝑙=𝑘+2

𝑙−𝑘 even

(−1)
𝑙−𝑘−2

2 𝜅𝑙,𝑚,𝑘+2𝛽
𝑚
𝑙

⎞⎟⎠
= 𝑗𝑚

𝑘+1𝜅𝑘,𝑚,𝑘𝛽
𝑚
𝑘 +

+∞∑︁
𝑙=𝑘+2

𝑘−𝑙 even

(−1)
(𝑙−𝑘)

2
[︀
𝑗𝑚
𝑘+1𝜅𝑙,𝑚,𝑘 − 𝑗𝑚

𝑘+2𝜅𝑙,𝑚,𝑘+2

]︀
𝛽𝑚

𝑙

= 𝛽𝑚
𝑘

using equation (A.8) and the definition of 𝜅𝑘,𝑚,𝑘. This proves the identity (A.12).
Finally, we write

⃦⃦⃦̃︀𝐼𝑢⃦⃦⃦2

𝒯 𝑠−1
=

+∞∑︁
𝑚=0

+∞∑︁
𝑙=|𝑚|

𝑙−𝑚 even

(︂
1
4

+ 𝑙(𝑙 + 1)−𝑚2

)︂𝑠−1

|𝛼𝑚
𝑙 |

2

=
+∞∑︁
𝑚=0

+∞∑︁
𝑙=|𝑚|

𝑙−𝑚 even

(︂
1
4

+ 𝑙(𝑙 + 1)−𝑚2

)︂𝑠−1

⃒⃒⃒⃒
⃒⃒⃒ +∞∑︁

𝑘=𝑙
𝑘−𝑙 even

(−1)
𝑘−𝑙
2 𝜅𝑘,𝑚,𝑙𝛽

𝑚
𝑘

⃒⃒⃒⃒
⃒⃒⃒
2
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≤ 4
+∞∑︁
𝑚=0

+∞∑︁
𝑙=|𝑚|

𝑙−𝑚 even

⎛⎜⎝ +∞∑︁
𝑘=𝑙

𝑘−𝑙 even

(︀
(𝑘 + 1)(𝑘 + 2)−𝑚2

)︀ 𝑠−1
2

√︀
(𝑘 + 1)(𝑘 + 2)−𝑚2

𝑘 + 1− |𝑚|
|𝛽𝑚

𝑘 |

⎞⎟⎠
2

using the inequality (A.9) and the simple estimate

1
4

+ 𝑙(𝑙 + 1)−𝑚2 ≤ (𝑙 + 1)(𝑙 + 2)−𝑚2 ≤ (𝑘 + 1)(𝑘 + 2)−𝑚2

valid for 𝑙 ≤ 𝑘. We deduce

⃦⃦⃦̃︀𝐼𝑢⃦⃦⃦2

𝒯 𝑠−1
≤ 4

+∞∑︁
𝑚=0

+∞∑︁
𝑙=|𝑚|

𝑙−𝑚 even

⃒⃒⃒⃒
⃒⃒⃒ +∞∑︁

𝑘=𝑙
𝑘−𝑙 even

(︀
(𝑘 + 1)(𝑘 + 2)−𝑚2

)︀ 𝑠
2 |𝛽𝑚

𝑘 |
𝑘 + 1− |𝑚|

⃒⃒⃒⃒
⃒⃒⃒
2

≤ 4𝐶 ′𝐾
+∞∑︁
𝑚=0

+∞∑︁
𝑙=|𝑚|

𝑙−𝑚 even

[︀
(𝑙 + 1)(𝑙 + 2)−𝑚2

]︀𝑠|𝛽𝑚
𝑙 |

2

= 4𝐶 ′𝐾‖𝑢‖
2
𝒰𝑠

where we applied the adjoint Cesarò estimate (A.10) with 𝑣𝑘 = ((𝑘 + 1)(𝑘 + 2) −𝑚2)
𝑠
2 |𝛽𝑚

𝑙 |. This proves the
claimed continuity.

For 𝑠 ≥ 1, we have shown in Lemma A.2 that 𝐼 coincides with Id on 𝒯 𝑠−1. Thus, equation (A.12) states
nothing else than ̃︀𝐼𝑢 = 𝑢,

and the lemma is proved. �

Remark A.6. At this point, it is looks very natural to identify an element 𝑢 ∈ 𝒯 𝑠 to the element 𝑣 ∈ 𝒰𝑠

defined by 𝑣 = 𝐼𝑢. This would make 𝒯 −∞ a subspace of 𝒰−∞ and we would have the continuous inclusions
𝒯 𝑠 ⊂ 𝒰𝑠 for all 𝑠 ∈ R, and 𝒰𝑠 ⊂ 𝒯 𝑠−1 for all 𝑠 > 1

2 . However, there is a fatal flaw in this reasoning, which is
that 𝐼 : 𝒯 𝑠 → 𝒰𝑠 is not injective for all 𝑠 ∈ R. A good way to see this is by looking at the element 𝑢 = 1

𝜔 ∈ 𝒰
0,

and letting

𝑣 := (𝜔𝜕𝑥1𝜔)𝑢.

By Lemma 2.9, 𝑣 ∈ 𝒯 −1, and by definition of 𝜔∇𝜔, one has

𝑣𝑚
𝑙 = 2

(︂
(𝜔𝜕𝑥1𝜔)

1
𝜔
, 𝑇𝑚

𝑙

)︂
1
𝜔

= −2
(︂

1
𝜔
, 𝜕𝑥1𝑇

𝑚
𝑙

)︂
𝜔

= −2
∫︁

D
𝜕𝑥1𝑇

𝑚
𝑙 (𝑥) d𝑥

= −2
∫︁

𝜕D
𝜉1𝑇𝑚

𝑙 (𝜉) d𝜉.
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One can check that 𝑣𝑚
𝑙 is not 0 for example for 𝑙 = 𝑚 = 1 (notice how 𝑣 is “supported on 𝜕D”, in the sense

that (𝑣, 𝑓) 1
𝜔

= 0 whenever 𝑓 vanishes on 𝜕D). Now, let 𝑤 = 𝐼𝑣. For all (𝑙,𝑚) ∈ Λ, we have by definition

𝑤̌𝑚
𝑙 = 𝑗𝑚

𝑙+1𝑣
𝑚
𝑙 + 𝑗𝑚

𝑙+2𝑣
𝑚
𝑙+2

= −2
∫︁

𝜕D
𝜉1

(︁
𝑗𝑚
𝑙+1𝑇

𝑚
𝑙 + 𝑗𝑚

𝑙+2𝑇
𝑚

𝑙+2

)︁
d𝜉

= −2
∫︁

𝜕D
𝜉1𝜔

2(𝜉)𝑈
𝑚

𝑙 (𝜉) d𝜉

= 0

,

where we used the identity (A.4) and the fact that the weight 𝜔 vanishes on 𝜕D. Hence 𝑤 = 0 so 𝐼 is not
injective on 𝒯 −1. In fact, one should not view 𝐼 as an identity operator, but rather as a restriction operator
from D to D. Its kernel contains elements of 𝒯 𝑠 supported in 𝜕D. For 𝑠 ≥ 0, this kernel is simply {0}, but it
can be larger for general 𝑠 (just like for 𝑠 ≤ −1/2, the set of distributions of 𝐻𝑠(Ω) supported in 𝜕Ω is strictly
larger than {0}).

Proof of Theorem 2.13. The inclusions shown above imply at once that 𝒯 ∞ = 𝒰∞. By Lemma 2.5, 𝐶∞(D) ⊂
𝒯 ∞. To show the converse inclusion, we first remark that if 𝑢 ∈ 𝒯 ∞, then the decomposition of 𝑢 on the functions
𝑇𝑚

𝑙 converges uniformly, as can be seen using the estimate (6). This implies that 𝒯 ∞ ⊂ 𝐶0. Furthermore, by
Lemma 2.9, if 𝑢 ∈ 𝒯 ∞, each component of ∇𝑢 is in 𝒰∞ = 𝒯 ∞ and is therefore continuous. The proof is then
concluded by a bootstrap argument. �

Data availability statement

The research code associated with this article is openly available in GitHub https://github.com/MartinAverseng/

SqPrecondDiskScreen and Zenodo DOI: 10.5281/zenodo.7991556 [7].
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