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ABSTRACT
Given polynomials 𝑔 and 𝑓1, . . . , 𝑓𝑝 , all in k[𝑥1, . . . , 𝑥𝑛] for some
field k, we consider the problem of computing the critical points
of the restriction of 𝑔 to the variety defined by 𝑓1 = · · · = 𝑓𝑝 = 0.
These are defined by the simultaneous vanishing of the 𝑓𝑖 ’s and all
maximal minors of the Jacobian matrix associated to (𝑔, 𝑓1, . . . , 𝑓𝑝 ).
We use the Eagon-Northcott complex associated to the ideal gen-
erated by these maximal minors to gain insight into the syzygy
module of the system defining these critical points. We devise new
𝐹5-type criteria to predict and avoid more reductions to zero when
computing a Gröbner basis for the defining system of this critical
locus. We give a bound for the arithmetic complexity of this en-
hanced 𝐹5 algorithm and compare it to the best previously known
bound for computing critical points using Gröbner bases.

KEYWORDS
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1 INTRODUCTION
Motivation and problem. Let 𝑛 ∈ Z>0, k be a field with algebraic
closure k̄, and R𝑛 = k[𝑥1, . . . , 𝑥𝑛] be the ring of polynomials in
𝑥1, . . . , 𝑥𝑛 with coefficients in k. Consider a sequence 𝐹 = (𝑓1, . . . , 𝑓𝑝 )
of polynomials and another polynomial 𝑔, all of them in R𝑛 , and the
Jacobian matrix jac(𝑔, 𝐹 ) associated to 𝑔 and 𝐹 . We denote by ⟨𝐹 ⟩
the ideal of R𝑛 generated by 𝐹 , and by 𝐼𝑝+1 (jac(𝑔, 𝐹 )) the ideal gen-
erated by the maximal minors of jac(𝑔, 𝐹 ). We consider the problem
of computing a Gröbner basis of the ideal

I(𝑔, 𝐹 ) = ⟨𝐹 ⟩ + 𝐼𝑝+1 (jac(𝑔, 𝐹 )) .

When ⟨𝐹 ⟩ is radical, is equidimensional of codimension 𝑝 , and de-
fines a smooth algebraic set𝑉 (𝐹 ) in k̄𝑛 , the algebraic set𝑉 (I(𝑔, 𝐹 ))
in k̄𝑛 defined by I(𝑔, 𝐹 ) is the set of critical points of the restriction
of the polynomial map defined by 𝑔 to 𝑉 (𝐹 ). Such sets arise in
many areas such as polynomial optimization [21, 22], real algebraic
geometry [28, 29, 31, 32] and their applications in sciences such as
robotics [5–7, 35] and biology [24, 36].

Gröbner bases. Throughout the paper, we assume that the set
of critical points under consideration is finite. To compute these
critical points, we solve the system consisting of (𝑓1, . . . , 𝑓𝑝 ) and the
maximal minors of jac(𝑔, 𝐹 ). While several recently developed algo-
rithms for solving such systems use symbolic homotopies (see e.g.
[23, 25]), we focus here on algebraic algorithms, based on Gröbner
bases. These are central in the area of polynomial system solving
through computer algebra. We refer to [9] for a reference text-
book on Gröbner bases. The classical two-step solving strategy
consists in first computing a Gröbner basis for I(𝑔, 𝐹 ) with respect

∗Also with University of Waterloo.

to the graded reverse lexicographic (grevlex) order, and then using
a change of order algorithm to obtain a lexicographic Gröbner basis
for I(𝑔, 𝐹 ), from which the solutions can be read off.

Our focus in this paper is on the first of these two steps, which
is nowadays frequently the most expensive of the two [2, 16].

Evolutions of Buchberger’s original Gröbner basis algorithm
[4] have led to linear algebra-based algorithms, which go back to
Lazard’s algorithm [27] and include the now standard 𝐹4 and 𝐹5
algorithms [14, 15] which have shown their practical efficiency.

These algorithms work by row echelonization of Macaulay ma-
trices, whose columns are indexed by the monomials of R𝑛 up to
some degree 𝑑 and sorted by grevlex, and whose rows store the
coefficients of the input polynomials multiplied by the monomials
required to reach the degree 𝑑 . If 𝑑 is large enough, the obtained
echelon form yields a Gröbner basis [27]. This large enough degree
is often called degree of regularity. Successive enhancements of
this approach have culminated with the 𝐹5 algorithm [15] (see also
[11]), which manages to a priori discard rows that would otherwise
reduce to 0 upon echelonization. It has been shown that for se-
quences of polynomials that are generic (in the sense of the Zariski
topology), the so-called 𝐹5-criterion detects all reductions to 0 a
priori, and 𝐹5 thus saves all computations related to them. A key
observation behind this criterion is that these reductions to 0 come
from the Koszul syzygies, induced by the commutativity of the
multiplication in R𝑛 . This yields faster Gröbner basis computations
for ideals generated by such generic sequences [1].

However, it is not the case that the 𝐹5-criterion eliminates all
reductions to 0 on classes of structured systems, including the ones
defining critical points. For these systems, it has been established
[33, Thm. 3.4] [17] that under genericity assumptions on (𝑔, 𝐹 ), a
grevlex Gröbner basis of I(𝑔, 𝐹 ) can be computed using

𝑂

((
𝑝 +

(
𝑛

𝑝 + 1

)) (
𝑛 + (𝑛 + 𝑝)𝑑0 + 1

𝑛

)𝜔 )
operations in k; this is done by determining the degree of regularity
of the ideal. (Here, 𝜔 > 2 is a feasible exponent for square matrix
multiplication over k.) The goal of this paper is to introduce a crite-
rion, for critical point systems, that complements the 𝐹5-criterion
so as to avoid more reductions to 0 and thus gain in efficiency.

Contributions. It is known that the 𝐹5 algorithm can be enhanced
with some insight into the syzygy modules associated to the gener-
ators of the ideal under study [11]. This is exploited in [20, Algo. 3],
where a free resolution is used to obtain generators for each syzygy
module, allowing then to call the 𝐹5 algorithm to compute Gröbner
bases without reductions to 0 for the syzygy modules and finally
for the ideal itself. The latter reference studies the case of square
matrices with rank deficiency, which leads to considering free reso-
lutions of a fixed length, whose boundary homomorphisms admit
transparent enough descriptions that computing syzygy modules

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

S. Gopalakrishnan, V. Neiger, and M. Safey El Din

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

from them is a straightforward process. In contrast, here we have
to deal with a more involved complex, namely the Eagon-Northcott
one [10], whose length depends on the size of the matrix under
consideration. It is thus not clear that computing Gröbner bases for
the syzygy modules could lead to an efficient algorithm. Still, the
specific nature of syzygies between maximal minors allows us to
take a more sophisticated approach for the detection of reductions
to 0.

We actually analyze the first syzygy module of the Eagon-North-
cott complex and exhibit a submodule of its leading terms (w.r.t.
some module ordering induced by grevlex). This has a simple algo-
rithmic consequence: by incrementally computing Gröbner bases
of ideals generated by the leftmost entries of the considered matrix
(which fits perfectly with the incremental nature of 𝐹5), one ob-
tains enough information to easily identify a submodule of the one
generated by the leading terms of the first syzygy module. When
combined with the syzygy criterion of 𝐹5 (see [11, Lemma 6.4]), this
allows us to discard a significant number of rows in the Macaulay
matrices that arise when computing critical points. This technique
can also be used for pure determinantal ideals, i.e. ideals generated
maximal minors of a given matrix with entries in R𝑛 . Hence, all
in all, we obtain a new 𝐹5-type algorithm dedicated to systems
involving the maximal minors of a matrix with entries in R𝑛 that
avoids some reductions to 0 that the 𝐹5-criterion alone does not
avoid.

Quantifying the resulting complexity gain is challenging. As
usual for analyzing Gröbner basis algorithms, one needs genericity
assumptions. Here, genericity regards the coefficients of 𝐹 and 𝑔,
and we assume a variant of Fröberg’s conjecture. We show that the
extra computations performed to identify some of the leading terms
of the first syzygy module is negligible compared to the cost of
the whole computation. To obtain a complexity estimate, we count
those leading terms, which provides a lower bound on the number
of rows of the Macaulay matrices which our approach discards. The
obtained formula is rather involved, but much more precise than
an analysis based on the degree of regularity alone.

Our complexity analysis does not take into account all rows
removed by the full syzygy criterion. Hence, it is plausible that
our complexity bound may be improved in the future. Since the
complexity bound that we give is rather involved, we evaluate
the number of rows in the Macaulay matrices that we build for
certain parameters. Comparing this count to the upper bound on
the number of rows built by Lazard’s algorithm obtained in [33,
Theorem 3.4], we see that the complexity bound improvement that
we obtain is at least polynomial in 𝑛 and that, if we were able to
take into account the full syzygy criterion, it may be exponential
in 𝑛.

Outline. Basic notions from algebra and signature Gröbner bases
are recalled in Sections 2 and 3, respectively. In Section 4, we present
constructions on which the Eagon-Northcott complex relies and
show how to use them to obtain a new F5-type criterion. In Sec-
tion 5, we apply this criterion to design a Gröbner basis algorithm
dedicated to critical points. Finally, Section 6 carries out a complex-
ity analysis of that algorithm under genericity assumptions.

2 PRELIMINARIES
In this section, we recall the basic constructions and establish the
notation upon which we rely throughout the paper.

Polynomials and matrices. We denote by R𝑛 = k[𝑥1, . . . , 𝑥𝑛] the
ring of polynomials in 𝑛 indeterminates over k. For a moduleM
over a ring R and a subset 𝐹 ⊆ M, we denote by ⟨⟨𝐹 ⟩⟩ the R-
submodule ofM generated by 𝐹 . In particular, ifM = R, so that
𝐹 ⊆ R is a collection of elements of R, the R-submodule ⟨⟨𝐹 ⟩⟩ of R
is the ideal ⟨𝐹 ⟩ of R generated by 𝐹 .

For 𝛼 ∈ Z𝑛≥0, we take 𝑥
𝛼 = 𝑥

𝛼1
1 · · · 𝑥

𝛼𝑛
𝑛 ∈ R𝑛 . For 𝑑 ∈ Z≥0, we

denote by Mon𝑑 (R𝑛) the set of monomials of R𝑛 of degree 𝑑 .
For a ring R, we will denote by R𝑝×𝑞 the set of matrices with

𝑝 rows and 𝑞 columns with entries in R; this is a free R-module
of rank 𝑝 · 𝑞. Let 𝐴 ∈ R𝑝×𝑞 , and let 𝑟 ∈ {1, . . . ,min(𝑝, 𝑞)}. Let
1 ≤ 𝑖1 < · · · < 𝑖𝑟 ≤ 𝑝 and 1 ≤ 𝑗1 < · · · < 𝑗𝑟 ≤ 𝑞 be two
strictly increasing sequences of integers. We denote by [𝑖1 · · · 𝑖𝑟 |
𝑗1 · · · 𝑗𝑟 ]𝐴 the 𝑟 ×𝑟 submatrix of𝐴 with rows indexed by (𝑖1, . . . , 𝑖𝑟 )
and columns indexed by ( 𝑗1, . . . , 𝑗𝑟 ). We denote by 𝐹𝑟 (𝐴) the subset
of R consisting of the minors of 𝐴 of size 𝑟 × 𝑟 , and by 𝐼𝑟 (𝐴) =
⟨𝐹𝑟 (𝐴)⟩ the ideal of R generated by 𝐹𝑟 (𝐴).

Modules and bases. In order to introduce the portions of the
Eagon-Northcott complex which are relevant to us, we will need to
briefly use the language of tensor, symmetric, and exterior algebras
(we refer to [26, Chap. 16,19] as a reference book on these topics).
As such, we introduce their notation and canonical bases.

A ring R is called graded if, for each integer 𝑑 ≥ 0, there ex-
ist additive abelian groups R [𝑑 ] such that R =

⊕∞
𝑑=0 R [𝑑 ] and

R [𝑑 ]R [𝑒 ] ⊆ R [𝑑+𝑒 ] . The elements of R [𝑑 ] are called the homoge-
neous elements of degree 𝑑 . Our prototypical example of a graded
ring will be the ring R𝑛 . Here, k[𝑥1, . . . , 𝑥𝑛] [𝑑 ] consists of the ho-
mogeneous polynomials of degree 𝑑 (together with 0, which is, by
definition, homogeneous of every degree).

A moduleM over a graded ring R is called graded if, for each
𝑑 ≥ 0, there exist abelian groupsM[𝑑 ] such thatM =

⊕∞
𝑑=0M[𝑑 ]

andR [𝑑 ]M[𝑒 ] ⊆ M[𝑑+𝑒 ] . For an integer 𝑠 ≥ 1,R𝑠 naturally carries
the structure of a free R-module of rank 𝑠 . We take as a basis for R𝑠
the standard basis vectors {𝑒𝑖 : 1 ≤ 𝑖 ≤ 𝑠}. If R is graded, it induces
a natural grading on all free modules R𝑠 . For a graded moduleM
and 𝑒 ∈ Z, we denote byM(𝑒) the moduleM with the grading
such thatM(𝑒)[𝑑 ] =M[𝑑+𝑒 ] .

For 𝑠 ∈ Z>0, we call an element of R𝑠𝑛 a monomial if it takes the
form 𝑥𝛼𝑒𝑖 for some 𝛼 ∈ Z𝑛≥0 and 1 ≤ 𝑖 ≤ 𝑠 . Note thatR𝑛 is naturally
graded by degree and thus so is R𝑠𝑛 . We denote by Mon𝑑

(
R𝑠𝑛

)
the

set of all monomials of R𝑠𝑛 of degree 𝑑 .
The tensor algebra of a moduleM over a ringR is denoted𝑇 (M)

and is defined by𝑇 (M) =
⊕∞

𝑑=0M⊗𝑑 . Explicitly, for pure tensors
𝑓1 ⊗ · · · ⊗ 𝑓𝑑 ∈ M⊗𝑑 and 𝑔1 ⊗ · · · ⊗ 𝑔𝑒 ∈ M⊗𝑒 of ranks 𝑑 and 𝑒

respectively, we have

(𝑓1⊗· · ·⊗ 𝑓𝑑 ) · (𝑔1⊗· · ·⊗𝑔𝑒 ) = 𝑓1⊗· · ·⊗ 𝑓𝑑⊗𝑔1⊗· · ·⊗𝑔𝑒 ∈ M⊗(𝑑+𝑒 ) .

The algebra 𝑇 (M) carries a natural grading as a ring, wherein its
homogeneous part of degree 𝑑 is precisely the R-moduleM⊗𝑑 .

Proposition 2.1. [12, Cor. A2.3] Let R be a ring and letM be a
finite free R-module with basis 𝑒1, . . . , 𝑒𝑠 . Then for any integer 𝑑 ≥ 1,
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M⊗𝑑 is a free module of rank 𝑠𝑑 and the set {𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑑 : 1 ≤
𝑖1, . . . , 𝑖𝑑 ≤ 𝑠} is an R-basis forM⊗𝑑 .

The symmetric algebra Sym(M) of a moduleM over a ring R
is simply the quotient 𝑇 (M)/⟨𝑢 ⊗ 𝑣 − 𝑣 ⊗ 𝑢 : 𝑢, 𝑣 ∈ M⟩. The grad-
ing on 𝑇 (M) naturally induces a grading on Sym(M), wherein
the homogeneous part of degree 𝑑 of Sym(M) is called the 𝑑-th
symmetric power ofM and is denoted Sym𝑑 (M).

The exterior algebra of a moduleM over a ring R is denoted∧ (M) and is defined by
∧ (M) = 𝑇 (M)/⟨𝑥 ⊗ 𝑥 : 𝑥 ∈ M⟩. We

denote by 𝑓1 ∧ · · · ∧ 𝑓𝑑 the image of the pure tensor 𝑓1 ⊗ · · · ⊗ 𝑓𝑑 in∧ (M). The grading on 𝑇 (M) described above naturally induces a
grading on

∧ (M). In this case, the homogeneous part of degree𝑑 of∧ (M) is called the d-th exterior power ofM and is denoted
∧𝑑 (M).

As in the case ofM⊗𝑑 , the abelian group
∧𝑑 (M) naturally carries

the structure of an R-module.

Proposition 2.2. [12, Cor. A2.3] Let R be a ring and letM be a
finite free R-module with basis 𝑒1, . . . , 𝑒𝑠 . Then for any integer 𝑑 ≥ 1,∧𝑑 (M) is a free module of rank

(𝑠
𝑑

)
and the set {𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑑 : 1 ≤

𝑖1 < · · · < 𝑖𝑑 ≤ 𝑠} is an R-basis for ∧𝑑 (M).

For amoduleM over a ringR, we denote by (M)∗ = Hom(M,R)
the dual module ofM. A sequence (𝑓1, . . . , 𝑓𝑠 ) ⊆ R is said to be
M-regular if 𝑓1 is not a zero-divisor inM and, for all 2 ≤ 𝑖 ≤ 𝑠 ,
𝑓𝑖 is not a zero-divisor inM/⟨𝑓1, . . . , 𝑓𝑖−1⟩. If I is an ideal of R,
the grade of I with respect to M, denoted grade(I,M) is the
length of a maximal M-regular sequence of elements of I. We
take grade(I) = grade(I,R).

Hilbert functions. For a graded module M over R𝑛 equipped
with its natural grading by degree, the Hilbert function ofM is
defined by HFM (𝑑) = dimk (M𝑑 ). The Hilbert series 𝐻M (𝑡) =∑
𝑑≥0 HFM (𝑑)𝑡𝑑 ∈ Z⟦𝑡⟧ ofM is the generating function ofHFM (𝑑).

Theorem 2.3. [12, Thm. 1.1] IfM is a finitely generated graded
module overR𝑛 , thenHFM (𝑑) is, for sufficiently large𝑑 , a polynomial
𝑃M (𝑑) of degree at most 𝑛 − 1.

Pursuant to Theorem 2.3, the polynomial 𝑃M (𝑑) is called the
Hilbert polynomial of 𝑑 . The Hilbert regularity ofM, is the smallest
integer 𝑑 such that for all 𝑑′ ≥ 𝑑 , HFM (𝑑′) = 𝑃M (𝑑′).

Syzygies and free resolutions. Free resolutions are a fundamental
construction, with many general properties [12, Part III] [9, Ch. 6].
Again, we recall below only what we need for our purposes.

Let R be a ring andM a finite R-module. An exact sequence

· · ·
𝜕𝑗+1−−−→ E 𝑗

𝜕𝑗−−→ · · · 𝜕2−−→ E1
𝜕1−−→ E0

𝜖−→M → 0

is a left resolution ofM. The maps 𝜕𝑖 are boundary homomorphisms,
and the map 𝜖 is an augmentation homomorphism. If for each 𝑖 , the
module E𝑖 is free, then the resolution is a free resolution. For the
sake of brevity, we will often refer to a resolution as above simply
by (E•

𝜖−→ M, 𝜕•). We call sup{𝑖 ∈ Z : E𝑖 ≠ 0} the length of the
resolution (E•

𝜖−→ M, 𝜕•). The length of (E•
𝜖−→ M, 𝜕•) could be

infinite and free resolutions of finite length are finite free resolutions.

Theorem 2.4 (Hilbert’s syzygy theorem, [12, Cor. 19.7]). Let
M be a finitely generated k[𝑥1, . . . , 𝑥𝑛]-module. There exists a free
resolution (E•

𝜖−→M, 𝜕•) of length at most 𝑛.

When R is graded andM is a graded R-module,M possesses
a free resolution (E•

𝜖−→ M, 𝜕•) where each E𝑖 is graded so that
the boundary maps 𝜕𝑖 and the augmentation map 𝜖 are graded
R-module homomorphisms. Such free resolutions are called graded
free resolutions. Graded free resolutions (E•

𝜖−→ M, 𝜕•) such that
the ranks of each of the E𝑖 are minimal are minimal free resolutions.

Let R be a ring and 𝐹 = (𝑓1, . . . , 𝑓𝑠 ) ⊆ R a sequence of elements
of R. We define the syzygy module of 𝐹 to be the R-module

Syz(𝐹 ) = {(𝑔1, . . . , 𝑔𝑠 ) ∈ R𝑠 : 𝑔1 𝑓1 + · · · + 𝑔𝑠 𝑓𝑠 = 0}.

If (E•
𝜖−→M, 𝜕•) is a free resolution of length ℓ , with rank(E𝑖 ) = 𝑟𝑖

then Syz(𝜖 (𝑒1), . . . , 𝜖 (𝑒𝑟0 )) = ker(𝜖) = im(𝜕1) and for each 1 ≤ 𝑖 ≤
ℓ , Syz(𝜕𝑖 (𝑒1), . . . , 𝜕𝑖 (𝑒𝑟𝑖 )) = ker(𝜕𝑖 ) = im(𝜕𝑖+1).

The following consequence of Hilbert’s syzygy theorem eluci-
dates the connection between free resolutions and Hilbert series.

Corollary 2.5. [8, Thm. 4.4] Let R be a graded ring, letM be
a finitely generated graded R-module, and let (E•

𝜖−→ M, 𝜕•) be a
finite graded free resolution ofM of length ℓ . For any 1 ≤ 𝑖 ≤ ℓ , let
𝑠𝑖 = rank(E𝑖 ) and write E𝑖 =

⊕𝑠𝑖
𝑗=1 R(−𝑑

( 𝑗 )
𝑖
). Then

HFM (𝑑) =
∑ℓ
𝑖=0 (−1)𝑖 ∑𝑠𝑖

𝑗=1
(𝑘+𝑑−𝑑 ( 𝑗 )

𝑖
−1

𝑘−1
)
.

Genericity. Several of our results rely on genericity assumptions.
Let Mon𝑑 (R𝑛) be the set of monomials in R𝑛 of degree 𝑑 . For
𝑛,𝑑 ∈ Z>0, and a set 𝔠 = {𝔠𝜏 : 𝜏 ∈ Mon𝑑 (R𝑛)} of indeterminates,
we call the polynomial

𝔣𝔠(𝑛,𝑑 ) =
∑
𝜏∈Mon𝑑 (R𝑛 ) 𝔠𝜏𝜏 ∈ R𝑛 [𝔠]

the generic homogeneous polynomial in 𝑛 variables of degree 𝑑 . A
point 𝑐 = (𝑐𝜏 : 𝜏 ∈ Mon𝑑 (R𝑛)) ∈ A(

𝑛+𝑑−1
𝑛−1 ) defines a map

𝜙𝔠 : R𝑛 [𝔠] → R𝑛 ; 𝔠𝜏 ↦→ 𝑐𝜏

which maps 𝔣𝔠(𝑛,𝑑 ) to a homogeneous polynomial of degree 𝑑 .

Let (𝑑1, . . . , 𝑑𝑠 ) ∈ Z𝑠>0 and let 𝔠 (1) , . . . , 𝔠 (𝑠 ) be sets of indetermi-
nates, with 𝔠 (𝑖 ) = {𝔠 (𝑖 )𝜏 : 𝜏 ∈ Mon𝑑𝑖 (R𝑛)} for each 1 ≤ 𝑖 ≤ 𝑠 . For a

point 𝑐 = (𝑐 (1) , . . . , 𝑐 (𝑠 ) ) ∈ ∏𝑠
𝑖=1 A

(𝑛+𝑑𝑖 −1
𝑛−1 ) , the map

𝜙𝑐 : R𝑛 [𝔠 (1) , . . . , 𝔠 (𝑠 ) ] → R𝑛 ; 𝔠
(𝑖 )
𝜏 ↦→ 𝑐

(𝑖 )
𝜏

defines a sequence of polynomials (𝜙𝑐 (𝔣𝔠
(1)

(𝑛,𝑑1 ) ), . . . , 𝜙𝑐 (𝔣
𝔠 (𝑠 )

(𝑛,𝑑𝑠 ) )), with

𝜙𝑐 (𝔣𝔠
(1)

(𝑛,𝑑𝑖 ) ) homogeneous of degree 𝑑𝑖 , for each 1 ≤ 𝑖 ≤ 𝑠 . Given
such a point 𝑐 , we will simply denote by 𝜙𝑐 (𝔣(𝑛,𝑑1,...,𝑑𝑠 ) ) the se-
quence of polynomials defined by 𝑐 in this way.

Similarly, let 𝑝, 𝑞 ∈ Z>0 with 𝑞 ≥ 𝑝 and for 1 ≤ 𝑖 ≤ 𝑝 , 1 ≤ 𝑗 ≤ 𝑞,
let 𝑑𝑖, 𝑗 ∈ Z>0 and let 𝔠 (𝑖, 𝑗 ) = {𝔠 (𝑖, 𝑗 )𝜏 : 𝜏 ∈ Mon𝑑 (𝑖,𝑗 ) (R𝑛)} be a set
of indeterminates. For a sequence of points 𝑐 = (𝑐 (1,1) , . . . , 𝑐 (𝑝,𝑞) )
with 𝑐 (𝑖, 𝑗 ) ∈ A(

𝑛+𝑑𝑖,𝑗 −1
𝑛−1 ) , the map

𝜙𝑐 : R𝑛 [𝔠 (1,1) , . . . , 𝔠 (𝑝,𝑞) ] → R𝑛 ; 𝔠
(𝑖, 𝑗 )
𝜏 ↦→ 𝑐

(𝑖, 𝑗 )
𝜏

defines a matrix (𝜙𝑐 (𝔣𝔠
(𝑖,𝑗 )

(𝑛,𝑑𝑖,𝑗 ) ))𝑖, 𝑗 ∈ R
𝑝×𝑞
𝑛 . Again, given such a se-

quence of points 𝑐 = (𝑐 (1,1) , . . . , 𝑐 (𝑝,𝑞) ), we will simply denote by
𝜙𝑐 (𝔣(𝑛,𝑑𝑖,𝑗 ) ) ∈ R

𝑝×𝑞
𝑛 the 𝑝 × 𝑞 matrix defined by 𝑐 in this way.

3
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The following important fact is what will allow us to use the
Eagon-Northcott complex to compute syzygies amongst maximal
minors of polynomial matrices.

Proposition 2.6 ([3, Thm. 2.5]). Let 𝑛, 𝑝, 𝑞, 𝑑0 ∈ Z>0 with 𝑞 ≥ 𝑝 .

Then there exists a Zariski open subset𝑈 ⊆ A𝑝𝑞(
𝑛+𝑑0−1
𝑛−1 ) such that for

all 𝑐 ∈ 𝑈 , grade(𝐼𝑝 (𝜙𝑐 (𝔣(𝑛,𝑑0 ) ))) = 𝑞 − 𝑝 + 1.

3 SIGNATURE GRÖBNER BASES
From here on, we take ≻ to be the graded reverse lexicographic (or
grevlex) order on R𝑛 , and ≻POT to be the corresponding position
over term (or POT) order on R𝑠𝑛 (see e.g. [8, Def. 2.4, p211]).

Gröbner bases and modules. By Proposition 2.2, ifM is a free
R𝑛-module of rank 𝑠 , then

∧𝑑 (M) is also a free R𝑛-module of rank(𝑠
𝑑

)
. Since the basis we fix on

∧𝑑 (M) is not indexed by the integers
1, . . . ,

(𝑠
𝑑

)
we slightly generalize the definition of the POT order: for

𝛼, 𝛽 ∈ Z𝑛≥0 and two strictly increasing sequences 1 ≤ 𝑖1 < · · · <
𝑖𝑑 ≤ 𝑠 , 1 ≤ 𝑖′1 < · · · < 𝑖′

𝑑
≤ 𝑠 , we take 𝑥𝛼 (𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑑 ) ≻POT

𝑥𝛽 (𝑒𝑖′1 ⊗ · · · ⊗ 𝑒𝑖′
𝑑
) if and only if (𝑖1, . . . , 𝑖𝑑 ) ≻lex (𝑖′1, . . . , 𝑖

′
𝑑
) or

(𝑖1, . . . , 𝑖𝑑 ) = (𝑖′1, . . . , 𝑖
′
𝑑
) and 𝑥𝛼 ≻ 𝑥𝛽 .

The set of all monomials of R𝑛 (resp. R𝑠𝑛) forms a basis for R𝑛
(resp. R𝑠𝑛) as an infinite-dimensional k-vector space. The leading
monomial of an element 𝑓 ∈ R𝑛 (resp. 𝑓 ∈ R𝑠𝑛), denoted LM≻ (𝑓 )
(resp. LMPOT

≻ (𝑓 )) is the largest monomial, with respect to ≻ (resp.
≻POT), which appears in the unique representation of 𝑓 in this
k-basis. We naturally extend the leading monomial notation to sets:
for a set 𝐹 ⊆ R𝑠𝑛 , LMPOT

≻ (𝐹 ) = {LMPOT
≻ (𝑓 ) : 𝑓 ∈ 𝐹 }.

For some 𝑠 ∈ Z>0, a ≻POT-Gröbner basis of a submoduleM ⊆ R𝑠𝑛
is a set 𝐺 ⊆ M such that ⟨⟨LMPOT

≻ (𝐺)⟩⟩ = ⟨⟨LMPOT
≻ (M)⟩⟩. When

𝑠 = 1 so that ≻POT coincides with ≻ andM is an ideal of R𝑛 , we
call a ≻POT-Gröbner basis ofM a ≻-Gröbner basis.

Macaulaymatrices. For integers 𝑠, 𝑛 ∈ Z>0 and a set 𝐹 = {𝑓1, . . . , 𝑓𝑡 } ⊆
R𝑠𝑛 of homogeneous elements, the Macaulay matrix of 𝐹 in degree
𝑑 with respect to ≻POT, denotedℳ𝑑 (𝐹 ), is constructed as follows:
its rows are indexed by the set

⋃𝑠
𝑖=1{𝜏𝑒𝑖 : 𝜏 ∈ Mon𝑑−deg 𝑓𝑖 (R𝑛)},

its columns are indexed by Mon𝑑
(
R𝑠𝑛

)
, ordered decreasingly by

≻POT, and for some 1 ≤ 𝑖, 𝑗 ≤ 𝑠 and 𝜏 ∈ Mon𝑑−deg 𝑓𝑖 (R𝑛), 𝜎 ∈
Mon𝑑

(
R𝑠𝑛

)
, the entry of the row indexed by 𝜏𝑒𝑖 in the column in-

dexed by 𝜎𝑒 𝑗 is the coefficient of 𝜎𝑒 𝑗 in 𝜏 𝑓𝑖 . The monomial 𝜏𝑒𝑖 is
the signature of the row of ℳ𝑑 (𝐹 ) which it indexes.

For 1 ≤ 𝑖 ≤ 𝑡 , we abbreviateℳ𝑑,𝑖 (𝐹 ) = ℳ𝑑 ({𝑓1, . . . , 𝑓𝑖 }).
A valid elementary row operation on a Macaulay matrixℳ𝑑 (𝐹 )

consists in adding to a row ofℳ𝑑 (𝐹 ) with signature 𝜏𝑒𝑖 a k-multiple
of a row with some signature 𝜎𝑒 𝑗 , where 𝜏𝑒𝑖 ≻POT 𝜎𝑒 𝑗 . Finally,
we denote by ℳ̃𝑑 (𝐹 ) a row-echelon form of ℳ𝑑 computed via a
sequence of valid elementary row operations.

Each row ofℳ𝑑 (𝐹 ) can be interpreted as an element of R𝑠𝑛 by
multiplying the entry in a given column by the monomial which
indexes that column and taking the sum over all columns. We refer
to rows ofℳ𝑑 (𝐹 ) (resp. ℳ̃𝑑 (𝐹 )) as elements of R𝑠𝑛 , denoting them
by rows(ℳ𝑑 (𝐹 )) (resp. rows(ℳ̃𝑑 (𝐹 ))).

For some 𝐷 ∈ Z>0, we call (𝐷, ≻POT)-Gröbner basis of ⟨𝐹 ⟩ the
union of the sets rows(ℳ̃𝑑 (𝐹 )) for 𝑑 = {min1≤𝑖≤𝑡 {deg 𝑓𝑖 }, . . . , 𝐷}.
This is justified by the following.

Proposition 3.1. [27, Sec. 3] Let 𝑠, 𝑛 ∈ Z>0 and let 𝐹 = {𝑓1, . . . , 𝑓𝑡 } ⊆
R𝑠𝑛 be homogeneous elements with respect to the standard grading on
R𝑠𝑛 . Then there exists 𝐷 ∈ Z>0 such that a (𝐷, ≻POT)-Gröbner basis
of ⟨𝐹 ⟩ is a ≻POT-Gröbner basis of ⟨𝐹 ⟩.

Moreover, it is shown in [27, Sec. 3] that generically (in the sense
of Section 2), the integer 𝐷 in Proposition 3.1 satisfies the bound
𝐷 ≤ 1 +∑𝑡

𝑖=1 (deg(𝑓𝑖 ) − 1).
The matrix-𝐹5 algorithm. Proposition 3.1 leads to an algorithm

to compute Gröbner bases using linear algebra. This algorithm,
known as Lazard’s algorithm, is described in [27]. Informally, given
a polynomial system 𝐹 ⊆ R𝑛 and a degree bound𝐷 ∈ Z>0, it works
by building the matricesℳ𝑑 (𝐹 ) and computing from them ℳ̃𝑑 (𝐹 ),
for each degree min1≤𝑖≤𝑡 {deg(𝑓𝑖 )} ≤ 𝑑 ≤ 𝐷 .

The following proposition, known as the syzygy criterion, lies at
the core of the MatrixF5 algorithm, which improves upon Lazard’s
algorithm by building Macaulay matrices with fewer rows.

Proposition 3.2 (Syzygy Criterion, [11, Lem. 6.4]). Let 𝑠 ∈
Z>0, 𝐹 = (𝑓1, . . . , 𝑓𝑡 ) ⊆ R𝑠𝑛 be homogeneous elements and let ℎ =

(ℎ1, . . . , ℎℓ ) be a homogeneous syzygy of 𝐹 with LMPOT
≻ (ℎ) = 𝜏𝑒𝑖 .

(1) The row ofℳdeg𝜏+𝑑𝑖 with signature 𝜏𝑒𝑖 is a linear combination
of rows ofℳdeg𝜏+deg 𝑓𝑖 of smaller signature.

(2) For anymonomial𝜎 ∈ R𝑛 , the row ofℳdeg𝜏+deg𝜎+deg 𝑓𝑖 with sig-
nature 𝜎𝜏𝑒𝑖 is a linear combination of rows ofℳdeg𝜏+deg𝜎+deg 𝑓𝑖
of smaller signature.

Suppose now that 𝐹 = (𝑓1, . . . , 𝑓𝑡 ) ⊆ R𝑛 is a polynomial system.
Then for each 1 ≤ 𝑖, 𝑗 ≤ 𝑡 , 𝑓𝑖𝑒 𝑗 − 𝑓𝑗𝑒𝑖 ∈ Syz(𝐹 ). Syzygies of this
form are called Koszul syzygies and the MatrixF5 algorithm exploits
precisely these syzygies to improve upon Lazard’s algorithm.

Theorem 3.3 (𝐹5 Criterion, [15, Thm. 1]). Let 𝐹 = (𝑓1, . . . , 𝑓ℓ )
be a polynomial system in R𝑛 . Then for any 𝑑 ∈ Z>0, any 1 ≤ 𝑖 ≤ ℓ ,
any 𝜏 ∈ LM≻ (rows(ℳ̃𝑑,𝑖 (𝐹 ))), and any 𝑖 < 𝑗 ≤ ℓ , the row of
ℳ𝑑+deg(𝑓𝑗 ) (𝐹 ) with signature 𝜏𝑒 𝑗 is a linear combination of rows of
ℳ𝑑+deg(𝑓𝑗 ) (𝐹 ) with smaller signature.

We recall here [20, Algorithm 1], which is a slightly modified
version of the standard MatrixF5 algorithm [1] (see also [11, Sec. 3])
permitting the input of precomputed syzygies.

4 THE FIRST SYZYGIES OF MAXIMAL MINORS
First defined in [10], the Eagon-Northcott complex is a complex
of free modules associated to a matrix with entries in any com-
mutative ring with unity. We are specifically concerned with the
first syzygies of maximal minors of some polynomial matrix. The
Eagon-Northcott complex provides access to them.

4.1 The Eagon-Northcott complex
Theorem 4.1 ([10, Thm. 1], [13, Thm.A2.60]). Let R be a com-

mutative ring with unity and let 𝐴 be a 𝑝 × 𝑞 matrix with entries in
R, with 𝑝 ≤ 𝑞. For each 0 ≤ 𝑖 ≤ 𝑞 − 𝑝 , let

E𝑖 =
(
Sym𝑖 R𝑝

)∗ ⊗∧𝑝+𝑖
(R𝑞) .

Then there are graded morphisms 𝜕𝑖 : E𝑖 → E𝑖−1, 1 ≤ 𝑖 ≤ 𝑞−𝑝 , such
that the complex EN(𝐴) = (E•

𝜖−→ R/𝐼𝑝 (𝐴) , 𝜕•) is a free resolution
if and only if grade(𝐼𝑝 (𝐴)) = 𝑞 − 𝑝 + 1.
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Algorithm 1 MatrixF5 (𝐹, 𝐷, 𝑆)
Input: A sequence 𝐹 = (𝑓1, . . . , 𝑓𝑡 ) of homogeneous elements of

degrees 𝑑1 ≤ · · · ≤ 𝑑𝑡 in k[𝑥1, . . . , 𝑥𝑛]𝑠 ; a degree bound 𝐷 ; a
set 𝑆 of syzygies of 𝐹 .

Output: A (𝐷, ≻POT)-Gröbner basis for ⟨𝐹 ⟩.
1: for 𝑖 from 1 to 𝑡 do 𝐺𝑖 ← ∅
2: for 𝑑 from 𝑑1 to 𝐷 do
3: ℳ𝑑,0 ← ∅; Crit← LMPOT

≻ (𝑆)
4: for 𝑖 from 1 to 𝑡 do
5: if 𝑑 < 𝑑𝑖 thenℳ𝑑,𝑖 ←ℳ𝑑,𝑖−1
6: else if 𝑑 = 𝑑𝑖 thenℳ𝑑,𝑖 ← concatenate the row 𝑓𝑖 to

ℳ̃𝑑,𝑖−1 with signature 𝑒𝑖
7: else
8: ℳ𝑑,𝑖 ← ℳ̃𝑑,𝑖−1
9: if 𝑠 = 1 then
10: for 𝜏 ∈ LM≻ (rows(ℳ𝑑−𝑑𝑖 ,𝑖−1)) do
11: Crit← Crit ∪ {𝜏𝑒𝑖 }
12: for 𝑓 ∈ rows(ℳ̃𝑑−1,𝑖 ) ∖ rows(ℳ̃𝑑−1,𝑖−1) do
13: 𝜏𝑒𝑖 ← signature of 𝑓
14: if 𝑓 = 0 then
15: for 𝑗 from 1 to 𝑘 do
16: Crit← Crit ∪ {𝜏𝑥 𝑗𝑒𝑖 }
17: for 𝑓 ∈ rows(ℳ𝑑−1,𝑖 ) ∖ rows(ℳ𝑑−1,𝑖−1) do
18: 𝜏𝑒𝑖 ← signature of 𝑓
19: for 𝑗 ∈ {max{ 𝑗 ′ : 𝑥 𝑗 ′ | 𝜏}, . . . , 𝑘} do
20: if 𝜏𝑥 𝑗𝑒𝑖 ∉ Crit then ℳ𝑑,𝑖 ← concatenate

the row 𝑥 𝑗 𝑓 toℳ𝑑,𝑖 with signature 𝜏𝑥 𝑗𝑒𝑖
21: ℳ̃𝑑,𝑖 ← reduced row echelon form of ℳ𝑑,𝑖 obtained

via a sequence of valid elementary row operations
22: 𝐺𝑖 ← 𝐺𝑖 ∪ {𝑓 ∈ rows(ℳ̃𝑑,𝑖 ) : 𝑓 ∉

〈
LMPOT
≻ (𝐺𝑖 )

〉
}

23: return 𝐺1, . . . ,𝐺𝑡

We make explicit the first boundary morphism 𝜕1, whose image
is precisely the first syzygy module of 𝐼𝑝 (𝐴). First, by the definition
of the free modules E𝑖 , the map 𝜕1 is a map

𝜕1 :
(
R𝑝

)∗ ⊗∧𝑝+1
(R𝑞) →

∧𝑝
(R𝑞) .

We take as a basis for (R𝑝 )∗ the standard basis functionals 𝑒𝑖 for
1 ≤ 𝑖 ≤ 𝑞. It follows immediately from Propositions 2.1 and 2.2 that
a basis for the R-module (R𝑝 )∗ ⊗∧𝑝+1 (R𝑞) is given by

{𝑒𝑖 ⊗ (𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑝 ) : 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑖1 < · · · < 𝑖𝑝 ≤ 𝑞}.

Subsequently, 𝜕1 (𝑒𝑖 ⊗ (𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑝+1 )) equals

𝑝+1∑︁
𝑡=1
(−1)𝑡−1

(
𝑒𝑖𝑡𝐴

𝑇 𝑒𝑖

)
(𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑡 ∧ · · · ∧ 𝑒𝑖𝑝+1 ) .

The map 𝜖 :
∧𝑝 (R𝑞) → R/𝐼𝑝 (𝐴) is given by

𝜖 (𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑝 ) = det( [1 · · · 𝑝 | 𝑖1 · · · 𝑖𝑝 ]𝐴) .

The image of 𝜕1 (and thus Syz(𝐹𝑝 (𝐴)) then admits an explicit
description. For each 𝑝 × (𝑝 + 1) submatrix𝐴′ of𝐴, the determinant
of the square matrix formed by duplicating any row of𝐴′, computed
via Laplace expansion around the duplicated row, is zero.

Example 4.2. Let 𝑝 = 2, 𝑞 = 4, and suppose

𝐴 =

(
𝑓11 𝑓12 𝑓13 𝑓14
𝑓21 𝑓22 𝑓23 𝑓24

)
∈ R2×4 .

We have

𝜕1 (𝑒1 ⊗ (𝑒2 ∧ 𝑒3 ∧ 𝑒4)) = 𝑓12 (𝑒3 ∧ 𝑒4) − 𝑓13 (𝑒2 ∧ 𝑒4) + 𝑓14 (𝑒2 ∧ 𝑒3) .

Note that the fact that 𝜕1 (𝑒1 ⊗ (𝑒2 ∧ 𝑒3 ∧ 𝑒4)) ∈ ker 𝜖 is precisely
the statement that the determinant

det ©«
𝑓12 𝑓13 𝑓14
𝑓12 𝑓13 𝑓14
𝑓22 𝑓23 𝑓24

ª®¬
is zero. More explicitly, 𝜖 (𝜕1 (𝑒1 ⊗ (𝑒2 ∧ 𝑒3 ∧ 𝑒4))) is simply the
determinant of this matrix, computed via Laplace expansion along
its first row. Analogously, 𝜖 (𝜕1 (𝑒2 ⊗ (𝑒1 ∧ 𝑒3 ∧ 𝑒4))) is simply the
determinant of the singular matrix

©«
𝑓21 𝑓23 𝑓24
𝑓11 𝑓13 𝑓14
𝑓21 𝑓23 𝑓24

ª®¬
computed via Laplace expansion along its first row.

4.2 Leading terms of syzygies
We start with a consequence of the description of the first syzygy
module provided by the Eagon-Northcott complex.

Proposition 4.3. Let 𝐴 = (𝑎𝑖, 𝑗 ) be an 𝑝 × 𝑞 matrix with entries
in k[𝑥1, . . . , 𝑥𝑛], with 𝑝 ≤ 𝑞. For each 1 ≤ 𝑘 ≤ 𝑞 − 𝑝 , let J𝑘 (𝐴) be
the ideal ⟨𝑎𝑖, 𝑗 : 1 ≤ 𝑖 ≤ 𝑝, 𝑗 ≤ 𝑘⟩ of k[𝑥1, . . . , 𝑥𝑛]. Letℋ be the set

𝑞−𝑝⋃
𝑘=1

⋃
𝑘+1<𝑖2<· · ·<𝑖𝑝≤𝑞

{
LM≻ (𝑔) (𝑒𝑘+1 ∧ 𝑒𝑖2 ∧ · · · ∧ 𝑒𝑖𝑝 ) : 𝑔 ∈ J𝑘 (𝐴)

}
.

Then the module ⟨⟨ℋ⟩⟩ is a submodule of LMPOT
≻ (Syz(𝐹𝑝 (𝐴))).

Proof. Fix 1 ≤ 𝑘 ≤ 𝑞 − 𝑝 . Let 𝑖2, . . . , 𝑖𝑝 ∈ Z>0 be integers such
that 𝑘 + 1 < 𝑖2 < · · · < 𝑖𝑝 < 𝑞, and let 𝑔 ∈ J𝑘 (𝐴). Then there exist
polynomials ℎ𝑖, 𝑗 ∈ R𝑛 such that 𝑔 =

∑
𝑖, 𝑗 ℎ𝑖, 𝑗𝑎𝑖, 𝑗 . Let

𝐺 =
∑︁
𝑖, 𝑗

ℎ𝑖, 𝑗 𝜕1 (𝑒𝑖 ⊗ (𝑒 𝑗 ∧ 𝑒𝑘+1 ∧ 𝑒𝑖2 ∧ · · · ∧ 𝑒𝑖𝑝 )).

We claim that

LMPOT
≻ (𝐺) = LM≻ (𝑔) (𝑒𝑘+1 ∧ 𝑒𝑖2 ∧ · · · ∧ 𝑒𝑖𝑝 ).

Now taking 𝜙 =

(
(𝑒𝑘+1 ∧ · · · ∧ 𝑒𝑖𝑝 )

)∗
, we have

𝜙 (𝐺) =
∑︁
𝑖, 𝑗

𝜙 (ℎ𝑖, 𝑗 𝜕1 (𝑒𝑖 ⊗ (𝑒 𝑗 ∧ 𝑒𝑘+1 ∧ 𝑒𝑖2 ∧ · · · ∧ 𝑒𝑖𝑝 )))

=
∑︁
𝑖, 𝑗

ℎ𝑖, 𝑗𝜙 (𝜕1 (𝑒𝑖 ⊗ (𝑒 𝑗 ∧ 𝑒𝑘+1 ∧ 𝑒𝑖2 ∧ · · · ∧ 𝑒𝑖𝑝 )))

=
∑︁
𝑖, 𝑗

ℎ𝑖, 𝑗𝑎𝑖, 𝑗 = 𝑔

By the definition of 𝜕1, only those basis vectors of
∧𝑝 (R𝑞𝑛) of the

form 𝑒 𝑗 ∧ · · · ∧ 𝑒𝑖𝑡 ∧ · · · ∧ 𝑒𝑖𝑝 appear with nonzero coefficient in𝐺 .
The largest of these basis vectors with respect to the lexicographic
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order is clearly 𝑒𝑘+1 ∧ 𝑒𝑖2 ∧ · · · ∧ 𝑒𝑖𝑝 , so our claim is proven. Hav-
ing constructed an element of LMPOT

≻ (Syz(𝐹𝑝 (𝐴))) whose leading
term is precisely LM≻ (𝑔) (𝑒𝑘+1 ∧ 𝑒𝑖2 ∧ · · · ∧ 𝑒𝑖𝑝 ), we are done. □

Remark 4.4. We have seen, in Section 4.1, that the syzygies de-
scribed by the Eagon-Northcott complex between the maximal mi-
nors of a 𝑝 ×𝑞 matrix𝐴 over R𝑛 are given by choosing a 𝑝 × (𝑝 + 1)
submatrix 𝐴′ of 𝐴, duplicating any row of 𝐴′, and computing the
determinant of this matrix by Laplace expansion over the dupli-
cated row (see Example 4.2 for an example). The ≻POT-leading term
of such a syzygy is simply the leading term of the leftmost entry of
the duplicated row.

Upon fixing a maximal minor of 𝐴, the leading monomials of
a ≻-Gröbner basis of the polynomial system formed by the set of
columns to the left of the leftmost column of this minor are leading
monomials of syzygies amongst the maximal minors of 𝐴.

Proposition 4.3 leads directly to the following algorithm.

Algorithm 2 MaxDetMatrixF5 (𝐴, 𝐷)
Input: A matrix 𝐴 = (𝑎𝑖, 𝑗 ) ∈ k[𝑥1, . . . , 𝑥𝑛]𝑝×𝑞 of homogeneous

polynomials, with 𝑝 ≤ 𝑞 and an integer 𝐷 .
Output: A (𝐷, ≻)-Gröbner basis of 𝐼𝑝 (𝐴).
1: 𝐶 ← {𝑎1,1, . . . , 𝑎𝑝,1, . . . , 𝑎1,𝑞−𝑝 , . . . , 𝑎𝑝,𝑞−𝑝 }
2: 𝐺1, . . . ,𝐺𝑝 (𝑞−𝑝 ) ← MatrixF5 (𝐶, ∅, 𝐷 −min𝑓 ∈𝐹𝑝 (𝐴) {deg(𝑓 )})
3: 𝐻 ← ∅
4: for 𝑖 ∈ {1, . . . , 𝑝 (𝑞 − 𝑝)} do
5: for 𝑓 ∈ 𝐹𝑝

( [
1 · · · 𝑝 |

( ⌊
𝑖
𝑝

⌋
+ 1

)
· · ·𝑞

]
𝐴

)
do

6: 𝑗 ← index of 𝑓 in 𝐹𝑝 (𝐴)
7: 𝐻 ← 𝐻 ∪ {LM≻ (𝑔)𝑒 𝑗 : 𝑔 ∈ 𝐺𝑖 }
8: return MatrixF5 (𝐹𝑝 (𝐴) , 𝐻, 𝐷)

Theorem 4.5. Algorithm MaxDetMatrixF5 is correct.

Proof. This follows from the correctness ofMatrixF5 [1, Thm. 9],
and from Proposition 4.3 which establishes that the set 𝐻 input to
MatrixF5 on Line 8 is a subset of LMPOT

≻ (Syz(𝐹𝑝 (𝐴))). □

5 CRITICAL POINTS
Recall that for a set of homogeneous polynomials 𝐹 = (𝑓1, . . . , 𝑓𝑝 ) ⊆
R𝑛 , and a homogeneous polynomial 𝑔 ∈ R𝑛 , our goal is to compute
a Gröbner basis for I(𝑔, 𝐹 ) = 𝐼𝑝 (jac(𝑔, 𝐹 )) + ⟨𝐹 ⟩. Note that if 𝑔
and the 𝑓𝑖 ’s are affine, by [9, Ch. 8, Sec. 4, Thm. 4], one can simply
homogenize them with respect to a variable ℎ which is smaller than
all of the 𝑥𝑖 , apply the algorithms in this paper, then set ℎ = 1.

Via a minor modification of Algorithm 2, we obtain an algorithm
which computes a Gröbner basis for the ideal I(𝑔, 𝐹 ).

Proposition 5.1. Algorithm CritGB is correct.

Proof. The only modification made to Algorithm 2 to obtain
Algorithm 3 is to add the set 𝐹 to the polynomial system upon
which we run MatrixF5. Thus, the correctness follows immediately
from that of Algorithm 2, proven in Theorem 4.5. □

For a system of homogeneous polynomials 𝐹 = (𝑓1, . . . , 𝑓𝑝 ) ⊆ R𝑛
and a polynomial 𝑔 ∈ R𝑛 , there may exist, a priori, nontrivial

Algorithm 3 CritGB(𝐹, 𝑔, 𝐷)
Input: A system of homogeneous polynomials 𝐹 = (𝑓1, . . . , 𝑓𝑝 ) ⊆
R𝑛 , a homogeneous polynomial 𝑔 ∈ R𝑛 , and an integer 𝐷 .

Output: A (𝐷, ≻)-Gröbner basis of I(𝑔, 𝐹 ).
1: 𝐽 ← jac(𝑔, 𝐹 )
2: 𝐶 ← {𝐽1,1, . . . , 𝐽𝑝+1,1, . . . , 𝐽1,𝑛−𝑝−1, . . . , 𝐽𝑝,𝑛−𝑝−1}
3: 𝐺1, . . . ,𝐺 (𝑝+1) (𝑛−𝑝−1) ← MatrixF5

(
𝐶, 𝐷 −min

{
deg

(
𝜕𝑓𝑖
𝜕𝑥 𝑗

)})
4: 𝐻 ← ∅
5: for 𝑖 ∈ {1, . . . , (𝑝 + 1) (𝑛 − 𝑝 − 1)} do

6: for 𝑓 ∈ 𝐹𝑝+1
( [

1 · · · 𝑝 + 1 |
( ⌊

𝑖
𝑝+1

⌋
+ 1

)
· · ·𝑛

]
𝐽

)
do

7: 𝑗 ← index of 𝑓 in 𝐹𝑝+1 (𝐽 )
8: 𝐻 ← 𝐻 ∪ {LM≻ (𝑔)𝑒 𝑗 : 𝑔 ∈ 𝐺𝑖 }
9: return MatrixF5 (𝐹 ∪ 𝐹𝑝+1 (𝐽 ) , 𝐻, 𝐷)

syzygies between the polynomials in 𝐹 and the maximal minors of
jac(𝑔, 𝐹 ). Generically, this does not occur.

Proposition 5.2. Let 𝑛, 𝑝, 𝑑0 ∈ Z>0. There exists a nonempty

Zariski open subset 𝑈 ⊆ A(𝑝+1) (
𝑛+𝑑0−1
𝑛−1 ) such that for all 𝑐 ∈ 𝑈 ,

taking (𝑔, 𝑓1, . . . , 𝑓𝑝 ) = 𝜙𝑐 (𝔣(𝑛,(𝑑0,...,𝑑0 ) ) ),

Syz(𝐹 ∪ 𝐹𝑝+1 (jac(𝑔, 𝐹 ))) = Syz(𝐹 ) ⊕ Syz(𝐹𝑝 (jac(𝑔, 𝐹 )))

where 𝐹 = (𝑓1, . . . , 𝑓𝑝 ).

Proof. By [33, Lem. 2.2], there exists a nonempty Zariski open
subset𝑈 ⊆ A(𝑝+1) (

𝑛+𝑑0−1
𝑛−1 ) such that for all 𝑐 ∈ 𝑈 , taking

(𝑔, 𝑓1, . . . , 𝑓𝑝 ) = 𝜙𝑐 (𝔣(𝑛,(𝑑0,...,𝑑0 ) ) ) .

and 𝐹 = (𝑓1, . . . , 𝑓𝑝 ), the sequence (𝑓1, . . . , 𝑓𝑝 ) is aR𝑛/𝐼𝑝 (jac(𝑔, 𝐹 ))-
regular sequence. Since for such 𝑐 , 𝐹 is also a regular sequence in
R𝑛 , the two R𝑛-modules R𝑛/𝐼𝑝 (jac(𝑔, 𝐹 )) and R𝑛/⟨𝐹 ⟩ are Tor-
independent. That is, for all 𝑖 ≥ 1,

TorR𝑛
𝑖
(R𝑛/𝐼𝑝 (jac(𝐹 )) ,R𝑛/⟨𝐹 ⟩) = 0.

It follows that EN(jac(𝐹 ))⊗R𝑛K(𝐹 ) is a free resolution of the tensor
product R𝑛/⟨𝐹 ⟩ ⊗R𝑛 R𝑛/𝐼𝑝 (jac(𝐹 )) � R𝑛/

(
⟨𝐹 ⟩ + 𝐼𝑝 (jac(𝐹 ))

)
. □

6 COMPLEXITY ANALYSIS
The complexity of linear-algebra based Gröbner basis algorithms
is governed by the cost of echelonizing Macaulay matrices. The
work that we have done thus far allows us to estimate these costs,
since the sizes and ranks of the Macaulay matrices computed can
be deduced from the Eagon-Northcott complex.

6.1 New complexity bound
Recall that given a polynomial system 𝐹 ⊆ R𝑛 , the columns of
ℳ𝑑 (𝐹 ), are indexed by the monomials of degree 𝑑 in R𝑛 . We are
left to compute the rank of ℳ𝑑 (𝐹 ) and the number of rows of
ℳ𝑑 (𝐹 ) taken into account by our algorithm. We first count the
number of syzygies from Proposition 4.3.

Proposition 6.1. Let 𝐴 = (𝑎𝑖, 𝑗 ) be a 𝑝 × 𝑞 matrix with entries
homogeneous polynomials of degree 𝑑0 in R𝑛 , with 𝑞 ≥ 𝑝 . For each
1 ≤ 𝑘 ≤ 𝑞 − 𝑝 , let J𝑘 (𝐴) :=

〈
𝑎𝑖, 𝑗 : 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑘

〉
⊆ R𝑛 .
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Then for any 𝐷 ∈ Z>0 and any 𝑑 ∈ {𝑑0𝑝, . . . , 𝐷}, the number of
elements of degree 𝑑 − 𝑝𝑑0 of the set 𝐻 computed in Algorithm 2 is

𝑞−𝑝∑︁
𝑘=1

HFJ𝑘 (𝐴) (𝑑 − 𝑝𝑑0)
(
𝑞 − 𝑘 − 1
𝑝 − 1

)
Proof. Let 𝐻𝑑−𝑝𝑑0 ⊆ 𝐻 be the subset of the set 𝐻 in Line 8 of

Algorithm 2 consisting of elements of degree 𝑑 − 𝑝𝑑0. This set 𝐻 is
precisely the setℋ defined in the statement of Proposition 4.3. We
can therefore write

#𝐻𝑑−𝑝𝑑0 =

𝑞−𝑝∑︁
𝑘=1

∑︁
𝑘+1<𝑖2<· · ·<𝑖𝑝≤𝑞

{
LM≻ (𝑔) (𝑒𝑘+1 ∧ 𝑒𝑖2 ∧ · · · ∧ 𝑒𝑖𝑝 ) :

𝑔 ∈ J𝑘 (𝐴), deg(𝑔) = 𝑑 − 𝑝𝑑0}

=

𝑞−𝑝∑︁
𝑘=1

∑︁
𝑘+1<𝑖2<· · ·<𝑖𝑝≤𝑞

HFJ𝑘 (𝐴) (𝑑 − 𝑝𝑑0).

The last equality follows from the fact that the number of mono-
mials of of LM≻ (J𝑘 (𝐴)) of degree 𝑑 − 𝑝𝑑0 is HFJ𝑘 (𝐴) (𝑑 − 𝑝𝑑0).
The result follows from the fact that for 1 ≤ 𝑘 ≤ 𝑞 − 𝑝 , there are(𝑞−𝑘−1

𝑝−1
)
sequences of the form 𝑘 + 1 < 𝑖2 < · · · < 𝑖𝑝 ≤ 𝑞. □

Using Proposition 6.1, we are left to compute the Hilbert func-
tions of the ideals J𝑘 (𝐴) of flattened columns, of course under
certain genericity assumptions. To do this, we rely on Fröberg’s
conjecture [19, Sec. 1], which we reformulate below.

In what follows, for polynomials 𝑃 (𝑡), 𝑄 (𝑡) ∈ Z[𝑡], we denote
by

[
𝑃 (𝑡 )
𝑄 (𝑡 )

]
+
the power series expansion of 𝑃 (𝑡 )

𝑄 (𝑡 ) , truncated at its
first non-positive coefficient.

Conjecture 6.2 ([19, Sec. 1],[30, Conj. 1]). Consider (𝑓1, . . . , 𝑓𝑚)
be a sequence of homogeneous polynomials in R𝑛 , whose coefficients
are algebraically independent. For each 1 ≤ 𝑖 ≤ 𝑚, let 𝑑𝑖 = deg(𝑓𝑖 ).
Then

𝐻R𝑛/⟨𝑓1,...,𝑓𝑚 ⟩ (𝑡) =
[∏𝑚

𝑖=1 (1 − 𝑡𝑑𝑖 )
(1 − 𝑡)𝑛

]
+
.

Proposition 6.3. Let 𝑚,𝑛 ∈ Z>0 and let 𝐹 = (𝑓1, . . . , 𝑓𝑚) ⊆
k[𝑥1, . . . , 𝑥𝑛] be a sequence of homogeneous polynomials, all of degree
𝑑0. Let 𝐷 be the Hilbert regularity of ⟨𝐹 ⟩. If 𝐹 is a semi-regular
sequence, and Conjecture 6.2 is true, then for any 𝑑 ≥ 0,

HFR𝑛/⟨𝑓1,...,𝑓𝑚 ⟩ (𝑑) =

∑⌊

𝑛+𝑑−1
𝑑0

⌋
𝑗=0 (−1) 𝑗

(𝑛+𝑑−𝑑0 𝑗−1
𝑛−1

) (𝑚
𝑗

)
if 𝑑 < 𝐷

0 if 𝑑 ≥ 𝐷

.

Proof. By Conjecture 6.2, the Hilbert series of R𝑛/⟨𝐹 ⟩ is

𝐻R𝑛/⟨𝑓1,...,𝑓𝑚 ⟩ (𝑡) =
[
(1 − 𝑡𝑑0 )𝑚
(1 − 𝑡)𝑛

]
+
.

The numerator (1 − 𝑡𝑑0 )𝑚 can be expanded as
∑𝑚

𝑗=0 (−1) 𝑗
(𝑚
𝑗

)
𝑡 𝑗𝑑0

while the reciprocal of the denominator has the classical expansion

1
(1 − 𝑡)𝑛 =

∑︁
𝑗≥0

(
𝑛 + 𝑗 − 1
𝑛 − 1

)
𝑡 𝑗 .

The result follows by taking the product of these expansions. □

Proposition 6.4. Let 𝑛 ∈ Z>0. For any 𝑝 ≤ 𝑛 and any 𝑑0 ∈ Z>0,

there exists a Zariski open set 𝑈 ⊆ A(𝑝+1) (
𝑛+𝑑0−1
𝑛−1 ) such that for all

𝑐 ∈ 𝑈 , taking (𝑔, 𝑓1, . . . , 𝑓𝑝 ) = 𝜙𝑐 (𝔣(𝑛,𝑑0,...,𝑑0 ) ), the sequence(
𝜕𝑔

𝜕𝑥1
,
𝜕𝑓1
𝜕𝑥1

, . . . ,
𝜕𝑓𝑝

𝜕𝑥1
, . . . ,

𝜕𝑔

𝜕𝑥𝑛−𝑝−1
,

𝜕𝑓1
𝜕𝑥𝑛−𝑝−1

, . . . ,
𝜕𝑓𝑝

𝜕𝑥𝑛−𝑝−1

)
formed by the leftmost 𝑛 − 𝑝 − 1 columns of jac(𝑔, 𝑓1, . . . , 𝑓𝑝 ) is semi-
regular.

Proof. Let 𝔠 (1) , . . . , 𝔠 (𝑝+1) be sets of indeterminates, with 𝔠 (𝑖 ) =
{𝔠 (𝑖 )𝜏 : 𝜏 ∈ Mon𝑑0 (R𝑛). For any 1 ≤ 𝑖 ≤ 𝑝 + 1 and for 1 ≤

𝑗 ≤ 𝑛 − 𝑝 − 1, the coefficients of the partial derivative
𝜕𝔣𝔠
(𝑖 )
(𝑛,𝑑0 )
𝜕𝑥 𝑗

are

polynomials in the indeterminate coefficients 𝔠 (𝑖 ) .
For any𝑑 ≥ 𝑑0, (upon fixing bases for the domain and codomain),

the multiplication map by
𝜕𝔣𝔠
(𝑖 )
(𝑛,𝑑0 )
𝜕𝑥 𝑗

©«
R𝑛〈

𝜕𝔣𝔠
(1)
(𝑛,𝑑0 )
𝜕𝑥1

, . . . ,
𝜕𝔣𝔠
(𝑖−1)
(𝑛,𝑑0 )

𝜕𝑥 𝑗−1

〉 ª®®¬𝑑−𝑑0

→
©«

R𝑛〈
𝜕𝔣𝔠
(1)
(𝑛,𝑑0 )
𝜕𝑥1

, . . . ,
𝜕𝔣𝔠
(𝑖−1)
(𝑛,𝑑0 )

𝜕𝑥 𝑗−1

〉 ª®®¬𝑑
is represented by a matrix whose entries are rational functions in
the indeterminate coefficients 𝔠 (𝑖 ) .

The points 𝑐 ∈ A(𝑝+1) (
𝑛+𝑑0−1
𝑛−1 ) such that this map is full-rank

form a Zariski open subset. By intersecting all such subsets for all
1 ≤ 𝑖 ≤ 𝑝 +1 and 1 ≤ 𝑗 ≤ 𝑛−𝑝−1, we obtain the set𝑈 we seek. □

Corollary 6.5. Let 𝑛 ∈ Z>0 and assume Conjecture 6.2 is true.
For any 𝑝 ≤ 𝑛 and any 𝑑0 ∈ Z>0, there exists a Zariski open set

𝑈 ⊆ A(𝑝+1) (
𝑛+𝑑0−1
𝑛−1 ) such that for all 𝑐 ∈ 𝑈 , taking (𝑔, 𝑓1, . . . , 𝑓𝑝 ) =

𝜙𝑐 (𝔣(𝑛,𝑑0,...,𝑑0 ) ), for any 1 ≤ 𝑘 ≤ 𝑛 − 𝑝 − 1, HFJ𝑘 (jac(𝑔,𝐹 ) ) (𝑑) is
(𝑛+𝑑−1
𝑛−1

)
−∑⌊

𝑛+𝑑−1
𝑑0

⌋
𝑗=0 (−1) 𝑗

(𝑛+𝑑−𝑑0 𝑗−1
𝑛−1

) ( (𝑝+1)𝑘
𝑗

)
if 𝑑 < 𝐷(𝑛+𝑑−1

𝑛−1
)

if 𝑑 ≥ 𝐷

where J𝑘 (jac(𝑔, 𝐹 )) is the ideal generated by the first 𝑘 columns of
jac(𝑔, 𝐹 ), and 𝐷 is its Hilbert regularity.

Proof. Let𝑈 be the set defined in Proposition 6.4 and take any
𝑐 ∈ 𝑈 . Then for any 1 ≤ 𝑘 ≤ 𝑛 − 𝑝 − 1, the set of generators
for J𝑘 (jac(𝑔, 𝐹 )) given by the first 𝑘 columns of jac(𝑔, 𝐹 ) forms a
semi-regular sequence. We can therefore apply Proposition 6.3 to
obtain the Hilbert function of R𝑛/J𝑘 (jac(𝑔, 𝐹 )). Since the Hilbert
function of R𝑛 itself is HFR𝑛 (𝑑) =

(𝑛+𝑑−1
𝑛−1

)
, the result follows. □

Conjecture 6.6. The set𝑈 defined in Proposition 6.3 is nonempty.

Remark 6.7. Such a conjecture is a variation of Fröberg’s.

Finally, we compute the ranks of the Macaulay matrices asso-
ciated to the maximal minors of a polynomial matrix from the
Eagon-Northcott complex.

Proposition 6.8. Let 𝐴 be a 𝑝 × 𝑞 matrix with entries homo-
geneous polynomials of degree 𝑑0 in k[𝑥1, . . . , 𝑥𝑛], with 𝑞 ≥ 𝑝 . If
grade(𝐼𝑝 (𝐴)) = 𝑞 − 𝑝 + 1, then

HF𝐼𝑝 (𝐴) (𝑑) =
𝑞−𝑝∑︁
𝑗=0
(−1) 𝑗

(
𝑛 + 𝑑 − (𝑝 + 𝑗)𝑑0 − 1

𝑛 − 1

) (
𝑝 + 𝑗 − 1
𝑝 − 1

) (
𝑞

𝑝 + 𝑗

)
.
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Proof. Since grade(𝐼𝑝 (𝐴)) = 𝑞 − 𝑝 + 1, by Theorem 4.1, the
Eagon-Northcott complex is a free resolution of 𝐼𝑝 (𝐴). In order
to turn the Eagon-Northcott complex into a graded resolution, we
need to shift the grading on the component free modules to ensure
that the boundary homomorphisms are graded.

First, the degree of the maximal minors of 𝐴 is 𝑝𝑑0. As such,
in order to make the augmentation homomorphism 𝜖 of EN(𝐴)
graded, we need only replace E0 by E0 (−𝑝𝑑0).

Now, by the description of the boundary homomorphisms in [13,
A2H] (see also [13, Exa. A2.69]), each boundary homomorphism
(except for the augmentation homomorphism) can be represented
by a matrix with entries linear in the entries of 𝐴. Thus, in order to
make these boundary homomorphisms graded, we need to replace
E 𝑗 by E 𝑗 (−𝑝𝑑0 − 𝑖𝑑0) for each 1 ≤ 𝑗 ≤ 𝑞 − 𝑝 .

Finally, we have rank(E0 (−𝑝𝑑0)) =
(𝑞
𝑝

)
and

rank(E 𝑗 (−𝑑0 (𝑝 + 𝑗))) = rank
((

Sym𝑗 (R𝑝 )
)∗
⊗

∧𝑝+𝑗
(R𝑞)

)
=

(
𝑝 + 𝑗 − 1
𝑝 − 1

) (
𝑞

𝑝 + 𝑗

)
.

The result then follows from Corollary 2.5. □

Proposition 6.9. Let 𝐹 = (𝑓1, . . . , 𝑓𝑝 ) ⊆ k[𝑥1, . . . , 𝑥𝑛] be a regu-
lar sequence of homogeneous polynomials, all of degree 𝑑0, and let
𝑔 ∈ k[𝑥1, . . . , 𝑥𝑛] be a homogeneous polynomial of degree 𝑑0. Then
the Hilbert function of the ideal I(𝑔, 𝐹 ) = ⟨𝐹 ⟩ + 𝐼𝑝+1 (jac(𝑔, 𝐹 )) is
given by HFR𝑛/I (𝑔,𝐹 ) (𝑑) which is

𝑝∑︁
𝑖=0
(−1)𝑖

(
𝑝

𝑖

) ((
𝑛 + 𝑑 − 𝑖𝑑0 − 1

𝑛 − 1

)
−

𝑛−𝑝−1∑︁
𝑗=0
(−1) 𝑗

(
𝑛 + 𝑑 − (𝑝 + 𝑗 + 𝑖 + 1)𝑑0 − 1

𝑛 − 1

) (
𝑝 + 𝑗
𝑝

) (
𝑛

𝑝 + 𝑗 + 1

)ª®¬
Proof. By [33, Lem. 2.2], the sequence 𝐹 is aR𝑛/𝐼𝑝+1 (jac(𝑔, 𝐹 ))-

regular sequence. It follows (see e.g. [12, Exe. 10.13(a)]) that

𝐻R𝑛/I (𝑔,𝐹 ) (𝑡) = 𝐻R𝑛/𝐼𝑝+1 (jac(𝑔,𝐹 ) ) (𝑡) (1 − 𝑡𝑑0 )𝑝 . (1)

By Proposition 6.8, HF𝐼𝑝+1 (jac(𝑔,𝐹 ) ) (𝑑) equals

𝑛−𝑝−1∑︁
𝑗=0
(−1) 𝑗

(
𝑛 + 𝑑 − (𝑝 + 𝑗 + 1)𝑑0 − 1

𝑛 − 1

) (
𝑝 + 𝑗
𝑝

) (
𝑛

𝑝 + 𝑗 + 1

)
. (2)

Since the Hilbert series𝐻R𝑛/𝐼𝑝+1 (jac(𝑔,𝐹 ) ) (𝑡) is the generating series
of the difference between the Hilbert function of R𝑛 (which is
simply HFR𝑛 (𝑑) =

(𝑛+𝑑−1
𝑛−1

)
) and this Hilbert function, the result

follows by combining Eq. (2) with Eq. (1) and expanding. □

We use the Hilbert functions to estimate the cost of echelonizing
each of the Macaulay matrices encountered in Algorithm 3.

Theorem 6.10. Let 𝐹 = (𝑓1, . . . , 𝑓𝑝 ) ⊆ k[𝑥1, . . . , 𝑥𝑛] be a regular
sequence of homogeneous polynomials, all of degree 𝑑0, and let 𝑔 ∈
k[𝑥1, . . . , 𝑥𝑛] be a homogeneous polynomial of degree 𝑑0. Finally,
for each 1 ≤ 𝑘 ≤ 𝑛 − 𝑝 − 1, let J𝑘 (jac(𝑔, 𝐹 )) be the ideal of R𝑛
generated by the first 𝑘 columns of jac(𝑔, 𝐹 ). Then assuming that
Conjecture 6.2 and Conjecture 6.6 are true, the number of arithmetic

operations in k required to compute a grevlex Gröbner basis for the
ideal I(𝑔, 𝐹 ) = ⟨𝐹 ⟩ + 𝐼𝑝+1 (jac(𝑔, 𝐹 )) is in

𝑂
©«

𝐷∑︁
𝑑=𝑑0

((
𝑛 + 𝑑 − 1
𝑛 − 1

)
− HFR𝑛/I (𝑔,𝐹 ) (𝑑)

)𝜔−2
R(𝑑)

(
𝑛 + 𝑑 − 1
𝑛 − 1

)ª®¬
with

R(𝑑) = 𝑝

(
𝑛 + 𝑑 − 𝑑0 − 1

𝑛 − 1

)
+

(
𝑛 + 𝑑 − (𝑝 + 1)𝑑0 − 1

𝑛 − 1

) (
𝑛

𝑝 + 1

)
−

(
𝑛−𝑝−1∑︁
𝑘=1

HFJ𝑘 (jac(𝑔,𝐹 ) ) (𝑑 − (𝑝 + 1)𝑑0)
(
𝑛 − 𝑘 − 1

𝑝

))
where the Hilbert function HFk[𝑥1,...,𝑥𝑛 ]/I (𝑔,𝐹 ) (𝑑) is given in Propo-
sition 6.9, the Hilbert functions HFJ𝑘 (jac(𝑔,𝐹 ) ) (𝑑) are those given in
Corollary 6.5, 𝐷 = (𝑛+𝑝)𝑑0 +1, and 2 ≤ 𝜔 ≤ 3 is a suitable exponent
of matrix multiplication.

Proof. By [33, Cor. 2.3], the largest degree of an element of
the reduced grevlex Gröbner basis of I(𝑔, 𝐹 ) is 𝐷 = (𝑛 + 𝑝)𝑑0 +
1. Therefore, the output of CritGB(𝐹, 𝑔, 𝐷) (see Algorithm 3) is a
grevlex Gröbner basis of I(𝑔, 𝐹 ).

The arithmetic complexity of Algorithm 3 is clearly bounded by
that of its final step. MatrixF5 only performs arithmetic operations
when computing row-echelon forms for the Macaulay matrices it
builds. We can therefore bound the number of arithmetic operations
performed by MatrixF5 on any given input by the cost of echeloniz-
ing the Macaulay matrices it encounters. For a given 𝑑0 ≤ 𝑑 ≤ 𝐷 ,
the Macaulay matrix ℳ𝑑 (I(𝑔, 𝐹 )) is of rank HFI(𝑔,𝐹 ) (𝑑)and has
# Mon𝑑 (R𝑛) =

(𝑛+𝑑−1
𝑛−1

)
. The rows ofℳ𝑑 (I(𝑔, 𝐹 )) are indexed by

a subset of(
Mon𝑑−𝑑0

(
R#𝐹
𝑛

)
∪Mon𝑑−(𝑝+1)𝑑0

(
R#𝐹𝑝+1 (jac(𝑔,𝐹 ) )
𝑛

))
∖ 𝐻𝑑−𝑝𝑑0 ,

which has cardinality precisely R(𝑑) by Proposition 6.1. By [34,
Sec. 2.2], an 𝑠 × 𝑡 matrix of rank 𝑟 over k can be echelonized using
𝑂 (𝑟𝜔−2𝑠𝑡) operations, so the result follows. □

6.2 Comparison with Lazard’s algorithm
We conclude with a comparison of the upper bound

𝑑0 (𝑝−1)+(𝑑0−1)𝑛+1∑︁
𝑑=𝑝𝑑0

R(𝑑)

fromTheorem 6.10 on the total number of rows in all of theMacaulay
matrices built by Algorithm 2 to the upper bound(

𝑞

𝑝

) (
𝑑0 (𝑝 − 1) + (𝑑0 − 1)𝑛 + 1 + 𝑛

𝑛

)
.

on the number of rows in the Macaulay matrices built by Lazard’s
algorithm obtained in [18, Theorem 20].

This comparison does not take into account the fact that in
Algorithm 1, Macaulay matrices are computed degree-by-degree,
so that reductions to zero in lower degrees can be used to eliminate
reductions to zero in subsequent degrees.

This comparison also does not take into account the 𝐹5 criterion
[15, Thm. 1], which allows for several more reductions to zero to
be avoided. However, the complexity of 𝐹5 has only been analyzed
in the case of a regular sequence, in [1].
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Remark 6.11. By computing a ≻POT-Gröbner basis for Syz(𝐹𝑝 (𝐴)),
we can estimate the number of extra reductions to zero avoided
by Algorithm 2 thanks to Proposition 3.2 (ii). For 𝑝 = 3, 𝑞 = 6, 𝑛 =

4, 𝑑0 = 3, the ratio of the number of rows estimated by taking into
account this criterion to the number of rows computed by Lazard’s
algorithm is 29.397, while not taking into account this criterion
yields a ratio of 26.786. Similarly, for 𝑝 = 3, 𝑞 = 7, 𝑛 = 5, 𝑑0 = 3,
taking into account this criterion gives a ratio of 41.006, while
not taking into account this criterion gives a ratio of 34.946. This
suggests that a careful complexity analysis of Algorithm 3 might
provide a theoretical complexity improvement that is better than
the one suggested by the graphs we give here.

6.2.1 𝑝, 𝑛 fixed,𝑑0 grows. First, we fix the number of polynomials 𝑝
and the number of variables 𝑛, and allow the degree 𝑑0 to grow. We
take 𝑞 = 𝑛+𝑝−1, so that the ideal of maximal minors has dimension
zero. Figure 1 shows that for a fixed 𝑝 and 𝑛, the theoretical gain
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Figure 1: Speedup of Algorithm 2. Top: 𝑝 = 3; bottom: 𝑝 = 4

which we obtain appears to grow logarithmically in 𝑑0.
Finally, we compare Lazard’s algorithm to a (nonexistent) algo-

rithm which would compute full-rank Macaulay matrices. ?? shows
that such an algorithm appears to also only provide a theoretical
gain which grows logarithmically in 𝑑0.

6.2.2 𝑝, 𝑑0 fixed, 𝑛 grows. Next, we fix the number of polynomials
𝑝 and the degree 𝑑0 and allow the number of variables 𝑛 to grow.
Again, we take 𝑞 = 𝑛 + 𝑝 − 1 so that the ideal of maximal minors
has dimension zero. Figure 3 shows that for a fixed 𝑝 and 𝑑0, the
theoretical gain which we obtain appears to grow linearly in 𝑛.

We conclude by again comparing Lazard’s algorithm to a (nonex-
istent) algorithm which would compute full-rank Macaulay matri-
ces. Figure 4 shows that such an algorithm appears to provide a

1

2

3

4

5

6

7

0 10 20 30 40 50 60

Sp
ee
du

p

Degree of matrix entries 𝑑0
𝑛 = 4
𝑛 = 5

𝑛 = 6
𝑛 = 7

𝑛 = 8
𝑛 = 9

𝑛 = 10
𝑛 = 11

𝑛 = 12
𝑛 = 13

𝑛 = 14
𝑛 = 15

0

2

4

6

8

10

12

0 10 20 30 40 50 60

Sp
ee
du

p
Degree of matrix entries 𝑑0

𝑛 = 5
𝑛 = 6

𝑛 = 7
𝑛 = 8

𝑛 = 9
𝑛 = 10

𝑛 = 11
𝑛 = 12

𝑛 = 13
𝑛 = 14

𝑛 = 15
𝑛 = 16

Figure 2: Speedup of an algorithm which computes full-rank
Macaulay matrices. Top: 𝑝 = 3; bottom: 𝑝 = 4.

theoretical gain which grows exponentially in 𝑛, demonstrating
that there is still potentially much to be gained by devising new
criteria which predict more reductions to zero.
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Figure 3: Speedup of Algorithm 2. Top: 𝑑0 = 3; bottom: 𝑑0 = 4.
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Figure 4: Speedup of an algorithm which computes full-rank
Macaulay matrices. Top: 𝑑0 = 3; bottom: 𝑑0 = 4.
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