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Peristalsis, i.e., a motion pattern arising from the propagation of muscle contraction

and expansion waves along the body, is a common locomotion strategy for limbless

animals. Mimicking peristalsis in bio-inspired robots has attracted considerable attention

in the literature. It has recently been observed that maximal velocity in a metameric

earthworm-like robot is achieved by actuating the segments using a “phase coordination”

principle. This paper shows that, in fact, peristalsis (which requires not only phase

coordination, but also that all segments oscillate at same frequency and amplitude)

emerges from optimization principles. More precisely, basing our analysis on the

assumption of small deformations, we show that peristaltic waves provide the optimal

actuation solution in the ideal case of a periodic infinite system, and that this is

approximately true, modulo edge effects, for the real, finite length system. Therefore, this

paper confirms the effectiveness of mimicking peristalsis in bio-inspired robots, at least in

the small-deformation regime. Further research will be required to test the effectiveness

of this strategy if large deformations are allowed.

Keywords: crawling motility, lumbricus terrestris, peristalsis, self-propulsion, metameric robots, biomimetic

robots, soft robotics, optimization

1. INTRODUCTION

The study of self-propelled locomotors exploiting friction-induced traction as a result of body shape
changes, is gaining attention because of the variety of physical systems which take advantage of such
a locomotion strategy. One motivation is the desire to understand biological phenomena, such as
cell migration on or within solid substrates, matrices, and tissues (Alberts et al., 2002). Another
motivation is the attempt to replicate these mechanisms in robotics with the idea that biomimetic
constructs may outperform traditional ones when confronted with unstructured and unpredictable
environments.

In particular, robotic locomotion research has recently considered crawling and burrowing
animals (e.g., earthworms, snakes, and caterpillars), whence an increasing number of research
projects on bio-inspired metameric (soft) robots (Menciassi et al., 2006; Wang et al., 2009;
Boxerbaum et al., 2012; Daltorio et al., 2013; Fang et al., 2015; Nemitz et al., 2016; Umedachi
et al., 2016; Ge et al., 2017). As a matter of fact, many species such as earthworms, caterpillars,
sea cucumbers and snails move using peristalsis which is a locomotion mechanism consisting of a
series of wave-like muscle relaxation and contraction which propagate along the body (Quillin,
1999). One of the most studied biological species is Lumbricus terrestris (commonly known as
nightcrawler) which is a kind of earthworm which uses peristalsis both for surface crawling and
for burrowing. Each of its metameres (body segments) is endowed with longitudinal and circular
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muscles and can regulate frictional forces thanks to microscopic
bristles called setae (Quillin, 1999). Understanding how relatively
simple organisms are able to attain peristalsis and to which
extent coordination is regulated by either the nervous system
or spontaneous reflexes, are questions addressed by researchers
for about a century and are still drawing attention (Garrey and
Moore, 1915; Gray and Lissmann, 1938; Gardner, 1976; Quillin,
1999).

In the field of robotics, peristalsis has been mostly mimicked
by a priori assignment of “gaits” defined by a few scalar
parameters. Optimization of locomotion performances with
respect to variations of these scalar parameters has been studied.
Fang et al. (2015) consider harmonic deformations with a
single, fixed, (time) frequency and amplitude, and determine
the phase patterns of actuation maximizing the average velocity.
Optimization leads to phase coordination, in the form of a
pattern which is close to the identical-phase-difference (IPD)
pattern corresponding to peristalsis. However, no rigorous
proof of the connection between peristaltic waves and optimal
actuation is given and, more importantly, the basic hypothesis
of harmonic oscillations with a single fixed time frequency and
amplitude is taken as an a priori assumption.

This paper aims to provide a deeper understanding of
harmonic oscillations and peristalsis as result of an optimization
problem rather than an a priori hypothesis. Indeed, we prove that
- in the regime of small deformations - peristalsis is a symmetry
property of the solution to an optimization problem. Symmetry
of the solution comes from symmetry properties of operators in
the equations governing the optimization problem, which are,
in turn, the signature of geometric symmetries of the physical
system.

The rest of the paper is organized in three main sections:
material and methods, results and discussion. The first one,
inspired by nightcrawlers’ retractable setae, introduces a velocity-
force law which is able to describe, for limit values of a single
scalar parameter, the linear case (Newtonian) as well as the
case of “free slip–perfect grip.” This model is presented in both
continuous and discrete version and in the latter case we address
some related optimal control problems. The second section
illustrates the behavior of the continuous model by means of two
examples and shows how peristalsis emerges, up to edge-effects,
from optimization problems in the discrete framework. The last
section presents a comparison with the work presented by Fang
et al. (2015), states the main conclusions and provides directions
for the future.

2. MATERIALS AND METHODS

2.1. Continuous Self-Propelled 1D Crawlers
Model Description and Kinematics
Consider a 1D crawler moving along a straight line and assume
its reference configuration is the segment

[X1 : = 0,X2 : = L] ,

cf. Figure 1. We use the same formalism introduced by
DeSimone and Tatone (2012) and DeSimone et al. (2013) so

FIGURE 1 | Kinematics of a continuous 1D crawler: reference (A) and current

(B) configurations.

that X is the coordinate in the reference configuration while x(t)
denotes the coordinate along the crawler’s body in the current
configuration (at time t). In particular x(t) is the image of X
through the current transformation χ(·, t) which can be written
in terms of the current distance s(·, t) from the left end, i.e.,

x(t) = χ(X, t) : = x1(t)+ s(X, t) ∈ [x1(t), x2(t)]

where x1(t) : = χ(X1, t) and x2(t) : = χ(X2, t). By definition,
s(0, t) ≡ 0 for all t and we assume that

s′(X, t) : = ∂s(X, t)

∂X
> 0 ∀X, t (1)

in order to guarantee the monotonicity of χ(·, t) at any time t.
In what follows a prime will denote the derivative with respect

toX while a superscript dot will denote the derivative with respect
to t.

We define the displacement

ua(X, t) : = χ(X, t)− X

so that

χ ′(X, t) : = ∂χ(X, t)

∂X
= 1+ u′a(X, t) = 1+ ǫ(X, t)

where we have implicitly defined the strain

ǫ(X, t) : = ∂ua

∂X
,

in terms of which condition (1) reads

ǫ(X, t) > −1 ∀X, t. (2)

Finally, notice that, since the material (or Lagrangian) velocity is

χ̇(X, t) = ẋ1(t)+ ṡ(X, t),

the spatial (or Eulerian) velocity is given by

v(x, t) = χ̇(X, t)
∣

∣

X=χ−1(x,t)
.

Equations of Motion
Throughout this section we deal with the motility problem,
namely, given a history of strain ǫ(X, t), the aim is to find x1(t)
which determines the dynamics of the one-dimensional crawler.
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Friction laws
The force at the interface between substrate and crawler is
modelled through a force-velocity relationship. In particular,
we write the density per unit current length of the tangential
component of the friction force at time t, f (x, t), as a function
of the Eulerian velocity v(x, t).

Several models for the resistance forces are conceivable such
as a

• Newtonian model, i.e., a linear viscous law

f (x, t) : = −µv(x, t) (3)

where µ > 0 is a friction (or viscosity) coefficient;
• or a more general “p-model”

f (x, t) : = −µ gp(ǫ(X, t)) v(x, t)

where gp(ǫ) : =
(

1

1+ ǫ

)p (4)

for p ∈ [0,+∞). Parameter p in our force law (4) allows us to
investigate different types of frictional behaviors. For p = 0, we
obtain a force per unit current length that is a linear function
of velocity alone, which reduces to the Newtonian model (3).
For p > 0, we obtain a friction law that is sensitive to the
state of elongation of the segment, with force per unit length
higher or lower than that of the Newtonian case depending
on whether the element is contracted (λ < 1 or ǫ < 0)
or extended (λ > 1 or ǫ > 0). In the limit p → ∞, this
produces an idealized model for friction in which no force
opposes slip when the segment is extended (free slip), while
the segment can withstand any tangential force without sliding
(perfect grip) when it is contracted. We call this idealized
model “free slip–perfect grip.” Figure 2 displays the graphs of
gp(ǫ) around ǫ = 0 for different values of p. In fact, our model
is a continuous analog of the discrete model proposed by Fang
et al. (2015) to mimic the behavior of earthworms’ setae, which
protrude when the body is axially contracted, resulting in an
increment of the resistance (Edwards et al., 2018).

In what follows, we will use the p-model (4).

Force balance
The total friction is obtained by integrating the force per unit
current length on the whole current domain, i.e.,

Ff (t) =
∫ x2

x1

f (x, t) dx =
∫ L

0
fref (X, t)dX

where

fref (X, t) : = f
(

x1(t)+ s(X, t), t
)

s′(X, t).

Then, by neglecting inertia, the force balance yields

0 = Ff (t)+ Fe(t)

= −µ

∫ L

0

(

1

1+ ǫ(X, t)

)p
(

ẋ1(t)+ ṡ(X, t)
)

s′(X, t) dX + Fe(t)

FIGURE 2 | Function gp(ǫ) governing the friction law (4) for selected values of

parameter p.

=
[

−µ

∫ L

0

(

1

1+ ǫ(X, t)

)p

s′(X, t) dX

]

ẋ1

−µ

∫ L

0

(

1

1+ ǫ(X, t)

)p

ṡ(X, t)s′(X, t) dX + Fe(t)

=
[

−µ

∫ L

0

(

1+ ǫ(X, t)
)1−p

dX

]

ẋ1

−µ

∫ L

0

(

1+ ǫ(X, t)
)1−p

ṡ(X, t) dX + Fe(t).

The square bracket multiplying ẋ1(t) in the formula above is
the drag for rigid motion at unit speed and fixed shape ǫ(X, t),
while Fe(t) is an external force which, for instance, can take into
account the gravity force acting on a crawler on an inclined plane.
Solving for ẋ1(t), we obtain

ẋ1(t) = −
∫ L
0

(

1+ ǫ(X, t)
)1−p

ṡ(X, t) dX
∫ L
0

(

1+ ǫ(X, t)
)1−p

dX

+ Fe(t)

µ
∫ L
0

(

1+ ǫ(X, t)
)1−p

dX
(5)

which, in the case of zero external forces, is independent of µ.
Notice that, once the initial position x1(0) the strain ǫ(X, t)

and the external force Fe(t) are provided, the whole dynamics
x1(t) can be determined by integrating (5). Indeed, since

s(X, t) = s(0, t)+
∫ X

0
s′(Y , t) dY

=
∫ X

0
ǫ(Y , t) dY + X (6)
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one has

ṡ(X, t) =
∫ X

0
ǫ̇(Y , t) dY (7)

and hence the right hand side of (5) is known once ǫ(X, t) is
specified.

2.2. Discrete Self-Propelled 1D Crawlers
We nowmove to a discrete model, directly inspired by studies on
annelid worms (Quillin, 1999) and metameric robots (Menciassi
et al., 2006; Daltorio et al., 2013; Fang et al., 2015).

Model Description and Kinematics
We model the crawler’s body as made up of N segments of same
length L in the reference configuration (cf. Figure 3)

(

Xn−1 : = (n− 1)L, Xn : = nL
)

for n = 1, . . . ,N. Let x0(t) denote the current position of the left
edge; any point X in the reference domain is mapped to a point
x(t) in the current domain through the map

x(t) : = χ(X, t) = x0(t)+ s(X, t) = X + ua(X, t)

whence the definition of strain

ǫ(X, t) : = u′a(X, t) = s′(X, t)− 1 . (8)

Furthermore, we assume that each segment can be contracted or
expanded according to a constant stretch so that the overall strain
results to be a piecewise constant function of X (at any fixed time
t), i.e.,

ǫ(X, t) : =



































ǫ1(t) if X ∈ [X0,X1)

(segment 1)
...

ǫN(t) if X ∈ (XN−1,XN]

(segment N)

(9)

Consequently its time-derivative, ǫ̇(·, t), is piecewise constant and
hence, from (7), ṡ(·, t) is piecewise affine, i.e.,

ṡ(X, t) = L

n−1
∑

j=1

ǫ̇j(t)+
[

X − (n− 1)L
]

ǫ̇n(t) (10)

FIGURE 3 | Kinematics of a discrete 1D crawler consisting of N identical

segments of reference length L. (A) Reference configuration. (B) Current

configuration.

for X ∈ [Xn−1,Xn]. Note that in this new framework the
monotonicity condition (2) reads

ǫn(t) > −1 for all t and for n = 1, . . . ,N

which is the only constraint for an admissible history of strains,
the datum of our motility problem.

Equations of Motion
Analogously to the previous case, the force balance yields

0 =
[

−µ

∫ NL

0

(

1+ ǫ(X, t)
)1−p

dX

]

ẋ0(t)

− µ

∫ NL

0

(

1+ ǫ(X, t)
)1−p

ṡ(X, t)dX + Fe(t)

where, in view of (9),

∫ NL

0

(

1+ ǫ(X, t)
)1−p

dX = L

N
∑

j=1

(1+ ǫj)
1−p

and, in view of (10),

∫ NL

0

(

1+ ǫ(X, t)
)1−p

ṡ(X, t)dX

=
N

∑

n=1

(1+ ǫn)
1−p ·

∫ nL

(n−1)L

[

(

X − (n− 1)L
)

ǫ̇n(t)+ L

n−1
∑

k=1

ǫ̇k(t)

]

dX

= L2

2

N
∑

n=1

(1+ ǫn)
1−p

[

ǫ̇n(t)+ 2

n−1
∑

k=1

ǫ̇k(t)

]

= L2

2

N
∑

j=1



(1+ ǫj)
1−p + 2

N
∑

m=j+1

(1+ ǫm)
1−p



 ǫ̇j(t).

Solving for ẋ0(t) we obtain

ẋ0(t) =





N
∑

j=1

(1+ ǫj)
1−p





−1
{

Fe(t)

µL

− L

2

N
∑

j=1



(1+ ǫj)
1−p + 2

N
∑

m=j+1

(1+ ǫm)
1−p



ǫ̇j(t)







(11)

which can be rewritten in the following vectorial form

ẋ0(t) =
N

∑

n=1

vn(ǫ(t))ǫ̇n(t)+ q(ǫ(t))Fe(t)

= v(ǫ(t)) · ǫ̇(t)+ q(ǫ(t))Fe(t)

where

vn(ǫ) = −L

2

(1+ ǫn)
1−p + 2

N
∑

m=n+1
(1+ ǫm)1−p

N
∑

j=1

(

1+ ǫj
)1−p

,
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q(ǫ(t)) =



µL

N
∑

j=1

(

1+ ǫj(t)
)1−p





−1

,

v(ǫ) =







v1(ǫ)
...

vN(ǫ)






and ǫ(t) =







ǫ1(t)
...

ǫN(t)






.

Equation (11) fully describes the dynamics once x0(0) and ǫ(X, t)
are provided. In particular, the displacement after T time units is
given by

1x0 = x0(T)− x0(0)

=
∫ T

0
v(ǫ(t)) · ǫ̇(t) dt +

∫ T

0
q(ǫ(t))Fe(t) dt.

(12)

Relative Displacement
We can rewrite everything in terms of a displacement relative to
x0(t), defined as

u(X, t) : = ua(X, t)− x0(t)

= s(X, t)− X

=
∫ X

0
ǫ(Y , t) dY

(13)

in order to describe the displacement in a coordinate system
which is “co-moving” with the left end x0(t).

In the discrete framework, the relative displacement turns out
to be a piecewise affine function of X (at any fixed time t): if
X ∈ [Xn−1,Xn],

u(X, t) = L

n−1
∑

j=1

ǫj(t)+ [X − (n− 1)L]ǫn(t). (14)

Setting

un(t) : = u(Xn, t) for n = 1, . . . ,N,

we have

ǫn = un − un−1

L
for n = 1, . . . ,N,

where u0 ≡ 0. Equivalently

ǫ(t) = J u(t) (15)

where ǫ = (ǫ1, ǫ2, . . . , ǫN)T , u = (u1, u2, . . . , uN)T and

J : = 1

L











1
−1 1

. . .
. . .

−1 1











. (16)

Optimal Control Problems
In this section we address the problem of maximizing the net
displacement 1x0 among periodic shape changes ǫ(X, t) with the
same given energy cost.

We now describe the optimization problems with quadratic
energy in the non-linear case first, and then in the small-
deformation regime, for which general results can be established.
We assume Fe ≡ 0.

Feasible region
We assume that the shape function ǫ(t) is a C2 function defined
from R to RN .

In addition, we require ǫ(·) to be a time-periodic function.
Finally we restrict our search to shape functions with a given
cost per period, i.e., E[ǫ, ǫ̇] = c, where the energy functional is
assumed to be of the following quadratic form (in both ǫ and ǫ̇)

E[ǫ, ǫ̇] : =
∫ T

0
Aǫ · ǫ dt +

∫ T

0
Bǫ̇ · ǫ̇ dt (17)

where A and B are symmetric and positive definite N-
dimensional matrices. Overall, the feasible region is

S : =
{

ǫ ∈ C2
(

R,RN
)

∣

∣

∣

∣

ǫ(0) = ǫ(T) ∧ E[ǫ, ǫ̇] = c

}

.

Optimization problem
The general (non-linear) optimization problem is

max
ǫ∈S

1x0 [ǫ] : =
∫ T

0
v(ǫ(t)) · ǫ̇(t) dt (18)

which is an isoperimetric problem (e.g., Van Brunt, 2004)
involving N dependent variables ǫn. The corresponding Euler-
Lagrange equations lead to a second order non-linear system of
ODEs, i.e., for n = 1, . . . ,N,

d

dt

∂F

∂ǫ̇n
(t, ǫ, ǫ̇)− ∂F

∂ǫn
(t, ǫ, ǫ̇) = 0 (19)

where F(t, ǫ, ǫ̇) : = v(ǫ) · ǫ̇ − λ (Aǫ · ǫ + Bǫ̇ · ǫ̇) (here λ denotes
a Lagrange multiplier).

The small-deformation regime
We can focus on the small-deformation regime by expanding the
objective function at the leading orders (about ǫ = 0), i.e.,

1x0 =
∫ T

0
v(ǫ) · ǫ̇ dt

=
∫ T

0

(

v(0)+ vǫ(0)ǫ + o(ǫ)
)

· ǫ̇ dt

≃ v(0) ·
(

ǫ(T)− ǫ(0)
)

+
∫ T

0
vǫ(0)ǫ · ǫ̇ dt

=
∫ T

0
vǫ(0)ǫ · ǫ̇ dt

and, integrating by parts,

∫ T

0
vǫ(0)ǫ · ǫ̇ dt =

[

vǫ(0)ǫ · ǫ
]T

0
−

∫ T

0
vǫ(0)ǫ̇ · ǫ dt
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=
∫ T

0
−ǫ̇ · vT

ǫ
(0)ǫ dt

whence

1x0 ≃
1

2

[

∫ T

0
vǫ(0)ǫ · ǫ̇ dt +

∫ T

0
−vT

ǫ
(0)ǫ · ǫ̇ dt

]

=
∫ T

0

(

vǫ (0)−vT
ǫ
(0)

2

)

ǫ · ǫ̇ dt = :V[ǫ, ǫ̇].

In particular, it can be proved that the (skew-symmetric Toeplitz)
matrix skw

(

vǫ(0)
)

= :V depends only on N, L and p. Indeed,

{V}ij =















L(p− 1)
i−j+N

2N2 if i < j

0 if i = j

−L(p− 1)
j−i+N

2N2 if i > j

(see Appendix A in Supplementary Material).
Therefore, in the regime of small deformations, problem (18)

can be replaced by the following linear problem

max
ǫ∈S

V[ǫ, ǫ̇] : =
∫ T

0
ǫ̇ · Vǫ dt. (20)

The corresponding Euler-Lagrange equations

d

dt

∂L

∂ ǫ̇
(t, ǫ, ǫ̇)− ∂L

∂ǫ
(t, ǫ, ǫ̇) = 0

where

L(t, ǫ, ǫ̇) : = Vǫ · ǫ̇ − λ (Aǫ · ǫ + Bǫ̇ · ǫ̇) ,

lead to the following system of second order linear ODEs

Vǫ̇ = λ (Bǫ̈ − Aǫ) . (21)

In general, a solution to (21) might be difficult to determine
due to the complexity of finding a common diagonalization of
A and B. However, following the procedure adopted by Wiezel
et al. (2018), we can solve this problem when one of the two
operators is null, say A ≡ 0 (resp. B ≡ 0), and the other one,
B (resp. A), is symmetric, positive definite and such that the
eigenspaces associated with the maximum-modulus eigenvalues

of B
− 1
2VB

− 1
2 (resp. A− 1

2VA
− 1
2 ) have dimension 1. Indeed,

as shown in sections 1 and 2 in Appendix B (Supplementary
Material), it turns out that

• for A = 0 and B symmetric and positive definite, up to a
constant, a solution of (20) must be of the form

ǫ(t) = −T

π
ℜ

(

αie
2π i
T te

)

(22)

where α ∈ C \ {0} is a constant such that ||α|| =
√

c
2T and

e = (e1, e2, . . . , eN)T ∈ CN \ {0} is a suitable constant vector
depending only on A and V.

• for A symmetric and positive definite and B = 0, a solution of
(20) with ǫ of unitary time frequency must be of the form

ǫ(t) = 2ℜ
(

αe
2π i
T te

)

(23)

where α ∈ C \ {0} is a constant such that ||α|| =
√

c
2T and

e = (e1, e2, . . . , eN)T ∈ CN \ {0} is a suitable constant vector
depending only on A and V.

Both (22) and (23) have the form

ǫ(t) = ℜ
(

α̂e
2π i
T te

)

i.e., they are circles in the plane
(

ℜ(e),ℑ(e)
)

, regardless the
number of links. Moreover, using the polar representations

α̂ = ̺ae
iϑa and en = ̺ne

iϑn ∀n,

we get, for n = 1, . . . ,N,

ǫn(t) = ̺a̺nℜ
(

e
i
(

2π
T t+ϑa+ϑn

))

= ̺a̺n sin
(

2π
T t + ϑa + ϑn + π

2

)

,

(24)

i.e., the optimal gait depends only on the 2N+2 parameters {ϑn}n,
{̺n}n, ϑa and ̺a. Admittedly, since α is a constant with fixed
modulus and free argument, we can always assume ϑa + π

2 = 0,
i.e.,

ǫn(t) = ̺a̺n sin
(

2π
T t + ϑn

)

, (25)

thus reducing the number of parameters to 2N + 1.
The problem for A = 0 and B = IN is essentially equivalent

to the one for A = IN and B = 0 (provided that unitary time
frequency of ǫ is prescribed). Indeed, if (25) is a solution to

max
ǫ∈S

V[ǫ, ǫ̇]

S : =
{

ǫ ∈ C2

∣

∣

∣

∣

ǫ(0) = ǫ(T) ∧
∫ T

0
||ǫ||2

RN dt = 1

}

then it is a solution also to

max
ǫ∈S

V[ǫ, ǫ̇]

S : =
{

ǫ ∈ C2

∣

∣

∣

∣

ǫ(0) = ǫ(T) ∧
∫ T

0
||ǫ̇||2

RN dt =
(

2π
T

)2

}

and vice versa.
In general the two problems,A = 0 withB symmetric positive

definite and B = 0 with A symmetric positive definite, are
not equivalent. In fact, constraining the norm induced by one
operator does not determine the norm induced by the other
one, but only provides a bound. Indeed, denoting by λmin(·)
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and λmax(·) theminimum andmaximum eigenvalue respectively,
observe that, for ǫ(t) like (25),

∫ T

0
Aǫ · ǫ dt ≥ λmin(A)

∫ T

0
ǫ · ǫ dt

= λmin(A)
(

T
2π

)2
∫ T

0
ǫ̇ · ǫ̇ dt

≥
(

T
2π

)2
λmin(A)
λmax(B)

∫ T

0
Bǫ̇ · ǫ̇ dt

and, analogously,

∫ T

0
Bǫ̇ · ǫ̇ dt ≥ λmin(B)

∫ T

0
ǫ̇ · ǫ̇ dt

= λmin(B)
(

2π
T

)2
∫ T

0
ǫ · ǫ dt

≥
(

2π
T

)2 λmin(B)
λmax(A)

∫ T

0
Aǫ · ǫ dt .

3. RESULTS

3.1. Continuous Model: Two Examples of
Contraction Waves
In this section we discuss two examples of contraction waves
to illustrate the behavior of the p-model. We show that the
parameter p determines the kind of motion: for p < 1 the motion
is prograde (i.e., motion in the same direction as the one of the
waves) while for p > 1 the model reproduces an earthworm-like
retrograde motion (i.e., motion in the opposite direction as the
one of the waves).

For simplicity, in the following examples we neglect external
forces, i.e., Fe ≡ 0.

Smooth Contraction Wave
Consider a smooth traveling contraction wave by prescribing the
strain along the body of the crawler as

ǫ(X, t) : = ǫ0 cos
(

2π
L (X − ct)

)

(26)

or equivalently, in terms of the stretch,

s′(X, t) = 1+ ǫ(X, t) = 1+ ǫ0 cos
(

2π
L (X − ct)

)

where ǫ0 is the wave amplitude, L is the reference length of the
crawler and c is a parameter whichmodulates time frequency and
it is assumed to be strictly positive, i.e., the wave travels toward
the right. By integrating over space,

s(X, t) = s(0, t)+
∫ X

0
s′(Y , t) dY

=
∫ X

0

[

1+ ǫ0 cos
(

2π
L (Y − ct)

)]

dY

= X +
∫ 2π

X−ct
L

−2π
ct
L

L
2π ǫ0 cos(y) dy

= X + ǫ0L
2π

[

sin
(

2π
(

X−ct
L

))

+ sin
(

2π ct
L

)]

and, by differentiating with respect to time,

ṡ(X, t) = cǫ0

[

cos
(

2π ct
L

)

− cos
(

2π (X−ct)
L

)]

.

Finally, in view of (5),

ẋ1(t) =− ǫ0c cos
(

2πct
L

)

+ c

∫ L
0 ǫ(X, t)

(

1+ ǫ(X, t)
)1−p

dX
∫ L
0

(

1+ ǫ(X, t)
)1−p

dX

whence

x1(t) = −ǫ0L

2π
sin

(

2π
L ct

)

+ c

∫ t

0

∫ L
0 ǫ(X, z)

(

1+ ǫ(X, z)
)1−p

dX
∫ L
0

(

1+ ǫ(X, z)
)1−p

dX
dz.

The Newtonian case is recovered by setting p = 0, i.e.,

x1(t) = −ǫ0L

2π
sin

(

2π
L ct

)

+ ǫ20c

2
t.

Figure 4 displays three numerical examples. For p < 1 and,
in particular for p = 0, the case of Newtonian resistance, we
always have prograde motion (i.e., motion in the same direction
as the one of the waves). This is indeed observed for example
in snails, although in this case the force-velocity laws that we
use in this paper would not be fully adequate to capture the
properties of the mucus present between the animal and the
surface [non-Newtonian rheology, suction effects, see (Denny,
1980) and (DeSimone et al., 2013)]. For p > 1 and, in particular,
for the limit case p = ∞ describing the perfect-grip/free-slip
ideal version of the modulated friction laws typical of animals
with setae, the motion is retrograde (i.e., motion in the opposite
direction as the one of the waves). This is the behavior typically
observed for earthworms.

Square Contraction Wave
Consider the square contraction wave

ǫ(X, t) : = ǫ0(X − ct)

where ǫ0(x) : =
{

δ if x∼L ≤ ξ

−δ if x∼L > ξ

(27)

or equivalently, in terms of the stretch,

s′(X, t) = 1+ ǫ(X, t)

=
{

1+ δ if (X − ct)∼L ≤ ξ

1− δ if (X − ct)∼L > ξ

where L is the reference length of the crawler, c is the wave speed,
ξ is the measure of the interval where ǫ = δ and the subscript ∼L

denotes the “modulo L” operator (i.e., y∼L stands for y mod L).
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By integrating the stretch over space, we get

s(X, t) = s(0, t)+
∫ X

0
s′(Y , t) dY

= X +
∫ X

0
ǫ0(Y − ct) dY

whence

ṡ(X, t) =































−2δc if ct∼L ≤ L− ξ

∧ X ∈ [ct, ct + ξ ]∼L

2δc if ct∼L > L− ξ

∧ X ∈ [ct + ξ − L, ct]∼L

0 else

Finally, in view of (5),

ẋ1(t) =
{

A(p) if ct∼L ≤ L− ξ

B(p) otherwise

where

A(p) : = 2δc(1+ δ)1−pξ

(1+ δ)1−pξ + (1− δ)1−p(L− ξ )

and

B(p) : = 2δc(1− δ)1−p(ξ − L)

(1+ δ)1−pξ + (1− δ)1−p(L− ξ )
.

Defining α : = L−ξ
c and β : = L

c , it follows that

x1(t) = x1(0)+
∫ t

0
ẋ1(z) dz

=
∫

⌊

t
β

⌋

β

0
ẋ1(z) dz +

∫

(

t
β

)

β

⌊

t
β

⌋

β

ẋ1(z) dz

=
⌊

t
β

⌋ [

αA(p)+ (β − α)B(p)
]

+






{

t
β

}

βA(p) if
{

t
β

}

β ≤ α

αA(p)+
({

t
β

}

β − α
)

B(p) else

where {·} and ⌊·⌋ denote the fractional part and floor function
respectively. The Newtonian case can be obtained as particular
case by setting p = 0. Figure 5 shows three numerical examples
and, as for the smooth contraction wave, the motion is prograde
or retrograde whether p < 1 or p > 1, respectively.

3.2. Discrete Model: Peristalsis as Optimal
Gait
In the discrete framework, peristalsis is the result of phase
coordination among the harmonic contractions of body
segments, i.e., it has the form

ǫn(t) = ̺ sin( 2π tT + n1ϕ) for n = 1, . . . ,N

FIGURE 4 | Plot of x1(t) for a smooth contraction wave (26) for selected values

of parameter p. The other parameters are ǫ0 = 0.6, L = 1 and c = 1.5.

FIGURE 5 | Plot of x1(t) for a square contraction wave (27) for selected values

of parameter p. The other parameters are δ = 0.6, L = 1, T = 0.5 and c = 1.5.

where T is the period, ̺ is the amplitude and 1ϕ is the constant
phase difference. As for the continuous case, discrete peristalsis
produces prograde or retrograde motions according to the value
of the parameter p in (4).

In this section we work out explicitly the problem of
maximizing the displacement for a particular case from which
peristalsis emerges, modulo an edge-effect.

Dissipation Energy
Let us define an energy functional D :C2(R,RN) → R as

D [ǫ] : =
∫ T

0
d(t, ǫ, ǫ̇) dt
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where

d(t, ǫ, ǫ̇) : = d1(t, ǫ, ǫ̇)+ wd2(t, ǫ̇),

d1(t, ǫ, ǫ̇) : =
∫ NL

0
− 1

µ
fref (X, t)v(χ(X, t)) dX,

d2(t, ǫ̇) : =
N

∑

n=1

ǫ̇2n(t)

i.e., the energy cost is the time integral over a period of a
dissipation rate which is sum of two terms: d1(t, ǫ, ǫ̇) is

1
µ
times

the energy expended to overcome the friction force and d2(t, ǫ̇)
is the cost of control weighted by a scalar factor w. D[ǫ] is
thus 1

µ
times the sum of the work due to the friction force plus

the L2-norm of the controls suitably weighted to time the input
direction.

Some calculations [see section 1 in Appendix C

(Supplementary Material)] lead to

d1(t, ǫ, ǫ̇) = ǫ̇ · D(ǫ)ǫ̇

where D(ǫ) ∈ RN×N for any ǫ ∈ (−1,+∞]N , and

d2(t, ǫ̇) = ǫ̇ · IN ǫ̇

where IN is the N-dimensional identity matrix. Therefore the
energy functional is

D [ǫ] =
∫ T

0
ǫ̇ ·G(ǫ)ǫ̇ dt (28)

whereG(ǫ) : = D(ǫ)+ w IN .

Non-linear Optimal Control Problem
The non-linear optimization problem associated with energy
functional (28) is

max
ǫ∈S

1x0 : =
∫ T

0
v(ǫ) · ǫ̇ dt

S =
{

ǫ ∈ C2

∣

∣

∣

∣

ǫ(0) = ǫ(T) ∧ D[ǫ] = c

}

.

(29)

The Euler-Lagrange equations lead to a second order non-linear
system of ODEs, i.e., for n = 1, . . . ,N,

d

dt

∂F

∂ǫ̇n
(t, ǫ, ǫ̇)− ∂F

∂ǫn
(t, ǫ, ǫ̇) = 0 (30)

where F(t, ǫ, ǫ̇) : = v(ǫ) · ǫ̇ − λǫ̇ · G(ǫ)ǫ̇ , λ is the Lagrange
multiplier.

The Small-Deformation Regime
In the regime of small deformations we can expand the terms of
problem (29) at the leading orders about ǫ = 0. As before, the net
displacement per time period can be approximated by

1x0 ≃ V[ǫ, ǫ̇] : =
∫ T

0
Vǫ · ǫ̇ dt.

FIGURE 6 | Plot of arguments and moduli of ǫn for n = 1, . . . , 15: amplitudes,

(A), approximation by a IPD (Identical Phase Difference) model, (B), and

relative errors, (C). Parameters: p = 100, w = 1, T = 1 and L = 1.

and the energy functional by

D[ǫ] =
∫ T

0
ǫ̇ ·G(ǫ)ǫ̇ dt ≃

∫ T

0
ǫ̇ ·Gǫ̇ dt (31)

where G : = G(0). Hence, in the small-deformation regime, the
problem fits the form (17)-(18) for A = 0 and B = G. Moreover,
G is bisymmetric (namely, symmetric about both of its diagonals)
and depends only on N, L and w. Indeed

{G}ij =



















L3

4N (2i− 1)
(

2(N − j)+ 1
)

if i < j

L3

12N

[

4N(3i− 2)− 3 (2i− 1)2
]

+ w if i = j

L3

4N (2j− 1)
(

2(N − i)+ 1
)

if i > j

[see section 2 in Appendix C (Supplementary Material)].
Therefore a solution must be of the form (25)

ǫ⋆
n(t) = ̺a̺n sin

(

2π
T t + ϑn

)

.

The centrosymmetry of G and the skew-centrosymmetry of V
imply a reflectional symmetry about the center [see section 3 in
Appendix B (Supplementary Material)], i.e.,

• the moduli of components of e are symmetric about the center
(cf. Figure 6), i.e.,

̺N+1−n = ̺n ∀ n = 1, . . . ,N;
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• phase differences between adjacent segments are symmetric
about the center, i.e.,

ϑn+1 − ϑn = ϑN+1−n − ϑN−n ∀ n = 1, . . . ,N

so that the N-th phase differs from the (N − 1)-th one by the
same amount by which the second phase differs from the first
one and so on (cf. Figure 6).

Equation (25) shows that the optimal gait requires a precise
“phase coordination” of locomotion patterns among the
segments, which is a common observation in Biology for several
kinds of animals.

Numerical simulations show that the optimal solution turns
out to be a discrete approximation of a traveling wave. In
particular,

• the moduli of en for n = 1, . . . ,N can be approximated by a
constant average value (cf. Figure 6), i.e.,

̺n ≃ ¯̺ constant (32)

so that each segment undergoes a harmonic deformation with
a certain initial phase;

• phase differences between adjacent segments turn out to be
almost constant, i.e., for a suitable ϕ0

ϑn ≃ nϑ⋆ + ϑ0 (33)

holds true for n = 1, . . . ,N (cf. Figure 6).

Therefore, in view of (32) and (33), the solution is a discrete
approximation of a continuous traveling wave, i.e.,

ǫ⋆
n(t) = ǫ⋆(Yn, t)

where Yn = Xn+Xn+1
2 is the midpoint of the n-th segment and

ǫ
⋆(X, t) = ̺a̺(X) sin

(

2π
T t + ϑ(X)

)

≃ ̺a ¯̺ sin
(

2π
T t + ϑ⋆X + ϑ0

)

= ̺a ¯̺ sin
(

ϑ⋆
[

X −
(

− 1
ϑ⋆

2π
T

)

t
]

+ ϑ0

)

whence the canonical form of traveling wave which describes
peristalsis (cf. Figure 7)

ǫ
⋆(X, t) ≃ H(X − vt) (34)

where H(y) : = ̺a ¯̺ sin
(

ϑ⋆y+ ϑ0

)

and v : = − 1
ϑ⋆

2π
T .

The Edge-Effect
The symmetric structure of the optimal gait (in the small-
deformation regime) arises from underlying physical symmetries
which clearly stand out in the properties of the matrices G and
V. In particular, an “edge-effect” is apparent: the 1D crawler
is symmetric about its geometric center and segments near the
edges behave differently with respect to adjacent segments, but in
the same way as their centrosymmetric counterparts.

FIGURE 7 | Plot of piecewise constant optimal strain ǫ⋆
n(X, t): the value is

determined by means of the color legend. Parameters: p = 100, w = 10,

T = 1, L = 1; N = 25.

FIGURE 8 | Kinematics of a discrete infinite 1D crawler consisting of identical

segments of reference length L. (A) Reference configuration. (B) Current

configuration.

As expected, this edge-effect vanishes when considering an
“infinite” (periodic) 1D crawler because, due to the shift-
invariance symmetry, each segment behaves as a “geometric
center.”

To show this claim consider a 1D crawler made up of
infinitely many segments and assume that it is a periodic
structure of which each module consists of N components
(cf. Figure 8).

At any time t, we already defined the relative displacement
u(·, t) as the change of position of the material point X in the
body’s reference, i.e.,

x(t) = χ(X, t) = x0(t)+ X + u(X, t).

The hypothesis of periodicity leads to

u(X + NL, t) = u(X, t) ∀ X, t. (35)

From (35) we obtain that the friction force is periodic and we
can consider the force balance in a single module. Therefore,
condition (35) reads

∫ NL

0
ǫ(X, t) dX = 0 ∀ t (36)

and, in the discrete framework (9), this leads to

N
∑

n=1

ǫn(t) = 0 ∀ t. (37)
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FIGURE 9 | Complex components of the vector e in the general case, (A), and in the periodic one, (B), for N = 8 segments. Parameters: p = 100, w = 10, T = 1,

L = 1.

The optimal control problem becomes

max
ǫ∈S ′

V[ǫ, ǫ̇] : =
∫ T

0
ǫ̇ · Vǫ dt

S
′ =

{

ǫ ∈C2
(

R,RN
)

∣

∣

∣

∣

N
∑

n=1

ǫn = 0 ∧

ǫ(0) = ǫ(T) ∧
∫ T

0
ǫ̇ ·Gǫ̇ dt = c

}

(38)

and it can be proved [see section 3 in Appendix C

(Supplementary Material)] that its solutions need to be like
(22), where the complex N-dimensional vector e has the form

e =





















e1
e2
...
en
...
eN





















=



























e1

ei
2πk
N e1
...

ei
2πk
N (n−1)e1

...

ei
2πk
N (N−1)e1



























(39)

for some k ∈ {1, . . . ,N − 1} and e1 ∈ C \ {0}, cf. Figure 9. In
particular,

- each component of e has modulus ̺ : = ||e1||;
- each component can be obtained from the previous one by

a rotation of 2πk
N or, in other words, the phase difference

between two consecutive components is constant, i.e., for n =
1, . . . ,N

arg(en) = (n− 1) 2πkN + arg(e1) = nϑ⋆ + ϑ0

where ϑ⋆
: = 2πk

N and ϑ0 : = arg(e1)− 2πk
N ;

whence the exact harmonic peristalsis.

Notice that problem (38) can be written in terms of relative
displacements un through the periodic version of transformation
(15), i.e.,

ǫ(t) = Jper u(t) (40)

where

Jper : =
1

L











1 −1
−1 1

. . .
. . .

−1 1











. (41)

In particular, we get

max
ǫ∈S⋆

u

V[u, u̇] : =
∫ T

0
u̇ · V⋆

uu dt

S
⋆
u =

{

u ∈ C3
(

R,RN
)

∣

∣

∣

∣

u(0) = u(T)

∧ E [u, u̇] : =
∫ T

0
u̇ ·G⋆

uu̇ dt = c

}

(42)

where

V
⋆
u : = JTperVJper

G
⋆
u : = JTperGJper

are circulant matrices (namely, Toeplitz matrices where each
row vector is rotated one element to the right relative to the
preceding row vector), thus reflecting the geometric symmetry
of the periodic structure, namely, the shift-invariance.
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Considering the general (i.e., non-periodic) problem in terms
of relative displacements yields

max
ǫ∈Su

V[u, u̇] : =
∫ T

0
u̇ · Vuu dt

Su =
{

u ∈C3
(

R,RN
)

∣

∣

∣

∣

u(0) = u(T)

∧ E [u, u̇] : =
∫ T

0
u̇ ·Guu̇ dt = c

}

where

Vu : = JTVJ

Gu : = JTGJ

are “quasi-circulant” matrices indeed

Vu : = V
⋆
u + EV

Gu : = G
⋆
u + EG

where EV and EG are null a part from the last column and the
last row, i.e.,

EV = L(p− 1)

2N2















N − 1
−1
...

−1

1− N 1 · · · 1















and

EG = 1

12N















a

6L3

...
6L3

a 6L3 · · · 6L3 b















where a = 2L3(3− N)+ 12Nw and b = L3(9− 4N)− 12Nw.

Wavenumber
In the “periodic case” we can study the wavenumber (that is the
number of waves travelling along the body of the crawler) of the
optimal gait in relation to the number of metameres N and to the
weight w. We fix the dissipation

E[ǫ, ǫ̇] : =
∫ T

0

(

d1(t, ǫ, ǫ̇)+ wd2(t, ǫ, ǫ̇)
)

dt = c̄

and we let w vary from 0 to 102 for N ∈ [3, 250] (see Figure 10).
As shown in Section 3 in Appendix C (Supplementary Material),
the wavenumber of the optimal gait must be an integer close to

the real number N
2π arccos

(

1
2
6w−L3

3w+L3

)

and hence, for any fixed N,

it depends on the order of magnitude of the weight w and

• for w → ∞, it tends to 1, corresponding to a single wave
spanning the whole length NL;

FIGURE 10 | Wavenumber of optimal gaits as a function of N and w. The axis

of w ∈ [0, 100] is plotted on a log-scale with base 10. The color-bar gives the

wavenumber. L = 1 and N ∈ [3, 250].

• for w = 0, it is close to N
3 , i.e., one full wave-length every three

segments.

This behavior is qualitatively unaffected by the type of friction
model which is adopted (i.e., by the choice of the parameter p).

4. DISCUSSION

4.1. Comparison With Previous Studies
To put our study in perspective, we consider the discrete
framework and we compare our results with the ones presented
by Fang et al. (2015). Here the authors perform an optimization
of the so-called “average steady-state velocity” us among
harmonic shape functions having the form (in our notation)

ǫn(t) = a sin
(

2π
T t + ηn

)

for n = 1, . . . ,N (43)

where a ∈
(

0, 1L
)

is the oscillation amplitude, T is the period and
ηn is the actuation phase for the n-th segment (or actuator).

Since the average steady-state velocity is given by

us =
1x0

T
= 1

T

∫ T

0
v(ǫ) · ǫ̇ dt , (44)

the optimization problem reads

max
η∈[0,2π)N

us(η) =
1

T

∫ T

0
v(ǫ) · ǫ̇ dt (45)

and in the small-deformation regime it can be replaced by

max
η∈[0,2π)N

∫ T

0
ǫ̇ · Vǫ dt. (46)

Denote the actuation phase differences between adjacent
segments by

pn : = 1η(n) = ηn+1 − ηn for n = 1, . . . ,N − 1.
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FIGURE 11 | Average velocities us, (44) obtained by the solution ǫ̃ to (46) (blue bars) and by the solution ǫ⋆ to (48) (yellow bars) for different numbers of segments:

N = 25, 50, 100, 150, 200. (A) is for p = 0 (Newtonian case) and (B) for p = 100. The other parameters are T = 2π , a = 2−10, L = 1.

From observations of numerical simulations, Fang et al. (2015)
report that “[...] the optimized phase-different patterns are always
reflectionally symmetric [about the center, Ed.] regardless of
the initial symmetry requirements [...]” and of the number of
segments. Thus, a solution to (45) fulfills

pn = pN−n ∀ n. (47)

In fact these properties can be rigorously proved under the
assumption that problem (45) admits a unique solution in
[0, 2π)N (see Appendix D in Supplementary Material).

Furthermore, property (47) can be proved also for (46),
assuming it admits a unique solution in [0, 2π)N . To this aim,
denote the unique solution to (46) by

ǫ̃(t) : =
{

ǫ̃n(t) : = a sin
(

2π
T t + η̃n

)}

n=1,...,N
,

and consider the shape change ǫ̂(t) associated with

η̂ : = −Kη̃ + 2π

where

K : =















0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
...

0 1 · · · 0 0
1 0 · · · 0 0















∈ R
N×N .

Notice that for n = 1, . . . ,N,

ǫ̂n(t) : = a sin
(

2π
T t − (Kη̃)n

)

=
{

−Kǫ̃(−t)
}

n

and hence, by exploiting the fact that V is skew-centrosymmetric
(namely,KTVK = −V),

∫ T

0

˙̂ǫ · Vǫ̂ dt = −
∫ T

0

˙̃ǫ(−t) ·KT
VK ǫ̃(−t) dt

=
∫ 0

−T

˙̃ǫ · Vǫ̃ dt =
∫ T

0

˙̃ǫ · Vǫ̃ dt.

Thus

η̃ = −Kη̃ + 2π

which leads to (47).
Problem (46) constrains the L2-norm of the time-derivatives,

i.e., for strains having the form (43) we get

∫ T

0
ǫ̇ · ǫ̇ dt = 2N

T
(aπ)2 = : c⋆

regardless of η. Therefore we can extend the maximization to
the C2 periodic strains whose time derivative fulfills the same
constraint, i.e.,

max
ǫ∈S

V [ǫ, ǫ̇] : =
∫ T

0
ǫ̇ · Vǫ dt

S =
{

ǫ ∈ C2
(

R,RN
)

∣

∣

∣

∣

ǫ(0) = ǫ(T) ∧
∫ T

0
ǫ̇ · ǫ̇ dt = c⋆

}

.

(48)
Since problem (21) reduces to (48) when A = 0 and B = IN , a
solution to (48) must be of the form

ǫ⋆
n(t) = a

√
N ||en|| sin

(

2π
T t + arg (en) + ϑa

)

(49)

where e = (en)n is a unit eigenvector associated with the
maximum-modulus eigenvalue of V and ϑa is a constant. Notice
that the reflectional symmetry about the center still holds true.
As a matter of fact, (49) leads to a slight increment in the net
displacement with respect to the solution to (46), cf. Figure 11.

4.2. Summary and Outlook
Our analysis confirms the effectiveness of mimicking peristalsis
in bio-inspired robots, at least in the small-deformation regime.
This bio-inspired actuation strategy has been implemented on
a trial-and-error basis many times in the robotics literature
and, more recently, also proposed as optimal (in some suitably
defined sense, and in some suitably defined class of actuation
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strategies). Our main result is a mathematically rigorous
proof that, in the small deformation regime, actuation by
peristaltic waves is an optimal control strategy emerging naturally
from the geometric symmetry of the system, namely, the
invariance under shifts along the body axis. This is true
exactly in the periodic case, and approximately true in the
case of finite length, modulo edge-effects. Our results is of
theoretical nature. Nevertheless, we believe that it has important
consequences for applications. For example, it helps us not
to fall into the naive temptation to expect that peristaltic
waves are always an optimal actuation strategy just because
they are observed in nature, but to exercise critical judgment
whenever the hypotheses on the geometric symmetry that are
“responsible” for the optimality result in our case (invariance
under shift of a homogeneous one-dimensional system) are
false.

Actuation by phase coordination, optimal actuation by
identical phase difference, and the connections between this
and traveling waves have been already discussed in the
literature (e.g., Fang et al., 2015), but never through a
mathematically rigorous analysis of the optimal control problem,
of the symmetry properties of the governing equations and
operators, and of the relation between these and the geometric
symmetries of the system. This is exactly what we do in
this paper. The added value of this analysis is that we
are able to show (for the first time, to the best of our
knowledge, at least in the robotics literature) that peristaltic
waves are the signature of the invariance with respect to shifts
(a geometric symmetry) of a homogeneous one-dimensional
system.

Further work will be needed to test the effectiveness of
peristaltic waves as a locomotion strategies if large deformations
are allowed. In addition, future work will explore the issue of
how peristalsis is actually enforced in biological systems. Of
particular interest is the dichotomy between the paradigm of

actuations via a Central Pattern Generator (CPG), as opposed
to local sensory and feedback mechanisms. The CPG paradigm
is apparent in several different organisms (Marder and Bucher,
2001; Grillner, 2006) and has been employed in robotics with
some success (Ijspeert, 2008; Boxerbaum et al., 2012). However,
there is a growing awareness of the role played by proprioception,
especially for lower organisms such as the nematode worm C.
elegans (Boyle et al., 2012; Wen et al., 2012) and D. melanogaster
larvae (Pehlevan et al., 2016).
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