
HAL Id: hal-04450208
https://hal.science/hal-04450208v1

Submitted on 12 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

What the Fix? A Study of ASATs Rule Documentation
Corentin Latappy, Thomas Degueule, Jean-Rémy Falleri, Romain Robbes,

Xavier Blanc, Cédric Teyton

To cite this version:
Corentin Latappy, Thomas Degueule, Jean-Rémy Falleri, Romain Robbes, Xavier Blanc, et al.. What
the Fix? A Study of ASATs Rule Documentation. 32nd IEEE/ACM International Conference on
Program Comprehension (ICPC 2024), Apr 2024, Lisboa, Portugal. �10.1145/3643916.3644404�. �hal-
04450208�

https://hal.science/hal-04450208v1
https://hal.archives-ouvertes.fr

What the Fix? A Study of ASATs Rule Documentation
Corentin Latappy

corentin.latappy@labri.fr
Univ. Bordeaux, CNRS, Bordeaux INP,

LaBRI, UMR 5800
Promyze
France

Thomas Degueule
thomas.degueule@labri.fr

Univ. Bordeaux, CNRS, Bordeaux INP,
LaBRI, UMR 5800

France

Jean-Rémy Falleri
falleri@labri.fr

Univ. Bordeaux, CNRS, Bordeaux INP,
LaBRI, UMR 5800

Institut Universitaire de France
France

Romain Robbes
romain.robbes@labri.fr

Univ. Bordeaux, CNRS, Bordeaux INP,
LaBRI, UMR 5800

France

Xavier Blanc
xavier.blanc@labri.fr

Univ. Bordeaux, CNRS, Bordeaux INP,
LaBRI, UMR 5800

France

Cédric Teyton
cedric.teyton@promyze.com

Promyze
France

ABSTRACT
Automatic Static Analysis Tools (ASATs) are widely used by soft-
ware developers to diffuse and enforce coding practices. Yet, we
know little about the documentation of ASATs, despite it being
critical to learn about the coding practices in the first place. We
shed light on this through several contributions. First, we analyze
the documentation of more than 100 rules of 16 ASATs for multiple
programming languages, and distill a taxonomy of the purposes of
the documentation—What triggers a rule; Why it is important; and
how to Fix an issue—and its types of contents. Then, we conduct a
survey to assess the effectiveness of the documentation in terms
of its goals and types of content. We highlight opportunities for
improvement in ASAT documentation. In particular, we find that
theWhy purpose is missing in half of the rules we survey; moreover,
when the Why is present, it is more likely to have quality issues
than theWhat and the Fix.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Softwaremaintenance tools; Software design engineering.

KEYWORDS
software quality, automatic static analysis tools, linters, documen-
tation

ACM Reference Format:
Corentin Latappy, Thomas Degueule, Jean-Rémy Falleri, Romain Robbes,
Xavier Blanc, and Cédric Teyton. 2024. What the Fix? A Study of ASATs
Rule Documentation. In 32nd IEEE/ACM International Conference on Program
Comprehension (ICPC ’24), April 15–16, 2024, Lisbon, Portugal. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3643916.3644404

1 INTRODUCTION
Automatic Static Analysis Tools (ASATs, sometimes called linters) [1]
are very popular quality insurance tools used in a quarter [2] to half
of software projects [3]. According to the https://analysis-tools.dev
website, there are more than 600 ASATs. The core principle behind
these tools is to scan a code base looking for evidence of potential

ICPC ’24, April 15–16, 2024, Lisbon, Portugal
2024. ACM ISBN 979-8-4007-0586-1/24/04. . . $15.00
https://doi.org/10.1145/3643916.3644404

issues with the source code, such as not following best practices, us-
ing error-prone constructs, and detecting security or performance
problems [1, 4–7]. When such an issue is detected, a warning is
issued to the developers of the project so that they can inspect the
incriminated code and fix the issue if necessary. Issues are generally
defined by rules, a popular example being the eqeqeq rule in ESLint
JavaScript’s ASAT that advises developers to use === instead of ==
to avoid type coercion errors.

Even though these tools are prone to issue false-positive warn-
ings [8–10] and their effect on software quality is still a matter of
debate [11–13], one positive aspect raised by the use of ASATs is
their ability to improve the developer’s knowledge and skills and
to support the onboarding of newcomers [14, 15]. In this article,
we focus on the following scenario of ASATs: a developer encoun-
ters a warning for the first time and wants to learn more about it.
Usually, warnings raised by ASATs within the IDE or within the
terminal as a result of the use of its command line interface only
contain limited information [7, 16]. To further explain a given rule,
ASATs generally offer more extensive documentation via formatted
documents available online.

We argue that this documentation is essential for improving
developers’ knowledge and skills, as well as promoting compliance
with the rules. Even though warning notifications have already
been studied [7, 16], empirical evidence shows that their quality
is not ideal [7, 17, 18]. Furthermore, to the best of our knowledge,
there is no comprehensive study on the reference documentation of
ASATs rules, which developers look for after the initial warning.
We believe that the reference documentation of ASATs rules is not
a classical piece of software documentation, such as an API docu-
mentation [19]. Indeed, ASATs rule documentation is challenging
as it needs to explain issues regardless of their particular context in
such a manner that developers are able later to understand them in
their own context. Another difficult point is that ASATs rules are
sometimes subjective, for instance those related to the use of goto
statements [20] or the classical dilemma of choosing between snake
and camel case [21]. Thus, little is known about how to best docu-
ment ASAT rules. This lack of knowledge is damaging when ASATs
such as Semgrep allow developers around the world to effortlessly
create and share hundreds of rules.

In this article, we explore the current state of the ASATs’ rules
documentation and contrast it with developers’ expectations, in

https://doi.org/10.1145/3643916.3644404
https://analysis-tools.dev
https://doi.org/10.1145/3643916.3644404

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Corentin Latappy, Thomas Degueule, Jean-Rémy Falleri, Romain Robbes, Xavier Blanc, and Cédric Teyton

order to extract best practices with the goal to increase the quality
of this documentation. We start with an empirical study of how
real-world ASAT rules are documented. Section 2 details our study
of more than 100 rules across 16 ASATs, covering 7 programming
languages (plus two polyglot ASATs). Through an iterative analysis
of these rules, we derive a nomenclature covering 15 documentation
attributes in three themes. In Section 3, we distill our nomenclature
in a simple taxonomy of documentation purposes (What triggers
the rule,Why it is important, and how to Fix the issue) and content
types (Text, Code, and Hyperlinks). Only half of the rules we analyze
have a Why purpose.

Then, we use our taxonomy to contrast the documentation of
12 real-world rules with developer expectations via a survey. Sec-
tion 4 presents the survey in which 85 respondents evaluated the
rules 298 times. Among other findings, developers highlight quality
issues with the documentation of the Why purpose, and empha-
size the pedagogical aspects and the need for conciseness in ASAT
documentation. To close the paper, we discuss the limitations of
this study (Section 5), other studies of ASATs and documentation
(Section 6), before concluding (Section 7). A replication package
including raw data, the nomenclature and taxonomy, and survey
results is available online1 and on Zenodo [22].

2 A NOMENCLATURE FOR RULE
DOCUMENTATION

The first step of our study is to create a nomenclature based on the
documentation of the rules provided by ASATs. A nomenclature is
a classification tool that provides a structured and systematic way
of naming and referring to a wide range of objects. This nomen-
clature will help us define the types of information we find in a
rule’s documentation and group them by purpose. To build it, we
use a three-step process described next: (1) we select a total of 16
diverse ASATs that provide documentation for their rules; (2) we
iteratively build a corpus of 119 rules, for which we code the docu-
mentation concepts we encounter to support their comparison; and
(3) we compare and analyze the rule documentations to provide the
expected nomenclature, which covers 15 different concepts.

2.1 Selecting ASATs
A GitHub project listing ASATs2 references over 600 different tools;
choosing a reasonable subset is both necessary and challenging. A
first hard requirement is that we only include ASATs focusing on
code rule enforcement, leaving out for instance code beautifiers. A
second hard requirement is that we only include ASATs that provide
a website presenting the rules documentation. Finally, we select
ASATs emphasizing both diversity and popularity. Since we want
our nomenclature to be used beyond our study, regardless of ASAT,
we include a diverse set of ASATs targetting different programming
languages. Finally, we want to bias our corpus toward popular
ASATs as we postulate that popular ASATs have more odds of
including well-thought-out and comprehensive documentation.

We define two criteria to judge diversity and one criterion to
judge popularity. The two diversity criteria we propose are: that the

1https://icpc2024-asats.github.io
2https://github.com/analysis-tools-dev/static-analysis, 12K stars

Table 1: Languages and ASAT selected

Languages ASATs Languages ASATs

C / C++ OCLint PHP PHP CS Fixer
Cppcheck Psalm

C# Gendarme Python Pylint
Roslynator Flake8

Java Checkstyle Ruby RuboCop
SpotBugs Brakeman

JS / TS ESLint Multi Semgrep
RSLint SonarLint

ASATs covers most of the popular programming languages3, and
to have at least two ASATs per programming language covered; we
also include ASAT that supports multiple languages to account for
this category. The popularity criterion we propose is that ASATs
must have a GitHub repository with at least 1000 stars.

Starting with the ASAT list, we select the 16 ASATs in table 1
using our criteria and the domain expertise of our industrial partner.
The only exception to the popularity criterion is Gendarme, which
we pick to increase diversity: it is the official ASAT for the alter-
native Mono C# implementation. We are aware that this selection
is somewhat arbitrary and that another selection could have been
made with the same criteria; we discuss this issue in section 5.

2.2 Coding Documentation Concepts
Our selection of ASATs offer rule documentation that differs in
structure and in content, and this can even happen between two
rules from the same ASAT. To compare ASAT documentations, we
identify and align all the concepts used in the documentation.

For example, fig. 1 displays the documentation for the rule
pointless-statement provided by Pylint . Using visual and graphical
cues on this documentation (headings, line breaks, boxes, images,
etc.), we extract and code four concepts: an emitted message (error
message when the rule is violated), a description, a problematic code,
and a correct code. If we now want to compare this documentation
with another rule, we need to align their documentation concepts.
This alignment will, e.g., reveal which concepts are present in both
documentations, or which ones are present in only one rule.

Each ASATs provides many rules. We use a two-step process to
first code and then reconcile the documentation concepts. More
precisely, we build an independent coding for each ASAT iteratively
and then reconcile them into a single and global coding for rules
documentation. For each ASAT, we pick up rules at random, look at
the documentation for visual and graphical cues, and add documen-
tation concepts if they were not identified before. We repeat this
until saturation—analyzing 5 successive rules without discovering
a new concept. Using this process, we analyze at least 6 rules per
ASAT; table 2, column 3, counts the rules we inspect per ASAT.

The reconciliation of the documentation concepts identified in
each ASAT was done manually by the authors during a harmoniza-
tion session. For instance, we consider that the Message emitted

3https://madnight.github.io/githut/#/pull_requests/2021/4

https://icpc2024-asats.github.io
https://github.com/analysis-tools-dev/static-analysis
https://oclint.org
https://github.com/FriendsOfPHP/PHP-CS-Fixer
https://cppcheck.sourceforge.io
https://psalm.dev
https://www.mono-project.com/docs/tools+libraries/tools/gendarme
https://pylint.pycqa.org/en/latest/intro.html
https://github.com/dotnet/roslynator
https://www.flake8rules.com
https://checkstyle.org
https://docs.rubocop.org/rubocop
http://findbugs.sourceforge.net/index.html
https://brakemanscanner.org
https://eslint.org
https://semgrep.dev
https://rslint.org
https://www.sonarlint.org
https://madnight.github.io/githut/#/pull_requests/2021/4

What the Fix? A Study of ASATs Rule Documentation ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Figure 1: Documentation of the rule pointless-statement from
Pylint

concept in Pylint rule of fig. 1 is highly similar to theMessage out-
put concept identified in Cppcheck rules. We therefore reconcile
these two concepts and code them with Error Output.

As a result, we build a corpus of 119 rules, with which we identify
15 documentation concepts across ASATs (see table 2). Documenta-
tion consistency vary: depending on the tool, we need between 6
and 10 rules to reach saturation.

2.3 The Nomenclature
After identifying documentation elements in the previous phase, to
finalize our nomenclature, we grouped the documentation concepts
we encountered into different themes to clarify their role. This clas-
sification was made by the authors following an approach similar
to open card sorting [23]. We obtained the following three themes:

• Comprehension, which contains all the concepts identify-
ing parts of the documentation that help to understand the
rule.

• Usage, which contains all concepts identifying parts explain-
ing how to correctly configure the rule for a given project.

• Metadata, which contains all the concepts identifying ASAT-
specific information (such as organizational scheme or rules
source code).

Our nomenclature is presented in table 2 with 15 documentation
concepts grouped into three themes. For the sake of readability, we
present the results by ASAT, even if there are differences between
rules within the same ASAT. For each ASAT and concept, table 2
shows the percentage of the concept’s presence across all analyzed
rules (the definition of each concept and the full per-rule version
are available in our replication kit4).

The first point of interest is that there is no single documentation
concept that can be found in all ASATs. The two most common con-
cepts are description (100% in all but one ASAT, Roslynator) and
code example (70–100% in all but one ASAT, SpotBugs). This pres-
ence is mirrored in the rules: 109 out of 119 rules have descriptions,

4https://icpc2024-asats.github.io?page=analysis&tab=nomenclature

and 104 out of 119 have code examples. We were surprised by the
lack of descriptions for Roslynator, especially since every other
ASAT had a description: for this ASAT, the title of the rule acts as a
description 5. Other concepts are sparser, with 40 rules out of 119 (6
ASATs) that include a severity, and 36 out of 119 that include further
information (12 ASATs). Some concepts are very sparse, such as
IDE Fix (2 rules out of 119) and compatibility (4 out of 119).

The second point of interest is that, apart from the description,
the code example, and the further information concepts, few ASATs
share the same concepts. We note that the average number of con-
cepts per ASAT is 5.1, with a median of 4.5. ESLint is the exception,
with 11 concepts used, albeit with only three concepts used consis-
tently (description, since, and rule definition).

The final point of interest is that few ASATs are consistent in
their use of the documentation elements. Only OCLint is completely
consistent, while ESLint is the most inconsistent.

Finding #1: Projecting our nomenclature onto the rules
of the 16 ASATs we selected clearly reveals the differences
in terms of rule documentation. This reinforces the need
to define a more abstract taxonomy and to carry out a sur-
vey of developers to better understand their expectations
and calls for action, which is the purpose of the following
sections.

3 TAXONOMY OF CONTENT PURPOSES AND
TYPES

In this section, we dive deeper into the actual content of rules
documentation to better understand their purpose. We focus on the
nomenclature’s Comprehension theme as, we are interested in
the developer’s comprehension of ASAT rules and the best practices
they describe. In contrast, the nomenclature’s Usage theme relates
to the usage of the ASAT (.e.g, how to configure a rule), while
Metadata mainly contains ASAT-specific information (such as
categories of rules or source code).

The Comprehension theme consists of four terms: Code Ex-
ample, Description, Further Information, and When Not To Use It
(Table 2); we focus on this theme in the following. When looking
at the data, one quickly realizes that these umbrella terms conceal
a rich underlying diversity of purposes and content types. For in-
stance, Description content sometimes highlights the rationale for a
particular rule; at other times, it describes how to identify code that
breaches the rule. Similarly, Code Example snippets may present
compliant code, non-compliant code, or a mix thereof. The content
also uses a combination of text, hyperlinks, and source code.

Section 3.1 presents the methodology we follow to extract and
consolidate this information; Section 3.2 describe how we validate
the resulting taxonomy internally (the survey in Section 4 provides
additional validation). Finally, Section 3.3 presents the results of
applying our taxonomy to the rules of Table 2.

3.1 Extraction
To better understand what is the purpose and the types of content
used in ASAT rule documentation, we employ an informal open
5e.g., https://josefpihrt.github.io/docs/roslynator/analyzers/RCS0033

https://icpc2024-asats.github.io?page=analysis&tab=nomenclature
https://josefpihrt.github.io/docs/roslynator/analyzers/RCS0033

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Corentin Latappy, Thomas Degueule, Jean-Rémy Falleri, Romain Robbes, Xavier Blanc, and Cédric Teyton

Table 2: Percentage of presence of documentation concepts for each ASAT

Comprehension Usage Metadata

Language ASAT # Rules Co
de

Ex
am

pl
e

D
es
cr
ip
tio

n

Fu
rt
he
r I
nf
or
m
at
io
n

W
he
n
N
ot

To
Us

e
It

Au
to

Fi
x

Co
m
pa
tib

ili
ty

Co
nfi

gu
ra
tio

ns

Er
ro
r O

ut
pu

t

ID
E
Fi
x

Si
nc
e

Us
ag
e
Ex

am
pl
e

Re
la
te
d
Ru

le
s

Ru
le
D
efi
ni
tio

n

Ru
le
Se
t

Se
ve
rit
y

C++ OCLint 6 100 100 100 100
Cppcheck 6 100 100 83 67 100 100

C# Gendarme 9 89 100 22 11 33
Roslynator 10 100 10 10 100

Java Checkstyle 6 100 100 67 83 100 100 100 100
SpotBugs 6 100 33

JS ESLint 10 70 100 40 50 40 20 80 20 100 30 100
RSLint 8 100 100 38 100

PHP PHP CS Fixer 7 100 100 29 100 29 100 29
Psalm 7 100 100 14 14

Python Pylint 10 100 100 10 100 100
Flake8 6 100 100 83

Ruby RuboCop 9 89 100 56 78 56 100
Brakeman 7 71 100 57 43

Multi Semgrep 6 100 100 50 100 100
SonarLint 6 100 100 17 100

Total 119 87 92 30 6 15 3 22 19 2 29 5 8 25 11 34

card-sorting [23] methodology coupled with a saturation process
similar to the one used in Section 2. The objective is twofold: identify
how the content is materialized in the documentation (e.g., text,
source code, images, etc.), and what is the purpose of the content.

Traditional card sorting requires printing fragments of the docu-
mentation content on cards and physically regrouping them by com-
mon themes. Unfortunately, the large amount of content present in
our sample (more than a hundred rules) makes this methodology
impractical.

To simplify the process, we go over rules incrementally in an
arbitrary order, limiting the open card sorting process to the content
of these rules relevant to the Comprehension theme. We end the
process when no new theme emerges after five successive rules.

Two of the authors, who participated also in the construction
of the nomenclature and were already familiar with the content
of the documentation, conducted the open card sorting during a
collaborative session, in which they reviewed a few dozen rules. At
the end of the session, they obtained the following taxonomy:

• Purpose
– What: What triggers the activation of this rule and how
to recognize violating code?

– Why: Why does this rule matter, and why should it be
enforced?

– Fix: How should violating code be fixed to comply with
this rule?

• Content type
– Text: Free-form prose text

– Code: Source code written in (one of) the programming
language targeted by the ASAT, possibly including some
prose embedded as comments

– Hyperlink: Hyperlinks to other documentation, web pages,
PDFs, etc.

Figure 2 shows an example rule from Checkstyle with its pur-
poses and content types. Its description employs a mix of Text and
Hyperlink to document the What and Why purposes. The Code, on
the other hand, documents theWhat and Fix purposes via examples
of compliant and non-compliant code.

3.2 Validation
We validate the completeness and objectivity of our taxonomy by
calculating the agreement of independently annotating a set of
rules. Note that this is an internal validation of our taxonomy; our
survey (Section 4) validates it with external respondents.

The first author selects 12 rules from the considered ASATs, mak-
ing sure to select non-trivial6 rules covering the main categories
of ASAT rules identified by Vassolo et al. [24]: naming and style,
correctness, performance, and security. The first author then man-
ually removes (when present) from their documentation the con-
tent related to Usage and Metadata—irrelevant to our taxonomy—
keeping only the content related to Comprehension. Finally, the
first author annotates the rules by highlighting the elements that
address theWhat,Why, and Fix purposes, as well as the content
types used, as shown in Figure 2.

6An example of a trivial rule is https://rslint.org/no-await-in-loop/

https://rslint.org/no-await-in-loop/

What the Fix? A Study of ASATs Rule Documentation ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Table 3: Percentage of presence of each taxonomy purposes regarding the type of content for each ASAT

Text Code Link

Language ASAT # Rules What (%) Why (%) Fix (%) What (%) Why (%) Fix (%) What (%) Why (%) Fix (%)

C / C++ OCLint 6 100 33 100 100
Cppcheck 6 100 83 100 17 83 83

C# Gendarme 9 100 67 78 89 22 89
Roslynator 10 10 100 90 10

Java Checkstyle 6 100 50 50 100 100 100
SpotBugs 6 100 83 100 33 17

JS / TS ESLint 10 100 80 90 100 10 100 100
RSLint 8 100 100 50 100 36 75 100

PHP PHP CS Fixer 7 100 57 100 100
Psalm 7 100 14 14 100 29 14

Python Pylint 10 100 10 40 80 80 100
Flake8 6 100 17 83 100 100 83

Ruby RuboCop 9 100 44 33 100 89 44
Brakeman 7 100 86 57 71 14 71 57 43

Multi Semgrep 6 100 67 67 100 67 100 50 50
SonarLint 6 100 100 83 100 100 17 17 17

Total 119 93 50 50 91 5 69 58 12 7

The twelve rules are split randomly among three of the remaining
authors, who follow the same rating process on four rules each,
ensuring that each rule is annotated by two independent raters. We
evaluate our taxonomy on these rules by assessing i) to what extent
theWhat,Why, and Fix purposes are necessary and sufficient to rate
all the documentation content (completeness), and ii) to what extent
independent raters reliably agree on the rating of documentation
content (objectivity).

Completeness. All raters used all purposes on all the rules. All
raters used at least one purpose on all Text content, mostHyperlinks,
and the majority of Code snippet. Some parts of the Code snippets
were not rated as they do not relate to any purpose but rather serve
as boilerplate code to ensure that the snippets are syntactically valid
(for instance the class declaration in Figure 2). One rater found that
some Hyperlinks were too general to be actionable and that it was
not clear how they relate to the rule documentation (e.g., a link to
a list of the ten most critical vulnerabilities in web applications).7

Objectivity. We measure the agreement among raters using Co-
hen’s kappa for the textual content, at the word level with regard
to the purposes. (the content type being completely objective). Co-
hen’s kappa is suitable for this situation as there are two raters
per word, and each word is rated with a single purpose. For the
Code and Hyperlinks, however, the same link or snippet may be
associated with multiple labels. We use the better-suited weighted
Fleiss’ kappa with a weight computed using the MASI distance
between sets of labels [25].

• Text: we obtain kappa values of 0.3, 1, and 0.741 between the
first author and the three other raters, indicating a rather
strong agreement on textual content, except with one rater.
The rater with the lowest agreement value performed its
rating at the sentence level, while the other raters coded at
the finer-grained level of individual words.

7https://owasp.org/www-project-top-ten/

• Code: the kappa values are 1, 0.71, and 1, indicating a very
strong agreement on this type of content.

• Hyperlinks: we obtain kappa values of 0.04, 0.33, and 0.14,
suggesting a low agreement between the raters for this type
of content. The disagreements are due to: i) some raters only
rated using the context in which the link was used, without
looking at its content, to perform the rating ii) some raters
did not assign any rating to very general links, while others
assigned all the possible ratings.

Since the agreement is overall high, with clear reasons for the
disagreements we observe, our results indicate that our taxonomy
is suitable for classifying ASAT documentation content.

3.3 Results
The first author applies the taxonomy to the 119 rules of Table 2
to highlight the content types and purposes for all documentation
content pertaining to the Comprehension category. With regard
to the objectivity issues identified in Section 3.2, the first author
applies a fine-grained strategy to rate the Text content (rating at the
word level), and an optimistic strategy to rate Hyperlinks (assigning
multiple purposes to general documents using their content). Ta-
ble 3 shows the percentage of rules, for each ASAT, that document
the What/Why/Fix purposes for Text, Code, and Hyperlinks.

Purposes. Out of the 119 analyzed rules, 119 (100%) document
the What purpose, 60 (50%) document the Why purpose, and 92
(77%) document the Fix purpose, regardless of the content type.
Breaking down by content type, we see:

• What: 110 rules document it with Text (93%), 108 with Code
(91%), and 69 with Hyperlinks (58%).

• Why: 60 rules document it with Text (50% overall, 100% when
present), 6 with Code (5% overall, 10% when present), and 14
with Hyperlinks (12% overall, 23% when present).

https://owasp.org/www-project-top-ten/

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Corentin Latappy, Thomas Degueule, Jean-Rémy Falleri, Romain Robbes, Xavier Blanc, and Cédric Teyton

• Fix: 59 rules document it with Text (50% overall, 64% when
present), 82 with Code (69% overall, 90% when present), and
8 with Hyperlinks (7% overall, 9% when present).

Content types. Text is present in 110 of 119 rules (92%), Code in
108 (91%), and Hyperlinks in 70 (59%). Breaking down by purpose,
we see:

• Text documents theWhat purpose in 100% of cases, theWhy
in 55% of cases, and the Fix in 54% of cases.

• Code documents theWhat purpose in 100% of cases, theWhy
in 6% of cases, and the Fix purpose in 76% of cases.

• Hyperlinks document the What purpose in 99% of cases, the
Why in 20% of cases, and the Fix in 11% of cases.

By tool. As seen in the nomenclature, there is some variability.
While All ASATs document the What purpose, one ASAT does not
document the Fix purpose (OCLint) and some rarely document it
(Cppcheck, Psalm). Finally, some ASATs do not document the Why
purpose (Roslynator, PHP CS Fixer) and some rarely document it
(Psalm, Pylint, Flake8, OCLint).

Finding #2: ASAT documentation has three main pur-
poses: while theWhat is systematically documented, the
Fix is often documented (77%), and theWhy is documented
only half of the time (50%). The What is documented with
Text (92%), Code (91%) or Hyperlinks (58%), theWhy with
Text (100%), Hyperlinks (23%) or Code (10%), and the Fix
with Code (90%), Text (69%) or Hyperlinks (9%).

4 QUESTIONNAIRE SURVEY
In this section, we evaluate whether the documentation of ASAT
rules meet the expectations of their users, as well as validating
the taxonomy with said users. Specifically, we assess whether the
purposes documented in the rules and their incarnation as text,
source code, and hyperlinks satisfy the developers facing them.
To answer these questions, we design an anonymous question-
naire survey with a mix of open-ended and closed-ended questions
shared with industrial partners and fellow researchers. Section 4.1
presents the design of our survey and Section 4.2 gives an overview
of the participants and the analysis methodology. Section 4.3 de-
tails the quantitative results obtained for closed-ended questions
and Section 4.4 the qualitative results emerging from the open-
ended questions. The survey, responses, and plots we discuss in
this section are available on an interactive companion webpage.8

4.1 Survey Design
The survey opens with a welcome message detailing its goals, au-
thors, estimated completion time, and data policy. The remainder of
the survey revolves around four parts: developer profile, taxonomy
evaluation, rules analysis, and general feedback. Table 4 shows the
questions in the survey.

Developer profile. To establish the profile of our participants, we
ask about their experience as developers and which programming
languages they use regularly. Participants may pick between four

8https://icpc2024-asats.github.io?page=survey

Figure 2: Taxonomy applied to rule MultipleVariableDeclara-
tions from Checkstyle

groups: Novice (0 to 4 years of experience), Junior (5–9), Confirmed
(10–19), and Senior (20+). They select or enter their preferred pro-
gramming languages from an open-ended list. As our study focuses
explicitly on ASATs, we ask the participants about their experience
with linters.9 The first question asks whether they know what a lin-
ter is, the second whether they use linters on some of their projects,
and the last one which linters they use (picked from the 16 ASATs
we study in this paper or entered manually).

Taxonomy evaluation. In this part, participants are shown a
screenshot of the FetchEnvVar rule from RuboCop10 which serves
as an illustration to the terminology we use in the survey (linter,
rule, compliant code, non-compliant code). Then, we introduce the
participants to the terms of our taxonomy and their definition: pur-
poses (What/Why/Fix) and content types (Text, Code, Hyperlinks).
We then ask the participants to evaluate the importance of each pur-
pose in the documentation of ASAT rules. We employ an asymmet-
ric survey response scale inspired by Kano et al. [26] and adapted
by Begel et al. for software engineering [27]: Essential, Worthwhile,
Unimportant, Unwise, I don’t understand. For each purpose, we in-
clude an additional open-ended question asking why its presence
in the documentation is or is not important. The final open-ended
question asks the participants whether ASATs should document
additional purposes, which we may have missed in our taxonomy.

Rules analysis. In this part, participants are tasked to evaluate
the documentation of concrete ASAT rules. For each of the 12 rules
used to validate our taxonomy in Section 3.2, we create a bespoke
page in the survey. The page includes a screenshot of the rule’s
documentation, a link to its official documentation, and a series
of questions regarding its quality. As our goal is not to evaluate
the ability of participants to annotate the rule with our taxonomy,
the screenshot includes information regarding its purposes and
content types (as shown in Figure 2), agreed upon by four authors
(the screenshots annotated are available in our replication kit).11

The first question asks whether the participant already knows
the rule. Then, for each purpose and each content type, a question

9The survey uses the term linter rather than ASAT, as it is much more popular.
10https://docs.rubocop.org/rubocop/cops_style.html#stylefetchenvvar
11https://icpc2024-asats.github.io/file/survey_rules_annotated.pdf

https://icpc2024-asats.github.io?page=survey
https://docs.rubocop.org/rubocop/cops_style.html#stylefetchenvvar
https://icpc2024-asats.github.io/file/survey_rules_annotated.pdf

What the Fix? A Study of ASATs Rule Documentation ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Table 4: Our questionnaire survey’s questions. We used linter instead of ASAT as it is more popular among developers.

Question Type Mandatory

Developer profile

What is your experience as a developer? Single choice ✓

Which of the following languages do you use regularly? Multiple choices ✗

Do you know what a linter is? Yes/No ✓

Do you use a linter on some of your projects? Yes/No ✗

Which of the following linters were used in those projects? Multiple choices ✗

Taxonomy evaluation

Rate the usefulness of each purpose in the documentation of a linter Single choice for each purpose ✓

For the What purpose, why do you think it is (not) important to be Open-ended ✗present in the documentation?
For the Why purpose, why do you think it is (not) important to be Open-ended ✗present in the documentation?
For the Fix purpose, why do you think it is (not) important to be Open-ended ✗present in the documentation?
Do you think that there are other purposes that a linter documentation Open-ended ✗should have?

Rules analysis

Have you ever seen this rule? Yes/No ✓

For the rule and taxonomy provided, evaluate for each type of content Single choice for each type ✓its importance to explain the What purpose
For the rule and taxonomy provided, evaluate for each type of content Single choice for each type ✓its importance to explain the Why purpose
For the rule and taxonomy provided, evaluate for each type of content Single choice for each type ✓its importance to explain the Fix purpose
For the rule and taxonomy provided, indicate your satisfaction level Single choice for each purpose ✓on the quality of the documentation for each purpose

General feedback
Please comment freely on the linters documentation you saw: what you Open ✗appreciated, disliked, and how it compared with your expectations.

asks to evaluate the importance of this content type to document
this specific purpose using the asymmetric scale introduced above.
Finally, the last series of questions asks the participant to judge
the overall quality of the documentation for each purpose, using
a symmetric scale to measure satisfaction: Very satisfied, Satisfied,
Neither satisfied nor dissatisfied, Dissatisfied, Very dissatisfied. Par-
ticipants may answer Not present to any question, indicating that
there is no content of the appropriate type or that the rule does
not document the purpose of interest. The Not present answer also
serves as a quality check, as shown later in Section 4.2.

When participants complete the first two parts of the survey, one
rule out of the 12 is drawn randomly and displayed. They can then
opt-in to analyze another rule, drawn randomly from the remaining
ones until there is no more rule to examine. When a participant
evaluates all the rules or opts out, he is redirected to the last part
of the survey.

General feedback. This final part consists of a single open-ended
question asking the participants to comment on the documentation
of the rules they evaluated. This question is designed to put our
taxonomy aside and invite the participants to share their opinions
more freely: what they liked and disliked about the rules and their
documentation, and how it compared with their expectations.

Finally, we proceeded to a pilot testing of the survey with three
software engineering researchers external to the study, who pro-
vided feedback about the phrasing of the questions and a time
estimation to complete it.

4.2 Participants and Methodology
We primarily shared the survey with industrial partners and fellow
researchers through direct contact and mailing lists. We also pub-
licized it on social and professional networks (Twitter, LinkedIn,
Slack). The survey was available online on a self-hosted LimeSur-
vey instance from July 4 to October 19, 2023. Overall, we received
a total of 179 anonymous answers. The participants left at differ-
ent stages: 179 entered their developer profile, 119 evaluated our
taxonomy, 85 evaluated at least one rule (for a total of 289 rule
evaluations), and 26 answered the last open-ended question.

Our methodology to sanitize the data and analyze the responses
is as follows. First, we clean up the responses and attempt to remove
noise. As mentioned earlier, the participants can answer Not present
when a type of content or a given purpose is missing from the
documentation of the rule they are evaluating. We observe that, in
some cases, participants marked some type of content or purpose
as Not present although it was present and marked as such in the
screenshot. For instance, some participants answered that the Fix
purpose for the Code was not present in the screenshot of Figure 2.
In this case, as a sanity measure, we discard the participant’s an-
swers related to this purpose for the given rule, for all content types.
We apply the same filter when a participant provides an evaluation
for a purpose that is not present in the rule presented to them. We
obtained 225 evaluations for the What purpose, 91 for the Why
purpose, and 161 for the Fix purpose.

Second, we use thematic analysis [28] to extract codes from the
answers to open-ended questions. Two authors read these answers

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Corentin Latappy, Thomas Degueule, Jean-Rémy Falleri, Romain Robbes, Xavier Blanc, and Cédric Teyton

and assigned codes. Then, the four first authors gather to harmo-
nize the codes under higher-level themes, discussed in Section 4.4.
Overall, we obtained 33 answers regarding whether ASAT rules
should document other purposes, 56 responses evaluating the im-
portance of each purpose in the documentation (168 in total), and
26 responses to the General feedback question.

4.3 Quantitative Analysis
In this section, we review the responses to closed-ended questions.
We only include the responses of the 85 participants that have
evaluated at least one rule.

Developer profile. The distribution of participants in terms of
experience is fairly even. Of the 85 participants, 37 have less than
5 years of experience as a developer (novices), 22 have between 5
and 9 years (juniors), and 26 have more than 10 years (seniors). The
most used programming language is C/C++ (55%), closely followed
by Python (54%), JavaScript and TypeScript (44%), and Java (42%).
The remaining languages are used by less than 15% of respondents.

A large majority (81%) of participants do know what an ASAT
is; the proportion grows with experience (73% of novices, 82% of ju-
niors, and 92% of seniors). The same trend is found for ASAT usage:
65% of the participants use or used ASATs in their projects (46%
for novices, 68% for juniors, and 88% for seniors). There is also a
noticeable imbalance in ASAT use depending on the programming
languages they use: 53% of C/C++ developers use an ASAT, 61% of
Python developers, 64% of Java developers, and 81% of JavaScript
and TypeScript developers. A plausible explanation is that ESLint
is often bundled by default when initializing JavaScript and Type-
Script projects. When participants use ASATs in their projects, the
most popular one is indeed ESLint (41%), followed by Pylint (21%),
and SonarLint (19%). The remaining tools are used by less than 10%
of participants; three respondents mention additional ASATs they
use—clang tidy, Fortify and OCaml platform—indicating that our
selection of ASATs reflects the ones used in practice. Overall ASAT
usage reflects language use, with the exception of C/C++: since
developers use more than one language, C/C++ users tend to use
ASATs with other programming languages.

Taxonomy evaluation. In this part, we ask participants to judge
the usefulness of the What, Why, and Fix purposes in the docu-
mentation of ASATs, independent of any particular rule. Figure 3a
shows the results: the participants strongly expect each of the pur-
poses to be present and documented. While the What and Why
purposes are largely judged as essential, the Fix purpose appears
slightly less essential to participants, but still worthwhile. In partic-
ular, we note the importance of theWhy purpose to participants,
which indicates that rule documentation should not only document
the problem and its solution but also the rationale motivating the
rule; in contrast, only half of the rules we analyzed had a rationale
documented (Table 3). When grouping answers by developer expe-
rience, programming language, or other profile criteria we do not
observe any major differences.

Rules analysis. The 85 participants analyzed a total of 289 rules,
with a mean of 3.4 rules per participant. Each of the 12 rules has
been evaluated by 19 to 29 different participants. Figure 3b shows
how the participants rate the importance of each type of content

(a) Usefulness of each purpose in the documentation

(b) Importance of each type of content to document each purpose

(c) Quality of the documentation for each purpose

Figure 3: Participants’ evaluation of the usefulness, impor-
tance, and quality of the content types and purposes

to document each purpose in the rules they examined. If a rule
does not include a particular type of content to document a given
purpose, and the participant marks it as Not present, we omit this
data point as it does not convey any positive or negative judgment.
This explains why there is no evaluation of Code to document the
Why purpose, as none of the 12 rules document it with code.

Participants evaluate the importance of the What purpose posi-
tively (Essential orWorthwhile), regardless of its incarnation (94%
for Text, 88% for Code, and 68% for Hyperlinks). While text and
source code are seen as essential, the Hyperlinks are mainly judged
as worthwhile. For the Why purpose, participants mostly evaluate
Text as essential (69%) and Hyperlinks as worthwhile (68%). For the
Fix purpose, participants mostly evaluate Text (59%) and Code (60%)
as essential, and Hyperlinks as worthwhile (48%).

Participants evaluate Text and Code very positively to explain
the three purposes. This suggests that a combination of text and
source code might be the best choice to document ASAT rules.

What the Fix? A Study of ASATs Rule Documentation ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Participants also evaluate Hyperlinks positively, with a minimum
of 68% of positive evaluations for each purpose. Yet, most partici-
pants evaluate them as Worthwhile rather than Essential. Moreover,
a significant portion judges them as Unimportant: three times or
more than Text or Code—and more than they are judged Essential.
A possible reason is that visiting external resources disrupts the
reading flow and that important information may be lost among
other resources, particularly if linking to larger documents. A solu-
tion could be to extract and distill the important information from
external resources into the documentation, and cite it as a source.

Finding #3: Text and source code are best suited to docu-
ment theWhat and Fix purposes, and good documentation
for an ASAT rule should include both. Text is the best-
suited medium to document the Why purpose. Hyperlinks
are rarely seen as essential and should be used sparingly.

Finally, Figure 3c displays the satisfaction of participants regard-
ing the quality of the documentation in the rules they evaluated,
for each purpose. We observe that the participants are mostly sat-
isfied with the quality of the documentation for the What (84%)
and Fix purposes (70%). Yet, we observe that almost a quarter of
the participants are not satisfied with the quality of the documenta-
tion for the Why purpose. Worse, in 13% of cases, participants are
very dissatisfied with its quality. This strongly contrasts with the
usefulness evaluation emitted by participants in Figure 3a.

Finding #4: Participants express a strong interest in un-
derstanding the rationale behind ASAT rules when reading
their documentation (Why). Yet, Finding #1 indicates that
only 50% of ASAT rules document theWhy purpose; when
present, participants are dissatisfied with how it is docu-
mented in close to 25% of the cases. Clearly, documentations
should consistently include and explain the Why aspect.

4.4 Qualitative Analysis
In the following, we summarize free-form comments based on our
coding. Codes mentioned for the first time include their frequency
like this (0). Code referenced after being introduced once is like
this. We do not report on “obvious” codes (e.g., understanding the
rationale (29) for the why purpose).

Transversal theme: learning. One of the most salient themes,
across all three purposes (learning-what (11), learning-fix (13),
and particularly learning-why (21)), is learning: 45 comments
touched on that theme in one way or another. This is sometimes
phrased as self-improvement of the developer’s skills, particularly
for beginners or (more occasionally) for onboarding new team
members. Comments on the What aspect mention the need to un-
derstand the error to not repeat it (thus improving skills), as well
as team aspects (“because it facilitates the integration of new mem-
bers”). Comments on theWhy are the most prevalent. Explaining
the rationale for an error is important to understand its purpose
and importance, and from that, remembering it: “If I don’t know
why, then I don’t know why it’s a bad thing and I cannot improve as

a developer”. Finally, the Fix is more immediate. Once the problem
is known and understood, learning of possible solutions is valuable:
“It is likely the coder introduced a bad pattern/error due to lack of
expertise; as such, it would be wrong to assume he/she will know how
to fix it”.

Transversal theme: saving time. Respondents emphasized effi-
ciency in all three aspects (saving time-what (2), saving time-
why (3), particularly saving time-fix (13), automated fixes (4)).
For instance, one respondent wants to “understand in seconds what
a lint is about”, which requires clear and concise explanations. Miss-
ing information in theWhy prevents one from deciding whether
to act on a warning (“I will probably lose time looking it up on the
internet. Also I will be less motivated to fix it”). Since fixes are the
most actionable, there is more demand to have standard solutions
available to solve the issue quickly, rather than searching for in-
formation on the web or asking teammates. Having to search for
the information is perceived to increase the chance a warning is
ignored. Going further, the logical end is automation: “ideal thing
is to just click a button to ’autofix’ the issue, when available”.

Aspects specific to the What. The What provides understanding
of what triggers a rule. It should be written clearly and concisely to
this as easy as possible (thus saving time). The What helps finding
where the warning is (8), which is not always obvious as “many
different things may be discussed/considered on a single piece of code”.
A key step in finding where the error is, is to relate the error to
one’s code (12): rules are either described in the abstract, or, at best,
with an example (3). Examples are preferred for this: “simpler the
exemple [sic], the easier it is to relate to one’s code”. Another theme
relates to false positives andnegatives (5). Rules are implemented
by heuristics that may be imperfect especially for complex cases
(e.g. regular expressions). Describing what triggers a rule in details
is useful to disambiguate between true positives and false positives,
as well as knowing cases that the rule can miss (false negatives).

Aspects specific to the Why. TheWhy is key to deciding whether
to act on the warning, or not. Developers analyse the tradeoffs
and risks involved (11): the Why should in particular explain the
severity of the warning: “I can judge whether the criticality justify
modifying this piece of code. I may choose to disregard the rule if I
judge it not worthwhile”. In some cases, the rule’s relevance (9)
will be questioned (such as when it is a false positives and negatives,
or when it is a matter of personal or team preferences (5), rather
than a real issue. Thus the Why should motivate and justify the
effort (10) that will be invested in fixing the warning; needless to
say, if said effort is low (saving time via good examples or automated
fixes), it will be easier to act on it.

Aspects related to the Fix. There is more debate as to the im-
portance of the Fix, compared to the What and the Why. Some
respondents state fixes are less or not important (7) for several
reasons: either because the rules are simple, the fixes would be
too basic, or because the Why and What are sufficient (“in most
cases previous information should be enough to infer how to fix”. For
other respondents, fixes are essential or very important (10).
For them, documentation without a fix is not actionable: “If the Fix
is not here, understanding the what and the why lead us to nowhere”.
Fixes increase ASAT friendliness (5), and help saving time. Fixes

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Corentin Latappy, Thomas Degueule, Jean-Rémy Falleri, Romain Robbes, Xavier Blanc, and Cédric Teyton

are particularly useful when they are not obvious (4), either due
to lack of knowledge (learning) or due to their difficulty. Providing
examples (10) is useful to clarify complex rules. Some respondents
mention that fixes may not be optimal (7) given the context, at
worse they can “lead beginners to apply a cascade of bad decisions
made to satisfy the linter”.

Other purposes for documentation. Most respondents mentioned
no additional purpose (14) than the What, Why, and Fix. A
few respondents did mention other documentation purposes, such
as exceptions, alternatives, and limitations (3), risks (3), or
configuration (2) of the ASAT warnings. Indeed, we encountered
these elements and included them in our nomenclature, but decided
to exclude them from the remainder of our analysis as they dealt
with more operational aspects.

Additional comments on the documentation. Several participants
emphasized in their free-form comments some topics that emerged
earlier. Several respondents highlighted the need for a summary
(7) (“Sometimes too much text which does not encourage taking the
time to read and therefore deal with the error” or a structured tem-
plate (6) where “the what, the why and the fix are clearly separated”.
Others reiterated the need to use code examples (4), including
adding examples of both compliant and non-compliant code, or to
avoid links (2) (“external links are almost never useful”).

Finding #5: ASAT documentation has important learn-
ing purposes (particularly theWhy). Respondents read the
What to understand the error, the Why to decide whether
to address the warning, and the Fix to remove it. Missing
elements make fixes less likely. Some respondents even
suggested the use of a structured template to enforce the
presence of every important purpose. Additionally, some
respondents expressed concern about efficiency. A sum-
mary was suggested by some respondents to speed up the
understanding of the rule. Respondents plebiscited the use
of code examples and recommended to use external links
sparingly to avoid breaking the reading flow.

5 THREATS TO VALIDITY
External validity. Our study bears several threats with regard to

external validity. The first threat is that our corpus of ASATs and
ASATs rules documentation is not representative, and is even biased
toward popular ASATs. Therefore, we have no guarantee that our
results would generalize to the actual population, especially the
percentages displayed in Table 2 and Table 3. Another threat is
that the respondents of our survey are not a random sample of
the population of ASATs users. As a consequence, the results we
obtained with our participants might not generalize, especially the
percentages displayed in Figures 3a to 3c.

Internal validity. We extensively use qualitative methods to build
our nomenclature and taxonomy (open card sorting [23]) and ana-
lyze the open answers to the survey (thematic analysis [28]). It is
well known that these methods can be affected by subjectivity [29].
As a consequence, different researchers might have obtained a dif-
ferent nomenclature, taxonomy, and other themes from the survey

answers. As a mitigation measure for the taxonomy, we performed
an internal validation and a reality check in the survey where we ob-
served that it was well understood by the respondents. For the other
results obtained from qualitative analysis, we systematically used
harmonization sessions to reduce the subjectivity of our findings.

With regard to the answers of the participants to the survey,
there is a chance that they did not fully understand the questions
we asked. This threat affects mostly the closed-ended questions
where we cannot do any sanity check by looking at the answer. The
most difficult questions concerned the analysis of the usefulness of
each type of content to document each purpose, as the participants
needed to carefully analyze how we rated the content of the rules.
As a sanity check, we included a specific scale item (Not present) to
double-check that the participants did understand our rating. We
used this sanity check to filter out incoherent answers. However,
this sanity check is not perfect and it is possible that participants
answered these questions without understanding our rating.

6 RELATEDWORK
To the best of our knowledge, there is no prior work having studied
the rules documentation of ASATs. In the remainder of the section,
we discuss the related work according to two topics: studies of
ASATs and studies of software documentation.

6.1 ASATs Studies
Researchers have emphasized various benefits associated with the
use of ASATs. Tómasdóttir et al. highlight eight such advantages,
such as error prevention, keeping the code simple and consistent, or
improving the efficiency of code review and discussions [14]. ASATs
can also automate compliance to a standard coding style [30].

Several studies explore the reasons inhibiting the use of ASATs
by developers. Tómasdóttir et al. highlight that the agreement on
rules to enable, especially for pre-existing projects, is an important
issue and makes it difficult for developers to follow the rules when
they disagree [14]. Other challenges were also raised: dealing with
false positives [31], having better integration into the development
process [32] and missing quick fixes when rules are detected [18].

The study from Novak et al. [1] produces a taxonomy of ASATs
across 10 categories (such as rule domains or configurability). How-
ever, ASAT documentation has not been investigated in their study.

The studies on the warnings (also called notifications) content
of ASATs are closely related to ours, as warnings are the first piece
of documentation that developers see when using an ASAT. An
important result is that their content might not be sufficiently
helpful to developers [7, 17, 18]. Another finding is the need to
have clear and concise warnings, especially when developers use
ASATs in CLI [33]. It aligns with our findings for ASAT rule docu-
mentation: the main information should be quickly available and
understandable. Buckers et al. present a tool and its evaluation to
help developers treat more efficiently the numerous notifications
and their contents [34]. Overall, our results are consistent with
those of previous related studies on warnings [7, 15, 17, 18, 32].

Tahaei et al. find that examples are more valued and links less
valued, which echoes our study [7]. They focus on four security
warnings, while we cover more domains beyond security and ex-
plore more rules and ASAT tools.

What the Fix? A Study of ASATs Rule Documentation ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Johnson et al. study notifications for an ASAT, a coverage tool,
and a compiler (five examples each) [17]. Since they focus on multi-
ple tool types, ASAT-specific aspects (e.g., examples) are less promi-
nent. However, they identify “Problem Importance Gaps” and “Prob-
lem Resolution Gaps” that echo ourWhy and Fix purposes.

Nachtigall et al. define the objective of warning messages as
such: “Warning messages [...] have to direct the developer’s atten-
tion to the detected issue and give information on what might be
wrong, why it should be fixed, and how it could be fixed”, echoing
our taxonomy. However, it is not clear how they came up with this
definition, while we obtain it from an analysis of existing ASAT doc-
umentation and confront it to the expectations of developers. [18]

Do et al. extract three features (among many others) expected
by ASAT users from a tool and a literature review (called F3, F4,
and F7 in their article), which are similar to explaining theWhat,
Why, and Fix purposes. These three features are among the most
important ones according to the developers they surveyed [15]. The
other features are more tool-oriented since their study focuses on
tools and not documentation.

Finally, Johnson et al. make the following observation: “Nine-
teen of our 20 participants, felt that many static analysis tools do
not present their results in a way that gives enough information
for them to assess what the problem is, why it is a problem, and
what they should be doing differently” which also echoes our tax-
onomy [32].

One important novel aspect of our study is that it is the only
one that focuses on reference documentation, not warnings or
tools. It confirms that the findings of the study about warnings are
transferable to reference documentation. In addition, our results
provide more evidence about what is present/missing from existing
documentation both for the nomenclature and taxonomy, while the
qualitative part dives deeper into these topics.

6.2 Software Documentation
Another related topic is the study of documentation of Application
Programming Interfaces (APIs). API documentation shares a com-
mon goal with ASAT documentation as they are meant to teach
developers how to correctly use an API as quickly as possible [19].
On the other hand, they focus on a single software component
while ASAT documentation describes rules that apply in a wide
range of contexts. We also find similar expected criteria with the
writing of the rules documentation, as the need to include short
code snippets demonstrating API usage in context or code examples
illustrating the best practices [35, 36].

Aghajani et al. performed an empirical study on software docu-
mentation resulting in a taxonomy of documentation issues [37].
An interesting outcome is the identification of themes relatively
close to ours, especially Information Content similar to our Compre-
hension. They pursue their work in another article [38] by realizing
two surveys, first to evaluate the relevance of issues they had found,
then to explore the needs on type of documentation. It results in
guidelines to improve the state of the art around documentation.

Regarding software documentation in general, one major flaw
in software documentation is the difficulty of keeping it updated
through its lifetime [39]. Some developers simply assume it is out-
dated and do not rely on it [40]. At first glance, we did not see this

problem in the documentation of ASAT rules maybe because they
evolve less often, but it would be an interesting issue to study.

7 CONCLUSION
In this article, we explored how ASATs rules are documented, and
contrasted them with developers’ expectations through several con-
tributions. We first studied how more than 100 rules—spanning
16 ASATs in multiple programming languages—are documented,
leading to a nomenclature of documentation elements refined in a
taxonomy of documentation purposes and content types. We then
use this taxonomy to contrast the documentation of 12 real-world
rules with developer expectations via a survey involving 85 respon-
dents who evaluated the rules 289 times. Among other findings, we
highlight issues with theWhy purpose: despite being considered
essential by developers to decide whether to act on a warning, half
of the rules miss it; of the rest, a quarter of survey responses point
at quality issues. We also find out that code examples in addition
to text are attractive for documenting theWhat and Fix purposes.
Finally, some developers expressed concern about saving time, lead-
ing to the recommendation to include summaries, and reducing the
use of external links that disrupt the reading flow. In future work,
we plan to extend our study to more ASATs and to more quality
issues inside the documentation, such as outdatedness, as has been
done for API documentation [37, 38].

ACKNOWLEDGMENTS
We would like to thank Matias Martinez, Lina Ochoa Venegas, and
Théo Zimmermann for their initial feedback on the online survey.

REFERENCES
[1] J. Novak, A. Krajnc, and R. Žontar, “Taxonomy of static code analysis tools,” in

The 33rd International Convention MIPRO, May 2010, pp. 418–422.
[2] K. F. Tómasdóttir, M. Aniche, and A. Van Deursen, “The Adoption of JavaScript

Linters in Practice: A Case Study on ESLint,” IEEE Transactions on Software Engi-
neering, vol. 46, no. 8, pp. 863–891, Aug. 2020, conferenceName: IEEE Transactions
on Software Engineering.

[3] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the State
of Static Analysis: A Large-Scale Evaluation in Open Source Software,” in
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). Suita: IEEE, Mar. 2016, pp. 470–481. [Online]. Available:
http://ieeexplore.ieee.org/document/7476667/

[4] R. K. McLean, “Comparing Static Security Analysis Tools Using Open Source
Software,” in 2012 IEEE Sixth International Conference on Software Security and
Reliability Companion, Jun. 2012, pp. 68–74.

[5] Q. Ashfaq, R. Khan, and S. Farooq, “A Comparative Analysis of Static Code
Analysis Tools that check Java Code Adherence to Java Coding Standards,” in
2019 2nd International Conference on Communication, Computing and Digital
systems (C-CODE), Mar. 2019, pp. 98–103.

[6] S. Habchi, X. Blanc, and R. Rouvoy, “On adopting linters to deal with performance
concerns in Android apps,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’18. New York, NY,
USA: Association for Computing Machinery, Sep. 2018, pp. 6–16. [Online].
Available: https://doi.org/10.1145/3238147.3238197

[7] M. Tahaei, K. Vaniea, K. K. Beznosov, and M. K. Wolters, “Security Notifications
in Static Analysis Tools: Developers’ Attitudes, Comprehension, and Ability to
Act on Them,” in Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. Yokohama Japan: ACM, May 2021, pp. 1–17. [Online].
Available: https://dl.acm.org/doi/10.1145/3411764.3445616

[8] H. J. Kang, K. L. Aw, and D. Lo, “Detecting false alarms from automatic
static analysis tools: how far are we?” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22. New York, NY, USA:
Association for Computing Machinery, Jul. 2022, pp. 698–709. [Online]. Available:
https://doi.org/10.1145/3510003.3510214

[9] Y. Kim, J. Lee, H. Han, and K.-M. Choe, “Filtering false alarms of
buffer overflow analysis using SMT solvers,” Information and Software

http://ieeexplore.ieee.org/document/7476667/
https://doi.org/10.1145/3238147.3238197
https://dl.acm.org/doi/10.1145/3411764.3445616
https://doi.org/10.1145/3510003.3510214

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Corentin Latappy, Thomas Degueule, Jean-Rémy Falleri, Romain Robbes, Xavier Blanc, and Cédric Teyton

Technology, vol. 52, no. 2, pp. 210–219, Feb. 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S095058490900175X

[10] Y. Jung, J. Kim, J. Shin, and K. Yi, “Taming False Alarms from a Domain-Unaware
C Analyzer by a Bayesian Statistical Post Analysis,” in Static Analysis, ser. Lecture
Notes in Computer Science, C. Hankin and I. Siveroni, Eds. Berlin, Heidelberg:
Springer, 2005, pp. 203–217.

[11] D. A. Tomassi, “Bugs in the wild: examining the effectiveness of static
analyzers at finding real-world bugs,” in Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 2018. New York, NY,
USA: Association for Computing Machinery, Oct. 2018, pp. 980–982. [Online].
Available: https://dl.acm.org/doi/10.1145/3236024.3275439

[12] D. A. Tomassi and C. Rubio-González, “On the Real-World Effectiveness of Static
Bug Detectors at Finding Null Pointer Exceptions,” in 2021 36th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE), Nov. 2021, pp.
292–303, iSSN: 2643-1572.

[13] D. Kavaler, A. Trockman, B. Vasilescu, and V. Filkov, “Tool Choice Matters:
JavaScript Quality Assurance Tools and Usage Outcomes in GitHub Projects,” in
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), May
2019, pp. 476–487, iSSN: 1558-1225.

[14] K. F. Tomasdottir, M. Aniche, and A. van Deursen, “Why and how JavaScript
developers use linters,” in 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). Urbana, IL: IEEE, Oct. 2017, pp. 578–589.
[Online]. Available: http://ieeexplore.ieee.org/document/8115668/

[15] L. N. Q. Do, J. R. Wright, and K. Ali, “Why Do Software Developers Use Static
Analysis Tools? A User-Centered Study of Developer Needs and Motivations,”
IEEE Transactions on Software Engineering, vol. 48, no. 3, pp. 835–847, Mar. 2022,
conference Name: IEEE Transactions on Software Engineering.

[16] J. Smith, L. N. Q. Do, and E.Murphy-Hill, “WhyCan’t Johnny Fix Vulnerabilities: A
Usability Evaluation of Static Analysis Tools for Security,” in Sixteenth Symposium
on Usable Privacy and Security (SOUPS 2020), 2020, pp. 221–238. [Online].
Available: https://www.usenix.org/conference/soups2020/presentation/smith

[17] B. Johnson, R. Pandita, J. Smith, D. Ford, S. Elder, E. Murphy-Hill,
S. Heckman, and C. Sadowski, “A cross-tool communication study on
program analysis tool notifications,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering.
Seattle WA USA: ACM, Nov. 2016, pp. 73–84. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2950290.2950304

[18] M. Nachtigall, M. Schlichtig, and E. Bodden, “A large-scale study of
usability criteria addressed by static analysis tools,” in Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
Virtual South Korea: ACM, Jul. 2022, pp. 532–543. [Online]. Available:
https://dl.acm.org/doi/10.1145/3533767.3534374

[19] R. Watson, M. Stamnes, J. Jeannot-Schroeder, and J. H. Spyridakis, “API
documentation and software community values: a survey of open-source API
documentation,” in Proceedings of the 31st ACM international conference on
Design of communication. Greenville North Carolina USA: ACM, Sep. 2013, pp.
165–174. [Online]. Available: https://dl.acm.org/doi/10.1145/2507065.2507076

[20] M. Nagappan, R. Robbes, Y. Kamei, E. Tanter, S. McIntosh, A. Mockus, and
A. E. Hassan, “An empirical study of goto in C code from GitHub repositories,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. Bergamo Italy: ACM, Aug. 2015, pp. 404–414. [Online]. Available:
https://dl.acm.org/doi/10.1145/2786805.2786834

[21] D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To camelcase or under_score,”
in 2009 IEEE 17th International Conference on Program Comprehension, May 2009,
pp. 158–167, iSSN: 1092-8138.

[22] C. Latappy, T. Degueule, J.-R. Falleri, R. Robbes, X. Blanc, and C. Teyton,
“Replication Kit - What the Fix? A Study of ASATs Rule Documentation,” Jan.
2024. [Online]. Available: https://zenodo.org/uploads/10522473

[23] T. Zimmermann, “Card-sorting: From text to themes,” in Perspectives on Data
Science for Software Engineering, T. Menzies, L. Williams, and T. Zimmermann,
Eds. Boston: Morgan Kaufmann, Jan. 2016, pp. 137–141. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128042069000271

[24] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and A. Zaidman,
“How developers engage with static analysis tools in different contexts,” Empirical
Software Engineering, vol. 25, no. 2, pp. 1419–1457, Mar. 2020. [Online]. Available:
https://doi.org/10.1007/s10664-019-09750-5

[25] R. Passonneau, “Measuring Agreement on Set-valued Items (MASI) for Semantic
and Pragmatic Annotation,” in Proceedings of the Fifth International Conference
on Language Resources and Evaluation (LREC’06). Genoa, Italy: European
Language Resources Association (ELRA), May 2006. [Online]. Available:
http://www.lrec-conf.org/proceedings/lrec2006/pdf/636_pdf.pdf

[26] K. N, “Attractive Quality and Must-Be Quality,” Journal of the Japanese Society
for Quality Control, vol. 31, no. 4, pp. 147–156, 1984. [Online]. Available:
https://cir.nii.ac.jp/crid/1572261550744179968

[27] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data scientists
in software engineering,” in Proceedings of the 36th International Conference on
Software Engineering. Hyderabad India: ACM, May 2014, pp. 12–23. [Online].
Available: https://dl.acm.org/doi/10.1145/2568225.2568233

[28] G. Guest, K. M. MacQueen, and E. E. Namey, “Applied Thematic Analysis,” Oct.
2023. [Online]. Available: https://uk.sagepub.com/en-gb/eur/applied-thematic-
analysis/book233379

[29] R. Dowling, “Power, subjectivity and ethics in qualitative research,” in Qualitative
research methods in human geography, I. Hay, Ed. South Melbourne, Vic.: Oxford
University Press, 2005, pp. 19–29.

[30] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix,
“Using Static Analysis to Find Bugs,” IEEE Software, vol. 25, no. 5, pp.
22–29, Sep. 2008, conference Name: IEEE Software. [Online]. Available:
https://ieeexplore.ieee.org/document/4602670

[31] S. Heckman and L. Williams, “A systematic literature review of actionable alert
identification techniques for automated static code analysis,” Information and
Software Technology, vol. 53, no. 4, pp. 363–387, Apr. 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584910002235

[32] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t software
developers use static analysis tools to find bugs?” in 2013 35th International
Conference on Software Engineering (ICSE), May 2013, pp. 672–681, iSSN: 1558-
1225.

[33] P. L. Gorski, Y. Acar, L. Lo Iacono, and S. Fahl, “Listen to Developers! A
Participatory Design Study on Security Warnings for Cryptographic APIs,”
in Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. Honolulu HI USA: ACM, Apr. 2020, pp. 1–13. [Online]. Available:
https://dl.acm.org/doi/10.1145/3313831.3376142

[34] T. Buckers, C. Cao, M. Doesburg, B. Gong, S. Wang, M. Beller, and A. Zaidman,
“UAV: Warnings from multiple Automated Static Analysis Tools at a glance,”
in 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), Feb. 2017, pp. 472–476.

[35] M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini, “What Should
Developers Be Aware Of? An Empirical Study on the Directives of API
Documentation,” Empirical Software Engineering, vol. 17, no. 6, pp. 703–737, 2012.
[Online]. Available: http://www.monperrus.net/martin/An-Empirical-Study-On-
the-Directives-of-API-Documentation.pdf

[36] A. Cummaudo, R. Vasa, and J. Grundy, “What should I document? A preliminary
systematic mapping study into API documentation knowledge,” in 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM), Sep. 2019, pp. 1–6, iSSN: 1949-3789.

[37] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez, L. Moreno,
G. Bavota, and M. Lanza, “Software Documentation Issues Unveiled,”
in 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), May 2019, pp. 1199–1210, iSSN: 1558-1225. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8811931

[38] E. Aghajani, C. Nagy, M. Linares-Vásquez, L. Moreno, G. Bavota, M. Lanza,
and D. C. Shepherd, “Software documentation: the practitioners’ perspective,”
in Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, ser. ICSE ’20. New York, NY, USA: Association for Computing
Machinery, Oct. 2020, pp. 590–601. [Online]. Available: https://doi.org/10.1145/
3377811.3380405

[39] A. Forward and T. C. Lethbridge, “The Relevance of Software Documentation,
Tools and Technologies: A Survey,” in Proceedings of the 2002 ACM Symposium
on Document Engineering, ser. DocEng ’02. New York, NY, USA: ACM, 2002, pp.
26–33. [Online]. Available: http://doi.acm.org/10.1145/585058.585065

[40] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional devel-
opers comprehend software?” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 255–265.

https://www.sciencedirect.com/science/article/pii/S095058490900175X
https://dl.acm.org/doi/10.1145/3236024.3275439
http://ieeexplore.ieee.org/document/8115668/
https://www.usenix.org/conference/soups2020/presentation/smith
https://dl.acm.org/doi/10.1145/2950290.2950304
https://dl.acm.org/doi/10.1145/2950290.2950304
https://dl.acm.org/doi/10.1145/3533767.3534374
https://dl.acm.org/doi/10.1145/2507065.2507076
https://dl.acm.org/doi/10.1145/2786805.2786834
https://zenodo.org/uploads/10522473
https://www.sciencedirect.com/science/article/pii/B9780128042069000271
https://doi.org/10.1007/s10664-019-09750-5
http://www.lrec-conf.org/proceedings/lrec2006/pdf/636_pdf.pdf
https://cir.nii.ac.jp/crid/1572261550744179968
https://dl.acm.org/doi/10.1145/2568225.2568233
https://uk.sagepub.com/en-gb/eur/applied-thematic-analysis/book233379
https://uk.sagepub.com/en-gb/eur/applied-thematic-analysis/book233379
https://ieeexplore.ieee.org/document/4602670
https://www.sciencedirect.com/science/article/pii/S0950584910002235
https://dl.acm.org/doi/10.1145/3313831.3376142
http://www.monperrus.net/martin/An-Empirical-Study-On-the-Directives-of-API-Documentation.pdf
http://www.monperrus.net/martin/An-Empirical-Study-On-the-Directives-of-API-Documentation.pdf
https://ieeexplore.ieee.org/abstract/document/8811931
https://doi.org/10.1145/3377811.3380405
https://doi.org/10.1145/3377811.3380405
http://doi.acm.org/10.1145/585058.585065

	Abstract
	1 Introduction
	2 A Nomenclature for Rule Documentation
	2.1 Selecting ASATs
	2.2 Coding Documentation Concepts
	2.3 The Nomenclature

	3 Taxonomy of Content Purposes and Types
	3.1 Extraction
	3.2 Validation
	3.3 Results

	4 Questionnaire Survey
	4.1 Survey Design
	4.2 Participants and Methodology
	4.3 Quantitative Analysis
	4.4 Qualitative Analysis

	5 Threats to Validity
	6 Related Work
	6.1 ASATs Studies
	6.2 Software Documentation

	7 Conclusion
	Acknowledgments
	References

