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DYNAMICAL PROGRAMMING FOR OFF-THE-GRID DYNAMIC

INVERSE PROBLEMS

Vincent Duval1,* and Robert Tovey2

Abstract. In this work we consider off-the-grid algorithms for the reconstruction of sparse measures
from time-varying data. In particular, the reconstruction is a finite collection of Dirac measures whose
locations and masses vary continuously in time. Recent work showed that this decomposition was
possible by minimising a convex variational model which combined a quadratic data fidelity with
dynamical Optimal Transport. We generalise this framework and propose new numerical methods
which leverage efficient classical algorithms for computing shortest paths on directed acyclic graphs.
Our theoretical analysis confirms that these methods converge to globally optimal reconstructions.
Numerically, we show new examples for unbalanced Optimal Transport penalties, and for balanced
examples we are 100 times faster in comparison to the previously known method.
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1. Introduction

The signal-processing task of dynamical super-resolution involves retrieving fine-scale features, in space and
time, from a signal which evolves over time. A convex variational model was recently proposed for such tasks
using Optimal Transport (OT) to regularise the associated inverse problem [1, 2]. This new approach allows
the decomposition of a signal into a finite sum of smooth curves, for example to track the centers of multiple
particles in time with smooth trajectories. Similar ideas were explored for a specific example in [3] where the
shape of curves is built into the model, and without appealing to OT.

In this work we focus on dynamical super-resolution problems regularised by OT. We can consider potential
models to be partitioned into two classes, depending on whether the particles have constant mass/brightness in
time, or if mass is allowed to vary. These classes are referred to as balanced or unbalanced problems respectively,
mathematically encoded in the choice of OT cost. Current literature provides analysis for the balanced Benamou–
Brenier (BB) [1] and the unbalanced Wasserstein–Fisher–Rao (WFR) [4] energies, both are shown to reconstruct
data into a finite number of smooth curves with constant or smoothly varying mass. Initial numerical experiments
for the Benamou-Brenier model have also been carried out showing great promise [5], however current methods
are too slow for large-scale applications.
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transport regularization.
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Let Ω be an open bounded spatial domain. At the heart of the analysis of Bredies et al. is the interplay
between measures ρ(t, x) defined on the time-space cylinder [0, 1]× Ω, and measures σ(γ) defined on the space
of curves γ = (h, ξ) with mass h ∈ C([0, 1]) and trajectory ξ ∈ C([0, 1] ; Ω). We can think of ρ as representing
the evolving physical volume that can be observed with a microscope or by eye, whereas σ more efficiently
represents a collection of (trajectories of) particles, that we wish to reconstruct. The structure of the problem
as seen from this second viewpoint closely resembles the Beurling-LASSO which is now well-understood [6–9].
Its main advantage is that it paves the way for “off-the-grid” numerical methods when solving such dynamical
inverse problems. Recent works in the field of sparse spike recovery [7, 10, 11] have demonstrated that it is
possible to design efficient numerical solvers without reconstructing the unknown on a grid, by exploiting a
conditional gradient descent / Frank–Wolfe approach together with a good knowledge of the regularising term.
Indeed, the Frank–Wolfe minimisation algorithm and its variants (see the review [12]) build iterates that are
convex combinations of the extreme points of level sets of the regulariser; being able to easily encode and handle
such extreme points makes it possible to solve variational problems in a continuous (or up to floating point)
setting. Moreover, having iterates that are convex combinations of a few extreme points of the level sets of the
regulariser is particularly relevant, as it is known in inverse problems that some solutions have precisely that
structure when the observation consists of a finite number of linear measurements [13–15].

1.1. Motivating example

To make these observations and the contribution of this work more concrete we will make reference to the
motivating example described in [1] with numerical examples in [5]. We will describe this problem briefly here
and postpone precise assumptions and details of function spaces to Section 6, where it is the δ = +∞ case in
(6.1). For α, β > 0 the Benamou–Brenier penalty W is a map of non-negative space-time measures ρ defined by

W(ρ)
def.
= inf

v∈L2
ρ([0,1]×Ω;Rd)

{∫
[0,1]×Ω

[
α+

β

2
|v|2
]
dρ s.t. ∂tρ+ div(vρ) = 0

}
, (1.1)

where the continuity equation is satisfied in the weak sense which will be clarified in (1.14). The function
with α = 0, β = 1 is referred to as the Benamou–Brenier energy whose main properties can be found in [16],
Section 5.3.1. It was shown (cf. [1, 16]) that whenever W(ρ) < +∞, there exists a “disintegration” into spatial
measures {ρt}t∈[0,1] such that the curve t 7→ ρt is continuous in the narrow topology and such that

∀ψ ∈ L1([0, 1]× Ω; ρ),

∫
[0,1]×Ω

ψ(t, x) dρ(t, x) =

∫ 1

0

(∫
Ω

ψ(t, x) dρt(x)

)
dt. (1.2)

Thanks to this property, given times 0 = t0 < t1 < . . . < tT = 1, it is justified to consider “slices” ρtj and
to assume that we are given data bj ∈ Rm (for simplicity assume m does not change with j) at time tj ,
corresponding to linear observations of ρtj , given by narrowly continuous linear operators Aj . The more involved
case of continuous-time observations is handled in [2] although we do not discuss it further in this work. To
solve the corresponding inverse problem, [1], (43) proposes the minimisation of

E(ρ) = 1

2

T∑
j=0

∥∥Ajρtj − bj
∥∥2
2
+W(ρ). (1.3)
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It is then shown in [1], Theorem 10 that there is a minimiser ρ∗ which is a finite sum of extreme points of the
Benamou–Brenier unit ball, i.e.

for some ai ≥ 0, ξi ∈ AC2([0, 1] ; Ω), ∀t ∈ [0, 1] , ρ∗t =

m(T+1)∑
i=1

aiδξi(t), (1.4)

where AC2 is the set of absolutely continuous function such that their (a.e. defined) pointwise derivative is
square-integrable (see also [17], Sect. 1.1).

1.2. Outline and contributions

The main goal of the present article is to describe an algorithm for dynamic inverse problems in the space of
measures which is significantly faster than the state-of-the-art method [5]. The cornerstone of our approach is a
switch from Eulerian to Lagrangian point of view, in the spirit of the seminal work by Benamou and Brenier [18]:
we regard a dynamic measure as a superposition of moving particles, representing a measure ρ on [0, 1] × Ω
with a measure σ on the space of (weighted) paths. While this representation already appears in the motivating
works of Bredies et. al. [1, 2, 4, 5], it is mostly used in proofs, and the default representation is ρ (dynamic
measures). In contrast, our algorithm is natively designed for problems in a Lagrangian representation, and it
feels natural to introduce it for problems formulated in the space of paths, so as to fully appreciate its generality.

Therefore, we have organised the article so as to address the following questions.

� How to switch from dynamic measures ρ on [0, 1]× Ω to measures on paths σ, and back again.
Since [2, 4, 17], much is already known about how and when it is possible to describe a dynamic measure

with a Lagrangian point of view. Section 2 gathers those results with minor adaptations, modelling this
operation with a linear map Θ: σ 7→ ρ, where ρ is a dynamic measure, and σ is a measure in the space of
paths. The extensions include allowing for signed measures ρ, less smoothness for curves ξ, and identifying
topologies for which Θ is a continuous map.

� Which variational problems in the space of paths we consider. Next, Section 3 sets our framework for
variational problems in the space of measures on paths. Previous works in this context have focused
only on the Benamou–Brenier and Wasserstein–Fisher–Rao (a.k.a. Hellinger–Kantorovich) examples in
the Eulerian setting [1, 4]. By switching to the Lagrangian setting, we are able to investigate a broad
range of examples at the same time. In particular, our first main theoretical contribution is to prove
that minimisers indeed exist, and at least one of them is a sparse measure: it is a finite superposition of
weighted paths. This is similar to results in [1, 4] for the specific examples therein, but much easier to
generalise in the Lagrangian setting where the regularisation term becomes linear. In fact, most of the
difficulty is transferred to the disintegration theorems of Section 2. The biggest remaining challenge is
that the topology in the space of paths AC2

(
[0, 1] ; Ω

)
is less simple than that of [0, 1]× Ω, and handling

the corresponding measure space requires more care. Next, we prove that the minimisers are supported
on “geodesics” of the chosen regulariser. While the geodesic structure was mentioned in [5] specifically for
the Benamou–Brenier example, we prove it for a large class of regularisers. In Section 6, we confirm that
the family of variational problems of Section 3 does indeed include both the Benamou–Brenier example,
as well as the Wasserstein–Fisher–Rao example investigated in [4].

� How to solve variational problems in the space of measures on paths. Numerical work on the Benamou–
Brenier example was recently presented in [5] with a generalised conditional gradient (a.k.a. Frank–Wolfe)
algorithm. The most time consuming step is to compute new extreme points, i.e. curves γ, to add to the
reconstruction. Even though only a small subset of L∞([0, 1] ;R×Ω) is involved, optimising over such a set
is a challenging task, the computation times are hardly compatible with practical applications. We offer
two major algorithmic contributions. The first is the proposal and analysis of a new stochastic variant
of Frank–Wolfe in Section 4, which accounts, e.g., in our specific setting, to adding curves supported on
a random mesh. Whilst being very similar to that used in [5], we prove almost-sure convergence for this
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variant. To address the large complexity of computing new extreme points (i.e. adding curves γ to the
reconstruction), our second algorithmic contribution reformulates this step into a shortest-path problem
on an ordered, weighted, directed, acyclic graph in Section 5, which can be solved very efficiently using
dynamical programming. Such a formulation crucially relies on the Lagrangian formulation studied in the
previous sections.

Finally, in Section 7, we provide numerical experiments which demonstrate the efficiency of the proposed
algorithm on both models: we first compare with the algorithm proposed in [5] on the Benamou–Brenier exam-
ple, showing dramatic speedup, then we present numerical results for the unbalanced Wasserstein–Fisher–Rao
example, for which there is no existing algorithm, to the best of our knowledge.

1.3. Notation

Convex sets and extreme points. Let V be a linear space. For all σ0, σ1 ∈ V , we define the closed line

segment between σ0 and σ1 as [σ0, σ1]
def.
= {λσ0 + (1− λ)σ1 | 0 ≤ λ ≤ 1 }. Similarly, we define the open line

segment ]σ0, σ1[
def.
= [σ0, σ1] \ {σ0, σ1}. A set D ⊆ V is called convex if ]σ0, σ1[ ⊂ D for all σ0, σ1 ∈ D. We say

that σ ∈ D is an extreme point (or atom) of D, and write σ ∈ Ext (D), if there are no points σ0, σ1 ∈ D such
that σ ∈ ]σ0, σ1[. In other words,

∀λ ∈ ]0, 1[ ,∀σ0, σ1 ∈ D, (σ = λσ0 + (1− λ)σ1) =⇒ (σ0 = σ1 = σ) . (1.5)

Furthermore, it is possible to define the notion of face (and elementary face) of a convex set, which extends
the notion of extreme point to higher-dimensional sets. We refer to [19] for more detail.

Measure spaces. For a separable metric space Γ and Banach space X, we define Cb(Γ;X) to be the set of
continuous bounded functions from Γ to X. When X = R, we simply write Cb(Γ). Recall that for any Borel
measure σ on Γ, we can define the non-negative Borel measure |σ| ∈ M+(Γ) by

|σ|(A) def.
= sup

{
n∑

i=1

|σ(Ai)| | n ∈ N, {A1, . . . , An} Borel partition of A

}
(1.6)

for all Borel measurable sets A ⊂ Γ. We denote by M(Γ) the space of signed Borel measures σ with finite

total variation, i.e. ∥σ∥ def.
=
∫
Γ
d|σ| < +∞. The total variation ∥·∥ defines a norm onM(Γ), but it is sometimes

more convenient to use the narrow topology, i.e. the weakest topology on M(Γ) which makes the integration
against continuous bounded functions a continuous linear form. The narrow topology is equivalent to the weak-
* topology on (Cb(Γ))

′, in particular, a sequence {σn}n∈N ⊂ M(Γ) converges to σ∗ ∈ M(Γ) in the narrow

topology (denoted σn ∗
⇀ σ) if

∀ϕ ∈ Cb(Γ), lim
n→+∞

∫
Γ

ϕ dσn =

∫
Γ

ϕ dσ∗. (1.7)

The support of σ ∈M+(Γ) is defined as

supp(σ)
def.
=
(⋃
{U | σ(U) = 0, U is open }

)c
. (1.8)

This is a closed set satisfying σ(supp(σ)) = σ(Γ).

Function domains. In this work we consider two measure domains, the time-space cylinder

[0, 1]× Ω for an open, bounded, convex domain Ω ⊆ Rd, d ≥ 1 (1.9)
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and a closed set Γ of continuous (weighted) curves which are viewed as pairs γ = (h, ξ) where h(t) is the mass
at time t and ξ(t) is the location. A formal definition will be given in Lemma 2.1. In the time-space cylinder
we will denote measures ρ ∈ M([0, 1]× Ω) with test functions ψ ∈ C([0, 1]× Ω), and similarly on the space of
curves σ ∈M(Γ) and ϕ ∈ Cb(Γ).

Narrowly continuous measures. An important subspace ofM([0, 1]× Ω) is the space of narrowly continuous
measures. With a slight abuse of the standard notation, we will say ρ ∈ Cw([0, 1] ;M(Ω)) ⊂ M([0, 1]× Ω) if
there exists a map t 7→ ρt ∈M(Ω) (informally, ρt = ρ(t, ·) is a “time slice” of ρ) such that

∀ψ ∈ C(Ω),

[
t 7→

∫
Ω

ψ(x) dρt(x)

]
∈ C([0, 1]) (1.10)

and

∀ψ ∈ L1
ρ([0, 1]× Ω),

∫
[0,1]×Ω

ψ(t, x) dρ(t, x) =

∫ 1

0

(∫
Ω

ψ(t, x) dρt(x)

)
dt. (1.11)

Given a measure on paths σ ∈M(Γ) such that
∫
Γ
∥h∥∞ dσ(h, ξ) < +∞, one may define the family of measures

(et)♯σ ∈M(Ω), for t ∈ [0, 1], by

∀ψ ∈ C(Ω),

∫
Ω

ψ(x) d[(et)♯σ](x)
def.
=

∫
Γ

h(t)ψ(ξ(t)) dσ(h, ξ). (1.12)

Formally, (et)♯σ is the image measure of σ by the evaluation at time t. That family is narrowly continuous, and as
we explain in Theorem 2.2 below, it is the evaluation (disintegration) of some measure Θ(σ) ∈ Cw([0, 1] ;M(Ω)).

The continuity equation. In the rest of the paper, we use the following distributional definition of the
continuity equation, formally

∂tρ+ div(ρv) = gρ, (1.13)

which expresses mass variation (or mass conservation if g = 0).

Definition 1.1. Let ρ ∈ M([0, 1]× Ω) be a measure. We say that ρ satisfies the continuity equation if there
exists v ∈ L1

|ρ|([0, 1]× Ω;Rd), g ∈ L1
|ρ|([0, 1]× Ω) such that

∀ψ ∈ C1
c(]0, 1[× Ω),

∫
[∂tψ +∇ψ · v + ψg] dρ = 0. (1.14)

2. Preliminary results

As previously mentioned, the main function space of this work is the space of measures on paths M(Γ),
where Γ is a set of continuous weighted paths in Ω, modelling particles with (varying) mass h(t) at location
ξ(t), that is

Γ ⊂ Γ0
def.
=
{
γ = (h, ξ) | h ∈ C([0, 1]), ξ : [0, 1]→ Ω, ξ|{h̸=0} is continuous

}
. (2.1)

For technical reasons we permit curves ξ which may not be continuous at points t where h(t) = 0. Intuitively,
the location ξ(t) is not necessarily meaningful if the particle has no mass and cannot be observed.

In this section, we review the necessary assumptions forM(Γ) to be a sufficiently well-behaved space. Firstly
we require Γ to be a complete separable metric space. We follow the suggestion of [4], Proposition 3.6 where the
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flat metric is used on the space of measures
{
hδξ ∈M+([0, 1]× Ω) | (h, ξ) ∈ Γ, h ≥ 0

}
for a particular Γ ⊂ Γ0.

We use the isometric space (Γ0,dΓ), the properties of which are given by the following lemma.

Lemma 2.1. Define dΓ : Γ0 × Γ0 → [0,+∞[ by

dΓ((h1, ξ1), (h2, ξ2))
def.
= sup

t∈[0,1]

dF ((h1(t), ξ1(t)), (h2(t), ξ2(t))) where (2.2)

dF ((r1, x1), (r2, x2))
def.
=

{
|r1|+ |r2| r1r2 ≤ 0 or |x1 − x2| ≥ 2

|r1 − r2|+min(|r1|, |r2|)|x1 − x2| else,
(2.3)

then (Γ0/∼,dΓ) is a complete separable metric space where

(h1, ξ1) ∼ (h2, ξ2) ⇐⇒ h1 = h2 and ∀t ∈ {h1 ̸= 0}, ξ1(t) = ξ2(t). (2.4)

Convergence of a sequence γn = (hn, ξn) ∈ Γ0 in the metric dΓ can equivalently be stated as:[
γn

dΓ→ (h, ξ)
]
⇐⇒

[
hn → h in C([0, 1]) and for all ε > 0, ξn → ξ in C({|h| ≥ ε})

]
(2.5)

Furthermore, for any ψ ∈ C([0, 1]× Ω), we have Ψ ∈ C([0, 1]× Γ0) where

∀t ∈ [0, 1] , (h, ξ) ∈ Γ0, Ψ(t, h, ξ)
def.
= h(t)ψ(t, ξ(t)). (2.6)

The proof is elementary but given in Appendix A for completeness as no specific reference could be found.
A key analytical tool in related prior works (cf. [1, 2, 4, 5]) is a mapping between measures ρ ∈M([0, 1]× Ω)

which satisfy the continuity equation, and measures on (weighted) paths σ ∈ M(Γ0), making some structures
become more apparent. We will now recap and expand on those previous results. The first theorem collects
results from [4, 17] and provides minor extensions for the scope of the current work. In particular, we remove
the necessity for h ≥ 0 or elements (h, ξ) to satisfy further smoothness conditions.

Theorem 2.2. Let σ ∈M(Γ0). If
∫
Γ0
∥h∥1 d|σ|(h, ξ) < +∞, then there is a unique finite Borel measure Θ(σ) ∈

M([0, 1]× Ω) such that

∀ψ ∈ C([0, 1]× Ω),

∫
[0,1]×Ω

ψ(t, x) dΘ(σ)(t, x) =

∫
Γ0

(∫ 1

0

h(t)ψ(t, ξ(t)) dt

)
dσ(h, ξ). (2.7)

Moreover,

1. The mapping Θ:
{
σ ∈M(Γ0) |

∫
Γ0
∥h∥1 d|σ| < +∞

}
→M([0, 1]× Ω) is linear.

2. Equality (2.7) holds for all ψ ∈ L1
|Θ(σ)|([0, 1]× Ω).

3. If
∫
Γ0
∥h∥∞ d|σ| < +∞, then Θ(σ) ∈ Cw([0, 1] ;M(Ω)).

4. Suppose h, ξ ∈ AC2([0, 1]) for σ-a.e. (h, ξ) ∈ Γ0. If there exist Borel measurable functions v : [0, 1]× Ω→
Rd and g : [0, 1]× Ω→ R such that

h′(t) = g(t, ξ(t))h(t) for σ-a.e. (h, ξ) and a.e. t ∈ ]0, 1[, (2.8)

ξ′(t) = v(t, ξ(t)) for σ-a.e. (h, ξ) and a.e. t such that h(t) ̸= 0, (2.9)

and

∫
Γ0

∫ 1

0

(1 + |v(t, ξ(t))|+ |g(t, ξ(t))|) |h(t)| dtd|σ|(h, ξ) < +∞, (2.10)
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then
∫
Γ0
∥h∥∞ d|σ| < +∞ and Θ(σ) satisfies the continuity equation (1.14).

Conversely, given ρ ∈M([0, 1]× Ω), if ρ ≥ 0 satisfies the continuity equation (1.14) and∫
[0,1]×Ω

(1 + |v(t, x)|2 + |g(t, x)|2) dρ(t, x) < +∞, (2.11)

then ρ = Θ(σ) for some σ ∈M+(Γ0) such that (2.8)–(2.10) hold and
∫
Γ0
∥h∥∞ dσ < +∞.

These results are mainly proved in [4, 17], we extend them to signed measures σ in the appendix (Thm. A.2).
The results achieve two key relations: characterising when the mapping from M([0, 1]× Ω) to M(Γ0) is well-
defined, and when Θ(σ) ∈ Cw([0, 1] ;M(Ω)). Weak continuity is of practical importance in applications. Without
it, for example if the data were a video, we could not consider one frame to correspond to a single instance
in time. Unfortunately we have seen that not all σ ∈ M(Γ0) satisfy this smoothness requirement. However, in
the next lemma we will confirm that, if Γ ⊂ Γ0 is sufficiently “small”, then Θ(σ) ∈ Cw([0, 1] ;M(Ω)) for all
σ ∈M(Γ) due to the implicit assumption that ∥σ∥ < +∞. A related property is the continuity of the operator
Θ which we also confirm.

Lemma 2.3. For each p ∈ [1,+∞] define the set

Γp
def.
=
{
γ = (h, ξ) ∈ Γ0 | ∥h∥p ≤ 1

}
, (2.12)

then {
Θ(σ) | σ ∈M(Γ0),

∫
Γ0

∥h∥p d|σ| < +∞
}

= {Θ(σ̂) | σ̂ ∈M(Γp) } (2.13)

and Θ:M(Γp)→M([0, 1]× Ω) is narrowly continuous.
Furthermore, if p = +∞, then ∀t ∈ [0, 1], (et)♯ :M(Γ∞)→M(Ω) is also narrowly continuous.

In particular, sequentially we have that, for any sequence σn ∗
⇀ σ narrowly inM(Γp):

for all p ∈ [1,+∞] , Θ(σn)
∗
⇀ Θ(σ) narrowly inM([0, 1]× Ω), (2.14)

if p = +∞, ∀t ∈ [0, 1] , (et)♯σ
n ∗
⇀ (et)♯σ narrowly inM(Ω). (2.15)

The proof of this lemma is found in Lemma A.4, relying heavily on the definition of continuity given by [31].

Remark 2.4. Note that the definition of Γp is consistent with the relation ∼, so (Γp/∼,dΓ) is also a metric
space. In the rest of the paper, we require that Γ is a closed subset of Γ∞/∼ in order for it to be a complete
separable metric space with Θ:M(Γ)→ Cw([0, 1] ;M(Ω)).

Summarising the results of this section, in the remainder of this work we want to use a domain D ⊂M+(Γ0)
such that Θ|D has nice properties with respect to the space Cw([0, 1] ;M(Ω)). The combination of Theorem 2.2

and Lemma 2.3 show that it is sufficient to consider either D ⊂
{
σ ∈M+(Γ0) |

∫
Γ0
∥h∥∞ dσ <∞

}
or simply

D ⊂M+(Γ∞). Analytically we will always consider D ⊂M+(Γ∞) as it is more concise, although numerically
either convention is equivalent. The generality of allowing any closed subset Γ ⊂ Γ∞ allows us to treat different
applications with the same analysis, for example:

Γ ⊂ { (h, ξ) ∈ Γ∞ | h ≡ 1 }: This enforces balanced transport (e.g. the Benamou–Brenier example [1]). If σ ∈
M+(Γ), then Θ(σ) ≥ 0 and mass is preserved on paths (e.g. t 7→

∫
Ω
dΘ(σ)t is constant).
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Γ ⊂ { (h, ξ) ∈ Γ∞ | h ∈ C([0,1] ; [0,1]) }: This allows unbalanced transport of non-negative mass (e.g. the
Wasserstein–Fisher–Rao example [4]). We still have Θ(σ) ≥ 0, but t 7→

∫
Ω
dΘ(σ)t is not (necessarily)

constant. In particular, mass can be created or destroyed (continuously) at any time.
Γ ⊂ Γ∞: In the general case Θ(σ) is a general signed measure, even when σ ≥ 0. In words, σ can give positive

weight to curves with negative mass. The only constraint is that Θ(σ) ∈ Cw([0, 1] ;M(Ω)) is continuous
in time.

3. Core variational problem

In this work we focus on inverse problems with dynamical but discrete-time structure. In particular, there
exist observation times tj ∈ [0, 1], j = 0, . . . , T and narrowly continuous linear operators Aj :M(Ω)→ Rm. The

operators Aj are described by aji ∈ C(Ω) such that

∀ρ ∈M(Ω), i = 1, . . . ,m, j = 0, . . . , T, (Ajρ)i
def.
=

∫
Ω

aji (x) dρ(x). (3.1)

As stated at the end of Section 2, we work with a closed set of curves

Γ ⊂ Γ∞
def.
=
{
γ = (h, ξ) | h ∈ C([0, 1] ; [−1, 1]), ξ : [0, 1]→ Ω, ξ|{h ̸=0} is continuous

}
, (3.2)

so that ∀t ∈ [0, 1], the map (et)♯ :M(Γ) →M(Ω) is narrowly continuous. We therefore choose a data fidelity
F:M(Γ)→ [0,+∞[ of the form

for some convex Fj ∈ C2(Rm; [0,+∞[), F(σ)
def.
=

T∑
j=0

Fj(Aj

[
(etj )♯σ

]
). (3.3)

For lower semi-continuous w,φ : Γ→ [0,+∞] define W:M+(Γ)→ ]−∞,+∞], D ⊂M+(Γ) by

∀σ ∈ D, W(σ)
def.
=

∫
Γ

w(γ) dσ(γ) where D
def.
=

{
σ ∈M(Γ) | σ ≥ 0,

∫
Γ

φ(γ) dσ ≤ 1

}
. (3.4)

We consider minimising the energy E: D → ]−∞,+∞] defined by

∀σ ∈ D, E(σ)
def.
= F(σ) +W(σ). (3.5)

The motivation behind this in an Inverse Problems setting is that F represents a smooth data fidelity with
linear observations recorded at times tj , and the combination of W and D represent a regularisation of the
problem. The choice of φ (hence of D) is often made to ensure the well-posedness of the model, but we are
mostly interested in cases where the constraint

∫
Γ
φ(γ) dσ ≤ 1 is not active, so that the choice of φ has no

impact on the set of minimisers.

3.1. Existence of sparse minimisers

Any choice of energy in this framework leads to a sparse reconstruction in the space of curves.

Theorem 3.1. If Aj are given by (3.1) and φ,w : Γ → [0,+∞] are lower semi-continuous, then F and E
are lower semi-continuous. Furthermore, recall F is bounded below. If w or φ have compact sub-levelsets, and
infγ∈Γ φ(γ) > 0, then E |D has compact sub-levelsets. There exists a choice of minimiser σ∗ ∈ argminσ∈D E(σ)
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such that

for some ai ≥ 0, γi ∈ Γ, σ∗ =

s∑
i=1

aiδγi (3.6)

for some s ≤ m(T + 1) + 1. If in addition
∫
Γ
φdσ∗ < 1, then s ≤ m(T + 1).

The proof is given in Appendix B. Theorem 3.1 is reminiscent of the main result of [1] in the particular case
of the Benamou–Brenier energy, but our setting is easier as we start from the formulation on paths. All the
difficulty is in the disintegration results of Theorem 2.2.

The smaller value of s will often be valid in practice, for example any choice φ(γ) ≤ w(γ)
E(0)+1 is always sufficient.

Remark 3.2. The Benamou–Brenier example from Section 1.1 can be formulated in this setting with

Γ =
{
(h, ξ) ∈ Γ0 | h ≡ 1, ξ ∈ AC2([0, 1] ; Ω)

}
, Fj(Ajρ) =

1

2
∥Ajρ− bj∥22, and w(h, ξ) =

∫ 1

0

α+
β

2
|ξ′(t)|2 dt.

(3.7)
More details are given in Section 6 where the Benamou–Brenier example is the limiting case δ → +∞ in (6.1).

The choice of φ in [5] was equivalent to φ(γ) = w(γ)
E(0) , whereas we suggest the default of φ(γ) = α

E(0) which is

easier to analyse. Both functions are strictly positive but sufficiently small to ensure
∫
Γ
φdσ∗ < 1.

3.2. Discrete-time formulation

Recall that Γ ⊂ L∞([0, 1] ; [−1, 1]× Ω) is a space of continuous-time curves, denote the discrete-time space

Γ̃
def.
= { (γ(t0), . . . , γ(tT )) | γ ∈ Γ } ⊂ ([−1, 1]× Ω)T+1. (3.8)

Until now we have formulated E as a function of measures σ ∈ M(Γ), but in this subsection we show that it

can be thought of equivalently as a function Ẽ of σ̃ ∈ M(Γ̃). For the remainder of this section, without loss of
generality, we assume there is a minimiser

σ∗ ∈ argmin

{
F(σ) +

∫
Γ

w dσ | σ ∈M+(Γ)

}
(3.9)

which is also a minimiser of the energy considered in (3.5), i.e.
∫
φdσ∗ < 1. If that is not the case, one can use

a Lagrange multiplier to form a modified energy with w ← w + λφ for some λ ≥ 0. Our key observation is that
σ∗ must be supported on “geodesics” of w (or w + λφ) which interpolate the discrete-time curves.

Lemma 3.3. Suppose w : Γ → [0,+∞] is lower semi-continuous with compact sub-levelsets. Then, for all

minimisers σ∗ in (3.9), γ ∈ G(γ(t0), . . . , γ(tT )) for a.e. γ ∈ supp(σ∗) where G : Γ̃ ⇒ Γ is given by

G(γ̃)
def.
= argmin

γ∈Γ
{w(γ) | ∀j = 0, . . . , T, γ(tj) = γ̃j , w(γ) < +∞} . (3.10)

The first part of the proof uses a measurable choice theorem from [20].

Lemma 3.4. There exists a Borel function g : Γ→ Γ such that g(γ) ∈ G(γ(t0), . . . , γ(tT )) for all γ ∈ Γ.

Proof of Lemma 3.4. We apply [20], Theorem 1 with U = ([−1, 1]×Ω)T+1, V = Γ which is a complete separable
metric space by Theorem 2.1, and a set

E
def.
=
{
(γ̃, γ) ∈ ([−1, 1]× Ω)T+1 × Γ | γ ∈ G(γ̃)

}
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which is Borel. For all γ̃ ∈ ([−1, 1]× Ω)T+1, the section Eγ̃ = { γ ∈ Γ | (γ̃, γ) ∈ E } = G(γ) is compact (as the
intersection of a closed set and a sub-levelset of w) hence σ-compact. As a result, [20], Theorem 1 ensures that
there exists a Borel selection of E, which is the desired function g.

We can now return to the main result of this subsection.

Proof of Lemma 3.3. Let g be any function given by Lemma 3.4. The proof will show the contradiction that
E(g♯σ

∗) < E(σ∗) if σ∗ is not strictly supported on the image of G. First we confirm that F(g♯σ
∗) = F(σ∗). By

(3.1), for all i = 1, . . . ,m, j = 0, . . . , T

(Aj(etj )♯(g♯)σ
∗) =

∫
Ω

aji (x) d(etj )♯(g♯)σ
∗ =

∫
Γ

h(tj)a
j
i (ξ(tj)) dσ

∗(γ) where (h, ξ) = g(γ) (3.11)

=

∫
Γ

h(tj)a
j
i (ξ(tj)) dσ

∗(γ) where (h, ξ) = γ (3.12)

= (Aj(etj )♯σ
∗). (3.13)

Therefore each Fj(Aj(etj )♯(g♯)σ
∗) = Fj(Aj(etj )♯σ

∗) as required. On the other hand, note w(g(γ)) ≤ w(γ)
always, suppose there exist ε, δ > 0 such that σ∗({ γ | w(g(γ)) ≤ w(γ)− δ }) = ε. In which case

W(g♯σ
∗) =

∫
w(g(γ))≤w(γ)−δ

w(g(γ)) dσ∗ +

∫
w(g(γ))>w(γ)−δ

w(g(γ)) dσ∗ ≤W(σ∗)− δε. (3.14)

Combining these equations, that would imply that E(g♯σ
∗) < E(σ∗), contradicting the optimality of σ∗. We

conclude that σ∗({ γ | w(g(γ)) < w(γ) }) = 0 as required.

This shows we can perform computations in the discrete-time space Γ̃ and later lift curves back to Γ using
the geodesics G. This holds both pointwise between Γ̃↔ Γ and with measuresM(Γ̃)↔M(Γ).

Remark 3.5. For the Benamou–Brenier example, w is given in Remark 3.2. If Ω is convex, then G(γ̃) = {γ}
where γ is the unique piecewise linear interpolant of the points (tj , γ̃j), as commented in [5], Remark 4.10. Also,

∀γ̃ = (h0, ξ0, . . . , hT , ξT ) ∈ Γ̃, w(G(γ̃)) = α+
β

2

T∑
j=1

|ξj − ξj−1|2

tj − tj−1
.

We therefore know that all minimisers σ∗ are supported on the set

Γ =
{
(h, ξ) ∈ C([0, 1] ; {1} × Ω) | ξ|]tj−1,tj [ is linear for each j = 1, . . . , T

}
. (3.15)

Restricting to this domain of curves is much more computationally convenient without losing analytical accuracy.

4. Frank–Wolfe convergence

While Theorem 3.1 guarantees an analytical structure of minimisers, we must now choose a reconstruction
algorithm which is capable of taking advantage of this structure. As previously stated, we will use a variant of
the Frank–Wolfe algorithm to take advantage of the sparse structure of reconstructions.

4.1. The Frank–Wolfe algorithm

In order to derive a variant of the Frank–Wolfe algorithm with inexact or stochastic steps, we first need
to highlight a few properties which, to the best of our knowledge, have not been stated in the literature. We
refer the reader to [12] for a thorough introduction to the Frank–Wolfe algorithm. For the sake of generality
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and future reference, we work in an abstract setting, assuming that we want to minimize a convex function
f : D → R, where D is a nonempty convex set of a Hausdorff locally convex vector space X .

Standard results in convex analysis [21], Chapter 7 ensure that for all x ∈ D and all h ∈ (D − x), the
directional derivative

f ′(x;h)
def.
= lim

t→0+

f(x+ th)− f(x)
t

exists in R ∪ {−∞} and is a convex function of h. The main steps of the Frank–Wolfe algorithm are given in
Algorithm 1. The standard choice [22, 23] uses the Linear Minimisation Oracle defined as

sn+1 = LMO(xn) ∈ argmin
s∈D

(f(xn) + f ′(xn; s− xn)) = argmin
s∈D

f ′(xn; s− xn). (4.1)

In the large majority of cases the existence of the LMO is implied by f being Gâteaux-differentiable and D
compact. The analysis in [12] stresses that Algorithm 1 with the linear minimisation oracle (4.1) yields a
minimising sequence, i.e. limn→+∞ f(xn) = infD f , provided the curvature of f is finite,

Cf
def.
= sup

x∈D,x̃∈D
λ∈]0,1[

f(x+ λ(x̃− x))− f(x)− λf ′(x; x̃− x)
λ2

< +∞. (4.2)

In situations where the LMO is not easy to compute, we can instead choose any sn+1 ∈ D and measure its
suitability using the primal-dual gap

∀x, s ∈ D, gap(x; s)
def.
= f ′(x; s− x)− inf

s̃∈D
f ′(x; s̃− x). (4.3)

In general gap ≥ 0 and gap(x; LMO(x)) = 0, suppose gap(xn; sn+1) ≤ εn for some controlled error εn ≥ 0. It has
previously been shown in [12], Theorem 1 that xn is a minimising sequence whenever εn = O(1/n).

In our context, the guarantee εn = O(1/n) would still be prohibitive for large n. The linear minimisation
oracle consists of finding a curve γ ∈ Γ which minimises a certain energy, see Section 4.3 below. Instead, we
propose to use random discretisations of the domain so that implicitly lim infn→+∞ εn = 0, without a guaranteed
rate. In comparison to the result of [12], the relaxed assumption on εn is accounted for by the linesearch in
Line 4 which implicitly selects large/small steps when εn is correspondingly large/small, i.e. when we have a
lucky/unlucky draw. Our only assumptions on f are that it is Gâteaux differentiable with bounded curvature
(Cf < +∞) and gap(x; s) < +∞ for all x, s ∈ D. Then, in the case that lim infn→+∞ εn = 0 (possibly almost
surely), we show that xn is a minimising sequence (almost surely).

One final aspect of our algorithm is the freedom which is granted in Line 5: one may choose any point which
has lower energy than the one provided by the linesearch. This is now a standard addition to the Frank–Wolfe
algorithm to enable much faster practical convergence, see for instance [7, 10, 11]. We exploit this in Section 7.

Algorithm 1 Abstract Frank–Wolfe algorithm

1: Choose x0 ∈ D, n← 0,
2: repeat
3: Choose sn+1 ∈ D ▷ oracle
4: λn ← argminλ∈[0,1] f((1− λ)xn + λsn+1) ▷ exact linesearch

5: Choose xn+1 such that f(xn+1) ≤ f((1− λn)xn + λns
n+1) ▷ improvement over the linesearch

6: n← n+ 1
7: until converged
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To ease the analysis of the randomised algorithm, we first analyse the deterministic version.

Proposition 4.1. Let f , D be as above, and assume that Cf < +∞ (see (4.2)). If

lim inf
n→+∞

gap(xn; sn+1) = 0, i.e. lim inf
n→+∞

(
f ′(xn; sn+1 − xn)−min

D
f ′(xn; · − xn)

)
= 0, (4.4)

then Algorithm 1 yields a minimizing sequence.

Proof. First observe from Lines 4 and 5, and by definition of Cf that

∀λ ∈ [0, 1] , f(xn+1) ≤ f((1− λ)xn + λsn+1) ≤ f(xn) + λf ′(xn; sn+1 − xn) + Cfλ
2 (4.5)

hence f(xn+1)− f(xn)− λmin
D

(f ′(xn; · − xn)) ≤ λgap(xn; sn+1) + Cfλ
2. (4.6)

Note from the λ = 0 case we have f(xn) ≥ f(xn+1) for each n, therefore it is clear that (f(xn))n∈N converges
to some limit ℓ ≥ infx∈D f(x) ≥ −∞. We are required to show that ℓ = infx∈D f(x).

The case ℓ = −∞ is trivial, otherwise we also have limn→+∞ f(xn+1)− f(xn) = 0. Now, taking the lim inf
on both sides of (4.6) gives

lim inf
n→+∞

−λmin
D

(f ′(xn; · − xn)) ≤ Cfλ
2. (4.7)

Dividing by λ→ 0+, we obtain lim supn→+∞ minD (f ′(xn; · − xn)) ≥ 0. On the other hand, by convexity,

∀x ∈ D, f(x) ≥ lim sup
n→+∞

[f(xn) + f ′(xn;x− xn)] ≥ ℓ+ lim sup
n→+∞

min
D

(f ′(xn; · − xn)) ≥ ℓ. (4.8)

Since x ∈ D is arbitrary, we deduce that ℓ = limn→∞ f(xn) = infD f , as required.

4.2. Stochastic variant

Now, we may study the behaviour of the algorithm in a stochastic framework. We build a random process
(Xn, Sn)n∈N∗ in D ×D, by considering a random initialisation X0 in D, and applying Algorithm 1 by picking
a random point Sn+1 in D on Line 3. Note that, at each step, Sn+1 may depend on {Xk}nk=0 and {Sk}nk=1.

Typically, as in Section 4.3, we consider a setting where solving (4.1) exactly is too costly, and where one draws
a random grid on which to perform the optimisation. The variable Sn+1 is then a minimizer of f ′(Xn; · −Xn)
among a finite, small, subset of D.

Let (Sn)n∈N be the filtration generated by that random process, i.e. Sn is the σ-algebra generated by
{X0} ∪ {Xk}1≤k≤n ∪ {Sk}1≤k≤n.

Proposition 4.2. Let (Xn)n∈N and (Sn)n∈N∗ as described above, and let (Sn)n∈N be the filtration they generate.
If for all ε > 0, all n ∈ N, there is some deterministic pn(ε) > 0 such that

P(gap(Xn; Sn+1) < ε|Sn) ≥ pn(ε) almost surely,

and
∑∞

n=1 pn(ε) = +∞, then (f(Xn))n∈N is a minimizing sequence almost surely.

The above proposition is a consequence of the following lemma, setting Gn+1 = gap(Xn; Sn+1).

Lemma 4.3. Let (Sn)n∈N be a filtration, and (Gn)n∈N a family of random variables such that for each n,m ∈ N,
n ≤ m, Gn is Sm-measurable. If for all ε > 0, n ∈ N, there is some deterministic pn(ε) ≥ 0 such that

P(Gn+1 < ε|Sn) ≥ pn(ε) almost surely (4.9)



DYNAMICAL PROGRAMMING FOR OFF-THE-GRID DYNAMIC INVERSE PROBLEMS 13

and
∑∞

n=0 pn(ε) = +∞, then lim infn→∞Gn ≤ 0 almost surely.

Proof. Fix ε > 0. For all N,M ∈ N with M ≥ N ,

P

 ⋂
n≥N

{Gn ≥ ε}

 ≤ P

(
M+1⋂
n=N

{Gn ≥ ε}

)
= E

[
1{GM+1>ε}

(
M∏

n=N

1{Gn≥ε}

)]
(4.10)

≤ E

[
E
(
1{GM+1≥ε}|SM

) M∏
n=N

1{Gn≥ε}

]
(4.11)

≤ (1− pM+1(ε))P

 ⋂
n≥N

{Gn ≥ ε}

 (4.12)

≤
M+1∏
n=N

(1− pn(ε)) (4.13)

≤ exp

(
−

M+1∑
n=N

pn(ε)

)
. (4.14)

Letting M → +∞, we get P
(⋂

n≥N{Gn ≥ ε}
)
= 0, that is P

(⋃
n≥N{Gn < ε}

)
= 1. As a result,

P
(
lim inf
n→∞

Gn ≤ 0
)
= P

 ⋂
k∈N∗

⋂
N∈N

⋃
n≥N

{
Gn <

1

k

} = lim
k→+∞

lim
N→+∞

P

 ⋃
n≥N

{
Gn <

1

k

} = 1.

To summarise, the main convergence requirement of Proposition 4.1 is to guarantee lim infn→+∞Gn ≤ 0.
Our solution to this is to use random discretisations so that the stochastic variant of Algorithm 1 still converges
asymptotically (almost surely), but the complexity of each individual iteration remains low. A similar idea in
the setting of stochastic Frank–Wolfe was pursued in [24] where their proof relies on what is called Assumption
P.8, in our notation this requires the sum

∑∞
n=0 λnG

n < +∞ to be finite almost surely, where λn is chosen
deterministically. To apply this algorithm in our setting we would therefore need to bound the magnitude of Gn

relative to the a priori choice of λn. With Proposition 4.2, we overcome this limitation with the linesearch for
λ, so the only remaining requirement is to guarantee a uniform probability of achieving a good search direction.

4.3. Back to the dynamic inverse problem

We consider again the setting of Section 3. The function E is convex on D, and we note that, for each σ ∈ D,
its directional derivative is given by

∀ν ∈ D, E′(σ; ν − σ) =
∫
Γ

(
F′(σ)(γ) +W′(σ)(γ)

)
d(ν − σ)(γ),

with W′(σ) = [γ 7→ w(γ)] and

F′(σ) =

(h, ξ) 7→ T∑
j=0

h(tj)ηj(ξ(tj))

 ∈ Cb(Γ), where ηj
def.
= A∗

j∇Fj(Aj(etj )♯σ).
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In particular, note that we can write E′(σ;µ− σ) =
∫
Γ
E′(σ) d[µ− σ] with E′(σ) : Γ→ R. This structure enables

us to prove that E satisfies the major requirement of Section 4, that infµ∈D E′(σ;µ− σ) > −∞ for all σ ∈ D.
To do this, we show that the infimum is always achieved by an extreme point of D.

Lemma 4.4. Suppose φ,w : Γ→ [0,+∞] are lower semi-continuous. If infγ∈Γ φ(γ) > 0 and either φ or w have
compact sub-levelsets, then E′(σ; · − σ) is lower semi-continuous and coercive on D. Moreover it has minimiser
of the form

LMO(σ) ∈ {0} ∪
{
φ(γ∗)−1δγ∗ | γ∗ ∈ argmin

γ∈Γ

η(γ) + w(γ)

φ(γ)

}
. (4.15)

where η(h, ξ)
def.
=
∑T

j=0 h(tj)ηj(ξ(tj)) ∈ Cb(Γ).

Proof. Recall the definition of LMO,

LMO(σ) ∈ argmin
σ̃∈D

Ẽ(σ̃) where Ẽ(σ̃)
def.
=

∫
Γ

(η + w) dσ̃. (4.16)

The properties of D come from Lemma B.5, in particular D is convex, closed and bounded, so inf σ̃∈D

∫
Γ
η dσ̃ >

−∞ and Ẽ is lower semi-continuous (Lem. B.1). It is therefore well-posed to consider minimisers of Ẽ. We show
that there is a choice LMO(σ) = σ∗ ∈ Ext (D).

Case φ is coercive: If φ has compact sub-levelsets, then D is compact by Lemma B.5. Bauer’s principle
therefore states that there exists a point

σ∗ ∈ Ext (D) such that Ẽ(σ∗) = inf
σ̃∈D

Ẽ(σ̃). (4.17)

Else: Otherwise, w has compact sub-levelsets, so the sub-levelset

U
def.
=
{
σ̃ ∈ D | Ẽ(σ̃) ≤ 1

}
(4.18)

is compact by Theorem B.7, convex, and non-empty because 0 ∈ D, Ẽ(0) = 0. Application of Bauer’s
principle now gives a minimizer σ∗ ∈ Ext (U). To complete the proof we will confirm σ∗ ∈ Ext (D).

Suppose for contradiction that there exists σ0, σ1 ∈ D \ {σ∗} with σ∗ ∈ ]σ0, σ1[. Since the restriction

of Ẽ to ]σ0, σ1[ ⊂ D is linear and reaches its minimum at σ∗, it is constant on ]σ0, σ1[. Hence ]σ0, σ1[ ⊂ U ,
which contradicts σ∗ ∈ Ext (U). Therefore σ∗ ∈ Ext (D).

In both cases we see there is a choice LMO(σ) = σ∗ ∈ Ext (D). Finally, by Lemma B.5 we have

Ext (D) = {0} ∪
{
φ(γ)−1δγ | φ(γ) < +∞

}
, (4.19)

so we deduce (4.15) as required.

This lemma is also useful for applying the stochastic Frank–Wolfe algorithm, Lemma 4.3. For each n ∈ N, let
zn ∼ Z be an independent random discretisation of the domain Γ̃ = ([−1, 1] × Ω)T+1 (following the discrete-

time formulation in Sect. 3.2). Continuing with the notation Ẽ = E′(σn−1) from (4.16), we will use the discrete
minimiser denoted

µn = LMO(σn−1, zn) ∈ {0} ∪
{
φ(γ∗d)

−1δγ∗
d
| γ∗d ∈ argmin

γ∈zn
Ẽ
(
φ(γ)−1δγ

)}
. (4.20)
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The remaining requirements for applying both Frank–Wolfe variants simplify greatly in the Benamou–Brenier

example where φ > 0 is a constant, curves have constant mass, and Ω = ]0, 1[
d
(i.e. zn ⊂ [0, 1]

d(T+1)
). An

immediate consequence of this is uniform boundedness, as
∫
Γ
dσ =

∑T
j=0

∥∥(etj )♯σ∥∥ ≤ φ−1 for all σ ∈ D. Because

E is quadratic and Aj bounded (see (3.1), (Ajρ)i =
∫
Ω
aji dρ), the curvature bound follows immediately:

CE = sup
σ,σ′∈D

T∑
j=0

∥∥Aj(etj )♯[σ − σ′]
∥∥2
2
≤

 sup
σ,σ′∈D

T∑
j=0

∥Aj∥
∥∥(etj )♯[σ − σ′]

∥∥2

≤ φ−2 max
i,j

∥∥∥aji∥∥∥∞ < +∞. (4.21)

Finally we must show that gap(σn−1;µn) is uniformly small, independently of σn−1. Ignoring the σ∗ = 0 case,
this quantity can be written

gap(σn−1;µn) =

∫
Γ

Ẽ d[µn − LMO(σn−1)] ≤ φ−1 min
γ∗
d∈zn

max
γ∗∈Γ

[Ẽ(γ∗d)− Ẽ(γ∗)] (4.22)

where, from (3.7) and (3.15), for all ξ ∈ Ω
T+1

we have

Ẽ(1, ξ) =

 m∑
i=1

T∑
j=0

(∫
Ω

aji (x) d(etj )♯σ
n−1(x)− bj

)⊤

aji (ξj)

+ α+
β

2

T∑
j=1

|ξj − ξj−1|2

tj − tj−1
(4.23)

for some α, β > 0. If moreover Aj are Lipschitz, then Ẽ is also uniformly Lipschitz independently of σn−1.
Combining this uniform Lipschitz property with, for example, uniformly sampled discrete grids zn guarantees
the uniform bound for Lemma 4.3.

4.4. Choice of constraint

In this section, we will briefly discuss the main difference between our formulation of the Benamou–Brenier
example and that implemented in [5]. Although the construction in [5] looks very different, it can also be seen
as Frank–Wolfe/Generalised Conditional Gradient approach to minimise the same function E (this equivalence
is confirmed in Sect. 6). The parallel result to Lemma 4.15 is [5], Proposition 3.6 which shows that they are also
incrementally adding new curves ξ to the support of the reconstruction σ each iteration. Both implementations
actually use a stochastic variant of Frank–Wolfe, but we will discuss the classical version for simplicity.

Recall from Remark 3.2, that the un-constrained energy is

∀σ ∈M+(Γ), E(σ) =
1

2

T∑
j=0

∥∥Aj(etj )♯σ − bj
∥∥2
2
+

∫
Γ

w dσ (4.24)

where w(ξ) = α+ β
2

∫ 1

0
|ξ′(t)|2 dt for all ξ ∈ Γ. At iteration n, let η(ξ)

def.
=
∑m

i=1

∑T
j=0

(
Aj(etj )♯σ

n − bj
)
i
aji (ξ(tj))

denote the linearisation of the fidelity term where operators Aj are represented by kernels aji ∈ Cb(Ω). The
standard Frank–Wolfe procedure consists in iteratively minimising the function

min
σ∈D

∫
Γ

[η(ξ) + w(ξ)] dσ. (4.25)
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on a constraint set D ⊂M+(Γ) to yield descent directions. Different sets D ⊃ argminσ∈M+(Γ) E(σ) can change
the minimisers of (4.25) without necessarily changing the original problem (4.24). A first choice is to consider

D1
def.
=

{
σ ∈M+(Γ) |

∫
Γ

w dσ ≤ E(0)

}
, (4.26)

which does contain the minimisers of (4.24) since they must satisfy
∫
Γ
w dσ ≤ E(σ) ≤ E(0). By Lemma B.5, the

set of extreme points of D1 is {0} ∪
{

E(0)
w(ξ)δξ | ξ ∈ Γ

}
, which yields the descent direction

ξn+1 ∈ argmin
ξ∈Γ

η(ξ) + w(ξ)

w(ξ)
= argmin

ξ∈Γ

η(ξ)

w(ξ)
. (4.27)

That is precisely the descent direction used in [5], (4.30). On the other hand, we propose to use

D2
def.
=

{
σ ∈M+(Γ) |

∫
Γ

α dσ ≤ E(0)

}
, (4.28)

which also contains the minimisers of (4.24), since they must satisfy
∫
Γ
α dσ ≤

∫
Γ
w dσ ≤ E(σ) ≤ E(0). Applying

Lemma B.5, we see that the set of extreme points of D2 is {0} ∪
{

E(0)
α δξ | ξ ∈ Γ

}
, which yields

ξn+1 ∈ argmin
ξ∈Γ

η(ξ) + w(ξ)

1
= argmin

ξ∈Γ
η(ξ) + w(ξ). (4.29)

We found (4.29) more convenient than (4.27) as it is amenable to dynamic programming techniques (see Sect. 5).
The whole minimisation algorithm is summarised in Algorithm 2.

Remark 4.5. In the classical Frank–Wolfe algorithm D must be compact. In measure spaces, compactness is
equivalent to boundedness and tightness (Prokhorov’s theorem). In both cases, boundedness comes from α > 0,
and tightness comes from the fact that w has compact sub-levelsets. The set D1 is compact by Lemma B.3. On
the other hand, D2 is only bounded, but sub-levelsets of (4.25) are still compact, as argued in Lemma 4.4.

Algorithm 2 Frank–Wolfe algorithm for the Benamou–Brenier example

1: Choose σ0 = 0, n← 0
2: repeat
3: Compute ξn+1 according to (4.27) or (4.29) ▷ Linear oracle step
4: Choose µn+1 ∝ δξn+1 such that µn+1 ∈ Ext (D) ▷ Choice of scaling
5: σn+1 ← (1− λn)σn + λnµ

n+1 ▷ Some stepsize λn ∈ [0, 1]
6: n← n+ 1
7: until converged

5. Dynamical programming method

Throughout Section 4 we have shown that we can find a minimising sequence to E from Section 3 by
repeatedly evaluating a simplified linear oracle. In particular, we compute the minimiser from Lemma 4.4, but
over a discretised domain. In Section 3.2 we motivated discretising in time to Γ̃ = ([−1, 1]×Ω)T+1 without loss of

precision, now we also discretise in space using the domain Λ
def.
=
∏T

j=0 Λj for some discrete sets Λj ⊂ [−1, 1]×Ω

(“grids” in the mass-location space). Whilst Λ is much smaller than Γ̃, naive computation time for γ∗ still scales
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exponentially in T . We propose to compute this discrete minimiser efficiently using dynamical programming,
for which we require two final simplifications:

φ(γ) = φ0 for some constant φ0 > 0, and (A1)

w(γ) =

T∑
j=1

stepj(γ(tj−1), γ(tj)) for some stepj : ([−1, 1]× Ω)2 → R. (A2)

Remark 5.1. For the Benamou–Brenier example, these assumptions are satisfied by the choice

φ0 =
α

E(0)
, stepj(γ(tj−1), γ(tj)) = α(tj − tj−1) +

β

2

|ξ(tj)− ξ(tj−1)|2

tj − tj−1
(5.1)

for all γ = (h, ξ) ∈ Γ. We will see later in Section 6.2 that these assumptions are also satisfied in the Wasserstein–
Fisher–Rao example. In particular, the step function of the Benamou–Brenier penalty is Wasserstein optimal
transport, and the step function of the dynamic Wasserstein–Fisher–Rao penalty is the static Wasserstein–
Fisher–Rao penalty.

Under assumptions (A1) and (A2), the discretised optimisation problem (4.15) can be greatly simplified to

γ∗ ∈ argmin
Y


T∑

j=0

ηj(Yj) +

T∑
j=1

stepj(Yj−1, Yj) | Y ∈
T∏

j=0

Λj

 (5.2)

where ∀j = 0, . . . , T, ηj(hj , ξj)
def.
= hj [A

∗
j∇Fj(Aj(etj )♯σ)](ξj). (5.3)

This minimisation problem can now be formulated as computing the minimal path on a weighted, directed,
acyclic graph. The vertices are the points (tj , y) for y ∈ Λj , the edge weights are given by ηj and stepj , and the
time index provides an ordering and prevents cycles in the graph. Algorithms for computing minimal paths on
directed acyclic graphs are well studied, the complexity bound is given below.

Theorem 5.2 ([25], Sect. 24.2). Suppose assumptions (A1) and (A2) hold and |Λj | ≤ N for each j, then γ∗

can be computed with complexity

total time = O

N T∑
j=0

cost(ηj) +N2
T∑

j=1

cost(stepj)

 (5.4)

where cost(ηj) is the cost of evaluating ηj once etc.

Remark 5.3. In graph terminology, the two terms of (5.4) represent the number of vertices plus the number of
edges respectively, asymptotically O(NT ) and O(N2T ) respectively. If, for example, the paths have a maximum
velocity V , then the number of edges per vertex is reduced from N to O(N(V T−1)d). This results in a reduced
total complexity of O(NT +N2T 1−dV d).

Finally we outline how the minimal path can be computed efficiently in our specific example by using dynamic
programming. To do so, define the truncated energies and minimal paths:

ẼJ(Y )
def.
=

J∑
j=0

ηj(Yj) +

J∑
j=1

stepj(Yj−1, Yj), (5.5)
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Y ∗[y, J ] ∈ argmin
Y

 ẼJ(Y ) | Y ∈
J∏

j=0

Λj , YJ = y

 (5.6)

for each J = 0, . . . , T and y ∈ ΛJ . This generates γ
∗ through the computation

γ∗ = Y ∗[y∗, T ], y∗ ∈ argmin
y∈ΛT

ẼT (Y
∗[y, T ]). (5.7)

Observe that for all J = 1, . . . , T and y ∈ ΛJ ,

min
Y ∈

∏J
j=0 Λj

YJ=y

ẼJ(Y ) = min
Y ∈

∏J
j=0 Λj

{
ẼJ−1(Y ) + ηJ(y) + stepJ(YJ−1, y)

}
(5.8)

= ηJ(y) + min
y′∈ΛJ−1

{
stepJ(y

′, y) + min
Y ∈

∏J−1
j=0 Λj

YJ−1=y′

ẼJ−1(Y )

}
. (5.9)

In particular, we can choose Y ∗[y, J ] inductively to be

Y ∗[y, J ] =
(
Y ∗[y′, J − 1] y

)
for y′ ∈ argmin

y′∈ΛJ−1

[
stepJ(y

′, y) + ẼJ−1(Y
∗[y′, J − 1])

]
. (5.10)

For each y and J each of these steps requires O(N) computation, confirming the global complexity of O(N2T ).

6. The unbalanced Wasserstein–Fisher–Rao example

The two numerical examples considered in this work use the Benamou–Brenier and Wasserstein–Fisher–Rao
(WFR) penalties. The former has already been discussed in previous remarks and is a limiting case of the WFR
penalty so we will not discuss it in further detail here.

The penalty considered in [4] is W :M+([0, 1]× Ω)→ R ∪ {+∞} such that for all ρ ∈M+([0, 1]× Ω),

W(ρ)
def.
= inf

v∈L2
ρ([0,1]×Ω;Rd)

g∈L2
ρ([0,1]×Ω)

{∫
[0,1]×Ω

[
α+

β

2
|v|2 + βδ2

2
g2
]
dρ s.t. ∂tρ+ div(vρ) = gρ

}
(6.1)

for some α, β, δ > 0, and the continuity equation is satisfied in the sense of (1.14). This leads to the energy

E(ρ) = 1

2

T∑
j=0

∥∥Ajρtj − bj
∥∥2
2
+W(ρ) (6.2)

where the properties of Aj are as stated in (3.1). Much is already known about minimisers of this energy.

Theorem 6.1 ([4], Thms. 4.2, 6.4). Let α, β, δ > 0 and

Γ
def.
=
{
(h, ξ) : [0, 1]→ [0, 1]× Ω |

√
h ∈ AC2([0, 1]),

√
hξ ∈ AC2([0, 1] ;Rd)

}
. (6.3)
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Then for all ρ ∈ M+([0, 1]× Ω) with W(ρ) < +∞, there exists σ ∈ M+(Γ), v ∈ L2
ρ([0, 1]× Ω;Rd), g ∈

L2
ρ([0, 1]× Ω) such that ρ = Θ(σ),

W(ρ) =

∫
[0,1]×Ω

[
α+

β

2
|v|2 + βδ2

2
g2
]
dρ, ∂tρ+ div(vρ) = gρ, (6.4)

and

ξ′(t) = v(t, ξ(t)) for a.e. t ∈ {h > 0} and σ-a.e. (h, ξ),
h′(t) = g(t, ξ(t))h(t) for a.e. t ∈ [0, 1] and σ-a.e. (h, ξ).

(6.5)

Moreover, there exists a minimiser ρ∗ ∈ argmin
ρ∈M+([0,1]×Ω)

E(ρ) such that

for some ai ≥ 0, (hi, ξi) ∈ Γ, ∀t ∈ [0, 1] , ρ∗t =

m(T+1)∑
i=1

aih
i(t)δξi(t). (6.6)

Proof. Fix ρ ∈ M+([0, 1]× Ω) with W(ρ) < +∞. The only aspect not directly covered by [4] is the existence
of the minimal pair (v, g). To confirm this, note that the set{

v ∈ L2
ρ([0, 1]× Ω;Rd)

g ∈ L2
ρ([0, 1]× Ω;R) |

∫
[0,1]×Ω

[
α+

β

2
|v|2 + βδ2

2
g2
]
dρ ≤ W(ρ) + 1, ∂tρ+ div(vρ) = gρ

}
(6.7)

is bounded, hence compact in the weak topology of L2
ρ. There is therefore a weakly-convergent sequence converg-

ing to a point (v, g) which achieves the desired infimum in (6.1). As the weak form of the continuity equation
is preserved under weak limits in (v, g), the triplet (ρ, v, g) also satisfies the continuity equation.

6.1. Reformulation in the space of measures on paths

The results of Theorem 6.1 highlight the close relationship between the representations ρ and σ, i.e.
dynamical measures and measures on paths. We now reformulate the energy E into an equivalent energy
E:M+([0, 1]× Ω)→ R ∪ {+∞} of the form in Section 3. This energy can be written

∀σ ∈M+(Γ), E(σ)
def.
=

1

2

T∑
j=0

∥∥Aj(etj )♯σ − bj
∥∥2
2
+W(σ), (6.8)

W(σ)
def.
=

∫
Γ

∫ 1

0

[
α+

β

2
|ξ′|2 + βδ2

2

(
h′

h

)2
]
hdtdσ(h, ξ). (6.9)

Remark 6.2. Since for all (h, ξ) ∈ Γ,
√
h and

√
hξ are absolutely continuous, they are differentiable almost

everywhere in [0, 1], hence ξ is differentiable at a.e. t such that h(t) > 0. Hence, the integrand in (6.9) makes
sense when regarded as

w(h, ξ)
def.
=

∫
{h>0}

α+
β

2

∣∣∣∣∣
(√

hξ√
h

)′

(t)

∣∣∣∣∣
2
h+ 2βδ2

∣∣∣(√h)′(t)∣∣∣2 dt. (6.10)
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We will use the operator Θ:M(Γ) →M([0, 1]× Ω) introduced in Section 2 to map between σ and ρ. The
formula in (6.9) comes from [4], (3.9), but it was only shown that W(δγ) = W(Θ(δγ)). We cannot hope that
this holds on the whole of M(Γ) because Θ is not a one-to-one mapping, M(Γ) is a much larger space than
M([0, 1]× Ω). The next lemma is needed to confirm the equivalence of minimisers between E and E .

Lemma 6.3. Choosing φ(γ) = α
E(0) , the function E is lower semi-continuous with compact sub-levelsets with

sparse minimisers in D =
{
σ ∈M+(Γ) |

∫
Γ
φdσ ≤ 1

}
(Thm. 3.1). Also, for any ρ ∈M+([0, 1]× Ω),

W(ρ) = min
σ∈M+(Γ)

{W(σ) | Θ(σ) = ρ } (6.11)

where min ∅ = +∞. We conclude that

min
{
E(σ) | σ ∈M+(Γ)

}
= min

{
E(ρ) | ρ ∈M+([0, 1]× Ω)

}
, (6.12)

and

argmin
σ∈M+(Γ)

E(σ) =

{
σ ∈M+(Γ) | Θ(σ) ∈ argmin

ρ∈M+([0,1]×Ω)

E(ρ) and W(Θ(σ)) = W(σ)

}
. (6.13)

Proof. The only requirement for Theorem 3.1 which is not explicitly assumed is that the function w is lower
semi-continuous with compact sub-levelsets. This is proved in the appendix in Lemma B.4.

Secondly, fix ρ ∈ M+([0, 1]× Ω). If W(ρ) = +∞, then W(ρ) ≥ min {W(σ) | Θ(σ) = ρ } is clear. Otherwise,
let σ̂ ∈M+(Γ) be the measure given by Theorem 6.1 satisfying ρ = Θ(σ̂), then

W(ρ) =

∫
[0,1]×Ω

[
α+

β

2
|v|2 + βδ2

2
g2
]
dρ Theorem 6.1 (6.14)

=

∫
Γ

∫ 1

0

[
α+

β

2
|v(t, ξ(t))|2 + βδ2

2
g(t, ξ(t))2

]
h(t) dtdσ̂(h, ξ) Theorem 2.2(2) (6.15)

=

∫
Γ

∫ 1

0

[
α+

β

2
|ξ′(t)|2 + βδ2

2

(
h′(t)

h(t)

)2
]
h(t) dtdσ̂(h, ξ) = W(σ̂). (6.5) (6.16)

This confirms W(ρ) ≥ min {W(σ) | Θ(σ) = ρ } for all ρ ∈M+([0, 1]× Ω).
The converse holds by Jensen’s inequality. In particular, because W is convex, proper, and lower semi-

continuous[4], Lemma A.6, by [26], Theorem 5 there exists a collection {(ci, ψi)}i∈I ⊂ R × C([0, 1]× Ω) such
that

∀ρ ∈M+([0, 1]× Ω), W(ρ) = sup
i∈I

(
ci +

∫
[0,1]×Ω

ψi dρ

)
. (6.17)

As W is positively homogeneous, also ci = 0. For any σ̂ ∈M+(Γ), i ∈ I, we have Θ(σ̂) ∈M+([0, 1]× Ω) and

∫
[0,1]×Ω

ψi dΘ(σ̂) =

∫
Γ

∫ 1

0

h(t)ψi(t, ξ(t)) dtdσ̂ ≤
∫
Γ

sup
j∈I

∫ 1

0

h(t)ψj(t, ξ(t)) dtdσ̂

=

∫
Γ

[
sup
j∈I

∫
[0,1]×Ω

ψj dΘ(δγ)

]
dσ̂ =

∫
Γ

W(Θ(δγ)) dσ̂. (6.18)
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It is shown in [4], Proposition 3.9 that W(Θ(δγ)) = w(γ) from (6.10). Now taking a supremum over i ∈ I gives

W(Θ(σ̂)) ≤
∫
Γ

W(Θ(δγ)) dσ̂ =

∫
Γ

w(γ) dσ̂ = W(σ̂). (6.19)

This shows W(ρ) ≤ min {W(σ) | Θ(σ) = ρ } for all ρ ∈ M+([0, 1]× Ω), which confirms (6.11) when combined
with the “≥” result.

Finally we consider the equivalence of minimums and minimisers. Notice that the equality ρ = Θ(σ) implies
the equality of the times slices ρt and (et)♯σ, for t ∈ [0, 1], and thus

1

2

T∑
j=0

∥∥Ajρtj − bj
∥∥2
2
=

1

2

T∑
j=0

∥∥Aj(etj )♯σ − bj
∥∥2
2
. (6.20)

As a result, (6.11) implies that

E(ρ) = min
σ∈M+(Γ)

{E(σ) | Θ(σ) = ρ } ,

and thus

min
ρ
E(ρ) = min

ρ

(
min

σ∈M+(Γ)
{E(σ) | Θ(σ) = ρ }

)
= min

σ∈M+(Γ)
E(σ).

If σ ∈ argminE, then

E(Θ(σ)) ≤ E(σ) = minE = min E ,

so that Θ(σ) ∈ argminρ∈M+([0,1]×Ω) E(ρ) and W(Θ(σ)) = W(σ), which yields the first inclusion in (6.13). Con-

versely, if σ belongs to the r.h.s. of (6.13), then E(σ) = minρ E(ρ) = minE, so that the converse inclusion
holds.

6.2. Discrete-time formulation

Problems of the form (6.8) also have a discrete-time structure inherited from discrete-time data. The same
argument from Section 3.2 is valid for the WFR penalty, although it is very hard to find the explicit form.
Analytically the WFR penalty can be expressed in the form required for Assumption A2. In particular, for

stepj(γj−1, γj) = inf
γ∈Γ

{∫ tj

tj−1

[
α+

β

2
|ξ′(t)|2 + βδ2

2

(
h′(t)

h(t)

)2
]
h(t) dt | γ = (h, ξ),

γ(tj−1) = γj−1,
γ(tj) = γj

}
, (6.21)

geodesics of the WFR penalty satisfy

w(γ) =

∫ 1

0

[
α+

β

2
|ξ′|2 + βδ2

2

(
h′

h

)2
]
hdt =

T∑
j=1

stepj(γ(tj−1), γ(tj)). (6.22)

This formula can be verified with the Euler–Lagrange equation. The key point is that the left-hand side only
involves up to first order derivatives so only the zeroth order constraints (i.e. γ(tj) = γj) are needed to interpolate
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on intervals ]tj−1, tj [. The exact shape or formulae for the WFR-geodesics is not so convenient as for the
Benamou–Brenier penalty (δ → +∞), although for α = 0 it is known from [27], Theorem 5.6

stepj((hj−1, ξj−1), (hj , ξj)) =
4βδ2

tj − tj−1

[
hj+hj−1

2 −
√
hjhj−1 cos

(
min

(
|ξj−ξj−1|

2δ , π
))]

. (6.23)

More details can be found in Corollary 4.1(i) of the preprint (https://arxiv.org/pdf/1506.06430v2.pdf) of [28].

In summary, the map γ 7→ argminγ̃∈Γ {w(γ̃) | γ̃(tj) = γ(tj) } is continuous, h̃(t) is a simple quadratic on each

]tj , tj+1[, and ξ̃(t) follows a straight line between ξ(tj) and ξ(tj+1) with speed varying like arctan.

7. Numerical results

For numerical experiments we implement variants of Algorithm 1 using the linear-oracle strategy discussed
in Section 5. The expanded form of this algorithm is given in Algorithm 3. The choice of Aj , Fj , tj , and stepj
define the optimisation problem, then the final choices of Λj and k dictate the variant of the algorithm. We

always choose the sliding step to select a local minimum of E (or Ẽ) as computed by an implementation of the
L-BFGS algorithm. All code to reproduce the results and figures in this work can be found online1.

The classical sliding Frank–Wolfe algorithm (Algorithm 1) can be recovered by choosing Λj = [−1, 1]×Ω and
k = 1. The potential for k > 1 was considered in [5], Section 5.1.5 as a “multistart” parameter. The idea is that
the approximation of optimal curves (i.e. Y ∗[·, T ]) is very expensive, so some of the other near-optimal curves
should also be used to improve efficiency of the algorithm. Suppose Λj is chosen to approximate [−1, 1] × Ω
with a grid of M masses in [−1, 1] and Nd points in Ω. Assuming T is fixed, Theorem 5.2 states that the
computational complexity of the linear oracle at every iteration is O((NdM)2). If the “true curves” are easy to
find, then we can hope to reduce this to O((NdM)2k−1) per curve (see [29, 30]).

We consider two families of algorithms implementing Algorithm 3, one stochastic and the other deterministic.

Throughout this section we fix Ω
def.
= ]0, 1[

2
and only consider non-negative curves h ≥ 0, so the algorithms can

be stated as:

(k,N,M)-random mesh: The multistart parameter is k. For each n and j we generate new independent

uniformly random points H = {hji ∼ U [[0, 1]]}Mi=1, X = {xji ∼ U [[0, 1]
2
]}N2

i=1 and

Λj
def.
= { (h, x) | h ∈ H, x ∈ X } . (7.1)

When M = 0 we take H = {1} (i.e. a balanced mesh).
(k,N,M)-uniform mesh: The multistart parameter is k. For each n we choose Λ0 = . . . = ΛT to be of the

form

Λj = Λj(Ñ)
def.
=
{
(h, (x1, x2)) | h ∈ {0,M−1, . . . , 1}, x1, x2 ∈ {0, Ñ−1, . . . , 1}

}
(7.2)

for some Ñ ≥ 1. We start with Ñ = 16 at n = 0, then increment Ñ ← 2Ñ whenever E(σn+1) = E(σn)

(tested after line 13 of Algorithm 3). This process is terminated once Ñ > N . Again, if M = 0 then we
only allow the balanced mass h = 1.

For all problems, (1,+∞,+∞)-random and (1,+∞,+∞)-uniform mesh algorithms are equivalent to the exact
Algorithm 1. For balanced problems, such as in Section 1.1, it is sufficient to use the triplet (1,+∞, 0). The
random algorithms withN,M ≥ 1 are guaranteed to converge (eventually) to the exact minimiser by Lemma 4.3.
On the other hand, the uniform path algorithms have nice computational properties which allows Y ∗[·, T ] to be
computed more efficiently at larger N . Whilst all results for random meshes are asymptotic, the uniform path

1https://gitlab.inria.fr/rtovey/DP-for-dynamic-IPs

https://arxiv.org/pdf/1506.06430v2.pdf
https://gitlab.inria.fr/rtovey/DP-for-dynamic-IPs
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algorithms also provide a clear stopping criterion. The algorithm stops at iteration n when E(σn+1) = E(σn),

often this will mean σn+1 = σn. Let Dd
def.
=
{
σ ∈ D | supp(σ) ⊂

∏T
j=0 Λj(N)

}
be the discretisation of D.

Expanding on the linesearch computation, due to the convexity and smoothness of E,

∀λ ∈ [0, 1] , E((1− λ)σn + λµn+1)− E(σn) = λ

∫
Γ

(F′(σn) + w) d[µn+1 − σn] +O(λ2). (7.3)

If the linesearch terminates with λ = 0, then clearly
∫
Γ
(F′(σn) + w) d[µn+1 − σn] ≥ 0. The optimality given by

the dual gap (see [12]), can therefore be stated

E(σn)− min
σ∈Dd

E(σ) ≤ sup
σ∈Dd

∫
Γ

(F′(σn) + w) d[σn − σ] =
∫
Γ

(F′(σn) + w) d[σn − µn+1] ≤ 0. (7.4)

We conclude that σn is at least optimal up to a spatial resolution of 1
N .

Algorithm 3 Inexact sliding Frank–Wolfe algorithm

1: Set σ0 ← 0 ∈M+(Γ), n← 0, fix k ∈ N
2: repeat
3: Let ηj = A∗

j∇Fj(Aj(etj )♯σ
n) ∈ C(Ω) for j = 0, . . . , T , and

Ẽ((h, ξ)) =
∑T

j=0 ηj(ξj)hj +
∑T

j=1 stepj((hj−1, ξj−1), (hj , ξj))

4: Choose Λj ⊂ [0, 1]× Ω, j = 0, . . . T ▷ the discrete mesh

5: Compute Y ∗[y, T ] ∈
∏T

j=0 Λj for all y ∈ ΛT , as in (5.10) ▷ discrete optimal paths

6: Choose γ̃1, . . . , γ̃k ∈ Image(Y ∗[·, T ]) with least energy in Ẽ ▷ select best k endpoints

7: Find γ1, . . . γk ∈ [0, 1]× Ω with Ẽ(γi) ≤ Ẽ(γ̃i) ▷ sliding step on linearised problem

8: Set σ ← σn, re-order index i such that Ẽ(γ1) ≤ Ẽ(γ2), . . .
9: for i = 1, . . . , k do

10: λ← argminλ∈[0,1] E((1− λ)σ + λφ(γi)−1δγi) ▷ exact linesearch

11: σ ← (1− λ)σ + λφ(γi)−1δγi

12: end for
13: Choose σn+1 such that E(σn+1) ≤ E(σ) ▷ sliding step on exact problem
14: n← n+ 1
15: until converged

7.1. Benamou–Brenier example

First we compare directly with the numerical results presented in [5] for the model discussed in Section 1.1.
In particular, the energy we seek to minimise is E:M+(Γ)→ ]−∞,+∞] defined by

E(σ) =
1

2

T∑
j=0

∥∥Aj(etj )♯σ − bj
∥∥2
2
+

∫
Γ

∫ 1

0

(
α+

β

2
|ξ′(t)|2

)
dtdσ(h, ξ) (7.5)

where tj =
j
T for each j = 0, . . . , T ,

Γ
def.
=
{
(h, ξ) ∈ {1} ×AC2([0, 1] ; Ω) | ξ′ is constant on ]tj−1, tj [, 1 ≤ j ≤ T

}
, (7.6)
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Figure 1. Synthetic phantoms of the form σ =
∑

i δ(hi,ξi) for balanced (top row) and unbal-
anced (bottom row) examples. Colour indicates the time t, the solid line indicates the positions
ξi(t), and the width of the overlayed band is proportional to hi(t).

and Aj :M([0, 1]
2
)→ Rm represents a finite number of smoothed Fourier samples. The precise details are given

in [5], Section 6. In view of the convexity of Ω, (7.5) reformulates to

E(σ) =
1

2

T∑
j=0

∥∥Aj(etj )♯σ − bj
∥∥2
2
+

∫
Γ

 T∑
j=1

(tj − tj−1)

(
α+

β

2

|ξ(tj)− ξ(tj−1)|2

(tj − tj−1)2

) dσ(h, ξ). (7.7)

The two phantoms are also from [5], Section 6. In the notation of this work, we would say that, for example,
phantom 1 is represented by

σ = δ(h1,ξ1) + δ(h2,ξ2) where h1 = h2 = 1, ξ1(t) = (0.2 + 0.6t, 0.2 + 0.6t), (7.8)

ξ2(t) = (0.8− 0.6t, 0.2 + 0.6t). (7.9)

Similarly phantom 2 is the sum of 3 Dirac masses, both phantoms are shown here in Figure 1. In the setting
of Section 5, we choose φ0 = 0.1 (as 10 is much larger than 2 or 3 which is the mass of phantoms 1 and 2
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respectively), and

stepj((h0, ξ0), (h1, ξ1)) = α(tj − tj−1) +
β

2

|ξ1 − ξ0|2

tj − tj−1
=
α

T
+
βT

2
|ξ1 − ξ0|2. (7.10)

For phantom 1 we have α = β = 0.5, T = 21, and α = β = 0.1, T = 51 for phantom 2. The algorithm of [5]
found online2 is run with original parameters as a baseline, although with a time limit of 5 days when necessary.
This is compared with multiple variants of the random and uniform algorithms described at the beginning of
the section. The uniform algorithms are run to convergence and the random variants are run for 100 and 10,000
iterations for phantoms 1 and 2 respectively. Figure 2a shows the reconstructions of each algorithm with default
parameters, each image is visually equivalent. The convergence behaviour is shown in Figure 2b. The energy
plots confirm that each reconstruction has approximately the same energy, although we find that the random
mesh algorithm finds the lowest energy, closely followed by the uniform mesh. Similarly, the sparsity of each
final reconstruction is equal. The greatest difference between algorithms is run-time. The random and uniform
mesh algorithms are over 100 times faster than that of [5] in both examples.

We also replicate the noise-scenarios for phantom 2 as tested in [5]. Our only modification of the baseline
algorithm is to remove the early-stopping routine and run the algorithm for the minimum of 21 iterations or
5 days (cf. [5], Tab. 1). We again use the (1, 25, 0)-random mesh and (1, 256, 0)-uniform mesh algorithms for
comparison in each example. In the three noisy scenarios we add 20%, 60%, and 60% Gaussian white noise to
the data respectively. The first two scenarios use α = β = 0.1 while the third scenario uses α = β = 0.3. Seen
in Figure 3, both the random and uniform mesh algorithms converge with similar rates, while the algorithm of
Bredies et al. is still at least 100 times slower. We see the expected behaviour that the uniform variant converges
to a (possibly non-optimal) energy. As predicted by Theorem 4.3, the random variant often finds an even lower
energy, despite having a much smaller value of N .

7.2. Wasserstein–Fisher–Rao example

In this section, we show numerical results for the unbalanced transport example presented in Section 6, the
data fidelity is the same as in the Benamou–Brenier example. Ideally we would use the exact function dα,β,δ
from (6.21) to define stepj , but it lacks a closed-form expression, hence for computational reasons we use the
approximation

stepj(γ0, γ1)
def.
= α

h0 + h1
2

(tj − tj−1) + d0,β,δ(γ0, tj−1, γ1, tj). (7.11)

where d0,β,δ is given in (6.23). As in Section 7.1 we use α = β = 0.5 or 0.1 for the first and second phantom
respectively, also φ = δ = 0.1 throughout. This leads to the explicit form of stepj

stepj(γ0, γ1) =
α

T

h0 + h1
2

+
βT

25

[
h0 + h1

2
−
√
h0h1 cos (min (5|ξ0 − ξ1|, π))

]
. (7.12)

Numerically we re-parametrise the mass to h̃j
def.
=
√
hj for each j so that stepj is a C1 function of h̃j . Note that

this only effects the sliding step of the Frank–Wolfe algorithm, the remaining steps are unchanged.
Our synthetic phantoms are equivalent to those in Section 7.1 but with modified, time-dependent masses.

For example, the first phantom is now σ = δ(h0,ξ0) + δ(h1,ξ1) where

h0(t) = 1
2 (1 + 3t2), ξ0(t) = (0.2 + 0.6t, 0.2 + 0.6t), (7.13)

h1(t) = 3
2

√
1− t, ξ1(t) = (0.8− 0.6t, 0.2 + 0.6t). (7.14)

2https://github.com/panchoop/DGCG algorithm/commit/553a564fd8641abcfac6067ebf51a900a6a91d0f

https://github.com/panchoop/DGCG_algorithm/commit/553a564fd8641abcfac6067ebf51a900a6a91d0f
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(a) Final reconstructions visualised equivalently to those in Figure 1.
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(b) Convergence of energy and sparsity of reconstructions. For each phantom, every
energy is translated by the smallest energy found by any method.

Figure 2. Comparison of algorithm from [5], the (1, 25, 0)-random mesh algorithm, and
(1, 256, 0)-uniform mesh algorithm applied to balanced phantoms 1 and 2 (first and second
rows respectively).
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Figure 3. Convergence of three default algorithms (see Fig. 2) with different levels of noise
and choice of α = β ∈ {0.1, 0.3}.

The transformation for the second phantom is very similar and the precise formulae can be found in the

supplementary code. All curves h have been normalised so
∫ 1

0
hdt = 1, ∥h∥∞ ≤ 2.

Again, we run the uniform-mesh algorithms to convergence but now the random-mesh is only run for
100 or 1,000 iterations for phantoms 1 and 2 respectively. The reconstructions are shown in Figure 4a with
corresponding convergence plots in Figure 4b.

7.3. Observations on parameter choices

Both the random and uniform mesh algorithms have three parameters to choose: the multi-start parameter
k, spatial resolution N , and mass resolution M . The first phantom (balanced or unbalanced) nicely highlights
characteristics of the reconstructions but is too trivial numerically to compare different algorithm choices, all
methods converge within a few iterations. For the second phantom we prioritised the trade-off of between energy
and computation time.

The classical choice of k = 1 was always a competitive choice. Large k potentially enables the algorithm to
find multiple atoms in one iteration, but slows down the sliding steps. We found that k ∈ [1, 5] was a reasonable
range depending on the sparsity of the signal to be recovered.

Choice of spatial resolution made the largest impact on performance. If the resolution is too small then the
algorithm will not find new atoms, but computation time of the linear oracle scales with N4. For the random
mesh, we found that N = 25 was a good balance. For the uniform mesh the resolution is also a stopping criterion
so we used the more conservative N = 256 and 512 for the balanced and unbalanced examples respectively.

In the unbalanced experiments the value of M had little effect. Although we don’t include this figure, we
observed that the choice M = 0 was also competitive for our unbalanced phantom 2, achieving energies within
10−3% of the best observed energy. It’s unclear whether this will generalise to more complicated examples, we
chose M = 10 as a default. Computational complexity of the linear oracle also scales with M2, so M should not
be too large.

Both the random and uniform mesh algorithms have advantages over each other. The main advantages
of a uniform mesh are computational: one can use a finer resolution (i.e. larger N), and there is a clear
stopping criterion. In practice this was a very reliable method without parameter tuning and was as fast as
the random algorithm. The random algorithms have analytical guarantees of converging asymptotically to the
true minimiser, and indeed it achieved the best observed energy in all but one of our experiments, performing
noticeably better in the noisy case. The challenge is setting a stopping criterion, in phantom 2 of Figure 4b
one sees several plateaux where the algorithm fails to find a descent direction for a number of iterations before
continuing to descend.

Figure 5 shows the random variation of the random mesh algorithm with different values of N ∈ {5, 10, 15}.
IncreasingN both decreases the spread and improves the performance of the algorithm. In the balanced example,
the three algorithms complete 1000 iterations in the same time, showing that the linear oracle step is a small
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(a) Final reconstructions visualised equivalently to those in Figure 1.
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Figure 4. Comparison of the (1, 25, 10)-random mesh and (1, 128, 10)-uniform mesh algorithms
applied to unbalanced phantoms 1 and 2 (first and second rows respectively).
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random mesh run for 1000 and 100 iterations respectively. 100 random instances of each
algorithm are run, each drawn as a thin line. The median is drawn with a thick line, and
the inter-quartile range indicated by the shaded area.

part of the total time. On the other hand, with larger M the N = 25 algorithm is nearly 10 times slower than
N = 10, indicating that the O(N4M2) cost is starting to dominate the computation time. It’s possible that
N = 5 is slower than N = 10 for the unbalanced example because the sliding step has to work much harder to
find local minima.

8. Conclusion

The main contribution of this work was to extend a variational model proposed by Bredies et al. in order
to accelerate the reconstruction of sparse measures in dynamical inverse problems. Using algorithms developed
for computing shortest paths on graphs, we can improve the speed by a factor of 100 while still finding lower
energy solutions. This allows us to process new unbalanced examples where the mass of curves is not constant
in time, our proposed algorithms still recover good reconstructions in a reasonable amount of time.

We also presented new analysis of a stochastic variant of Frank–Wolfe which guarantees the convergence of
our algorithm (in energy) to a globally optimal solution. This is supported by our experiments where we see
that the random-mesh algorithm achieves the lowest energy in almost every example.

One feature of the algorithm in [5] which we did not take advantage of was the idea of importance sampling.
We chose points y ∈ Λj uniformly randomly, whereas it is likely to be beneficial to choose y such that ηj(y)
is small. As an example, if the step functions stepj satisfy the triangle inequality, then this bias could be
implemented by choosing points y such that y is a local minima of

ỹ 7→ ηj(ỹ) + stepj−1(y, ỹ) + stepj(ỹ, y). (8.1)

In Algorithm 3, implementing such a sliding step on Λj between lines 4 and 5 would preserve the analytical
properties of the current algorithm, whilst possibly improving practical performance. However, it is also possible
that the sliding step already present (e.g. Line 7) is powerful enough to find these improved mesh points after
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computing γ̃i, without the extra help beforehand. It is likely that the benefits depend on the application,
particularly on the smoothness of the operators Aj .

Appendix A. Preliminary results

A.1 Properties of the flat metric

Lemma A.1 (Lem. 2.1). Define dΓ : Γ0 × Γ0 → [0,+∞[ by

dΓ((h1, ξ1), (h2, ξ2))
def.
= sup

t∈[0,1]

dF ((h1(t), ξ1(t)), (h2(t), ξ2(t))) where (A.1)

dF ((r1, x1), (r2, x2))
def.
=

{
|r1|+ |r2| r1r2 ≤ 0 or |x1 − x2| ≥ 2

|r1 − r2|+min(|r1|, |r2|)|x1 − x2| else,
(A.2)

then (Γ0/∼,dΓ) is a complete separable metric space where

(h1, ξ1) ∼ (h2, ξ2) ⇐⇒ h1 = h2 and ∀t ∈ {h1 ̸= 0}, ξ1(t) = ξ2(t). (A.3)

Convergence of a sequence γn = (hn, ξn) ∈ Γ0 in the metric dΓ can equivalently be stated as:

[
γn

dΓ→ (h, ξ)
]
⇐⇒

[
hn → h in C([0, 1]) and for all ε > 0, ξn → ξ in C({|h| ≥ ε})

]
(A.4)

Furthermore, for any ψ ∈ C([0, 1]× Ω), we have Ψ ∈ C([0, 1]× Γ0) where

∀t ∈ [0, 1] , (h, ξ) ∈ Γ0, Ψ(t, h, ξ)
def.
= h(t)ψ(t, ξ(t)). (A.5)

Proof. Complete metric space. In [4], Proposition 3.6 it was shown that
{
t 7→ h(t)δξ(t) | (h, ξ) ∈ Γ0, h ≥ 0

}
is a complete separable metric space with respect to the flat metric, which is simply d(h1δξ1 , h2δξ2) =
dΓ((h1, ξ1), (h2, ξ2)). Reducing to Γ0/∼ reduces to a single representative all couples (h, ξ) which map to the
same element hδξ. After removing this redundancy from Γ0, it is clear that ({ (h, ξ) ∈ Γ0/∼ | h ≥ 0 } ,dΓ) is
a complete separable metric space isometrically equivalent to that in [4], Proposition 3.6. In the signed case,
consider h±i = max(0,±hi), our choice of dΓ is such that for all (h1, ξ1), (h2, ξ2) ∈ Γ0

dΓ((h1, ξ1), (h2, ξ2)) = dΓ((h
+
1 , ξ1), (h

+
2 , ξ2)) + dΓ((h

−
1 , ξ1), (h

−
2 , ξ2)). (A.6)

It follows that (Γ0/∼,dΓ) is also a complete separable metric space.
Convergence. First, note from the definition that for all ri ∈ R, xi ∈ Ω,

|r1 − r2| ≤ dF ((r1, x1), (r2, x2)) ≤ |r1|+ |r2|. (A.7)

Now, fix a sequence γn = (hn, ξn) ∈ Γ0 and point γ = (h, ξ) ∈ Γ0. Suppose dΓ(γn, γ)→ 0, then from (A.7) we
have ∥hn − h∥∞ → 0. Also, for any ε > 0 choose Nε ∈ N such that

∀n ≥ Nε, ∥hn − h∥∞ ≤
ε

2
and dΓ(γn, γ) ≤

ε

2
. (A.8)
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Observe that for all t ∈ {|h| ≥ ε} and n ≥ Nε, if |ξn(t) − ξ(t)| ≥ 2, then dΓ(γn, γ) ≥ |hn(t)| + |h(t)| > ε,
contradicting the choice of Nε. Therefore we have the uniform bound

sup
|h(t)|≥ε

|ξn(t)− ξ(t)| ≤ sup
|h(t)|≥ε

2

ε
min(|hn(t)|, |h(t)|)|ξn(t)− ξ(t)| ≤

2

ε
dΓ(γn, γ)

n→+∞−→ 0. (A.9)

This concludes the “ =⇒ ” direction of (A.4). Conversely, suppose ∥hn − h∥∞ → 0 and for any ε > 0,
∥ξn − ξ∥L∞({|h|≥ε}) → 0. Fix ε ∈ ]0, 2[ and Nε ∈ N such that for all

∀n ≥ Nε, ∥hn − h∥∞ ≤
ε

2
and ∥ξn − ξ∥L∞({|h|≥ε}) ≤ ε. (A.10)

Then, from (A.7), for all n ≥ Nε we have

dΓ(γn, γ) ≤ sup
t∈[0,1]

{
|hn(t)|+ |h(t)|
|hn(t)− h(t)|+min(|hn(t)|, |h(t)|)|ξn(t)− ξ(t)|

if |h(t)| < ε,
else

(A.11)

≤ sup
t∈[0,1]

{
5ε/2
ε/2 + ∥h∥∞ε

if |h(t)| < ε,
else.

(A.12)

In either case we have lim supn→+∞ dΓ(γn, γ) ≤ O(ε), therefore dΓ(γn, γ)→ 0 as required.

Continuity. Fix ψ ∈ C([0, 1]× Ω) and define Ψ as in (A.5). As we have now confirmed that (Γ0/∼,dΓ) is a
metric space, we can use the sequential definitions of continuity. Suppose τn ∈ [0, 1], γn = (hn, ξn) ∈ Γ0 and

τn → t, γn
dΓ→ γ. Observe for each n we have

|Ψ(τn, γn)−Ψ(t, γ)| = |hn(τn)ψ(τn, ξn(τn))− h(t)ψ(t, ξ(t))| (A.13)

= |(hn(τn)− h(t) + h(t))ψ(τn, ξn(τn))− h(t)ψ(t, ξ(t))| (A.14)

≤ |hn(τn)− h(t)|∥ψ∥∞ + |h(t)||ψ(τn, ξn(τn))− ψ(t, ξ(t))|. (A.15)

≤ [∥hn − h∥∞ + |h(τn)− h(t)|]∥ψ∥∞ + |h(t)||ψ(τn, ξn(τn))− ψ(t, ξ(t))|. (A.16)

Now consider the limit of n→ +∞. As h ∈ C([0, 1]), h(τn)→ h(t). The characterisation of convergence in dΓ
in (A.4) also confirms ∥hn − h∥∞ → 0 and either h(t) = 0, or

|ξn(τn)− ξ(t)| ≤ |ξn(τn)− ξ(τn)|+ |ξ(τn)− ξ(t)| → 0. (A.17)

In either case, we see that

lim sup
n→+∞

|Ψ(τn, γn)−Ψ(t, γ)| ≤ lim sup
n→+∞

|h(t)||ψ(τn, ξn(τn))− ψ(t, ξ(t))| = 0, (A.18)

therefore Ψ is continuous at (t, γ).

A.2 Projection properties

Theorem A.2 (Thm. 2.2). Let σ ∈ M(Γ0). If
∫
Γ0
∥h∥1 d|σ|(h, ξ) < +∞, then there is a unique finite Borel

measure Θ(σ) ∈M([0, 1]× Ω) such that

∀ψ ∈ C([0, 1]× Ω),

∫
[0,1]×Ω

ψ(t, x) dΘ(σ)(t, x) =

∫
Γ0

(∫ 1

0

h(t)ψ(t, ξ(t)) dt

)
dσ(h, ξ). (A.19)
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Moreover,

1. The mapping Θ:
{
σ ∈M(Γ0) |

∫
Γ0
∥h∥1 d|σ| < +∞

}
→M([0, 1]× Ω) is linear.

2. Equality (A.19) holds for all ψ ∈ L1
|Θ(σ)|([0, 1]× Ω).

3. If
∫
Γ0
∥h∥∞ d|σ| < +∞, then Θ(σ) ∈ Cw([0, 1] ;M(Ω)).

4. Suppose h, ξ ∈ AC2([0, 1]) for σ-a.e. (h, ξ) ∈ Γ0. If there exist Borel measurable functions v : [0, 1]× Ω→
Rd and g : [0, 1]× Ω→ R such that

h′(t) = g(t, ξ(t))h(t) for σ-a.e. (h, ξ) and a.e. t ∈ ]0, 1[, (A.20)

ξ′(t) = v(t, ξ(t)) for σ-a.e. (h, ξ) and a.e. t such that h(t) ̸= 0, (A.21)

and

∫
Γ0

∫ 1

0

(1 + |v(t, ξ(t))|+ |g(t, ξ(t))|) |h(t)| dtd|σ|(h, ξ) < +∞, (A.22)

then
∫
Γ0
∥h∥∞ d|σ| < +∞ and Θ(σ) satisfies the continuity equation (1.14).

Conversely, given ρ ∈M([0, 1]× Ω), if ρ ≥ 0 satisfies the continuity equation (1.14) and∫
[0,1]×Ω

(1 + |v(t, x)|2 + |g(t, x)|2) dρ(t, x) < +∞, (A.23)

then ρ = Θ(σ) for some σ ∈M+(Γ0) such that (A.20)–(A.22) hold and
∫
Γ0
∥h∥∞ dσ < +∞.

Proof. By Lemma A.1, for any ψ ∈ C([0, 1]× Ω), the map

(h, ξ) 7→
∫ 1

0

h(t)ψ(t, ξ(t)) dt =

∫ 1

0

Ψ(t, h, ξ) dt (A.24)

is continuous (hence Borel) in Γ0 and dominated by ∥h∥1∥ψ∥∞, therefore the right-hand side of (A.19) is
well-defined. This induces a linear form on C([0, 1]× Ω) which is moreover bounded, since∣∣∣∣∫

Γ0

∫ 1

0

h(t)ψ(t, ξ(t)) dtdσ(h, ξ)

∣∣∣∣ ≤ ∥ψ∥∞ ∫
Γ0

∥h∥1 d|σ|. (A.25)

By the Riesz representation theorem, that linear form is represented by a unique Radon measure Θ(σ) ∈
M([0, 1]× Ω). This confirms that Θ satisfies the required properties for point (1).

Points (2)–(4) have been proved in [4] under the additional assumptions σ ≥ 0 and inft∈[0,1] h(t) ≥ 0. To
apply these results, we need the following modified Hahn–Jordan decomposition.

Claim A.3. For any σ ∈M(Γ0) with
∫
Γ0
∥h∥1 d|σ| < +∞ there exists σ+, σ− ∈M+(Γ0) such that

σ±
({

(h, ξ) ∈ Γ0 | inf
t∈[0,1]

h(t) < 0

})
= 0 (A.26)

with
∫
Γ0
∥h∥1 dσ± < +∞ and Θ(σ) = Θ(σ+)−Θ(σ−).

Proof of claim. The Hahn–Jordan decomposition gives σ = max(0, σ)−max(0,−σ), therefore it is
sufficient to consider the case σ ≥ 0. Define the maps T± : Γ0 → Γ0 by

∀(h, ξ) ∈ Γ0, T±(h, ξ)
def.
= (max(0,±h), ξ). (A.27)
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Because dΓ(T
±(γ1), T

±(γ2)) ≤ dΓ(γ1, γ2), T
± are continuous (therefore Borel), and we can define

the image measures σ± def.
= (T±)♯σ. Since the push-forward operation does not increase the total

variation, we have σ+, σ− ∈ M+(Γ0). Moreover, (A.26) holds, and by construction of the image
measure ∫

Γ0

ϕ(h, ξ) dσ± =

∫
Γ0

ϕ(max(0,±h), ξ) dσ (A.28)

for all ϕ ∈ Cb(Γ0), and by monotone convergence∫
Γ0

∥h∥1 dσ
± =

∫
Γ0

∥max(0,±h)∥1 dσ ≤
∫
Γ0

∥h∥1 dσ. (A.29)

Finally, we confirm that for all ψ ∈ C([0, 1]× Ω),∫
[0,1]×Ω

ψ(t, x) dΘ(σ) =

∫
Γ0

∫ 1

0

h(t)ψ(t, ξ(t)) dtdσ (A.30)

=

∫
Γ0

∫ 1

0

[max(0, h(t))−max(0,−h(t))]ψ(t, ξ(t)) dtdσ (A.31)

=

∫
Γ0

∫ 1

0

h(t)ψ(t, ξ(t)) dtd(σ+ − σ−) (A.32)

=

∫
[0,1]×Ω

ψ(t, x) d(Θ(σ+)−Θ(σ−)) (A.33)

as required.

With this decomposition, we can apply the results of [4] to each σ±. Point (2) becomes a direct consequence
of [4], Lemma 4.4. Under the assumptions of point (3), the same lemma also guarantees the existence of a
disintegration ρ±t of Θ(σ±), in the sense of (1.11). In particular,

∀ψ ∈ C(Ω), t ∈ [0, 1] ,

∫
Ω

ψ(x) dρ±t (x) =

∫
Γ0

h(t)ψ(ξ(t)) dσ±(h, ξ). (A.34)

The same property holds for Θ(σ) by linearity. Point (3) requires t 7→
∫
Ω
ψ d(ρ+t − ρ−t ) to be continuous for all

ψ ∈ C(Ω). By Lemma A.1, for each t ∈ [0, 1] the function Ψ(t, h, ξ)
def.
= h(t)ψ(ξ(t)) is continuous on [0, 1] × Γ0

and ∣∣∣∣∫
Ω

ψ d(ρτ − ρt)
∣∣∣∣ ≤ ∫

Γ0

|h(τ)ψ(ξ(τ))− h(t)ψ(ξ(t))|d|σ|(h, ξ) =
∫
Γ0

|Ψ(τ, γ)−Ψ(t, γ)|d|σ|(γ). (A.35)

The integrand is pointwise bounded by 2∥h∥∞∥ψ∥∞, therefore we conclude that the limit of the integral as
τ → t is 0 by dominated convergence.

Point (4) and its converse are addressed by [4], Theorem 4.2. For the forward direction, we again consider
the modified Hahn–Jordan decomposition. The assumptions (A.20)–(A.22) are only assumed to hold for almost
every t and h, therefore they also hold for the choice of measures σ± given in the claim replacing h with
max(0,±h). We can then apply [4], Theorem 4.2 to each component and sum for the result. The converse is
exactly the statement of [4], Theorem 4.2 because we assume ρ ≥ 0.
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Lemma A.4 (Lem. 2.3). For each p ∈ [1,+∞] define the set

Γp
def.
=
{
γ = (h, ξ) ∈ Γ0 | ∥h∥p ≤ 1

}
, (A.36)

then {
Θ(σ) | σ ∈M(Γ0),

∫
Γ0

∥h∥p d|σ| < +∞
}

= {Θ(σ̂) | σ̂ ∈M(Γp) } (A.37)

and Θ:M(Γp)→M([0, 1]× Ω) is narrowly continuous.
Furthermore, if p = +∞, then ∀t ∈ [0, 1], (et)♯ :M(Γ∞)→M(Ω) is also narrowly continuous.

In particular, sequentially we have that, for any sequence σn ∗
⇀ σ narrowly inM(Γp):

for all p ∈ [1,+∞] , Θ(σn)
∗
⇀ Θ(σ) narrowly inM([0, 1]× Ω), (A.38)

if p = +∞, ∀t ∈ [0, 1] , (et)♯σ
n ∗
⇀ (et)♯σ narrowly inM(Ω). (A.39)

Proof. The “⊃” inclusion is clear: if σ̂ ∈M(Γp), extend σ̂ by 0 such that σ̂ ∈M(Γ0), then∫
Γ0

∥h∥p d|σ̂| ≤
∫
Γp

1 d|σ̂| = ∥σ̂∥ < +∞ (A.40)

as required. Conversely, suppose
∫
Γ0
∥h∥p d|σ| < +∞. Note as h 7→ max(1, ∥h∥p) and h 7→

h
max(1,∥h∥p)

are con-

tinuous in C([0, 1]) and dΓ(γ1, γ2) ≥ ∥h1 − h2∥∞, both (h, ξ) 7→ max(1, ∥h∥p) and (h, ξ) 7→ ( h
max(1,∥h∥p)

, ξ) are

continuous w.r.t. dΓ. Define σ̂ through the (rescaled) push-forward σ̂(h, ξ) = max(1, ∥h∥p) · T♯σ(h, ξ) where

T : Γ0 → Γp is defined by the map T (h, ξ)
def.
=
(

h
max(1,∥h∥p)

, ξ
)
. T is Borel measurable, therefore σ̂ is a Borel

measure which satisfies

∀ϕ ∈ Cb(Γp),

∫
Γp

ϕdσ̂ =

∫
Γ0

max(1, ∥h∥p)ϕ

(
h

max(1, ∥h∥p)
, ξ

)
dσ(h, ξ). (A.41)

Furthermore, σ̂ ∈M(Γp) as ∣∣∣∣∣
∫
Γp

ϕ dσ̂

∣∣∣∣∣ ≤ ∥ϕ∥∞
∫
Γ0

(1 + ∥h∥p) d|σ|(h, ξ), (A.42)

so ∥σ̂∥ < +∞. The last step is to confirm Θ(σ̂) = Θ(σ). For any ψ ∈ C([0, 1]× Ω) observe

∫
[0,1]×Ω

ψ(t, x) dΘ(σ̂)(t, x) =

∫
Γp

(∫ 1

0

h(t)ψ(t, ξ(t)) dt

)
dσ̂(h, ξ) (A.43)

=

∫
Γ0

max(1, ∥h∥p)

(∫ 1

0

h(t)

max(1, ∥h∥p)
ψ(t, ξ(t)) dt

)
dσ(h, ξ) (A.44)

=

∫
[0,1]×Ω

ψ(t, x) dΘ(σ)(t, x). (A.45)
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This shows the “⊂” direction, therefore we conclude the equality in (A.37). For continuity of Θ, [31], Theorem 1,
Section 1.6 states that Θ is continuous from (Cb(Γp))

′ to (C([0, 1]× Ω))′ if and only if for every ψ ∈ C([0, 1]× Ω)
there exists a finite collection Φ ⊂ Cb(Γp) such that

∀σ ∈M(Γp),

∣∣∣∣∣
∫
[0,1]×Ω

ψ(t, x) dΘ(σ)

∣∣∣∣∣ ≤ max
ϕ∈Φ

∣∣∣∣∣
∫
Γp

ϕ(h, ξ) dσ(h, ξ)

∣∣∣∣∣ . (A.46)

From Lemma 2.1, define Ψ(t, h, ξ) = h(t)ψ(t, ξ(t)), then ϕ(h, ξ)
def.
=
∫ 1

0
Ψ(t, h, ξ) dt is continuous and bounded as

|ϕ(h, ξ)| ≤ ∥ψ∥∞∥h∥1 ≤ ∥ψ∥∞ for each (h, ξ) ∈ Γp, p ≥ 1. This confirms the continuity of Θ because

∫
[0,1]×Ω

ψ(t, x) dΘ(σ) =

∫
Γp

(∫ 1

0

h(t)ψ(t, ξ(t)) dt

)
dσ(h, ξ) =

∫
Γp

ϕ(h, ξ) dσ(h, ξ) (A.47)

for each σ ∈M(Γp), therefore Φ = {ϕ} is sufficient. The p = +∞ case is special because for each t ∈ [0, 1], the

map ϕ(h, ξ)
def.
= Ψ(t, h, ξ) is continuous and bounded by ∥ψ∥∞. This leads to∫

Ω

ψ(t, x) d(et)♯σ =

∫
Γ∞

(h(t)ψ(t, ξ(t))) dσ(h, ξ) =

∫
Γ∞

ϕ(h, ξ) dσ(h, ξ), (A.48)

so we conclude similarly that (et)♯ is continuous in (C(Ω))′ as required.

Appendix B. Results for the structure of E

Here we prove Theorem 3.1 as a result of a sequence of simple lemmas. We start with results for the linear
term W. Throughout this section, we fix lower semi-continuous w : Γ→ [0,+∞] for a complete separable metric
space Γ and define W:M+(Γ)→ [0,+∞] by

∀σ ∈M+(Γ), W(σ)
def.
=

∫
Γ

w(γ) dσ(γ). (B.1)

B.1 Properties of W

The following lower semi-continuity result is well known (see for instance [16], Prop. 7.1, or [17], Prop. 5.1.7).

Lemma B.1 (Fatou’s lemma for measures). If w : Γ→ [0,+∞] is lower semi-continuous, then the functional
W is lower semi-continuous onM+(Γ) with respect to the narrow topology.

Compactness in spaces of measure can be characterised by the following lemmas.

Lemma B.2 (Prokhorov’s theorem on measure spaces, e.g. [32], Thms. 7.1.7, 8.6.7–8).
If Γ is a complete separable metric space and A ⊂M(Γ) is a family of Borel measures, then

A is relatively compact in the narrow topology if and only if A is tight and norm-bounded. (B.2)

Because of this lemma, we can give sufficient conditions for the compactness of sub-levelsets of W.

Lemma B.3. Let D be a closed subset of M+(Γ) and denote Ut = {σ ∈ D s.t. W(σ) ≤ t} for t ∈ R. If
w : Γ→ [0,+∞] is lower semi-continuous, w has compact sub-levelsets, and Ut is bounded in norm for each t,
then W |D has compact sub-levelsets in the narrow topology ofM+(Γ).
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Proof. As w ≥ 0, Lemma B.1 shows that W is lower semi-continuous, therefore Ut is closed. As Ut is bounded,
Lemma B.2 equates compactness with tightness. Finally, [4], Proposition A.2 (adapted from [17], Rem. 5.1.5)
states:

If Γ is a complete separable metric space and w has compact sub-levelsets, then Ut is tight for each
t ∈ R.

We conclude that Ut is narrowly compact for each t ∈ R.

We now confirm that the results of this section are applicable to the examples of Sections 1.1 and 6.

Lemma B.4 (Lower semi-continuity and coercivity of optimal transport regularisations). Choose α, β, δ > 0,
Γ a closed subset of Γ∞, and let w : Γ→ ]0,+∞] be defined by

∀(h, ξ) ∈ Γ, w(γ)
def.
=


∫
h>0

[
α+ β

2 |ξ
′|2 + βδ2

2

(
h′

h

)2]
hdt

√
h,
√
hξ ∈ AC2

+∞ otherwise.
(B.3)

Then w is lower semi-continuous and has compact sub-levelsets (in the metric dΓ).

Proof. It has already been shown that the map hδξ 7→ w(h, ξ) is lower semi-continuous with compact sub-
levelsets in

{
t 7→ h(t)δξ(t) | w(h, ξ) < +∞

}
with the flat metric [4], Proposition 3.10. In the proof of Lemma A.1,

we showed that this metric is isometrically equivalent to dΓ, so w is also lower semi-continuous and coercive
with respect to dΓ.

Note that the lower semi-continuity and coercivity of the Benamou–Brenier penalty follows immediately if
we consider it to be the function

(h, ξ) 7→ w(h, ξ) +

{
0 h = 1

+∞ else.
(B.4)

The constraint-set is closed, therefore the function is still coercive and lower semi-continuous.

B.2 Properties of D

We consider D of the form in (3.4), that is for some lower semi-continuous φ : Γ→ ]0,+∞],

D
def.
=

{
σ ∈M+(Γ) s.t.

∫
Γ

φdσ ≤ 1

}
. (B.5)

The only difference between w and φ is that φ > 0, so we can re-use many of the results for W.

Lemma B.5. If φ : Γ→ ]0,+∞] is lower semi-continuous, then D is closed and

Ext (D) = {0} ∪
{
φ(γ)−1δγ | φ(γ) < +∞

}
. (B.6)

Furthermore, if infγ∈Γ φ(γ) ≥ ε > 0, then D is bounded. Finally, if φ has compact sub-levelsets, then D is also
compact.

Proof. Note by Lemma B.1 that D is a sub-levelset of the lower semi-continuous function σ 7→
∫
Γ
φdσ, therefore

it is closed. Also, for any σ ∈M+(Γ) with ∥σ∥ > ε−1, we have
∫
Γ
φdσ > 1. In particular, σ /∈ D, soD is bounded.

If φ has compact sub-levelsets, taking w = φ in Lemma B.3 confirms that D is compact.
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It remains to prove (B.6), we begin with the “⊃” inclusion. By non-negativity, note that for all σ, σ0, σ1 ∈ D
and λ ∈ ]0, 1[,

σ = λσ0 + (1− λ)σ1 =⇒ σ0, σ1 ≪ σ, i.e. supp(σi) ⊂ supp(σ). (B.7)

In particular, taking σ = 0, we obtain σ0 = σ1 = 0, hence 0 ∈ Ext (D). Now, setting σ = φ(γ)−1δγ for some
γ ∈ Γ with φ(γ) < +∞, we deduce that

σ0 =
α

φ(γ)
δγ , σ1 =

β

φ(γ)
δγ , for some α, β ∈ [0, 1]. (B.8)

Since
∫
Γ
φdσ = 1, we must have λα+(1−λ)β = 1 hence α = β = 1, so that σ0 = σ1 = σ. As a result, φ(γ)−1δγ

is an extreme point of D.
To show that this inclusion is sharp, we make the following claim.

Claim B.6. If σ ∈ D and there exists γ0, γ1 ∈ supp(σ) distinct, then σ ∈ ]σ0, σ1[ for some σ0, σ1 ∈ D
such that γ0 ∈ supp(σ0) \ supp(σ1) and γ1 ∈ supp(σ1) \ supp(σ0).

Proof of claim. Let r = 1
2 dΓ(γ0, γ1) and set Γ1 = {dΓ(γ, γ1) < r}. Define σ1 = 1Γ1σ and σ0 =

σ − σ1. By the definition of support, for both i = 0, 1 we have σi ̸= 0, γi ∈ supp(σi) \ supp(σ1−i).
Also, ασ0 + βσ1 ∈M+(Γ) for all α, β ≥ 0, the only challenge is the constraint with φ.
Case

∫
Γ
φdσi = 0: In this case, by non-negativity, σi = 0 so supp(σi) = ∅ contradicts the

assumption. We conclude that
∫
Γ
φdσi ∈ ]0, 1[ for both i = 0, 1.

Else: Set λ
def.
=
∫
Γ
φdσ0 ∈ ]0, 1[ and

∫
Γ
φdσ1 =

∫
Γ
φ( dσ − dσ0) ≤ 1− λ ∈ ]0, 1[, therefore

σ = λ
σ0
λ

+ (1− λ) σ1
1− λ

, (B.9)

which confirms σ ∈ ]σ0, σ1[ as required.

This claim immediately confirms that all extreme points must have at most one point in their support.
Combined with the constraint

∫
Γ
φdσ ≤ 1, we must have

Ext (D) ⊂ {0} ∪
{
λδγ | γ ∈ Γ, φ(γ) < +∞, 0 < λ ≤ φ(γ)−1

}
. (B.10)

Finally, if 0 < λ < φ(γ)−1, then λδγ ∈
]
0, φ(γ)−1δγ

[
, so λδγ /∈ Ext (D). This confirms that the only extreme

points are those found in the first half of the proof.

B.3 Lower semi-continuity of E

Recall that E:M+(Γ)→ R is defined by E(σ) = F(σ)+W(σ). In Theorem 3.1 we assume φ,w : Γ→ [0,+∞]
are lower semi-continuous, therefore Lemmas B.1 and B.5 confirm that W is lower semi-continuous and D is
closed. It remains to show that F is lower semi-continuous. Lemma 2.3 shows that (et)♯ is narrowly continuous,
therefore F inherits lower semi-continuity from each Fj . From now on we consider any closed subset Γ ⊂ Γ∞
with the topology induced by dΓ.
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B.4 Compactness of sub-levelsets of E

We now prove that minimisers of E exist by showing that E has compact sub-levelsets. Note in the case φ
has compact sub-levelsets, then D is already compact (Lem. B.5), so the following theorem is not required.

Theorem B.7. Suppose D ⊂M+(Γ) is narrowly closed, bounded, and F is convex lower semi-continuous. If F
is bounded from below, w : Γ→ [0,+∞] is lower semi-continuous and has compact sub-levelsets, then E |D also
has compact sub-levelsets.

Proof. Lemma B.3 shows that W |D has compact sub-levelsets. Therefore for any t ∈ R

{σ ∈ D | E(σ) ≤ t } = {σ ∈ D | F(σ) +W(σ) ≤ t } (B.11)

⊂
{
σ ∈ D |W(σ) ≤ t− inf

σ̃∈D
F(σ̃)

}
. (B.12)

The function E is lower semi-continuous, so the left-hand side is closed and the right-hand side is compact by
assumption. We conclude that the left-hand side is compact for each t.

B.5 E has sparse minimisers

Since the function F is of the form

F(σ) =

T∑
j=0

Fj(Aj(etj )♯σ) for some Aj :M(Γ)→ Rm, convex Fj , (B.13)

with Aj as in (3.1), F is convex lower semi-continuous. We can therefore use a representer theorem (e.g. [13],
Cor. 3.8) to demonstrate the sparsity of minimisers.

Lemma B.8. Suppose argminσ∈D E(σ) ̸= ∅ for some D ⊂ M+(Γ) closed and bounded of the form in (B.5).
Then there exists a minimiser σ∗ ∈ D such that

σ∗ =

s∑
i=1

aiδγi for some ai ≥ 0, γi ∈ Γ with φ(γi) < +∞, (B.14)

where s ≤ m(T + 1) + 1. If in addition
∫
φdσ∗ < 1, then s ≤ m(T + 1).

Proof. We reformulate the problem minσ∈D E(σ) as

min
σ∈V

H(Ãσ) +R(σ) (B.15)

where V is the vector space of all σ ∈M(Γ) such that w ∈ L1
|σ|(Γ), R is a convex regulariser

R(σ)
def.
= W (σ) + χD(σ) where χD(σ)

def.
=

{
0 σ ∈ D
+∞ else,

(B.16)

with linearly closed level sets. The observation operator Ã : V → (Rm)(T+1), is linear, defined as σ 7→
(Aj(etj )♯σ)0≤j≤T , and H : (a0, . . . , aT ) 7→

∑T
j=0 Fj(aj) is a convex “fidelity term”.
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Set k
def.
= m(T + 1). We claim that there exists a minimiser σ∗ such that

σ∗ =

k+1∑
i=1

θiµ
i, with

k+1∑
i=1

θi = 1, and ∀i, θi ≥ 0, µi ∈ Ext (D) . (B.17)

To prove this, fix t
def.
= R(σ) for some arbitrary σ ∈ argminσ∈D E(σ) and define

D̃
def.
= D ∩ {σ ∈ V | ⟨w, σ⟩ = t } ⊂ {R ≤ t}. (B.18)

We now split the analysis into two cases depending on the value of t.

Case t = infV R: In the case t = infV R = 0, [13], Corollary 3.8 tells us that there exists a minimiser σ∗ which

belongs to an elementary face of {R ≤ t} with dimension at most k, therefore also a face of D̃ with
dimension at most k. In particular, by CarathÃ©odory’s theorem, we can express σ∗ in the form in

(B.17) but with µi ∈ Ext
(
D̃
)
.

Observe that for t = 0, we can equivalently write D̃ as

D̃ =

{
σ ∈M+({w = 0}) |

∫
Γ

φdσ ≤ 1

}
⊂ D (B.19)

therefore the extreme points of D̃ can be computed explicitly. By Lemma B.5,

Ext
(
D̃
)
= {0} ∪

{
φ(γ)−1δγ | φ(γ) < +∞, w(γ) = 0

}
⊂ Ext (D) , (B.20)

so (B.17) is satisfied.
Case t > infV R: In this case the minimiser σ∗ from [13], Corollary 3.8 belongs to an elementary face of {R ≤ t}

with dimension at most (k − 1) (hence also for D̃).
Since {σ ∈ V | ⟨w, σ⟩ = t } is a hyperplane, it is possible to prove (see for instance [19]) that σ∗ belongs

to a face of D with dimension at most k. The formulation of (B.17) is again given by CarathÃ©odory’s
theorem.

We may now deduce (B.14) from (B.17). From Lemma B.5, we know that the extreme points of D are either 0
or of the form φ(γ)−1δγ where φ(γ) < +∞, hence the general form of (B.14) where s ≤ k + 1.

In the special case of
∫
φdσ∗ < 1, one of the atoms µi must be 0. As a result, we may remove it from the

sum, so that s ≤ k.
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