
1

Machine learning and sequential subdomain optimization for

ultrafast inverse design of 4D-printed active composite structures

Xiaohao Sun1#, Luxia Yu1#, Liang Yue1#, Kun Zhou2, Frédéric Demoly3,4, Ruike Renee

Zhao5, H. Jerry Qi1*

1The George W. Woodruff School of Mechanical Engineering, Georgia Institute of

Technology, Atlanta, GA 30332, USA

2Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering,

Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

3ICB UMR 6303 CNRS, Belfort-Montbeliard University of Technology, UTBM, 90010

Belfort, France

4Institut universitaire de France (IUF)

5Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA

These authors contributed equally to this work.

*Corresponding author: qih@me.gatech.edu

2

Abstract

Shape transformations of active composites (ACs) depend on the spatial distribution and

active response of constituent materials. Voxel-level complex material distributions offer a

vast possibility for attainable shape changes of 4D-printed ACs, while also posing a

significant challenge in efficiently designing material distributions to achieve target shape

changes. Here, we present an integrated machine learning (ML) and sequential subdomain

optimization (SSO) approach for ultrafast inverse designs of 4D-printed AC structures. By

leveraging the inherent sequential dependency, a recurrent neural network ML model and

SSO are seamlessly integrated. For multiple target shapes of various complexities, ML-

SSO demonstrates superior performance in optimization accuracy and speed, delivering

results within second(s). When integrated with computer vision, ML-SSO also enables an

ultrafast, streamlined design-fabrication paradigm based on hand-drawn targets.

Furthermore, ML-SSO empowered with a splicing strategy is capable to design diverse

lengthwise voxel configurations, thus showing exceptional adaptability to intricate target

shapes with different lengths without compromising the high speed and accuracy. As a

comparison, for the benchmark three-period shape, the finite element method and

evolutionary algorithm (EA) method was estimated to need 227 days for the inverse design;

the ML-EA achieved design in 57 min; the new ML-SSO with splicing strategy requires

only 1.97 s. By further leveraging approximate symmetries, the highly efficient ML-SSO

is employed to design active shape changes of 4D-printed lattice structures. The new ML-

SSO approach thus provides a highly efficient tool for the design of various 4D-printed,

shape-morphing AC structures.

Keywords: active composites; morphing structures; 4D printing; inverse design; machine

learning.

3

1. Introduction

Shape transformation of active composites (ACs) depend on the spatial distribution and

active response of constituent materials. Multimaterial 3D/4D printing[1-5] allows for easy

implementation of voxel-level distribution of active materials/properties, thus permitting a

vast space of active shape changes that can be achieved. To fully exploit this space, inverse

design (i.e., finding the optimal material distribution to achieve a target shape) is highly

desired, which is yet challenging due to the tremendous design space[6, 7]. To tackle these

challenges, gradient-based and gradient-free methods have been developed. For instance,

the gradient-based topology optimization (TO) has been used for designing active shape

changes of ACs[8-10] or optimizing structure compliances[11]. The TO, however, typically

requires the complicated derivation of gradients and may encounter difficulties when the

ACs involve geometric or material nonlinearity. Alternatively, the gradient-free

evolutionary algorithm (EA) has also been adopted for designing active shape changes of

ACs[12-14]. In these EA implementations, finite element (FE) methods are used for

numerous shape predictions (referred to as FE-EA), leading to high computational cost.

Although reduced-order models have been developed to replace FE for faster EA, they

suffer from either relatively low accuracy (against FE) [15] or limited design freedom (1D

material distribution) [16]. Accurate and efficient inverse design strategies remain to be

developed.

Machine learning (ML)[17] opens up new avenues for developing fast, computationally

affordable, and high-fidelity models for both forward prediction and inverse design of a

variety of material responses. Existing works mainly focused on optimizing or predicting

mechanical properties of materials, such as strength and toughness of composites[18, 19],

stress and strain fields of composites[20], Poisson's ratio of auxetic metamaterials[21],

responses of soft pneumatic robots[22], among others [23, 24]. However, there is limited

4

work on exploiting ML for designing active shape-change responses of ACs[7]. For

voxelized AC beams, Zhang et al.[25] explored performances of multiple ML models for

the forward prediction problem. Our recent work[26] demonstrated that the recurrent

neural network (RNN) is particularly suited for the beam problem as it inherently preserves

a sequential dependency, similar to that in beam deformation. The RNN-based ML model

thus demonstrated exceptional accuracy in forward shape predictions based on material

distributions. The ML was then integrated with EA (ML-EA), enabling fast inverse designs

for complicated target 2,5D shapes, typically in 10-60 minutes. Although ML-EA has

significantly outperformed conventional methods such as FE-EA, it also has two major

limitations. First, there remains a strong demand for faster or even real-time inverse designs

for AC beams. One key limiting factor for the design speed is that EA seeks solutions in a

vast design space comprising all voxels, which is relatively inefficient. Second, an ML

model, once trained, is specific to certain beam length and voxel configuration, making it

inapplicable to the design of target shapes that have different lengths (hence different voxel

numbers) or finer features (such as large curvature) beyond the design space of current

voxels.

This work addresses these issues by leveraging the sequential dependency of beam

deformations. We first present a design approach that seamlessly combines an RNN ML

model and a sequential subdomain optimization (SSO) algorithm to realize ultrafast inverse

designs for target shapes of various complexities, producing results in second(s), which is

hundreds or thousands times faster than conventional ML-EA method. In addition, the

sequential characteristic allows for accurate predictions for beams with fewer lengthwise

voxels than that of the training data. It also permits the splicing of multiple predicted shapes,

extending accuracy to beams with more lengthwise voxels. Moreover, this splicing strategy,

when integrated with ML-SSO, also permits ultrafast inverse designs for a spectrum of

5

target intricate shapes with different lengths, using lengthwise voxel configurations

different from that for the ML training. Finally, the highly efficient ML-SSO is employed

for the inverse design of active shape changes of 4D-printed lattice structures. Our

approach thus facilitates the development of 4D printing towards intelligent and

streamlined design and fabrication of various shape-morphing AC structures.

6

Figure 1. Schematic illustration of the active composite (AC) beam and the sequential
dependency. (a) Actuation of an AC beam with voxel-level material distribution. The two
materials, encoded as “1” (active) and “0” (passive), have a volume expansion mismatch.
(b) Architecture of an RNN, which shows a similar structure with the AC beam. (c) Density
scatter plots of the ground-truth versus ML-predicted values of the coordinate x (left) and
y (right). The color indicates the relative point density. (d) Gradients (or sensitivities) of
actuated coordinates (x, y) of the 12th and 24th voxel columns with respect to all voxels
(i.e., ∂xi/∂Mv and ∂yi/∂Mv for i=12 and 24, where v=1, 2, …, 4×24 represents the voxel

7

number, Mv represents the material encoding of voxel v), based on an all-passive (Mv=0)
state. The color of an arbitrary voxel represents the gradient of xi or yi (unit: mm) with
respect to the encoding of this voxel (unitless).

2. Results and discussions

2.1 Physical problem and ML model

The physical problem is illustrated in Figure 1a. Here we consider an AC beam whose left

end is fixed. It is made of two materials: an active material '1' expands under the thermal

actuation while a passive material '0' does not. The beam is composed of Nx (length- or x-

direction) × Ny (thickness- or y-direction) voxels, each assigned with an active or passive

material. The active shape change, which is induced by the expansion mismatch under the

thermal actuation, depends on the material distribution (Figure 1a). With a dataset

generated by FE simulations, an RNN-based ML model is trained to predict actuated shapes

for given material distributions (Figure 1b). RNN can use the “past” information to predict

the “current” response and thus is highly capable for learning sequential data. It is noted

the deflection of the AC beam has a similar sequential characteristic, i.e., the displacement

of any points only depends on the points to their left (or before them); the displacement of

the points to their right (or after them) would not affect their displacement. This feature

inspires us to use RNN. For each step, RNN receives a single column of voxel encodings

and produces the coordinates of the column (sampled on mid-axis of the beam). By

repeating this process, RNN sequentially processes all voxel columns to predict the shape

of entire beam (Figure 1b). Details on the FE model, dataset, and the architecture and

training of the ML model are provided in Sections 4.1 and 4.2.

As shown in our previous study[26], the RNN ML model demonstrates high accuracy for

cases with different numbers of voxels. In this work, we adopt the ML model trained on 24

(Nx) × 4 (Ny) voxels. Notably, the coordinates (x, y) are sampled from the mid-axis,

8

rightmost mesh point of each voxel column to represent a shape, which is different from

the middle point as used in our previous work (Figure 1b). This choice of sampling points

has two merits. First, it achieves higher prediction accuracy with R2 = 0.99987 for x and

0.99986 for y, as shown in regression (or density scatter) plots of the ground-truth versus

ML-predicted coordinates of the testing dataset (Figure 1c). The increased accuracy is

attributed to the better sequential characteristic of the column rightmost points. Second, the

new sampling points enable the ultrafast SSO optimizations as will be introduced in Section

2.2.

As mentioned above, since the left end of the actuated beam is fixed, the coordinate of a

voxel column is dependent on the voxels in the current column and the left of the current

column (nearer the fixed end). Similarly, the architecture of RNN determines that the

“current” output is dependent on the “current” and “past” inputs. To illustrate this feature,

we display the gradients (or sensitivities) of RNN-predicted coordinates (x, y) of the 12th

and 24th voxel columns with respect to all voxels (i.e., ∂xi/∂Mv and ∂yi/∂Mv for i=12 and

24, where v=1, 2, …, 4×24 represents the voxel number, Mv represents the material

encoding of voxel v), based on a state where all voxels are initially passive materials (Mv=0)

(Figure 1d). The gradients are calculated through automatic differentiation as described in

Section 4.3. We see that (x12, y12) depend on the first 12 voxel columns only, while (x24, y24)

depend on all the voxels. The results evidently showcase that the RNN inherently preserves

the sequential data dependency of the beam shape.

2.2 ML-SSO approach for ultrafast inverse design

Although the ML model achieves high accuracy in the forward prediction, applying it to

the inverse map (from shape to design) is still challenging due to the “one-to-many”

characteristic (i.e., one actuated shape could be achieved by distinct designs)[7]. This is

9

particularly the case considering the large design space and the high-dimensional data for

shape representation. To address this challenge, a straightforward approach is to combine

ML with optimization algorithms such as EA[26]. However, as a stochastic search

algorithm, EA seeks solutions in a vast design space comprising all voxels, which is

inefficient.

10

Figure 2. Demonstration of ML-SSO on inverse design problems. (a) Schematic of ML-
SSO. (b) One-period target and ML-SSO optimized shape with Nsub=1. (c) Two-period
target and ML-SSO optimized shape with Nsub=1. (d) Three-period target, ML-SSO
optimized shape with different Nsub values, and illustration of optimization sequence with
Nsub=2. (e) Half-butterfly target, ML-SSO optimized shape with different Nsub values, and
illustration of optimization sequence with Nsub=2. All ML-SSO designs are based on Nx=24.

11

In this work, we present an ML-empowered SSO approach which can further leverage the

inherent sequential characteristic. Instead of directly optimizing the entire domain, this

approach sequentially optimizes subdomains, composed of Nsub columns, from left to right

(Figure 2a). In each optimization step, SSO receives the coordinates of Nsub target points

(highlighted red “o”) and optimizes the material distribution in the corresponding

subdomain (highlighted yellow domain) such that the RNN-predicted coordinates of

actuated points (highlighted blue “+”) match with the targets. Once a subdomain, e.g., (i-

1), is optimized, the target points and design domain move one step forward for the next

subdomain, i, as seen by the one-step sliding of the highlighting window in Figure 2a. Due

to sequential dependency, the optimization of subdomain i would not affect the optimized

preceding subdomains (those to the left of subdomain i) except the overlapping domain of

(i-1) and i (see the rightmost panel of Figure 2a). Here, we choose Nsub to range from 1 to

3. When Nsub=1, there is no overlap between two consecutive subdomains. As will be

detailed later, a larger Nsub can improve the optimization accuracy. For the optimization of

individual subdomains, we employ a brute-force approach, calculating the subdomain

shapes of all possible designs and retaining the optimal one. This ensures the local

optimality of found solution while not requiring many shape evaluations as the chosen Nsub

is small. For larger Nsub, the subdomain EA or other stochastic search algorithms may be

used to reduce computational cost. The loss function Lsub for each subdomain is defined as

 (1)

where (xsub,j, ysub,j) are the ML-predicted sampled point coordinates for the j-th column of

the considered subdomain, !𝑥#!"#,% , 𝑦#!"#,%& are the corresponding target coordinates.

Compared to the ML-EA on entire domain, ML-SSO reduces computational cost in two

aspects. First, the design space of a single subdomain is much smaller than the whole

domain, thus drastically reducing the number of potential design evaluations required. For

() ()2 2

, , , ,1

1 ˆ ˆsubN
sub sub j sub j sub j sub jj

sub

L x x y y
N =

é ù= - + -ê úë ûå

12

instance, for Nsub = 2, the brute-force method assesses 256 (=2Ny×Nsub=28) potential

subdomain designs per step, totaling 5888 (=256×23, where 23 = (Nx–Nsub+1) is the number

of subdomains to optimize) evaluations, which is much smaller than the number (typically

75,000-375,000[26]) of global ML-EA. Second, these are the numbers of potential designs

that need to be evaluated. In ML-SSO, the evaluation of each candidate design (comprising

Nsub columns only) is also more efficient. This is because during each optimization step,

RNN permits only processing the current subdomain and predicting its coordinates (xsub,j,

ysub,j), j ∈	[1,Nsub], based on the stored hidden state, thereby bypassing the need to evaluate

the preceding or subsequent subdomains. This further significantly reduces computational

costs compared to ML-EA which demands a full-domain shape evaluation for each

candidate design.

2.3 Performance of ML-SSO on numerically generated target shapes

We now consider multiple numerically generated target shapes of different complexities to

evaluate the performance of ML-SSO with different Nsub values. In this sub-section, we

focus on the case with 24×4 voxels. The first two target shapes, the one-period and two-

period sinusoidal shapes, are optimized using Nsub = 1. To provide a more intuitive

understanding of ML-SSO, in Figure 2b and 2c, we show the optimized and target shapes

with symbols of varying colors to visualize the optimization sequence. Each optimized

point (“+”) is the one closest to its the corresponding target point (“o”) among all possible

designs for the specific subdomain. For both two targets, excellent agreements between the

optimized shapes and the targets are achieved. Although some discrepancies can be

observed, e.g., in the middle of the two-period shape where the curvature is relatively large,

the subsequent optimized points can still accurately capture the target shape (Figure 2c),

demonstrating the high capability of our approach.

13

Next, two more complicated targets are considered: the three-period shape and the half-

butterfly shape. As shown in Figure 2d and 2e, the sensitivity of optimized shapes to the

Nsub is studied. For both targets, Nsub=1 leads to notable discrepancies between the

optimized and target shapes. With the increased Nsub, the optimization accuracy is

significantly improved. This is because ML-SSO operates on a greedy strategy, selecting

the best shape at each step. Such an approach might lead to a short-sighted problem for

regions with sharp turns, missing the target of the subsequent subdomain in the favor of

the best match for the current one. Increasing Nsub effectively broadens the optimization

foresight and can, to some extent, mitigate this problem, although it concurrently escalates

the computational cost. To gain more insights, we show in Figure 2d and 2e the

optimization sequence for the cases with Nsub=2, where each voxel column (except the first

and last ones) is involved in two consecutive subdomains and thus optimized twice (see,

for example, the overlapping domain of (i-1) and i in the rightmost panel of Figure 2a).

The temporarily optimal point denotes the one achieved in the first optimization of its

involved subdomain and is depicted in gray “+” symbols. The discrepancy between the

temporarily optimal point and the optimal point often appears in regions with sharp turns,

manifesting the short-sighted problem.

14

Figure 3. (a) RMSEs of optimized shapes by ML-SSO (with different Nsub values) and
ML-EA for the four target shapes considered in Figure 2. The RMSE is calculated using
Eq.(2). (b) Time cost of the corresponding optimizations, which are run using the Intel Core
i9-10900 CPU and NVIDIA Quadro P620 GPU.

We further quantitively compare the performance of ML-SSO with different Nsub values on

these four targets in terms of accuracy (Figure 3a) and time cost (Figure 3b). The ML-EA

optimization results are already available[26] and also compared here. The accuracy is

quantified by the root-mean-squared errors (RMSEs)

 (2)

between the optimized coordinates (xi, yi) and target coordinates (𝑥#& , 𝑦#&) for all Nx sampling

points. As shown in Figure 3, for the relatively simple one-period and two-period shapes,

ML-SSO with Nsub=1 which only takes 0.23 s achieves similar RMSEs with that of ML-

() ()2 2

1

1 ˆ ˆRMSE
2

xN
i i i ii

x

x x y y
N =

é ù= - + -ë ûå

15

EA which takes 660 s. For the most complex three-period shape, ML-SSO with Nsub=3

takes 11.8s and achieves much better RMSEs than that of ML-EA, which takes 3240 s. In

short, ML-SSO outperforms or matches ML-EA in optimization accuracy while being

significantly (at least two orders of magnitude) faster. This demonstrates very high efficacy

of our approach in solving inverse material design problems for complicated target shapes,

which is attributed to the seamless integration of RNN-ML and SSO that fully leverages

sequential characteristics for highly efficient optimal design searches.

2.4 Streamlined 4D printing design and fabrication based on hand-drawn lines

Next, we apply the ultrafast ML-SSO approach to hand-drawn target shapes to enable a

streamlined design-fabrication paradigm for 4D printing. In general, these target shapes are

more challenging to optimize, because the discrete target points are uniformly sampled

from the identified shape, which could have inappropriate spacing and thus produce

difficulties for the optimization. Following our previous work[26], computer vision (CV)

algorithms are employed for the automatic identification of target shapes from hand-drawn

lines. The ML-SSO is then utilized for the inverse design, and the optimized material

distributions can be readily 4D-printed using the grayscale digital light processing (g-

DLP)[2, 4] technique. The material system is different from that of our previous work[26].

More details on the printing method, material and actuation mechanism are provided in

Section 4.4.

16

Figure 4. Ultrafast ML-SSO enabled streamlined design and fabrication for 4D printing
based on hand-drawn lines. From top to bottom: “G”, “T”, half-butterfly, mountain. From
left to right: hand-drawn lines, optimized shapes by ML-SSO (with different Nsub values)
and ML-EA, the corresponding performance in terms of RMSE and time cost, the optimal
ML-SSO designs selected (with greater Nsub, and RMSE < 1 mm) out of those in column 3
(arrows), and 4D-printed, actuated shapes. All scale bars: 10 mm.

Figure 4 shows the ML-SSO design and fabrication results for four different target shapes.

The ML-EA optimized designs are available[26] and also presented here for the evaluation

of ML-SSO performance. Shown in five columns (from left to right) are hand-drawn lines,

17

optimized shapes by ML-SSO (with different Nsub values, solid lines) and ML-EA (dashed

lines) compared against the targets (symbols), the corresponding performance in terms of

RMSE and time cost, the optimal ML-SSO designs selected (with greater Nsub, and RMSE

< 1 mm) out of those in column 3 (arrows), and experimentally 4D-printed, actuated shapes.

In column 5, all printed strips are initially flat and only the actuated shapes are shown. For

all the targets, the optimized shapes by both ML-SSO and ML-EA agree well with the

target shapes, whilst ML-SSO is much faster than ML-EA. The optimal ML-SSO designs

are finally converted into grayscale slices for 4D printing through g-DLP, and the printed

strips transform into target shapes upon actuation. These results demonstrate an ultrafast,

streamlined design-fabrication paradigm for 4D printing.

2.5 Active beams with varying number of lengthwise voxels: forward predictions

The preceding sections demonstrate ultrafast inverse designs enabled by ML-SSO for both

numerically generated and hand-drawn target shapes. However, these designs have been

constrained to fixed beam length (80 mm) and voxel configuration (24×4 voxels) on which

the ML model is trained, implying a relatively limited design space. For example, a

configuration of Nx=24 lengthwise voxels might struggle to capture complicated target

shapes, such as the six-period shape, which would be very challenging for Nx=24 as it

would require four voxels in the length direction to capture one period. Therefore, more

lengthwise voxels (Nx > 24) are needed to tackle this design problem.

To further enhance design capabilities, we aim for the ML-based methods to address both

forward and inverse problems for beam structures with varying lengths or Nx values. Here,

we fix the voxel number Ny=4 in thickness and the voxel size. Thus, the sequential

(column-by-column) prediction ability of the RNN-ML allows it to be directly applied to

structures with different Nx values and hence different lengths. For the case Nx>24, we

18

propose an ML-based splicing method, with no need for retraining the model, for forward

predictions with different Nx values.

Figure 5. Demonstration of ML-splicing on forward prediction problems of beam
structures with different Nx values. (a) Schematic of ML-splicing. (b) Prediction results for
benchmark input sequences of different Nx values.

19

As shown in Figure 5a, an input sequence (referring to a material distribution) of any

length Nx can be divided into multiple subsequences with overlaps, each with a length of

24, except for the last subsequence which can be shorter than 24. We use ML to predict the

shape of all subsequences, then concatenate them in order to obtain the full-sequence shape.

The predicted shapes of all subsequences are initially based on a fixed boundary condition

on the left end, which we refer to as being in their local spaces, while the shape of the first

subsequence is in the real space. We sequentially transform each subsequence shape into

the real space by matching the coordinates in the overlapping regions between two

consecutive subsequences. Here, we use the length of overlapping region to be Noverlap=6.

Note that the correct local concatenation angle cannot be determined if there is no

overlapping region.

Next, we perform forward predictions on multiple benchmark shapes of different lengths,

including Nx=12, 24, 48, 72, 96 (Figure 5b). The input sequences with Nx≤24 are directly

predicted using the RNN-ML without accuracy degradation. The input sequences with

Nx>24 are obtained by concatenating multiple sequences of the three-period shape and

predicted using the ML-splicing strategy. Directly applying ML to these sequences would

yield less accurate results. By using the ML-splicing strategy, we can achieve very high

prediction accuracy. Note that the ML prediction errors will inevitably accumulate with

increasing Nx and splicing times. Nonetheless, the ML-splicing predictions remain accurate

for Nx up to 72, three times Nx=24; a noticeable discrepancy only arises at Nx=96. Our

strategy thus demonstrates excellent robustness significantly (three times) beyond the

sequence length (Nx=24) of the ML training set.

20

Figure 6. Demonstration of the splicing-empowered ML-SSO on inverse design problems
using different Nx (numbers lengthwise voxels) or numbers of sampling points. Multiple
target shapes are considered, including (a) three-period shape, (b) hand-drawn mountain
shape, (c) six-period shape, and (d) “Chinese dragon” profile. Image by brgfx on Freepik
(https://www.freepik.com/free-vector/chinese-dragon-flying-clouds-isolated-white-

21

background_18054261.htm).

2.6 Active beams with varying number of lengthwise voxels: inverse designs

Next, we combine ML-SSO with the splicing strategy for inverse design problems. The

splicing strategy works in a slightly different way from the forward prediction. In the

forward prediction, each subsequence shape is transformed into the real space to infer the

correct shape. In the inverse design, instead of transforming the shapes of potential designs

into the real space for comparisons against the target, we transform the target shape (which

is initially in the real space) into the local space for the optimization. This enables the

seamless use of ML-SSO for each subsequence, bypassing unnecessary shape

transformations and improving the optimization speed. We use multiple complicated target

shapes (i.e., involving relatively sharp turns when represented using Nx=24 sampling points)

to demonstrate the capability of our splicing-empowered ML-SSO. Figure 6 shows the

optimization results for these target shapes obtained with different Nx values. The

optimized shapes together with the corresponding RMSEs and time cost are presented. FE

simulations for the optimized designs are also performed, and the FE predicted shapes and

their RMSEs are provided. The first two targets are the most complex target shapes

considered so far: the three-period shape (Figure 6a) and hand-drawn mountain (Figure

6b). With the original Nx=24, Nsub=2 is not sufficient to accurately capture the two targets

(Figure 2d and 4); using Nsub=3 significantly increases the accuracy (with RMSEs of 0.21

mm and 0.96 mm) but also takes longer optimization time (11.8 s) (Figure 6a and 6b). By

using greater Nx values (48 and 40 respectively), which offer more sampling points, these

complex targets with sharp turns can be rapidly captured with Nsub=2, achieving similar

accuracies (with RMSEs of 0.28 mm and 0.97 mm) in much shorter times (1.97 s and 1.62

s) (Figure 6a and 6b). To put these results in perspective, for the three-period shape, FE-

EA approach was estimated to need 227 days for the inverse design, the ML-EA approach

obtained the design in 54 min, our new approach requires a merely 1.97 s.

22

To further evaluate the capability of our approach, we consider a more complex six-period

target shape obtained by chaining two three-period shapes (Figure 6c). The original Nx=24

fails to capture this target (RMSE=3.33 mm) even with Nsub=3 (which takes 11.8 s), and

therefore greater Nx values are used. We then use Nx=48 with Nsub=2 and achieve an

improved accuracy (RMSE=2.01 mm) in a much shorter time (1.98 s), but an evident

discrepancy can still be observed. By further increasing Nx=60, even a smaller Nsub=1

successfully yields a high-precision optimized shape (RMSE=1.38 mm) in only 0.53 s

(Figure 6c). As the last example, we take the profile of a “Chinese dragon” art as the target

shape and again achieve excellent optimization results (RMSE=0.29 mm) very rapidly

(0.42 s with Nx=40 and Nsub=1) (Figure 6d).

These results show that although we train the ML model on a certain voxel configuration,

the splicing strategy allows for the ultrafast and accurate forward predictions and inverse

designs for structures with variable Nx values and lengths by leveraging the inherent

sequential characteristics.

2.7 Applications to rapid design of 4D-printed lattice structures

The inverse designs demonstrated so far have been constrained to the AC beam structures.

However, the voxel-level, ultrafast inverse shape-change designs for more complex

structures such as lattice structures are highly desired, which could have broader

applications but is also more challenging due to increased number of involving voxels in

an entire lattice. In this sub-section, we further show that by leveraging appropriate

symmetries, the ML-SSO can be applied in designing the active shape transformation of

4D-printed lattice structures. We focus on a periodic square lattice and optimize the

material distribution on its edges so that they achieve target shapes under actuation. The

23

design strategy can be also applied to other lattice structures, such as triangular and

hexagonal lattices.

Figure 7. Applications of ML-SSO to rapid design for active lattice structures. (a) Arbitrary

24

edge design with half of the hand-drawn mountain as a target. (b) Anti-symmetric edge
design with a simple wavy target. (c) Anti-symmetric edge design with two more complex
target shapes. In (a-c), the dashed lines represent the initial shapes of edges or lattices
before actuation.

First, we consider an arbitrary target edge shape. The material distribution is designed to

satisfy 4-fold rotational symmetry about each joint to prevent mismatches in structural

deformation. Due to the size limit of the printing stage, we use half of the hand-drawn

mountain as a target (Nx=12). We adapt its optimized design for the lattice structure,

validate the design through FE simulations, and then 4D print the lattice structure (Figure

7a). The FE results show that all edges of the lattice transform to the desired shape. In

experiments, we only print individual square lattices due to the size limit. These printed

lattices, initially square, transform into the target shape upon actuation. When tessellated,

the structure matches with the FE result. The tessellation is used solely for improved

visualization and does not affect the actuated shape.

Note that for an arbitrary target shape considered above, four (2×2) lattice cells form a

periodic unit. Next, we consider anti-symmetric target edge shapes, which are common in

lattice structures, such that a single lattice cell would be periodic. In this case, a

translational symmetry in the material distribution is satisfied, ensuring the structural

compatibility. Due to the anti-symmetry of the edge, the design is carried out on half of the

domain. For a simple wavy target (Nx=6 on its half), we perform the inverse design and 4D

printing. The initially square lattices, when actuated and tessellated, agree excellently with

the FE predictions (Figures 7b). Furthermore, we consider two more complex target shapes

(Nx=12 on the half) and use them for multiple lattice structures with identical target shapes

for all edges or distinct targets for horizontal and vertical edges. For all lattices, excellent

agreement is achieved among the target, the optimized shape, and the actuated edge shapes

of the lattice obtained from FE simulations (Figure 7c). These results demonstrate the high

25

efficacy and flexibility of our design strategy for lattice structures.

It is worth noting that a translational symmetric material distribution can be used to ensure

the structural compatibility as long as the target edge shape has equal slopes at two ends,

without necessarily being antisymmetric. Additionally, by employing appropriate target

shapes for horizontal and vertical edges, our approach can be readily used for designing

lattices with target macroscopic deformations, such as horizontal and vertical normal

strains, shear strains, and/or rigid rotations. Moreover, our design strategy is also readily

applicable to other lattice structures, such as triangular and hexagonal lattices. These results

and discussions highlight the high flexibility of our approach in designing the active shape

change of lattice structures.

3. Conclusions

We present an approach for ultrafast inverse design of 4D-printed AC beams by combining

ML and SSO. An RNN ML model is rapid and accurate in forward shape predictions based

on the material distributions. We then integrate ML with SSO for the inverse design of

material distributions based on the target shapes. For multiple target shapes of different

complexities, ML-SSO outperforms or is comparable to ML-EA in optimization accuracy

while being two to three orders of magnitude faster, delivering results in mere second(s).

The CV-integrated ML-SSO then demonstrates an ultrafast, streamlined design-fabrication

paradigm based on hand-drawn targets. Furthermore, although the ML model is trained on

a fixed voxel configuration (Nx=24, Ny=4), we present a splicing strategy that achieves

accurate shape predictions for beams with varying numbers (Nx) of lengthwise voxels with

no need for retraining the ML model. This strategy, when integrated with ML-SSO,

enhances adaptability for ultrafast inverse designs, accommodating target shapes of diverse

complexities or lengths. For highly complex target shapes, the splicing-empowered ML-

26

SSO, simply with Nx>24, proves to be more robust and rapid than the regular ML-SSO

(which requires Nx=24), achieving better or similar optimization results while reducing

time cost from 11.8 s to 1.6-2 s. For example, as a comparison, for the benchmark three

period shape, the FE-EA method was estimated to need 227 days for the inverse design;

the ML-EA achieved design in 57 min; the new ML-SSO with splicing strategy requires

only 1.97 s. Finally, the highly efficient ML-SSO is employed for the inverse design of

active shape changes of 4D-printed lattice structures. Our approach thus offers an

intelligent design-fabrication paradigm for 4D printing of various shape-morphing AC

structures.

4. Models and Methods

4.1 Finite element model for data generation

We perform FE simulations using the commercial software ABAQUS (version 2018,

Simulia, Providence, RI). The FE model follows our previous work[26] and is briefly

summarized here. An active beam with the left end fixed and under the plane strain

conditions is considered. It has a dimension of 80 mm long × 1 mm thick and is partitioned

into Nx × Ny voxels for material assignment. Both active and passive materials are modeled

as incompressible neo-Hookean solids with the same Young’s modulus but different

coefficients of thermal expansion (0.001 for active and 0 for passive materials). The shape

change is induced by applying a 100 oC temperature increase to the entire beam, which

results in a linear strain mismatch of 0.1 between the two materials. Mesh convergence

study is performed and 960×12=11520 hybrid plane strain (CPE4H) elements are adopted.

The FE model is automatically generated and run through a Python script.

To generate a dataset for ML, we focus on the voxel configuration of 24 (Nx) × 4 (Ny),

which has a large design space of 296 (≈7.92 × 1028) possible material distributions. 8600

27

random material distributions are created, and FE simulations are used to obtain their

ground-truth actuated shapes. The generated dataset is then split into training, validation,

and testing datasets with fractions of 0.7, 0.15, and 0.15. Three datasets (training, validation,

and testing) show similar statistical distributions[26].

To use RNN, a similar data structure for the beam deformation problem is utilized. A

column (y-direction) of voxels is the input of a single step and the entire input of a material

distribution is restructured into a sequence of Nx columns of voxels. Similarly, a sequence

of outputs is formed by coordinates (x, y) sampled from all columns. In general, sampling

points can be arbitrarily chosen from available mesh points. Here, to reduce computational

cost and better leverage the sequential dependency, we choose the sampling points to be

the mid-axis, rightmost mesh point of each column.

4.2 Construction and training of the RNN model

Our network architecture consists of a sequence input layer, an LSTM[27] layer, a fully

connected layer, and a regression layer. The LSTM is a special type of RNN that addresses

the issues of vanishing or exploding gradients presented in long sequences. The

implementation, training, and testing are conducted using Matlab (2020a, MathWorks,

Natick, MA). Before the training, all the input and output data are normalized through x' =

(x-mean(x))/std (x), where x and x' are the raw and normalized feature values, respectively,

and mean is the mean value and std is the standard deviation. The randomly generated raw

inputs (numerous '1' and '0') show a mean value of 0.5 and a standard deviation of 0.5. As

a result, the input state '0' and '1' become '-1' and '1' after normalization. Such normalization

is found to improve the network performance. The hidden size (number of neurons of each

neural layer) of LSTM is set as 50, and the LSTM layer has 200×(50+Ny+1) learnable

parameters. LSTM can process a sequence input of any lengths, and different time steps of

28

LSTM share the same learnable parameters.

Two ML models are trained to predict coordinate x and y separately to better identify their

respective errors. Let Fx and Fy denote the built models for x and y, respectively, we have

 , (3)

where x and y are predicted coordinate vectors whose components, xi and yi, i ∈	[1,Nx], are

coordinates of sampling points, respectively. M is the digital encoding of a material

distribution (an Ny×Nx array composed of “1” and “0”). θx and θy denote the learnable

parameter sets for Fx and Fy, respectively. The loss function is defined as the half-mean-

squared-error between the predicted coordinates (xi or yi) and true coordinates (xitrue or yitrue)

for a specific material distribution, i.e.,

 , (4)

for coordinate x and y, respectively. The training of ML models is to find the optimal θx

and θy that minimize the loss values on the training set, i.e., and .

The initial learning rate is set to 0.005, which decreases by multiplying a factor of 1 √2⁄

every 50 epochs. The training stops after the validation loss converges. The mini-batch size

during training is set to 64 or 10% of the training set size, whichever is smaller. The

adaptive moment estimation (Adam)[28] optimizer is used to train the network.

Moreover, to fully exploit the parallel computing capability of ML and improve the

optimization speed, the shape evaluation process in ML-SSO is implemented in a

vectorized form. In addition, we examine the time cost for ML prediction of massive (5000)

data with different batch sizes, and the optimal batch size is found to be 512. Note that in

ML-SSO, the number of all potential designs for each subdomain is 2^(Ny×Nsub). We thus

choose the batch size to be 512 for designs with Nsub=3 and to be 2^(Ny×Nsub) for Nsub=1

() (); , ;x x y yF F= =x θ M y θ M

() () () ()2 2

1 1

1 1,
2 2

x xN Ntrue true
i i i ii i

x x

Loss x x x Loss y y y
N N= =

= - = -å å

()min
x

Loss x
θ

()min
y

Loss y
θ

29

and 2. These strategies exploit the ML capability to deliver ultrafast and massive

predictions.

4.3 Method of gradient calculation for Figure 1d

The gradients of actuated coordinates x or y with respect to the voxel encoding can be

written as

 (5)

Since x and y are functions of M as described by (3), which involves differentiable

operations only, we use automatic differentiation to evaluate the gradients in Eq.(5) through

the dlgradient function in Matlab. As defined in Section 4.2, M is an array composed of

“1” and “0”. Here the component of M is denoted by Mv, which represents the material

encoding of voxel v, where v∈[1, Ny×Nx] represents the voxel number. The gradient values,

∂xi/∂Mv and ∂yi/∂Mv, for i=12 and 24, based on an all-passive state (Mv=0 for any v∈[1,

Ny×Nx]), are then displayed in Figure 1d.

4.4 Materials and 4D printing

The photocurable resin is prepared by mixing isobornyl acrylate (IOBA, Sigma-Aldrich)

and aliphatic urethane diacrylate (AUD, Ebecryl 8402, Allnex, GA, USA) in a weight ratio

of 1:1. Then, 1 wt% photoinitiator (Irgacure 819, Sigma-Aldrich), 0.08 wt% photo absorber

(Sudan I, Sigma-Aldrich), and 0.04 wt% fluorescent dye (Solvent green 5, Orichem

International Ltd., Hangzhou, Zhejiang, China) are added. The resin is thoroughly mixed

before printing.

The grayscale digital light processing (g-DLP) printing technique[4] is used to print the

designed structure, where the degree of curing (DoC) can be locally controlled by the

 or ¶ ¶ ¶ ¶x M y M

30

assigned light intensity. Our ML-SSO designs are transformed into grayscale printing slices,

where the active (“1”) and passive (“0”) phases correspond to grayscale percentages of 0%

(hence higher light intensity) and 60% (hence lower light intensity), respectively, which

later spatially assign the high-DoC and low-DoC phases in the printed structure,

respectively. The printed structure is then placed in an 80℃ oven for 8 hours to facilitate

monomer volatilization. The low-DoC phase contains more residual monomers that can

volatize and thus shows more volume shrinkage than the high-DoC phase at elevated

temperatures. The shrinkage strain mismatch of the two phases induces the shape

transformation.

4.5 Modification of optimal designs

Note that the material properties in experiments are different from those used in FE

simulations. Experimental characterizations show that the printed two material phases

show a modulus ratio of 0.06, while the ML-EA design assumes the identical modulus for

two constituent phases. Additionally, the practical expansion mismatch is identified to be

0.05, which is also different from that used in ML-EA (i.e., 0.1). Such issues can be

resolved by retraining the ML model based on the FE data with practical material properties

(expansion mismatch and modulus difference) and re-running the ML-EA. Here, instead

of retraining a new model, we adopt a design conversion strategy[26] to approximately

compensate effects of property difference of the two phases on the shape change, i.e., the

optimal designs are converted using the analytical curvatures of multi-layer composite

beams. The effectiveness of this strategy has been validated by FE simulations and

experiments, as detailed in our previous work[26].

Acknowledgments

H.J.Q. acknowledges the support of an AFOSR grant (FA9550-20-1-0306; Dr. B.-L. “Les”

31

Lee, Program Manager) and a gift fund from HP, Inc.

References
1. Ge, Q., H.J. Qi, and M.L. Dunn, Active materials by four-dimension printing.

Applied Physics Letters, 2013. 103(13): p. 131901.
2. Kuang, X., et al., Grayscale digital light processing 3D printing for highly

functionally graded materials. Science Advances, 2019. 5(5): p. eaav5790.
3. Cheng, J., et al., Centrifugal multimaterial 3D printing of multifunctional

heterogeneous objects. Nature Communications, 2022. 13(1): p. 7931.
4. Yue, L., et al., Single-vat single-cure grayscale digital light processing 3D printing

of materials with large property difference and high stretchability. Nature
Communications, 2023. 14(1): p. 1251.

5. Yue, L., et al., Cold-programmed shape-morphing structures based on grayscale
digital light processing 4D printing. Nature Communications, 2023. 14(1): p. 5519.

6. Demoly, F., et al., The status, barriers, challenges, and future in design for 4D
printing. Materials & Design, 2021. 212: p. 110193.

7. Sun, X., et al., Perspective: Machine learning in design for 3D/4D printing. Journal
of Applied Mechanics, 2024. 91(3): p. 030801.

8. Maute, K., et al., Level Set Topology Optimization of Printed Active Composites.
Journal of Mechanical Design, 2015. 137(11): p. 111402.

9. Geiss, M.J., et al., Combined Level-Set-XFEM-Density Topology Optimization of
Four-Dimensional Printed Structures Undergoing Large Deformation. Journal of
Mechanical Design, 2019. 141(5).

10. Tanaka, M., et al., Turing pattern-based design and fabrication of inflatable shape-
morphing structures. Science Advances, 2023. 9(6): p. eade4381.

11. Zolfagharian, A., et al., Topology-Optimized 4D Printing of a Soft Actuator. Acta
Mechanica Solida Sinica, 2020. 33(3): p. 418-430.

12. Hamel, C.M., et al., Machine-learning based design of active composite structures
for 4D printing. Smart Materials and Structures, 2019. 28(6): p. 065005.

13. Wu, S., et al., Evolutionary Algorithm-Guided Voxel-Encoding Printing of
Functional Hard-Magnetic Soft Active Materials. Advanced Intelligent Systems,
2020. 2(8): p. 2000060.

14. Athinarayanarao, D., et al., Computational design for 4D printing of topology
optimized multi-material active composites. npj Computational Materials, 2023.
9(1): p. 1.

15. Sossou, G., et al., Design for 4D printing: Modeling and computation of smart
materials distributions. Materials & Design, 2019. 181: p. 108074.

16. Wang, L., et al., Evolutionary design of magnetic soft continuum robots.

32

Proceedings of the National Academy of Sciences, 2021. 118(21): p. e2021922118.
17. Guo, K., et al., Artificial intelligence and machine learning in design of mechanical

materials. Materials Horizons, 2021. 8(4): p. 1153-1172.
18. Gu, G.X., et al., Bioinspired hierarchical composite design using machine learning:

simulation, additive manufacturing, and experiment. Materials Horizons, 2018.
5(5): p. 939-945.

19. Chen, C.-T. and G.X. Gu, Effect of Constituent Materials on Composite
Performance: Exploring Design Strategies via Machine Learning. Advanced
Theory and Simulations, 2019. 2(6): p. 1900056.

20. Yang, Z., C.-H. Yu, and M.J. Buehler, Deep learning model to predict complex
stress and strain fields in hierarchical composites. Science Advances, 2021. 7(15):
p. eabd7416.

21. Wilt, J.K., C. Yang, and G.X. Gu, Accelerating Auxetic Metamaterial Design with
Deep Learning. Advanced Engineering Materials, 2020. 22(5): p. 1901266.

22. Zolfagharian, A., et al., 4D printing soft robots guided by machine learning and
finite element models. Sensors and Actuators A: Physical, 2021. 328: p. 112774.

23. Roach, D.J., et al., Utilizing computer vision and artificial intelligence algorithms
to predict and design the mechanical compression response of direct ink write 3D
printed foam replacement structures. Additive Manufacturing, 2021. 41: p. 101950.

24. Rawat, S. and M. Shen, A novel topology design approach using an integrated deep
learning network architecture. arXiv preprint arXiv:1808.02334, 2018.

25. Zhang, Z. and G.X. Gu, Finite-Element-Based Deep-Learning Model for
Deformation Behavior of Digital Materials. Advanced Theory and Simulations,
2020. 3(7): p. 2000031.

26. Sun, X., et al., Machine Learning-Evolutionary Algorithm Enabled Design for 4D-
Printed Active Composite Structures. Advanced Functional Materials, 2022.
n/a(n/a): p. 2109805.

27. Hochreiter, S. and J. Schmidhuber, Long Short-Term Memory. Neural Computation,
1997. 9(8): p. 1735-1780.

28. Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

