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I. ELECTRICAL CHARACTERISTIC AND
ENERGY DIAGRAM OF INDIVIDUAL
OPTOELECTRONIC COMPONENTS

We provide in Fig. S1 the current-voltage characteris-
tic of the various optoelectronic components considered
for dual radiative engines. Each component operates in
a separate quadrant, two of them producing electrical
power (TR and PV cells) while the two others consume
power (LEDs and NEL diodes).

As an example, we also represent in Fig. S2 the energy
diagrams of a TR cell and a NEL diode used in a TRNEL
device, along with the various flows of energy exchanged.
The negative bias applied to both components allows re-
ducing the charge concentration in the respective bands,
resulting in a decrease in emission. Because the TR cell
is maintained at high temperature, it will nonetheless
emit towards the cold NEL diode, generating electrical
power. The low emission of the NEL diode further re-
duces the generation of electron-hole pairs in the TR cell
that would otherwise repopulate the bands.

Additional information about the respective operating
principle and energy diagram of the individual compo-
nents employed in dual radiative heat engines can be
found in [1].
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FIG. S1: Schematic of current-voltage characteristics of
optoelectronic components, respectively when it is

hotter (in red) or colder (in blue) than the surroundings.
U · J > 0 means that electrical power is consumed.

II. PERFORMANCE OF DUAL ENGINES FOR
LOW BANDGAPS

We provide in Fig. S3 the variation of electrical power
output and cooling power as a function of both chemi-
cal potentials, this time for Eg = kBTh. In comparison
to the results obtained for larger bandgaps, the gap be-
tween the heat engine and heat pump operating regions
is larger. The change is particularly visible in the TPX
quadrant, since then Eg − µi becomes lower than kBTi.
In this quadrant, the device is almost always capable of
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FIG. S2: Schematic of the energy flow through a
thermoradiative-negative electroluminescent (TRNEL)
heat engine at the radiative limit, along with the energy

diagram of the two components.

operating as a heat engine as long as µc ≥ µh. Con-
sequently, TPX devices are not able to operate as heat
pumps for such low bandgaps.

III. IMPACT OF NON-RADIATIVE LOSSES ON
η − P CHARACTERISTICS

The results presented in the main article are obtained
at the radiative limit, and therefore provide an upper
bound for dual radiative engines’ performance. Obvi-
ously, if non-radiative losses are included, performance
will be worsened: we aim at giving here some first in-
sights about the impact of such losses. To do so, we
manually set the quantum efficiency (QE), defined as the
fraction of recombinations being radiative [2], to 0.9 for
both components of the dual engine. This means that
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FIG. S3: (a) Performance of dual radiative systems
operating as heat engines or heat pumps, at the

radiative limit and for Eg = kBTh = 52 meV. (b) Zoom
on the µc = 0 scenario.

10% of the total recombination rate can be attributed
to non-radiative losses. Since the non-radiative genera-
tion rate must balance the non-radiative recombination
rate at equilibrium, we get a new expression of the power
generated by an optoelectronic component [3]:

Pi = µi

(
Ṅj − Ṅi −

1−QE

QE

(
Ṅi − Ṅi(µi = 0)

))
.

(S1)
Note that the definition of the QE used here corresponds
to the one usually considered in the LED community, and
should not be confused with its PV counterpart which
corresponds to the conversion efficiency of photons into
charges. For a 600 K heat source temperature, the addi-
tion of non-radiative events strongly modifies the perfor-
mance of the engine, as shown in Fig. S4 where the varia-
tions of the electrical power output and the cooling power
with the chemical potentials are depicted. The resulting
η−P plots are drawn in Fig. S5, and reveal several major

differences in comparison to the results obtained at the
radiative limit. First, TRNEL devices have significantly
lost interest, since they are no longer able to reach Carnot
efficiency. Worse, their envelope is now within that of
TRPV devices for both bandgaps considered. Therefore,
TRNEL systems have interest only when operating close
enough to the radiative limit. Second, the maximum ef-
ficiency is now highly dependent on the bandgap: being
only 40% of Carnot efficiency for Eg = kBTh, it goes up
to 80% of ηC for Eg = 10kBTh. Last, the power out-
put variation with the bandgap is way weaker; in fact, as
long as QE < 1, there is an optimal bandgap that allows
maximising the power output [4] (page 61).
Because the maximum power no longer diverges with

Eg, we can in fact trace the η − P envelope of dual en-
gines obtained over the whole bandgap space, indicat-
ing the best operating conditions achievable for a cer-
tain quantum efficiency. These are illustrated in Fig. S6
for three different quantum efficiencies, along with the
TPV envelope in dashed line for comparison. The opti-
mal bandgap appears to be Eg = 5kBTh for QE = 0.9,
and decreases for lower QE. In all three scenarios, the
performance of dual radiative engines at high efficiency
are similar to those of TPV engines. In contrast, dual
engines can reach higher power outputs than TPV even
when non-radiative losses are included. However, quan-
tum efficiencies of at least 0.75 are required to obtain a
noticeable difference.
On a side note, including non-radiative losses causes a

mismatch between the currents Jh and Jc of the two op-
toelectronic components. Since voltages are mismatched
too, the two components cannot be directly bound elec-
trically if both have the same area, and additional elec-
tronics is necessary to make the engine work. Otherwise,
it is possible to design engines with components with
mismatched areas [5] or bandgaps [6] to make them self-
sustaining.

IV. IMPACT OF HEAT SOURCE
TEMPERATURE ON η − P CHARACTERISTICS

In Fig. S7 and S8 are provided η − P plots obtained
at the radiative limit, but respectively for a 400 K and
1200 K heat source temperature. The conclusion drawn
for Th = 600 K remains valid in these scenarios. We can
still notice two slight differences. First, the normalised
power output achieved becomes larger as Th increases.
Considering Eg = 10kBTh for instance, Pmax/σT

4
h equals

approximately 0.6 for Th = 400 K, but goes up to 2.4 for
Th = 600 K and exceeds 5 for Th = 1200 K. Second, the
interest of TRPV devices rises with temperature, more
and more of the total envelope corresponding to that of
the TRPV device if the bandgap stays moderate. For
Th = 1200 K and Eg = kBTh ≈ 0.1 eV, TRPV gives
access to interesting trade-offs between power and effi-
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FIG. S4: Performance of dual radiative systems
operating as heat engines or heat pumps, for QE = 0.9

and Eg = 5kBTh = 0.26 eV.

FIG. S5: η − P plots obtained for dual radiative
engines, for Th = 600 K and for various bandgaps. A

quantum efficiency of 0.9 is considered.

ciency. However, note that such high temperatures can
hardly be withstood by optoelectronic components, and
therefore limits TRPV interest.

V. VARIATION OF MAXIMUM POWER AND
RELATED EFFICIENCY WITH BANDGAP

We provide in Fig. S9 the variations of the maxi-
mum power and related efficiency as a function of the

FIG. S6: Dual radiative engine η − P envelopes
obtained for varying bandgap energy Eg, depending on

the quantum efficiency considered. The grey area
corresponds to the operating region, while the dashed
line represents the envelope obtained for TPV engines.

bandgap, respectively for the complete dual engine (thick
black line) and for each individual engine. For a heat
source temperature of 600 K, the dual engine MPP
moves from the TRPV quadrant for low bandgaps to
the TPX quadrant for higher bandgaps. In this case,
the transition between the two quadrants occurs around
Eg/kBTh = 0.7. Dual engines become especially attrac-
tive when Eg > kBTh ≈ 0.05 eV, their power output
increasing with Eg and being already 50% larger than
that of single engines for Eg = 1.9kBTh. In practice,
this condition is satisfied by any realistic bandgap at the
temperature considered.

Note how, when TPX or TRPV engines do not max-
imise the power output, they operate as TPV devices.
This is what causes the sudden change in slope observ-
able in panel (b): around Eg/kBTh = 0.7, there is for
both devices an abrupt change in the direction of dis-
placement of the MPP in (µh, µc) coordinates, from that
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FIG. S7: η − P plots obtained for dual radiative engines
at the radiative limit, for Th = 400 K and for various

bandgaps.

of the complete dual engine to that of a TPV device (or
vice-versa).

One can also observe that optimising TRNEL devices
for electrical power production simply means operating
as a TR device. Moreover, in the limit of zero bandgap,
TR operation becomes optimal: this is because the TR-
NEL quadrant is the only one available since µ < Eg → 0.

VI. DETERMINATION OF THE MAXIMUM
POWER AND RELATED EFFICIENCY FOR

BROADBAND RADIATION

The goal of this section is to determine analytical ex-
pressions of the maximum power and related efficiency,
in the limit of Eg → ∞. Using the quantity xi = (Eg −
µi)/kBTi, we obtain that µc − µh = xhkBTh − xckBTc.
Defining then Xi as exp(−xi), the power output can be

FIG. S8: η − P plots obtained for dual radiative engines
at the radiative limit, for Th = 1200 K and for various

bandgaps.

expressed as:

P =
E2

gk
2
BT

2
h

4π2c2h̄3

(
ln(Xh)−

Tc

Th
ln(Xc)

)
×(

ln(1−Xh)−
Tc

Th
ln(1−Xc)

)
,

(S2)

since Li1(x) = ln(1 − x). First, we must verify whether
the maximum power is reached inside the (Xh, Xc) do-
main (i.e. for 0 < Xi < 1) or at the boundary. For
instance, if Xh goes to 0, it gives

P ∼ −
E2

gk
2
BT

2
h

4π2c2h̄3 ln(Xh) ln(1−Xc)
Tc

Th
→ −∞, (S3)

and the maximum power is therefore not reached at this
boundary (the power being negative). A similar treat-
ment can be done at the three other boundaries to ensure
that the maximum power point is indeed located inside
the domain. We should then find the couple (Xh, Xc)
which makes both partial derivatives equal to zero. If the
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FIG. S9: Variation of (a) the maximum power, (b) the
efficiency at maximum power, for the different radiative

engines considering Th = 600 K.

couple found is unique, it is the maximum power point
since P goes to −∞ at the boundaries (which means that
a maximum power point must exist).

Setting both partial derivatives of P with respect to
Xi to zero, we get

ln(1−Xh)− ln(1−Xc)
Tc

Th

ln(Xh)− ln(Xc)
Tc

Th

=
Xh

1−Xh
, (S4a)

=
Xc

1−Xc
. (S4b)

Note that this holds only if ln(Xh) − ln(Xc)
Tc

Th
is non-

zero at the maximum power point. If the former term
was equal to zero, then ln(1−Xh)− ln(1−Xc)

Tc

Th
should

also be zero to satisfy that partial derivatives are equal

to zero, which would lead to 1−X
Tc/Th
c = (1−Xc)

Tc/Th .
This equation being satisfied only for Xc equal to 0 or 1
(which are not inside the domain), ln(Xh)− ln(Xc)

Tc

Th
is

therefore non-zero at the maximum power point.
Combining the two expressions given in Eq. (S4), we

easily get that Xh = Xc. Writing this common value X,
we obtain

P =
1

h̄

(
EgkB(Th − Tc)

2πch̄

)2

ln(X) ln(1−X). (S5)

A quick study of the function ln(X) ln(1 − X) imme-
diately reveals that it reaches a maximum at (Xh =
1/2, Xc = 1/2), which therefore corresponds to the max-
imum power point.

To derive a closed-form expression of the efficiency at
maximum power, we use that xh,MPP = xc,MPP = ln(2)
to obtain (µc,MPP − µh,MPP)/(Eg − µh,MPP) = ηC. Di-
viding both the numerator and the denominator of Eq.
6 by (Ṅh − Ṅc)(Eg − µh), one gets

ηMPP =
ηC

1 +
(

1
ρ − 1

)
1

ln(2)
Eg

kBTh

, (S6)

where ρ = Eg(Ṅh − Ṅc)/(qh − qc) corresponds to the
fraction of radiative energy being useful to optoelectronic
conversion. To express it, both Li1 and Li2 terms are
necessary. One obtains(

1

ρ
− 1

)
1

ln(2)

Eg

kBTh
∼

Eg→∞
(2−ηC)

1

ln(2)

Li2(1/2)

Li1(1/2)
. (S7)

The polylogarithmic terms having closed-form expres-
sions for x = 1/2, the efficiency at maximum power ob-
tained as Eg → ∞ is

η
Eg≫kBTh

MPP =
ηC

1 + (2− ηC)χ
, (S8)

χ being a constant defined in the main paper.

VII. DETERMINATION OF THE EFFICIENCY
AT MAXIMUM POWER FOR

QUASI-MONOCHROMATIC RADIATION

To derive an expression of the efficiency at maximum
power in the case of quasi-monochromatic radiation, we
use that Eg − µi ≪ kBTi. To verify that this is indeed
correct, we show in Fig. S10 the variation of power out-
put with µh for Eg = 1 eV, considering only the TPX
quadrant. The power output associated to each µh corre-
sponds to the maximum achievable with the whole range
of µc available. We observe that Eg − µh,MPP ≪ kBTc:
since Th > Tc, therefore Eg−µh,MPP ≪ kBTh. Moreover,
µc ≥ µh, and thus Eg − µc,MPP ≪ kBTc.
Because Eg − µi ≪ kBTi, the Bose-Einstein distribu-

tions can be simplified using that [exp(x) − 1]−1 ∼ x−1

around 0. Setting to zero any of the two partial deriva-
tives of P with respect to µi then leads to

ηδE≪kBTc

MPP = 1−
√

Tc

Th
. (S9)

VIII. MODIFICATION OF THE ACHIEVABLE
OPERATING CONDITIONS UNDER SPECTRAL

FILTERING

To study the impact of spectral filtering (i.e. of re-
ducing the radiation bandwidth δE, see Fig. S11), we
show in Fig. S12 how the η−P envelope of dual engines
vary with δE. In addition, the complete set of operat-
ing conditions achievable by varying δE is represented by
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FIG. S10: Variation of the power output with the LED
chemical potential considering quasi-monochromatic
radiation exchanged, for Eg = 1 eV and for two

different heat source temperatures. In this case, only
the TPX quadrant is considered.

the grey area. Three different scenarios are considered to
highlight the variability of the influence of spectral filter-
ing on the achievable operating conditions.

The envelopes obtained at the radiative limit for a
bandgap of kBTh are shown in panel (a), the results be-
ing mostly similar to those obtained at Eg = 10kBTh. In
this scenario, filtering gives access to new operating con-
ditions in the high-efficiency region. For P/σT 4

h < 0.03,
this can allow increasing the efficiency by up to 10 per-
cent points. The effect is even stronger when decreasing
the quantum efficiency (QE) to 0.9 (see Section III for
more details on QE), as depicted in panel (b): an effi-
ciency increase of the order of 25 percent points can be
reached for P/σT 4

h = 0.03, and goes up to 45 percent
points for P/σT 4

h = 0.01. In this case, the MPP ob-
tained with filtered radiation can even move beyond the
envelope obtained in the broadband scenario. In other
words, spectral filtering can limit the power loss under-
gone in high-efficiency operation.

There are however cases where filtering has no signifi-
cant benefit. We provide one such example in panel (c),
obtained for QE = 0.9 and Eg = 10kBTh. Under such
conditions, reducing the bandwidth mostly make the en-
velope shrink, the only benefit being a small increase of
the efficiency achieved for powers close to zero. In such
scenarios, it is thus better to prevent filtering radiation.
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