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 Essentials	 of	 the	 scientific	 discovery	 process	 have	 remained	 largely	

unchanged	 for	 centuries1:	 systematic	 human	 observation	 of	 natural	 phenomena	 is	

used	 to	 form	 hypotheses	 that,	 when	 validated	 through	 experimentation,	 are	

generalized	 into	 established	 scientific	 theory.	 Today,	 however,	 we	 face	 major	

challenges	because	automated	instrumentation	and	large-scale	data	acquisition	are	

generating	 data	 sets	 of	 such	 volume	 and	 complexity	 as	 to	 defy	 human	 analysis.	

Radically	 different	 scientific	 approaches	 are	 needed,	 with	 machine	 learning	 (ML)	

showing	 great	 promise,	 not	 least	 for	 materials	 science	 research2-5.	 Hence,	 given	

recent	 advances	 in	ML	 analysis	 of	 synthetic	 data	 representing	 electronic	 quantum	

matter	 (EQM)6-16,	 the	 next	 challenge	 is	 for	 ML	 to	 engage	 equivalently	 with	

experimental	data.	 For	example,	 atomic-scale	visualization	of	EQM	yields	arrays	of	

complex	electronic	structure	images17,	that	frequently	elude	effective	analyses.	Here	

we	report	development	and	training	of	an	array	of	artificial	neural	networks	(ANN)	
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designed	 to	recognize	different	 types	 of	 hypothesized	 order	 hidden	 in	 EQM	 image-

arrays.	 These	 ANNs	 are	 used	 to	 analyze	 an	 experimentally-derived	 EQM	 image	

archive	 from	 carrier-doped	 cuprate	 Mott	 insulators.	 Throughout	 these	 noisy	 and	

complex	data,	the	ANNs	discover	the	existence	of	a	lattice-commensurate,	four-unit-

cell	 periodic,	 translational-symmetry-breaking	 EQM	 state.	 Further,	 the	 ANNs	 find	

these	 phenomena	 to	 be	 unidirectional,	 revealing	 a	 coincident	 nematic	 EQM	 state.	

Strong-coupling	theories	of	electronic	liquid	crystals18,19	are	congruent	with	all	these	

observations.		

	

1	 Frontier	 research	 in	 EQM	 concentrates	 on	 exotic	 electronic	 phases	 that	 emerge	

when	electrons	 interact	 so	 strongly	 that	 they	 lack	a	definite	momentum.	These	electrons	

often	self-organize	into	complex	new	states	of	EQM	including,	for	example,	electronic	liquid	

crystals18,19,	 high	 temperature	 superconductors20,21,	 fractionalized	 electronic	 fluids	 and	

quantum	spin	liquids.	In	this	field,	vast	experimental	data	sets	have	emerged,	for	example	

from	 real	 space	 (r-space)	 visualization	 of	 EQM	 using	 spectroscopic	 imaging	 scanning	

tunneling	 microscopy17	 (SISTM),	 from	 momentum	 space	 (k-space)	 visualization	 of	 EQM	

using	 angle	 resolved	 photoemission	 (ARPES),	 or	 from	 modern	 X-ray22	 and	 neutron	

scattering.	The	challenge	 is	 to	develop	ML	strategies	capable	of	scientific	discovery	using	

such	large	and	complex	experimental	data	structures	from	EQM	experiments.	

	

2	 An	 excellent	 example	 is	 the	 electronic	 structure	 of	 the	 CuO2	 plane	 in	 the	 cuprate	

compounds	supporting	high	temperature	superconductivity20	(Fig.	1a).	With	one	electron	

per	 Cu	 site,	 strong	 Coulomb	 interactions	 produce	 charge	 localization	 in	 an	

antiferromagnetic	Mott	 insulator	 (MI)	 state.	 Removing	p	 electrons	 (adding	p	 ‘holes’)	 per	

CuO2	 plaquette	 generates	 the	 ‘pseudogap’	 (PG)	 phase20.	 It	 exhibits	 strongly	 depleted	

density-of-electronic	 states	𝑁(𝐸) 	for	 energies	 |E| < Δ! 	,	 where	Δ! 	is	 the	 characteristic	

pseudogap	 energy	 scale	 that	 emerges	 for	𝑇 < 𝑇∗(𝑝) (Fig.	 1a). Although	 the	PG	phase	has	
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defied	 microscopic	 identification	 for	 decades20,	 recently	 it	 has	 been	 reported	 that	

rotational	and	translational	symmetry	are	spontaneously	broken	in	this	phase.	Rotational 

symmetry breaking is referred to as a nematic (NE) state18,19,23,24;	 it	occurs	at	wavevector 

𝑸=0 as the breaking of 90o-rotational (C4) symmetry at 𝑇 < 𝑇∗(𝑝) (Fig. 1a). This presents a 

conundrum because, in theory, ordering at 𝑸=0 cannot open an energy gap in the 

electronic spectrum. The translational symmetry breaking or density wave (DW) state, 

which should open such an energy gap, is detected using	SISTM	visualization17	and	X-ray	

scattering22.	 It	 consists	 of	 periodic	 spatial	modulations	 of	 electronic	 structure	with	 finite 

wavevector 𝑸 and thus with periodicity 𝜆 = 2𝜋/|𝑸|,	that	occur	within	the	pseudogap	phase	

(Fig.	1a).	A	key	challenge	for	this	field	is	to	identify	the	correct	microscopic	theory	for	the	

DW state (Methods Section 1), and to find the relationship (if any) between it and both the 

NE state and the pseudogap.	

	

3	 A DW state with wavevector Q  is described by a spatially modulating 

function𝐴 𝒓 = 𝐷 𝒓 𝐶𝑜𝑠 𝑸 ∙ 𝒓+ 𝜙! 𝐫 : 𝐴 𝒓  represents the density amplitude,  𝜙!(𝒓) 

represents effects of disorder and topological defects, 𝜆 = 2𝜋/|𝑸|	is	the	periodicity,	𝑸/|𝑸|	

is	 the	 direction	 of	 the	 modulation, while 𝐷 𝒓  is the DW form factor symmetry. For a 

tetragonal crystal, an s-symmetry form factor remains unchanged under 90o rotations, 

while a d-symmetry form factor changes sign as observed in cuprates25. One	 theoretical	

approach	 to	 understanding	 a	 DW	 state	 is	 based	 on	 conventional	 electrons	 with	 well-

defined	 wave	 momentum	𝒑 𝐸 = ℏ𝒌 𝐸 	.	 DW	 states	 can	 then	 appear	 at	 a	 wavevector	

𝑸 = (𝒌! 𝐸 = 0 − 𝒌! 𝐸 = 0 )	if	 many	 pairs	 of	(𝒌! 0 ,𝒌! 0 )	are	 connected	 by	 the	 same	

wavevector	𝑸,	i.e.,	nested	(red	arrow	Fig.	1b).	Under	these	circumstances,	Q	should	usually	

be	incommensurate	(Fig.	1b).	Alternatively,	strongly	interacting	particle-like	electrons	may	

have	 well-defined	 position	 in	𝒓-space,	 being	 fully	 localized	 in	 the	 MI	 phase	 or	 self-

organized	 into	 electronic	 liquid	 crystal	 states18,19,24.	 For	 cuprates,	 such	 states	 are	 often	

predicted18,19,24	 to	 exhibit	 periodic	 charge	 density	 modulations	 that	 are	 unidirectional,	
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crystal-lattice-commensurate,	with	wavelength	𝜆 = 4𝑎!	or	wavevector	𝑸 = 2𝜋 𝑎! 0.25,0 	

oriented	 along	 the	 Cu-O-Cu	 axis	 (Fig.	 1c	 and	 Methods	 Section	 1).	 Such	 lattice-

commensurate	charge	modulations	in	position-based	theories	(Fig.	1c)	are	expected	to	be	

robust	against	changes	with	electron-density	p	and	electron-energy,	while	those	associated	

with	the	geometry	of	Fermi	surface	in	momentum-based	theories	(Fig.	1b)	are	expected	to	

evolve	continuously	with	p.		

	

4	 A	 central	 challenge	 has	 therefore	 been	 to	 determine	 if	 the	 electronic	 structure	

modulations	 in	hole-doped	CuO2	 (e.g.	 Fig.	 1d,e)	 are	 lattice-commensurate,	 unidirectional,	

with	specific	periodicity,	or	if	they	evolve	continuously	with	electron-density	and	electron-

energy.	But,	because	of	their	inherent	limitations,	it	has	not	been	possible	to	discriminate	

between	 these	 position-based	 or	 momentum-based	 theoretic	 perspectives	 by	 using	

traditional	analysis	techniques.	First,	due	to	the	extreme	disorder	observed	in	cuprate	EQM	

images17	 (Fig.	 1d)	 or	 concomitantly	 the	broad	 line-widths	detected	 in	 reciprocal	 space22,	

theory	 demonstrates	 that	 conventional	 Fourier	 analysis	 is	 fundamentally	 limited26,27	 in	

determining	 the	 exact	 symmetries	 of	 the	 EQM	 state.	 Second,	 when	 such	 complicated	

electronic-structure	motifs	 exist	 at	 atomic-scale	 in	r-space17,	 Fourier	 analysis	 spreads	 all	

that	 information	 throughout	 reciprocal	 space.	 Consequently,	 the	 customary	 Fourier	

analysis	 of	 SISTM	 and	 X-ray	 data	 focusing	 on	 a	 single	 intensity	 peak,	 which	 has	 long	

reported	 incommensurate	 modulations	 that	 evolve	 continuously	 with	 p	 in	 the	 range	

0.22 ≲ 𝑄(2𝜋/𝑎!) ≲ 0.3	(Ref.	 17,22),	 disregards	 much	 information.	 Specifically,	 the	 key	

insights	 contained	 in	 atomic-scale	 electronic-structure	 motifs	 (Fig.	 1d),	

discommensurations28	 and	 topological	 defects	 (Methods	 Section	 2)	 are	 all	 discarded.	 By	

contrast,	ML	analysis	of	EQM	images	holds	great	promise	because	it	avoids	this	information	

loss	and	analyzes	the	complete	image	array	objectively.		

	

5	 High-data-volume	imaging	studies	of	EQM	(e.g.	Fig.	1e)	use	SISTM,	a	 technique	for	
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visualizing	𝑁(𝒓,𝐸)	with	 sub-atomic	 resolution	 and	 crystal-lattice	 register17.	 The	 resulting	

image-array	 for	 a	 given	 sample	 is	 built	 up	 from	 measurements	 of	 STM-tip-sample	

differential	 electron	 tunneling	 conductance	𝑑𝐼/𝑑𝑉(𝒓,𝑉) ≡ 𝑔 𝒓,𝑉  at	 a	 square	 array	 of	

locations	r	and	at	a	range	of	tip-sample	voltage	differences	V.	For	technical	reasons,	images	

𝑍 𝒓,𝑉  ≡ 𝑔 𝒓,+𝑉 /𝑔 𝒓,−𝑉  ,	 which	 accurately	 represent	 the	 spatial	 symmetry	 of	

electronic	 structure	but	avoid	systemic	errors17,	 are	most	 frequently	used.	While	Fourier	

analysis	of	𝑍 𝒓,𝑉 	to	yield	𝑍 𝒒,𝑉 	is	an	obvious	approach	to	studying	the	EQM	modulation	

wavevectors17,22,	it	faces	severe	limitations	as	discussed	above.	To	identify	the	fundamental	

broken-symmetry	 EQM	 state	 from	 an	 array	 of	 such	𝑍(𝒓,𝐸 = 𝑒𝑉)	images	 (e.g.	 Fig.	 1e)	

therefore	poses	an	iconic	challenge	for	ML	techniques.	

	

6	 Here	we	introduce	a	specific	ML	approach	using	ANN’s	to	achieve	hypothesis	testing	

with	EQM	image-arrays.	It	is	based	upon	supervised	ML	within	an	ANN-human	coalition.	Its	

goals	 are	 to	 automatically	 search	 experimental	 EQM	 image-arrays	 (e.g.	 Fig.	 1e),	 to	

recognize	 spatial	 modulations	 in	 a	 variety	 of	 distinct	 categories,	 to	 identify	 their	

fundamental	periodicity	and	lattice	register	throughout	an	image,	and	to	distinguish	if	the	

modulations	are	unidirectional	or	bidirectional.	The	first	stage	is	generation	of	sets	of	ANN	

training	 images,	 each	 labeled	 by	 a	 hypothesis:	 the	 different	 DW	 modulations	 to	 be	

discerned.	 Here,	 we	 test	 four	 hypotheses	 associated	 with	 four	 distinct	 types	 of	 ideal	

periodic	 modulations,	 all	 with	 a	 d-symmetry	 form	 factor,	 and	 with	 fundamental	

wavelengths	λ=4.348a0,	4.000a0,	3.704a0,	3.448a0	respectively.	Notice	that	only	category	2	

represents	 a	 commensurate	 pattern	 with	𝜆 = 4𝑎! .	 Four	 training	 sets	 for	 categories	

C=1,2,3,4	 are	 then	 generated	 using	 identical	 procedures,	 in	 which	 we	 introduce	 specific	

forms	 of	 heterogeneity	 designed	 to	 mimic	 the	 noise,	 intrinsic	 disorder	 and	 topological	

defects	of	experimental	data	(Fig.	2a	and	Methods	Section	3).	Throughout	these	simulated	

training-image-sets,	the	heterogeneity	disrupts	the	long-range	ordered	patterns	in	r-space,	

as	 shown	 for	 a	 typical	 training	 image	 in	 Fig.	 2b.	 It	 also	 scrambles	 the	 peaks	 in	 the	 d-
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symmetry	Fourier	transforms17	of	 the	training	 images,	rendering	them	broad	and	chaotic	

(Fig.	2c).	In	the	second	stage,	we	establish	an	ANN	architecture	that	trains	well	with	these	

training-image-sets.	During	training,	the	parameters	of	the	ANN	are	adjusted	iteratively	to	

minimize	 a	 cross-entropy	 cost	 function29.	 Stochastic	 gradient	 descent	 along	 with	

backpropagation30	 is	used	for	 lowering	the	cost	function.	The	training	is	complete	and	all	

parameters	 of	 each	ANN	are	 set	when	 the	 cross-entropy31	 saturates.	 Each	 finalized	ANN	

generally	has	 an	accuracy	>99%	when	 tested	on	validation	 images	 (Fig.	 2d	and	Methods	

Section	4).	The	ANN	design	is	a	fully	connected	feed	forward	network	with	a	single	hidden	

layer	 (Fig.	 3	 and	 Methods	 Section	 4).	 Statistical	 reliability	 of	 this	 ML	 system	 against	

different	network	architectures	and	different	 initial	 conditions	 is	achieved	by	 training	81	

distinct	ANNs	in	parallel	with	the	same	training	image-set	(Methods	Section	4).		

	

7		 Our	 ANN	 ensemble	 is	 first	 used	 to	 hypothesis	 test	 the	 experimental	 EQM	 image-

arrays	versus	changing	electron-density.	The	measured	𝑍 𝒓,𝐸 	electronic-structure	images	

are	from	samples	of	the	hole-doped	cuprate	Bi2Sr2CaCu2O8	that	span	the	range	0.06 ≤ 𝑝 ≤

0.20.	Obviously	disorder	and	complexity	of	EQM	abound	in	𝑍 𝒓,Δ!  throughout	this	whole	

electron-density	range	(black	double	headed	arrow	in	Fig.	1a)	and	are	equally	apparent	in	

the	 broad	 fluctuating	 peaks	 around	 𝑄! ± 𝛿𝑄! , 𝛿𝑄! 2𝜋/𝑎! 	and	(𝛿𝑄! ,𝑄! ± 𝛿𝑄!)2𝜋/𝑎! 	in	

𝑍 𝒒,Δ! 	(see	 Figs.	 3a,b).	 Definite	 fundamental	 periodicities	 seem	 undetectable	 in	 these	

Z 𝒓,Δ! 	data.	The	set	of	experimental	Z 𝒓,𝐸 	image-arrays	have	FOV	16nmX16nm,	but	are	

measured	in	a	sequence	of	independent	experiments	on	distinct	crystals	with	p≈0.06,	0.08,	

0.085,	0.14,	0.20	 (Tc(K)=20,	45,	50,	74,	82).	The	ANNs	analyze	 these	𝑍 𝒓,Δ! 	images	as	 a	

function	 of	 p,	 focusing	 on	 the	 pseudogap	 energy	 𝐸 = Δ! 𝑝 	because	 cuprate	 EQM	

symmetry-breaking	 emerges	 at	 this	 energy17,25.	 Figures	 4a-e	 show	 the	 actual	𝑍 𝒓,Δ! 	

images	 presented	 to	 the	 trained	 ANN	 system	 while	 Figs.	 4f-j	 show	 their	 d-symmetry	

Fourier	 transforms.	 The	 ANN’s	 succeed	 with	 high	 reliability	 in	 discriminating	 and	

identifying	the	periodic	motifs	throughout	these	images	(Methods	Section	5).	In	Figures	4k-
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o	we	show	the	response	of	the	ANNs	as	the	probability	P(C)	that	the	presented	EQM	image	

is	 identified	 in	 the	 category	 C.	 Here	 the	 ANNs	 reveal	 that,	 on	 the	 average,	 the	

phenomenology	 of	 the	 C=2,	𝜆 = 4𝑎! training-images	 has	 the	 highest	 probability	 of	 being	

recognized	within	the	𝑍 𝒓,Δ! 	image	array,	but	only	for	electron-densities	0.06 ≤ 𝑝 ≤ 0.14.	

Thus,	 the	 ANNs	 identify	 a	 predominant	 translational	 symmetry	 breaking,	 occurring	

commensurately	 with	 the	 specific	 wavelength	𝜆 = 4𝑎! 	(Fig.	 4a-d).	 Overall,	 the	 ANNs	

conclude	that	 the	 identical,	commensurate,	4𝑎!	periodic,	electronic	structure	modulations	

were	hidden	throughout	the	𝐸 ≈ Δ!	EQM	images	from	the	0.06 ≤ 𝑝 ≤ 0.14	area	of	the	CuO2	

phase	diagram.	

	

8	 	A	second	key	physics	issue	is	the	energy	dependence	within	an	𝑍 𝒓,𝐸 	image-array.	

Quasiparticle	scattering	interference17	(QPI)	occurs	when	an	impurity	atom	scatters	wave-

like	 states	𝒌! 𝐸 	into	𝒌! 𝐸 ,	 resulting	 in	 quantum	 inference	 at	 wavevectors	𝑸!" 𝐸 =

𝒌! 𝐸 − 𝒌! 𝐸 ,	 and	 generating	modulations	 of	𝑁 𝒓,𝐸 	or	 its	 Fourier	 transform	𝑁 𝑸!" ,𝐸 .	

QPI	 is	 a	 distinct	 physical	 phenomenon	 from	 a	 DW	 state	 because,	 while	 the	 modulation	

wavevectors	 of	 the	 former	 evolve	 rapidly	 with	𝐸,	 for	 latter	 they	 do	 not.	 Therefore,	 the	

ANNs	 explore	 a	 Bi2Sr2CaCu2O8	𝑍 𝒓,𝐸 	array	 of	 16nmX16nm	 EQM	 images,	 that	 are	

measured	in	a	sequence	of	 independent	experiments	at	distinct	electron-energy	𝐸=66,	96,	

126,	150(meV)	on	 the	 same	crystal	with	p=0.08.	Figures	5a-d	 show	 this	𝑍 𝒓,𝐸 	image	 set	

that	 is	presented	 to	 the	 same	ANN	system.	EQM	complexity	 in	 the	 identical	 field	of	 view	

now	 evolves	 rapidly	with	 electron-energy	 because	 they	 are	 dominated	 by	QPI.	 Similarly,	

Figures	 5e-h	 are	 the	d-symmetry	 Fourier	 transforms	 Z 𝒒,𝐸 	from	 Figures	 5a-d,	 showing	

broad	fluctuating	peaks	that	evolve	rapidly	with	electron-energy	as	expected	in	QPI.	Well-

defined	fundamental	periodicities	appear	indiscernible	in	these	Z 𝒓,𝐸 	(A-D);	Z 𝒒,𝐸 	(E-H)	

data.	However,	Figures	5j-l	demonstrate	that	the	ANN	suite	finds	the	hypothesis	category	

with	 the	 highest	 recognition	 probability	 to	 again	 be	C=2,	meaning	 that	 the	 predominant	

modulations	have	period	4𝑎!	for	all	energies	exceeding	66meV	(Fig.	5b-d).	Again,	despite	
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intense	masking	by	QPI	phenomena,	the	ANN’s	recognize	commensurate,	4a0	periodic,	DW	

modulations	 and	 reveal	 that	 it	 occurs	 predominantly	 near	 the	 pseudogap	 energy	 scale	

𝐸 = Δ!.	

	

9	 A	 third	 ANN	 discovery	 in	 Fig.	 5i-l	 is	 that	 the	 commensurate,	 4a0	 periodic	

modulations	exhibit	a	strong	preference	 for	breaking	symmetry	under	90o	rotations	(C4).	

This	 is	 revealed	 because	 the	 ANN	 array	 yields	 up	 to	 3	 times	 higher	 probability	 in	 the	

specific	category	(C=2)	when	the	data	is	presented	in	the	X	orientation	(red)	compared	to	

when	the	identical	data	is	presented	to	it	in	the	Y	orientation	(yellow)	(Fig.	5j-l).	Although	

the	extreme	nanoscale	disorder	masks	it	 in	the	images	Fig.	5a-d,	the	DW	modulations	are	

therefore	occurring	primarily	along	the	x-axis	of	the	CuO2	plane.	ANN	analysis	of	the	energy	

dependence	of	this	complete	𝑍(𝒓,𝐸)	image	array	in	Extended	Data	Fig.	1	further	confirms	

that	the	appearance	of	this	nematicity	(Fig.	5i-l)	occurs	approaching	the	pseudogap	energy	

scale	 which	 is	 Δ! ≈  80𝑚𝑒𝑉.	 Thus,	 the	 ANNs	 find	 that	 a	 nematic	 state	 emerges	 at	 the	

pseudogap	 energy	 specifically	 due	 to	 highly	 disordered	 yet	 unidirectional	 4a0	 periodic	

modulations.	This	discovery	strongly	implies	that	the	nematic	electronic	structure	of	CuO2	

is	a	vestigial	nematic	state32	whose	characteristic	energy	gap	is	the	pseudogap.	Advanced	

theory	 predicts	 that	 a	 unidirectional	 DW	 that	 is	 reduced	 by	 disorder	 to	 extremely	 short	

spatial	 coherent	 lengths,	 should	 generate	 a	 nematic	 state	 dubbed	 a	 vestigial	 nematic	

state32.	Although	experimental	validation	 for	 this	hypothesis	 is	 formally	 impossible	using	

conventional	FT	techniques26,27,	here	it	is	demonstrably	achievable	by	an	ANN	array	(Fig.	5,	

Extended	Data	Fig.	1).	Existence	of	a	vestigial	nematic	state	 in	carrier-doped	CuO2	would	

provide	 a	 direct,	 internally	 consistent	 link	 between	 a	 nematic	 state	 and	 the	

unidirectional 4𝑎!	periodic	DW	modulations,	whose	energy	gap	 is	 the	pseudogap	(Fig.	4).	

The	 evidence	 for	 a	 vestigial	 nematic	 emerged	 unexpectedly	 from	 ANN	 analysis	 of	

experimental	image	arrays	not	optimized	for	such	studies;	for	the	ANN	suite	to	determine	a	
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complete	p	dependence	will	require	new	measurements	of	appropriately	optimized	image	

arrays.	

	

10	 To	 summarize:	we	 have	 developed	 and	 demonstrated	 a	 new	 general	 protocol	 for	

ML-based	 identification	 of	 the	 symmetry-breaking	 ordered	 states	 in	 electronic	 structure	

image-arrays	 from	 EQM	 visualization	 experiments.	 Our	 ANNs	 are	 trained	 to	 learn	 the	

defining	motifs	 of	 each	 category	 including	 its	 topological	 defects,	 and	 to	 recognize	 those	

motifs	 in	real	EQM	image	arrays	(Fig.	1e).	Despite	 the	complexity	of	 the	hole-doped	Mott	

insulator	state,	instrument	distortion	and	noise,	and	the	intense	electronic	disorder	of	the	

EQM	 image	 arrays	 studied	 (Figs.1d,3a,b;4,5),	 the	 ANNs	 repeatedly	 and	 reliably	 discover	

predominant	 features	 of	 a	 specific	 ordered	 state.	 Its	 signature,	 for	0.06 ≤ 𝑝 ≤ 0.14,	 is	 a	

lattice-commensurate,	unidirectional,	d-symmetry	form	factor,	𝜆 = 4𝑎!	periodic	electronic	

structure	 modulation	 (Fig.	 4).	 As	 an	 advance	 in	 CM	 physics,	 the	 predominance	 of	 this	

phenomenology	(Fig.	4)	 implies	that	a	strong	coupling	position-based	theory	is	central	to	

these	broken-symmetry	states	of	carrier-doped	CuO2.	The	ANN	array	also	reveals	evidence	

that	 it	 is	 the	𝜆 = 4𝑎! DW	 modulations	 at	 the	 pseudogap	 energy	 that	 break	 the	 global	

rotational	symmetry	to	generate	a	nematic	state	(Fig.	5,	Extended	Data	Fig.	1).	This	implies	

that	 the	PG	region	of	 the	CuO2	phase	diagram	(Fig.	1a)	contains	a	vestigial	nematic	state.	

Concurrently,	 a	 milestone	 for	 general	 scientific	 technique	 is	 achieved	 with	 the	

demonstration	 that	ANN’s	 can	process	 and	 identify	 specific	 broken	 symmetries	 of	 highly	

complex	image-arrays	from	non-synthetic	experimental	EQM	data.	Overall,	these	combined	

advances	open	the	immediate	prospect	of	additional	ML-driven	scientific	discovery	in	EQM	

studies.		
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Figure	1.	Electronic	quantum	matter	imaging	in	hole-doped	CuO2.	a,	Schematic	phase	

diagram	of	hole-doped	CuO2.	At	p=0	a	single	electron	is	localized	at	each	Cu	site	in	a	Mott	

insulator	 (MI)	 state.	 As	 holes	 are	 introduced	 (electrons	 removed)	 the	 MI	 disappears	

quickly.	 The	 high	 temperature	 superconductivity	 (SC)	 emerges	 at	 slightly	 higher	 p,	

reaching	 its	maximum	critical	 temperature	Tc	near	p~0.16.	However,	 in	 the	 range	p<0.19	

and	up	to	temperatures	T*	an	enigmatic	phase	of	EQM,	dubbed	the	pseudogap	(PG)	phase,	

is	known	to	contain	periodic	charge	density	modulations	of	imprecise	wavevector	Q.	b,	 In	

the	CuO2	Brillouin	zone,	the	Fermi	surface	is	defined	as	the	𝒌-space	contour	𝒌 𝐸 = 0 	that	

separates	 the	 occupied	 from	 unoccupied	 electronic	 states,	 and	 its	 locus	 changes	 rapidly	

with	 changing	 carrier	 density	 p.	 Density	 wave	 (DW)	 states	 may	 then	 appear	 at	 a	

wavevector	𝑸(𝒌! 𝐸 = 0 − 𝒌! 𝐸 = 0 )	if	 the	 electron	 states	𝒌! 𝐸  and	𝒌! 𝐸 	are	 ”nested”	

(red	and	yellow	arrows).	c,	Strongly	correlated	electrons	may	be	fully	localized	in	the	Mott	

insulator	 phase,	 or	 self-organized	 into	 electronic	 liquid	 crystal	 states	 in	 𝒓 -space.	

Schematically	shown	here	is	a	simple	example	of	a	state	with	unidirectional	charge	density	

modulations	 in	 the	CuO2	plane,	having	wavelength	𝜆 = 4𝑎!	or	wavevector	𝑸 = !!
!!

0.25,0 	

(Methods	 section	 1).	 d,	 Typical	 24.4nmX24.4nm	 SISTM	 image	 of	 electronic	 structure	

𝑅 𝒓,𝐸 = 150𝑚𝑉 	from	 the	 CuO2	 plane	 of	 Bi2Sr2CaCu2O8	 with	 p=0.08	 (Tc=45K).	 Complex	

spatial	 patterns,	 which	 to	 human	 visual	 perception	 look	 like	 highly	 disordered	 “tweed”,	

dominate.	The	contrast	with	simple	periodic	arrangement	of	the	simultaneously	visualized	

atoms	 of	 the	 same	 crystal	 in	 the	 topograph	 (upper	 inset)	 is	 arresting.	e,	 Typical	 image-

array	of	 simultaneously	measured	𝑍 𝒓,𝐸 	for	p=0.08,	 each	16nmX16nm	but	at	a	different	

electron	 energy	 E,	 spanning	 the	 range	6𝑚𝑒𝑉 < 𝐸 < 150𝑚𝑒𝑉	in	 steps	 of	 12	 meV.	 Such	

arrays	 are	 the	 basic	 type	 of	 data-set	 for	 which	 efficient	 ML	 analysis	 and	 discovery	

techniques	are	required.		
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Figure	2.	Training	ANN	to	identify	broken-symmetry	states	in	SISTM	data.	a,	The	ANN	

array	is	trained	to	recognize	a	DW	in	electronic	structure	images	(e.g.	𝑍 𝒓,𝐸 )	representing	

different	 EQM	 states.	 A	 synthesized	 training-image	 set	 for	 the	 ANNs	 is	 obtained	 by	

appropriately	 diversifying	 pristine	 images	 of	 4	 distinct	 electronic	 ordered	 states.	 Each	

translational	 symmetry-breaking	 ordered	 state	 is	 labeled	 by	 a	 category	 𝐶 = 1,2,3,4	

associated	 with	 its	 wavelength:	 𝜆! = 4.348𝑎!, 4𝑎!, 3.704𝑎!, 3.448𝑎! 	respectively.	 The	

training-images	 in	 each	 category	 are	 diversified	 by	 appropriate	 addition	 of	 noise,	 short	

correlation-length	fluctuations	in	amplitude	and	phase,	and	topological	defects.	b,	Example	

of	a	training-image	in	category	C=2	which	is	a	d-symmetry	form	factor	(dFF)	DW	along	x-

axis	with	𝜆 = 4𝑎!	within	which	smooth	amplitude	and	phase	fluctuations	and	randomized	

positions	 of	 topological	 defects	 (dislocations)	 have	 been	 added	 to	 simulate	 typical	

phenomena	 encountered	 in	 experimental	 EQM	 visualization	 (e.g.	 1D).	 The	 full	 516x516	

pixel	 image	 contains	 2x86x86	 entire	 CuO2	 unit-cells	 with	 Cu-Cu	 distance	 of	 6	 pixels	

diagonally.	 c,	 The	 d-symmetry	 Fourier	 transform	 of	 b.	 Absence	 of	 a	 well-defined	

modulation	wavevector	𝑸	within	 the	modulations	 in	b	has	been	successfully	simulated	 in	

the	 training-image	 as	 seen	 by	 the	 region	 of	𝒒-space	 (grey	 dashed	 circle)	 within	 which	

strong	 variation	 in	 the	 amplitudes	 at	 different	 wavevectors	 occur.	 Grey	 dots	 are	 at	

𝒒 = !!
!!

±0.5,0 ; 0,±0.5 . d,	 Each	ANN	 is	 trained	 by	minimizing	 the	 cross-entropy	 cost	

function	 progressively	 through	 stochastic	 gradient	 descent	 and	 back	 propagation.	 The	

process	of	going	through	the	entire	set	of	shuffled	training	data,	also	known	as	an	epoch,	is	

repeated	 until	 the	 cross-entropy	 and	 accuracy	 saturate.	 The	 overall	 accuracy	 of	 the	

finalized	ANNs	on	the	synthesized	data	is	generally	over	99%.	
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Figure	3.	ANN	analysis	 of	 experimental	 EQM	visualization	data.	 a,	Typical	measured	

16nmX16nm	𝑍 𝒓,𝐸 = 84𝑚𝑒𝑉 	image	of	Bi2Sr2CaCu2O8	with	p=0.08	(Tc=45K).	The	disorder	

and	complexity	of	cuprate	EQM	are	manifest.	b,	Typical	measured	𝑍 𝒒,𝐸 = 84𝑚𝑒𝑉 	image	

of	Bi2Sr2CaCu2O8	with	p=0.08	(Tc=45K)	being	the	d-symmetry	Fourier	transform	of	a.	The	

disorder	and	complexity	of	EQM	are	equally	vivid	here	in	the	broad	and	fluctuating	peaks	

around	 𝑄! ± 𝛿𝑄! , 𝛿𝑄! 2𝜋/𝑎! 	and	(𝛿𝑄! ,𝑄! ± 𝛿𝑄!)2𝜋/𝑎! 	with	 𝛿𝑄! = 𝛿𝑄! ≈ 0.2 .	 Grey	

dots	 are	 at	 the	 0.4,0 ; 0,0.4 2𝜋/𝑎!	points.	 c,	 Schematic	 of	 ANN	 analysis	 procedure	 for	

experimental	 𝑍 𝒓,𝐸 	images:	 the	 successfully	 trained	 neural	 network	 with	 fixed	

parameters	 (weights	W(1)	 and	W(2)	 of	 the	hidden	 layer	 and	 the	output	 layer	 respectively	

and	biases)	is	a	classifier:	It	classifies	each	experimental	image	as	belonging	into	one	of	the	

four	 categories.	 Neuron	 activation	 functions	 in	 our	 ANNs	 are	 taken	 to	 be	 the	 sigmoid	

function.	
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Figure	 4.	 ANN	 detection	 of	 broken-symmetry	 evolution	 with	 electron-density.	 a-e,	

Measured	 16nmX16nm	 𝑍 𝒓,𝐸 	images	 of	 Bi2Sr2CaCu2O8	 in	 the	 range	

p=0.06,0.08,0.085,0.14,0.20	 (Tc(K)=20,45,50,74,82).	 Each	 image	 is	 measured	 at	 𝐸 =

Δ!(𝑝) the	pseudogap	energy	at	that	electron-density.	Obviously	disorder	and	complexity	of	

cuprate	EQM	abound	throughout	this	whole	electron-density	range	(black	double	headed	

arrow	 in	Fig.	 1A).	 f-j,	 The	d-symmetry	Fourier	 transforms	𝑍 𝒒,𝐸 	from	a-e.	 The	disorder	

and	 complexity	 of	 EQM	 are	 equally	 vivid	 as	 broad	 fluctuating	 peaks	 around	 𝑄! ±

𝛿𝑄! , 𝛿𝑄! 2𝜋/𝑎! 	and	 (𝛿𝑄! ,𝑄! ± 𝛿𝑄!)2𝜋/𝑎! .	 Grey	 dots	 are	 at	 the	 0.4,0 ; 0,0.4 2𝜋/𝑎!	

points.	 k-o,	 Output	 categorization	 by	 81	 ANNs	 of	 the	 input	 data	 from	 a-e.	 Top	 row	

numbers:	 the	 category's	 fundamental	 wavelength,	 in	 units	 of	𝑎!.	 We	 take	 statistics	 of	

independent	 assessment	 on	 the	 given	 experimental	 image	 by	 81	 ANN’s	 that	 are	

independently	trained	to	arrive	at	the	probabilities	P(C)	of	the	image	belonging	to	category	

C.	 The	 error	bars	mark	 the	 statistical	 spread	 (one	 standard	deviation)	of	P(C)	 among	81	

independently	 trained	 ANN’s	 (see	 Methods).	 Since	 the	 training-images	 for	 ANNs	 are	

unidirectional,	 i.e.,	 their	 pristine	 orders	 are	 along	 x-axis,	 categorization	 results	 for	 two	

modulation	orientations	X,Y	(red	and	yellow	bars)	are	obtained	by	 inputting	to	ANNs	the	

𝑍 𝒓,𝐸 	images	and	their	90-degree	rotated	versions,	respectively.		
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Figure	 5.	 ANN	 detection	 of	 broken-symmetry	 at	 different	 electron-energies.	 a-d,	

Measured	 16nmX16nm	𝑍 𝒓,𝐸 	images	 of	 Bi2Sr2CaCu2O8	 in	 a	 range	 of	 electron-energy	

𝐸=66,96,126,150	 (meV)	 for	 p=0.08	 (Tc(K)=45K).	 EQM	 complexity	 in	 the	 identical	 field	 of	

view,	now	evolves	rapidly	with	electron-energy,	a	purely	quantum	mechanical	effect.	e-h,	

The	d-symmetry	Fourier	transforms	𝑍 𝒒,𝐸 	from	a-d.	The	disorder	and	complexity	of	EQM	

are	 strong	 as	 seen	 in	 the	 broad	 fluctuating	 peaks	 around	 𝑄! ± 𝛿𝑄! , 𝛿𝑄! 2𝜋/𝑎! 	and	

(𝛿𝑄! ,𝑄! ± 𝛿𝑄!)2𝜋/𝑎! 	but	 now	𝛿𝑄! , 𝛿𝑄! 	evolve	 rapidly	 with	 electron-energy	 (another	

quantum	 mechanical	 effect).	 Grey	 dots	 occur	 at	 0.4,0 ; 0,0.4 2𝜋/𝑎!	points.	 i-l,	 Output	

categorization	by	81	ANNs	of	 the	 input	 data	 from	a-d.	 Top	 row	numbers:	 the	 category's	

fundamental	wavelength,	 in	 units	 of	𝑎!.	We	 take	 statistics	 of	 independent	 assessment	 on	

the	given	experimental	image	by	81	ANN’s	that	are	independently	trained	to	arrive	at	the	

probabilities	P(C)	of	the	image	belonging	to	category	C.	The	error	bars	mark	the	statistical	

spread	 (one	 standard	 deviation)	 of	 P(C)	 among	 81	 independently	 trained	 ANN’s	 (see	

Methods).	Categorization	results	for	two	modulation	orientations	X,Y	(red	and	yellow	bars)	

are	 obtained	 by	 inputting	 to	 ANNs	 the	𝑍 𝒓,𝐸 	image-array	 and	 its	 90-degree	 rotated	

version,	respectively.		
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METHODS	

	
1	 Strong	coupling	density	wave	states.	Real	space	(position	based),	strong	coupling	

theories	 for	 carrier	 doped	 CuO2	 predict	 lattice	 commensurate,	 unidirectional,	 density	

waves	in	various	electronic	degrees	of	freedom.	Among	them	are	two	candidate	states	that	

can	both	lead	to	4a0-periodic	modulations	of	the	charge	density	and	of	the	local	density	of	

states	𝑁 𝒓 	with	 wavevector	𝑸 = 2𝜋/4𝑎!, 0 .	 First,	 a	 4a0-periodic	 modulation	 in	 the	

charge	density	on	the	two	oxygen	sites	Ox	and	Oy	within	each	unit	cell	but	with	a	relative	

phase	𝜋	between	them.	This	is	a	d-symmetry	form	factor	charge	density	wave	existing	as	a	

fundamental	 ordered	 state.	 Second,	 an	 8a0-periodic	 modulation	 of	 d-wave	 Cooper	 pair	

density	can	exist	as	a	fundamental	ordered	state,	and	it	induces	a	4a0-periodic	modulation	

in	 the	 charge	 density.	 These	 two	distinct	 fundamental	 states	 are	 shown	 schematically	 in	

Extended	Data	Fig.2a,b	respectively.		

	

2		 Fourier	Transform	Analysis	 of	 EQM	 Images:	Disorder	and	 Information	 Loss.	A	

Fourier	transform	of	two-dimensional	image	data	is	a	linear	transformation	of	that	data.	All	

the	 information	 that	 was	 in	 the	 original	 image	 appears	 in	 the	 full,	 complex	 Fourier	

transform	 throughout	 reciprocal	 space.	 Importantly,	 when	 there	 are	 complicated	 local	

patterns	or	motifs	of	short-range	order	at	atomic-scale	in	real	space,	that	information	gets	

spread	over	all	of	 reciprocal	 space.	This	 is	 because	what	 is	 extremely	 local	 in	 real	 space	

becomes	 completely	 delocalized	 in	 reciprocal	 space.	 But,	 in	 the	 traditional	 mode	 of	 FT	

analysis,	one	typically	picks	a	compact	region	in	the	reciprocal	space	to	be	of	importance,	

because	the	intensity	is	peaked	at	that	point.	Crucially	in	this	approach	there	is	abundant	

information	throughout	reciprocal	space	away	from	the	peak-intensity	wavevector	that	has	

been	discarded.	For	hole-doped	CuO2	the	real-space	electronic	structure	at	atomic	scale	is	

uniquely	 complex	 (Fig.	 1).	 For	 instance,	 one	 always	 finds	 that	 the	 STM	 image	whose	 FT	

peak-intensity	 occurs	 away	 from	 Q=0.25	 (see	 Extended	 Data	 Fig.3a),	 hosts	 vivid	 local	
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motifs	 that	 are	 commensurate	 with	 the	 lattice	 (see	 Extended	 Data	 Fig.3b).	 Since	 any	

information	local	in	position	space	gets	spread	over	all	reciprocal	space,	when	one	discards	

much	 of	 the	 data	 throughout	 reciprocal	 space	 crucial	 insights	 contained	 in	 atomic	 scale	

electronic-structure	motifs,	discommensurations	and	topological	defects	are	all	lost.	On	the	

other	hand,	because	of	the	versatility	of	ANN	to	capture	any	function	whatsoever,33	the	new	

ML	approach	allows	one	to	impartially	inspect	the	entirety	of	the	data	in	each	STM	image	

with	no	loss	of	information.	This	is	a	key	distinction	between	the	traditional	FT	approach	

and	the	ML	approach	which	impartially	analyzes	all	the	data	throughout	real	space.	

	

3	 Training	 image	 set	 generation.	 The	 diversification	 of	 synthetic	 images	 of	 a	

unidirectional	DW	to	create	a	 training	 image	set	(see	Extended	Data	Fig.4)	starts	 from	d-

wave	and	s-wave	 form	factor	 (DFF	and	SFF)	components,	and	 includes	 (1)	heterogeneity	

through	 independent	 amplitude	 and	 phase	 fluctuations	 and	 (2)	 topological	 defects	 or	

dislocations	in	DFF.	For	any	of	the	C=1,2,3,4	categories	with	representative	wavelength	λ! ,	

the	DFF	(𝐼!,!,!!"" ) and	SFF	(𝐼!!"")form	factor	modulations	with	noise	models	were		

𝐼!,!,!!"" 𝑥,𝑦 = 𝐴!"" 1+ 𝜀! 𝐴! 𝑥,𝑦  𝐴! 𝑥,𝑦  𝐶𝑜𝑠 2𝜋𝑥/𝜆! + 𝜀!𝜑! 𝑥,𝑦 + 𝜑! 𝑥,𝑦 + 𝜑!"" ,	 

𝐼!!"" 𝑥,𝑦 = 𝐴!"" 1+ 𝜀! 𝐴! 𝑥,𝑦  𝐶𝑜𝑠 𝜀!𝜑!(𝑥,𝑦)+ 𝜑!"" ,		(S1)	

with	 overall	 constants	 ADFF=1,	 ASFF=0.5	and	 phase	 offsets	𝜑!"" = 𝜋/4,𝜑!"" = 0.	 Here	 the	

amplitude	field	𝐴!(𝑥,𝑦)	and	the	phase	field	𝜑!(𝑥,𝑦)	capture	smooth	fluctuations	(different	

random	realizations	in	𝐼!,!,!!"" 𝑥,𝑦 	and	𝐼!!"" 𝑥,𝑦 ),	and	𝐴!(𝑥,𝑦),	𝜑!(𝑥,𝑦)	capture	dislocation	

defects.	For	each	category,	we	generate	different	 realizations	 labeled	by	 f	and	d.	For	each	

realization	 f	 the	𝐴!(𝑥,𝑦)	field	 is	 two-dimensional	 Gaussian	 fluctuation	 field	 with	 spatial	

length	 scale	 ξA=8a,	 normalized	 between	 (-1)	 and	 1,	 while	𝜑!(𝑥,𝑦)	is	 two-dimensional	

Gaussian	fluctuation	field	with	the	same	spatial	lengthscale	ξφ=8a,	normalized	between	-π	

and	π.	The	values	of	correlation	lengthscales	ξA,	ξφ	are	motivated	by	a	simple	analysis	of	an	

SI-STM	 𝑍 𝒒,𝐸 	Fourier	 transform	 (Fig.	 3).	 The	 strengths	 of	 amplitude	 and	 phase	

fluctuations	εA=0.8,	εφ=0.5	are	also	chosen	to	produce	images	in	rough	consistency	with	a	
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typical	𝑍 𝒓,𝐸 .	 In	 each	 image,	 there	 are	 nd=2	 dislocations	 at	 random	 positions	 xi=(xi,yi),	

i=1…nd,	with	windings	wi=±2π	and	total	winding	0.	The	total	dislocation-contributed	fields	

are:	

𝐴! 𝒙 = (1− 𝑒𝑥𝑝 −|𝒙− 𝒙!|/𝜉! )
!!

!!!
	

𝜑! 𝑥,𝑦 = 𝐴𝑟𝑔 𝑠𝑔𝑛(𝑤!) 𝑥 − 𝑥! + 𝑖 𝑦 − 𝑦!
!!
!!! ,	

	

where	the	amplitude	recovery	length	is	ξd=a,	motivated	by	𝑍 𝒓,𝐸 .	

Then	 the	 training	 set	 for	 each	 category	 C	 combines	 the	 different	 form	 factor	

components	 into	 image	 intensity	 at	 pixel	 position	 (x,y)	 in	 units	 of	 a	 through	

𝐼! 𝑥,𝑦 = 𝐼!,!"" 𝑥,𝑦 ∗ 𝐷 𝑥,𝑦 + 𝐼!"" 𝑥,𝑦 ∗ 𝑆 𝑥,𝑦 , 

using	 atomic	 masks:	 the	 SFF	 mask	𝑆 𝑥,𝑦 	is	 a	 sum	 of	 two-dimensional	 Gaussians	 with	

maxima	equal	to	one	and	spatial	widths	equal	to	0.35a,	each	located	at	a	Cu	atom	position	

(x,y	 integer),	while	 the	DFF	mask	𝐷 𝑥,𝑦 	is	 a	 sum	of	positive	Gaussians	at	 locations	of	Ox	

and	negative	ones	at	Oy's.	The	total	intensity	𝐼! 𝑥,𝑦 	of	all	simulated	images	is	normalized	

to	 take	 values	 between	 0	 and	 1.	 All	 simulated	 images	 have	 6	 pixels	 per	 nearest	 Cu-Cu	

distance	a,	and	contain	2x86x86	unit-cells,	for	the	total	size	of	516x516pixels.	

	

4	 Configuration	 of	 Artificial	 Neural	 Network	 (ANN).	 In	 a	 feed-forward	 fully-

connected	artificial	neural	network,	the	neurons	form	a	layered	structure	and	the	output	of	

each	neuron	is	sent	to	all	the	neurons	in	the	subsequent	layer.	Each	neuron	assesses	all	the	

inputs	 with	 a	 series	 of	 weights	w,	 and	 an	 additive	 constant	 b	 known	 as	 the	 bias,	 and	

determines	 the	 output	 through	 a	 non-linear	 transformation	𝑓(𝒘 ∙ 𝒙+ 𝑏) ,	 called	 the	

activation	 function.	 The	 bias	 b	 and	 the	 weights	𝒘,	 are	 the	 parameters	 of	 the	 ANN	 and	

adjusted	during	the	training.	The	activation	function	usually	takes	the	form	of	the	sigmoid	

function	or	 the	 rectified	 linear	unit,	 see	 the	 inset	 of	 Extended	Data	Fig.5a.	We	 also	use	 a	

softmax	function	𝜎(𝒙)! = 𝑒!!/ 𝑒!!! 	for	the	output	layer	to	normalize	the	output	and	allow	
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a	probabilistic	interpretation	for	the	different	categories.		

For	 supervised	 machine	 learning,	 we	 divide	 the	 data	 set	 into	 a	 training	 set	

containing	90%	of	the	images	and	the	rest	10%	for	unbiased	validation,	speed	control,	and	

overfitting	detection	during	the	training.	The	weights	and	biases	of	the	ANN	are	optimized	

using	stochastic	gradient	descent	to	minimize	the	cross-entropy	cost	function:	

𝐶 =
1
𝑁 𝑦!𝑙𝑛(𝜎!)+ (1− 𝑦!)𝑙𝑛(1− 𝜎!)

!

!!!𝒙

,	

where	yi	and	𝜎! 	are,	respectively,	the	desired	output	consistent	with	the	label	and	the	actual	

ANN	 output	 for	 each	 of	 the	 input	 image	 data	 x.	 We	 use	 a	 batch	 size	 of	 50,	 and	 L2	

regularization	to	avoid	overfitting.	We	include	50	neurons	in	the	hidden	layer	and	choose	

the	sigmoid	function	as	the	neuron	activation	function	unless	stated	otherwise.	In	Extended	

Data	Fig.5a	we	show	examples	of	the	cost	function	as	well	as	the	accuracy	on	the	validation	

data	 set	 for	 both	 choices	 of	 the	 sigmoid	 and	 the	 ReLU	 activation	 functions	 during	 the	

training.	Extended	Data	Fig.5b	shows	the	achieved	accuracy	and	cross-entropy	cost	after	25	

epochs	as	a	function	of	the	number	of	neurons	in	the	single	hidden	layer.	We	have	trained	

81	ANNs	with	random	initial	conditions	by	using	a	stochastic	training	process.	The	outputs	

of	the	finalized	ANNs	are	robust	and	quantitatively	consistent	with	each	other.	Our	results	

in	the	main	text	show	the	average	and	standard	deviations	from	all	81	ANNs.		

To	verify	that	our	results	are	robust	against	changes	to	the	architecture	of	the	ANN,	

we	have	trained	6	ANNs	with	100	neurons	in	the	single	hidden	layer,	and	6	ANNs	with	two	

hidden	layers,	and	we	found	that	the	results	agree	with	each	other	within	error	bars.		

	 Because	 they	 are	 drawn	 from	 a	 historic	 image-array	 archive	 not	 designed	 for	ML	

based	 studies,	 the	 SI-STM	 image-arrays	𝑍 𝒓,𝐸 	vary	 in	 spatial	 resolution	 from	 sample	 to	

sample	from	1.7	to	11.5	pixels	per	a,	the	average	Cu-Cu	distance.	The	number	of	CuO2	unit-

cells	in	experimental	images	also	varies	from	2x55x55	to	2x175x175.	The	Cu	and	Ox,y	atom	

positions,	registered	from	the	topograph,	show	random	distortions	of	the	lattice	due	to	the	
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STM	tip	drift	effect	(Extended	Data	Fig.6a).		

To	correct	for	the	drift	and	standardize	all	the	𝑍 𝒓,𝐸 ,	we	prepare	each	𝑍 𝒓,𝐸 :	(1)	

using	 interpolation	 we	 map	 the	𝑍 𝒓,𝐸 	to	 the	 resulting	 input	 image,	 in	 a	 way	 that	 each	

topographic	 atom	 position	 maps	 onto	 a	 position	 in	 a	 perfect	 atomic	 lattice	 with	 Cu-Cu	

distance	of	a=6pixels	(see	Extended	data	Fig.6b,c),	which	corrects	both	the	drift	effect	and	

standardizes	the	spatial	resolution;	(2)	we	crop	or	tile	the	image	to	size	516x516pixels;	(3)	

to	study	the	degree	of	unidirectionality,	 for	each	 input	 image	we	create	a	copy	rotated	by	

90o,	 since	 the	 training	 images	have	modulations	only	along	X	direction	 for	 simplicity	and	

clarity.	An	example	Mathematica	notebook	 file	 for	data	preparation	 is	available.	Extended	

Data	Fig.7	shows	the	𝑍 𝒓,𝐸 	and	prepared	input	data	at	different	dopings	of	Bi2Sr2CaCu2O8.	

It	 should	 be	 noted	 that	 the	 results	 are	 reliable	 only	 if	 the	 test	 data	 lie	 reasonably	

consistently	within	the	input	space	given	by	the	synthetic	training	sets.		

	

5	 Validation	 and	 Benchmarking.	 To	 assess	 the	 discriminatory	 power	 of	 ANNs'	

categorization,	we	study	obvious	modulations	in	two	experimental	images	(Extended	Data	

Fig.8):	(1)	Topograph	of	Bi2Sr2CaCu2O8,	which	has	no	human-discernible	modulation	except	

for	the	Cu	atomic	lattice	(an	SFF	at	Q=0);	(2)	𝑍 𝒓,𝐸 	of	NCCOC,	with	obvious	commensurate	

period	4a0	modulations,	apparent	in	a	DFF	Fourier	transform.	The	ANNs'	categorization	is	

in	full	accord.	

	 We	also	checked	the	robustness	of	our	approach	against	existence	of	Bi2Sr2CaCu2O8	

superlattice	modulations.	The	assessment	of	 the	ANN’s	were	 independent	of	existence	or	

absence	 (data	 with	 superlattice	 modulation	 removed	 from	 the	 FT)	 of	 the	 superlattice	

modulations.		

We	 further	 tested	 the	 robustness	 of	 the	 ANN	 decisions	 against	 change	 in	 the	

disorder	 model.	 For	 this	 we	 trained	 a	 new	 ANN	 with	 the	 training	 set	 generated	 with	

different	 disorder	 parameters.	 Specifically,	 we	 decreased	 the	 amplitude	 fluctuation	

intensity	εA	by	13%,	and	phase	fluctuation	intensity	εφ	by	20%,	while	making	the	disorder	
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profiles	 vary	 more	 rapidly	 in	 space	 by	 decreasing	 the	 correlation	 lengths	 ξA,	 ξφ	 by	 6%.	

	 Repeating	the	assessment	of	experimental	data	shown	in	Fig.4k,l,m,o	and	Extended	

Data	 Fig.1a	 with	 the	 new	 ANN,	 we	 find	 the	 results	 remain	 unchanged.	 This	 is	 shown	

through	the	comparison	between	the	reprint	of	Fig.4k,l,m,o	and	Extended	Data	Fig.1a	here	

as	Extended	Data	Fig.9a-e	respectively	and	the	output	from	the	ANN	trained	with	the	new	

disorder	model	 as	 Extended	 Data	 Fig.9f-j.	 Robust	 observations	 are	 1)	 preference	 for	 the	

commensurate	period	4a0	 for	systems	with	0.06<p<0.14	(Extended	Data	Fig.9a-d,	and	 f-i)	

and	complete	confusion	over	different	candidate	categories	for	p=0.2	(Extended	Data	Fig.9e	

and	 j).	 The	 energy	 dependence	 comparison	 between	 the	ANN’s	 assessments	 in	 the	main	

text	 (Extended	 Data	 Fig.1a	 or	 Extended	 Data	 Fig.9e)	 and	 the	 assessments	 of	 the	 ANN	

trained	with	the	altered	disorder	model	(Extended	Data	Fig.9j)	shows	that	the	tie	between	

the	 onset	 of	 preference	 for	 the	 commensurate	 period	 4a0	 and	 the	 nematicity	 at	 the	

pseudogap	energy	scale	is	equally	robust	against	variations	in	the	disorder	model	used	to	

train	ANN’s.		

	

6	 Discommensurations	 and	 Maximum	 Intensity	 Wavevector.	 The	 Fourier	

transform(FT)	based	linear	analysis	of	equivalent	data	in	Ref.28	was	carried	out	using	the	

fact	that	the	power	spectral	density	is	not	smoothly	distributed	(Extended	Data	Fig.10a,b,	

reproduced	from	the	SI	of	Ref.28.).	We	had	introduced	the	concept	of	demodulation	residue	

(DR),	using	

𝑹𝒒! 𝜓 ≡
𝑑!𝒙
𝐿! 𝑅𝑒 𝛹𝒒∗ 𝒙 −𝑖𝜕! 𝛹𝒒 𝒙 ,	

𝛼 = 𝑥,𝑦,	 which	measures	 the	 phase	 fitness	 of	 the	 q-modulation	 in	 spatial	 pattern	 ψ(r)	

through	filtered	FT:	

𝛹𝒒 𝒌 = 𝑒𝑥𝑝 −  𝒌!𝒒
!

!!!
𝑒𝑥𝑝 −𝑖 𝒒 ∙ 𝒙 𝜓(𝒒 + 𝒌),	 (S2)	

where	𝜓(𝒌)	is	the	FT	of	the	data.	By	minimizing	the	DR,	𝑅𝒒[𝜓] ≡ 𝑹𝒒! 𝜓 ! + 𝑹𝒒
! 𝜓 !,	 for	a	

given	 modulation	 while	 considering	 different	 q-modulations,	 we	 showed	 that	 one	 can	
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obtain	the	phase	averaged	wave	vector	𝑸	of	DW	modulations.	Within	the	limits	of	Fourier	

transform,	which	is	a	linear	basis	transform,	this	approach	was	an	advancement	in	dealing	

with	 situations	 when	 the	 amplitude	 does	 not	 show	 well	 defined	 peaks,	 due	 to	 severe	

disorder.		

		 However,	 there	 are	 limitations	 in	 this	 approach	 because	 FT	 is	 a	 linear	

transformation	of	basis	and	is	useful	when	the	desired	phenomenon	has	sharp	features	in	

the	 new	 basis:	 the	 wavevector	 basis.	 However,	 when	 there	 are	 randomly	 placed,	 highly	

disordered,	 patches	 of	 a	 real-space	 DW	 pattern	 with	 sprinkles	 of	 topological	 defects,	

Fourier	transform	based	methods	perform	very	poorly.	Obviously,	one	would	not	attempt	a	

Fourier	transform	in	trying	to	recognize	human	faces	in	an	image	for	precisely	this	reason.	

The	limitation	of	the	FT-based	methods	is	evident	in	that,	even	when	a	modulation	pattern	

consists	 of	 commensurate	 period	 4a0	modulation	 (Q0=2π/4a0)	 everywhere	 except	 for	 a	

sequence	of	discommensurations	 (phase	 slips	 in	 commensurate	modulation	pattern),	 the	

Rq[ψ]	minimization	 (as	well	 as	 the	 FT	 amplitude	maximization)	 incorrectly	 identifies	 an	

apparent	 period	 of	𝑄=0.3*2π/a0	 (Extended	 Data	 Fig.10e).	 Although	 in	 Ref.28	 the	 DR	

minimization	 yielded	𝑄 = 2𝜋/4a0	 for	 pseudogap	 energy	 data	 (single	 data	 set	 for	 each	

doping)	for	various	dopings,	this	depended	critically	on	human	visual	inspection	to	identify	

commensurate	 patches	 in	 Fig.	 S6B	 of	 Ref.28	 (see	 also	 Extended	 Data	 Fig.3	 here).	

Furthermore,	 the	 DR	 based	 approach	 therein	 averaged	 over	 topological	 defects	

(dislocations)	ignoring	their	role.	Finally,	the	DR	based	approach	required	manual	choice	of	

Fourier	cutoff	(𝛬	in	Eq.S2)	again	based	on	human	visual	 inspection	of	the	data.	Hence	the	

entire	 process	 is	 time	 consuming	 and	high-level	 human	 labor	 intensive	 and	 fraught	with	

human	perceptual	bias.	It	is	therefore	not	possible	to	study	the	largest	SISTM	image-arrays	

with	 this	 FT	 approach	 in	 any	 consistent	 way,	 rendering	 it	 impossible	 to	 inspect	 the	

complete	electron-density	and	electron-energy	dependence	of	the	largest	EQM	image-array	

archives.	

		 The	 ANN-based	 approach	 we	 introduce	 in	 the	 main	 text	 is	 far	 more	 powerful,	
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efficient	 and	 general.	 It	 does	 not	 rely	 on	arbitrary	 choices	 such	 as	 cut-off	𝛬,	 or	 on	 visual	

selection	of	Fourier	regions	of	interest,	and	is	not	tied	to	any	basis.	The	ANN	is	inherently	

non-linear	 and	 an	 ANN	 with	 sufficient	 number	 of	 neurons	 can	 express/detect	 any	

function.33	Due	 to	 the	 versatility	 of	ANN’s,	 our	ANN-based	 approach	 allows	us	 to	 rapidly	

analyze	a	complete	image-array	data	set	in	its	entirety,	without	any	ad-hoc	Fourier	filtering	

or	 selection.	 Hence	 the	 ANN	 approach	 is	 quite	 unbiased.	 Moreover,	 once	 the	 ANN’s	 are	

trained,	 the	 automatic	 assessment	 of	 new	 data	 set	 takes	 minutes,	 allowing	 for	 a	 high-

throughput	analysis.	It	 is	this	efficiency	that	allowed	discovery	of	the	connection	between	

nematic	 state	 and	 commensurate	 density	 wave	 state,	 both	 setting	 in	 at	 the	 pseudogap	

energy	scale	(Extended	Data	Fig.1).	

Methods	References	

33	 Cybenko,	G.	Approximation	by	superposition	of	a	sigmoidal	function.	Math.	Control	Signals	

Systems	2,	303―314	(1989).	
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Extended	 Data	 Fig.	 1	 ANN	 detection	 of	 unidirectionality	 at	 different	 electron-

energies.	 a,	 b,	 Output	 categorization	 by	 81	 ANNs	 of	 the	 16nmX16nm	𝑍 𝒓,𝐸 	images	 of	

Bi2Sr2CaCu2O8	in	a	range	of	electron-energy	𝐸=30...150	(meV)	in	steps	of	6	meV	for	p=0.08	

(Tc(K)=45K).	Plot	symbols	are	larger	than	the	statistical	spread	(one	standard	deviation)	of	

the	ANN	outputs,	as	estimated	from	our	ensemble	of	81	ANN	realizations	(see	Methods).	a,	

Output	 for	modulation	 orientation	X	 is	 obtained	by	 inputting	 to	ANNs	 the	𝑍 𝒓,𝐸 	image-

array.	b,	 Output	 for	 modulation	 orientation	 Y	 is	 obtained	 by	 inputting	 to	 ANNs	 the	 90-

degree	rotated	versions	of	the	𝑍 𝒓,𝐸 	used	for	a.	

	

	



33	

	

	

	
Extended	Data	Fig.	2	Schematic	image	of	density	waves	arising	from	strong	coupling	

position-based	theories	in	CuO2	plane.	a,	The	d-symmetry	4a0	charge	density	wave.	The	

charge	 density	 at	 Ox	 site	 is	 modulating	 with	 four-unit-cell	 periodicity	 along	 horizontal	

direction,	and	similarly	for	that	at	Oy	but	out	of	phase	by	π	(d-symmetry).	Cu	locations	are	

marked	by	small	dots.	b,	The	8a0	pair	density	wave	state.	The	d-wave	Cooper	pair	density	is	

modulated	with	 eight-unit-cell	 periodicity	 along	horizontal	direction.	 Such	modulation	 in	

Cooper	pair	density	can	cause	4a0-period	modulation	in	the	local	density	of	states	N(r).	
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Extended	Data	Fig.	3	Local	commensurate	motifs	in	STM	images.	a,	Large	field	of	view,	

high	precision,	STM	image	of	electronic	structure	integrated	to	E=100meV	in	Bi2Sr2CaCu2O8	

with	p~0.08.	Inset	shows	the	power	spectral	density	FT	while	lower-right	inset	shows	that	

data	plotted	along	a	line	from	0.1	to	0.5	in	units	of	2π/a0.	Clearly,	the	maximum	intensity	

peak	occurs	at	<Q>=0.28.	b,	Within	each	of	 the	eight	6.5nm-square	regions	 taken	 from	a	

there	are	many	commensurate,	unidirectional	4a0	electronic-structure	motifs	(inside	white	

rectangles).	The	Cu	sites,	independently	determined	from	topographic	imaging,	are	shown	

as	fine	dots.	
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Extended	Data	Fig.	4	Categories	defined	by	electronic	orders.	Example	images	from	the	

simulated	 training	set,	 from	category	C=1	 in	a,	C=2	 in	b,	C=3	 in	c,	C=4	 in	d,	defined	by	d-

wave	 form	 factor	 unidirectional	 modulation	 with	 wavelengths	

𝜆! = 4.348𝑎!, 4𝑎!, 3.704𝑎!, 3.448𝑎! ,	 respectively.	 The	 CuO2	 unit-cell	 size	 is	 a0=6pixels,	

diagonally.	
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Extended	Data	Fig.	5	Artificial	Neural	Network(ANN)	training	and	testing.	a,	Examples	

of	the	accuracy	of	the	ANN	outputs	for	the	independent	validation	data	set	and	the	cross-

entropy	 cost	 function	 is	 compared	 over	 different	 neuron	 activation	 functions	 during	 the	

initial	 training	 processes.	 The	 inset	 illustrates	 the	 non-linear	 activation	 functions	 -	 the	

sigmoid	 function	and	the	rectified	 linear	unit.	b,	Examples	of	 the	accuracy	and	the	cross-

entropy	cost	versus	 the	number	of	neurons	 in	 the	 single	hidden	 layer	after	25	epochs	of	

training.		
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Extended	 Data	 Fig.	 6	 Experimental	 SI-STM	 images.	 a,	 Example	𝑍 𝒓,𝐸 	of	 underdoped	

Bi2Sr2CaCu2O8	with	 hole	 density	 p=0.06	 (Tc(K)=20).	 The	 inset	 is	 a	 zoom-in	with	marked	

atom	 positions	 determined	 from	 topograph	 (Cu:	 red/light,	 O:	 purple/dark).	 b.	 A	 small	

region	of	a.	c,	The	standardized	version	of	b	(see	Methods).	
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Extended	Data	Fig.	7	Experimental	SI-STM	images	as	input	for	categorization.	a,	The	

𝑍 𝒓,𝐸 	of	 underdoped	 Bi2Sr2CaCu2O8	 with	 p=0.06	 (Tc(K)=20)	 at	 energy	 E=Δ1	 (see	 main	

text).	 f,	 The	 516x516	 pixel	 (2x86x86	 CuO2	unit-cells)	 input	 data	 from	 a	 (see	 Methods).	

(b,g),	 (c,h),	 (d,i)	 and	 (e,j)	 The	 same	 as	 the	 pair	 (a,f)	 but	 for,	 respectively,	 underdoped	

Bi2Sr2CaCu2O8	 with	 p=0.08	 (Tc(K)=45),	 underdoped	 Bi2Sr2CaCu2O8	 with	 p=0.085	

(Tc(K)=50),	 underdoped	 Bi2Sr2CaCu2O8	 with	 p=0.14	 (Tc(K)=74),	 and	 overdoped	

Bi2Sr2CaCu2O8	with	p=0.20	(Tc(K)=82).	Too	small	images	are	tiled,	with	unit-cells	intact	at	

the	tiling	boundary,	while	too	large	images	are	cropped.	
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Extended	 Data	 Fig.	 8	 Benchmarking	 categorization	 using	 experimental	 images.	 a,	

Input	data	for	the	topograph	of	overdoped	Bi2Sr2CaCu2O8	with	p=0.22	(Tc(K)=70).	b,	Output	

categorization	by	81	ANNs	of	a,	showing	absence	of	translation-breaking	signal.	Results	for	

two	modulation	orientations	X,Y	are	obtained	by	inputting	to	ANNs	the	image	in	a	and	its	

90-degree	 rotated	 version,	 respectively	 (see	 Methods).	 c,	 The	 input	 data	 for	𝑍 𝒓,𝐸 	of	

NCCOC	at	doping	p=0.12	at	E=150meV.	d,	Output	categorization	by	81	ANNs	of	c,	showing	

commensurate	modulations	(category	2).	



41	

	

	

	



42	

	

	

Extended	Data	Fig.	9	Categorization	is	robust	to	changes	in	training	set	parameters.	

a-d,	Output	categorizations	of	main	Figure	4k,l,m,o	showing	evolution	with	hole	doping.	e,	

Output	categorizations	of	Extended	Data	Figure	1a	showing	evolution	with	electron	energy.	

f-j,	Categorizations	of	the	same	inputs	as	for	a-e,	respectively,	but	obtained	from	output	of	

a	single	ANN	trained	using	a	different	training	set	(see	Methods).	
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Extended	Data	Fig.	10	Weakness	of	Fourier	Transform	analysis	of	EQM.	a,	b,	The	DFF	

Fourier	amplitude,	|Ψ 𝒒 |,	with	wavevector	𝒒	restricted	to	a	square	area	with	corner	at	the	

Fourier	 space	 origin	 (black	 square)	 and	 center	 at	𝑸! =
!
!
𝑮!	(in	 a)	 or	𝑸! =

!
!
𝑮!	(in	 b),	

where	𝑮!	and	𝑮!	are	 the	 Bragg	 peaks.	 Data	 from	 Bi2Sr2CaCu2O8	 sample	 at	 doping	 level	

p=0.10	 (Tc(K)=65K).	 c,	 Modulation	 is	 the	 real	 part	 of	 complex	 wave	

𝜓 𝑥 = 𝐴(𝑥)𝑒!(!! !!!(!))	having	commensurate	domains	with	local	wavevector	𝑄! =
!
!
× !!

!
	

(period	4𝑎).	 The	 amplitude	𝐴 𝑥 ≥ 0	varies	 smoothly	 around	 value	 1.	 Phase	 slips	 are	

incorporated	 in	𝜑(𝑥)	(see	d).	 The	 average	wavevector	 is	𝑄 = 0.3× !!
!
.	d,	 The	 local	 phase	

𝜑(𝑥)	of	𝜓 𝑥 	in	c,	 constructed	as	a	discommensuration	(DC)	array	 in	 the	phase	argument	

Φ 𝑥 = 𝑄! 𝑥 + 𝜑(𝑥) .	 Phase	 slips	 of	 all	 DC’s	 are	 set	 to	+𝜋 .	 The	 distances	 between	

neighboring	 DC’s	 vary	 randomly	 around	 average	 distance	 set	 by	 value	 of	

incommensurability	 𝛿 = 𝑄 − 𝑄! = 0.05× !!
!
.	 e,	 Fourier	 amplitudes	 |𝜓 𝑞 | 	of	 the	

modulation	𝜓 𝑥 	in	 c	 (blue	 line)	 show	 narrow	 peak	 at	𝑄 = 0.3× !!
!
.	 The	 demodulation	

residue	|𝑅!|	(red	dashed	line)	has	the	minimum	exactly	at	the	average	𝑄.	

	


