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defied microscopic identification for decades 20 , recently it has been reported that rotational and translational symmetry are spontaneously broken in this phase. Rotational symmetry breaking is referred to as a nematic (NE) state 18,19,23,24 ; it occurs at wavevector 𝑸=0 as the breaking of 90 o -rotational (C4) symmetry at 𝑇 < 𝑇 * (𝑝) (Fig. 1a). This presents a conundrum because, in theory, ordering at 𝑸=0 cannot open an energy gap in the electronic spectrum. The translational symmetry breaking or density wave (DW) state, which should open such an energy gap, is detected using SISTM visualization 17 and X-ray scattering 22 . It consists of periodic spatial modulations of electronic structure with finite wavevector 𝑸 and thus with periodicity 𝜆 = 2𝜋/|𝑸|, that occur within the pseudogap phase (Fig. 1a). A key challenge for this field is to identify the correct microscopic theory for the DW state (Methods Section 1), and to find the relationship (if any) between it and both the NE state and the pseudogap.
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A DW state with wavevector Q is described by a spatially modulating function 𝐴 𝒓 = 𝐷 𝒓 𝐶𝑜𝑠 𝑸 • 𝒓 + 𝜙 ! 𝐫 : 𝐴 𝒓 represents the density amplitude, 𝜙 ! (𝒓)

represents effects of disorder and topological defects, 𝜆 = 2𝜋/|𝑸| is the periodicity, 𝑸/|𝑸| is the direction of the modulation, while 𝐷 𝒓 is the DW form factor symmetry. For a tetragonal crystal, an s-symmetry form factor remains unchanged under 90 o rotations, while a d-symmetry form factor changes sign as observed in cuprates 25 . One theoretical approach to understanding a DW state is based on conventional electrons with welldefined wave momentum 𝒑 𝐸 = ℏ𝒌 𝐸 . DW states can then appear at a wavevector 𝑸 = (𝒌 ! 𝐸 = 0 -𝒌 ! 𝐸 = 0 ) if many pairs of (𝒌 ! 0 , 𝒌 ! 0 ) are connected by the same wavevector 𝑸, i.e., nested (red arrow Fig. 1b). Under these circumstances, Q should usually be incommensurate (Fig. 1b). Alternatively, strongly interacting particle-like electrons may have well-defined position in 𝒓-space, being fully localized in the MI phase or selforganized into electronic liquid crystal states 18,19,24 . For cuprates, such states are often predicted 18,19,24 to exhibit periodic charge density modulations that are unidirectional, crystal-lattice-commensurate, with wavelength 𝜆 = 4𝑎 ! or wavevector 𝑸 = 2𝜋 𝑎 ! 0.25,0 oriented along the Cu-O-Cu axis (Fig. 1c and Methods Section 1). Such latticecommensurate charge modulations in position-based theories (Fig. 1c) are expected to be robust against changes with electron-density p and electron-energy, while those associated with the geometry of Fermi surface in momentum-based theories (Fig. 1b) are expected to evolve continuously with p.
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A central challenge has therefore been to determine if the electronic structure modulations in hole-doped CuO2 (e.g. Fig. 1d,e) are lattice-commensurate, unidirectional, with specific periodicity, or if they evolve continuously with electron-density and electronenergy. But, because of their inherent limitations, it has not been possible to discriminate between these position-based or momentum-based theoretic perspectives by using traditional analysis techniques. First, due to the extreme disorder observed in cuprate EQM images 17 (Fig. 1d) or concomitantly the broad line-widths detected in reciprocal space 22 , theory demonstrates that conventional Fourier analysis is fundamentally limited 26,27 in determining the exact symmetries of the EQM state. Second, when such complicated electronic-structure motifs exist at atomic-scale in r-space 17 , Fourier analysis spreads all that information throughout reciprocal space. Consequently, the customary Fourier analysis of SISTM and X-ray data focusing on a single intensity peak, which has long reported incommensurate modulations that evolve continuously with p in the range . 17,22), disregards much information. Specifically, the key insights contained in atomic-scale electronic-structure motifs (Fig. 1d), discommensurations 28 and topological defects (Methods Section 2) are all discarded. By contrast, ML analysis of EQM images holds great promise because it avoids this information loss and analyzes the complete image array objectively.

0.22 ≲ 𝑄(2𝜋/𝑎 ! ) ≲ 0.3 (Ref

5

High-data-volume imaging studies of EQM (e.g. Fig. 1e) use SISTM, a technique for visualizing 𝑁(𝒓, 𝐸) with sub-atomic resolution and crystal-lattice register 17 . The resulting image-array for a given sample is built up from measurements of STM-tip-sample differential electron tunneling conductance 𝑑𝐼/𝑑𝑉(𝒓, 𝑉) ≡ 𝑔 𝒓, 𝑉 at a square array of locations r and at a range of tip-sample voltage differences V. For technical reasons, images 𝑍 𝒓, 𝑉 ≡ 𝑔 𝒓, +𝑉 /𝑔 𝒓, -𝑉 , which accurately represent the spatial symmetry of electronic structure but avoid systemic errors 17 , are most frequently used. While Fourier analysis of 𝑍 𝒓, 𝑉 to yield 𝑍 𝒒, 𝑉 is an obvious approach to studying the EQM modulation wavevectors 17,22 , it faces severe limitations as discussed above. To identify the fundamental broken-symmetry EQM state from an array of such 𝑍(𝒓, 𝐸 = 𝑒𝑉) images (e.g. Fig. 1e) therefore poses an iconic challenge for ML techniques.

6

Here we introduce a specific ML approach using ANN's to achieve hypothesis testing with EQM image-arrays. It is based upon supervised ML within an ANN-human coalition. Its goals are to automatically search experimental EQM image-arrays (e.g. generally has an accuracy >99% when tested on validation images (Fig. 2d and Methods Section 4). The ANN design is a fully connected feed forward network with a single hidden layer (Fig. 3 with the highest recognition probability to again be C=2, meaning that the predominant modulations have period 4𝑎 ! for all energies exceeding 66meV (Fig. 5b-d). Again, despite intense masking by QPI phenomena, the ANN's recognize commensurate, 4a0 periodic, DW modulations and reveal that it occurs predominantly near the pseudogap energy scale 𝐸 = Δ ! .

9

A third ANN discovery in Fig. 5i-l is that the commensurate, 4a0 periodic modulations exhibit a strong preference for breaking symmetry under 90 o rotations (C4).

This is revealed because the ANN array yields up to 3 times higher probability in the specific category (C=2) when the data is presented in the X orientation (red) compared to when the identical data is presented to it in the Y orientation (yellow) (Fig. 5j-l). Although the extreme nanoscale disorder masks it in the images Fig. 5a-d, the DW modulations are therefore occurring primarily along the x-axis of the CuO2 plane. ANN analysis of the energy dependence of this complete 𝑍(𝒓, 𝐸) image array in Extended Data Fig. 1 further confirms that the appearance of this nematicity (Fig. 5i-l) occurs approaching the pseudogap energy scale which is Δ ! ≈ 80𝑚𝑒𝑉. Thus, the ANNs find that a nematic state emerges at the pseudogap energy specifically due to highly disordered yet unidirectional 4a0 periodic modulations. This discovery strongly implies that the nematic electronic structure of CuO2 is a vestigial nematic state 32 whose characteristic energy gap is the pseudogap. Advanced theory predicts that a unidirectional DW that is reduced by disorder to extremely short spatial coherent lengths, should generate a nematic state dubbed a vestigial nematic state 32 . Although experimental validation for this hypothesis is formally impossible using conventional FT techniques 26,27 , here it is demonstrably achievable by an ANN array (Fig. 5, Extended Data Fig. 1). Existence of a vestigial nematic state in carrier-doped CuO2 would provide a direct, internally consistent link between a nematic state and the unidirectional 4𝑎 ! periodic DW modulations, whose energy gap is the pseudogap (Fig. 4).

The evidence for a vestigial nematic emerged unexpectedly from ANN analysis of experimental image arrays not optimized for such studies; for the ANN suite to determine a complete p dependence will require new measurements of appropriately optimized image arrays.
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To summarize: we have developed and demonstrated a new general protocol for ML-based identification of the symmetry-breaking ordered states in electronic structure image-arrays from EQM visualization experiments. Our ANNs are trained to learn the defining motifs of each category including its topological defects, and to recognize those motifs in real EQM image arrays (Fig. 1e). Despite the complexity of the hole-doped Mott insulator state, instrument distortion and noise, and the intense electronic disorder of the EQM image arrays studied (Figs.1d,3a,b;4,5), the ANNs repeatedly and reliably discover predominant features of a specific ordered state. Its signature, for 0.06 ≤ 𝑝 ≤ 0.14, is a lattice-commensurate, unidirectional, d-symmetry form factor, 𝜆 = 4𝑎 ! periodic electronic structure modulation (Fig. 4). As an advance in CM physics, the predominance of this phenomenology (Fig. 4) implies that a strong coupling position-based theory is central to these broken-symmetry states of carrier-doped CuO2. The ANN array also reveals evidence that it is the 𝜆 = 4𝑎 ! DW modulations at the pseudogap energy that break the global rotational symmetry to generate a nematic state (Fig. 5, Extended Data Fig. 1). This implies that the PG region of the CuO2 phase diagram (Fig. 1a) contains a vestigial nematic state.

Concurrently, a milestone for general scientific technique is achieved with the demonstration that ANN's can process and identify specific broken symmetries of highly complex image-arrays from non-synthetic experimental EQM data. Overall, these combined advances open the immediate prospect of additional ML-driven scientific discovery in EQM studies. 

Fourier Transform Analysis of EQM Images: Disorder and Information Loss. A

Fourier transform of two-dimensional image data is a linear transformation of that data. All the information that was in the original image appears in the full, complex Fourier transform throughout reciprocal space. Importantly, when there are complicated local patterns or motifs of short-range order at atomic-scale in real space, that information gets spread over all of reciprocal space. This is because what is extremely local in real space becomes completely delocalized in reciprocal space. But, in the traditional mode of FT analysis, one typically picks a compact region in the reciprocal space to be of importance, because the intensity is peaked at that point. Crucially in this approach there is abundant information throughout reciprocal space away from the peak-intensity wavevector that has been discarded. For hole-doped CuO2 the real-space electronic structure at atomic scale is uniquely complex (Fig. 1). For instance, one always finds that the STM image whose FT peak-intensity occurs away from Q=0.25 (see Extended Data Fig. 3a), hosts vivid local motifs that are commensurate with the lattice (see Extended Data Fig. 3b). Since any information local in position space gets spread over all reciprocal space, when one discards much of the data throughout reciprocal space crucial insights contained in atomic scale electronic-structure motifs, discommensurations and topological defects are all lost. On the other hand, because of the versatility of ANN to capture any function whatsoever, 33 the new ML approach allows one to impartially inspect the entirety of the data in each STM image with no loss of information. This is a key distinction between the traditional FT approach and the ML approach which impartially analyzes all the data throughout real space. the DFF (𝐼 !,!,! !"" ) and SFF (𝐼 ! !"" )form factor modulations with noise models were i=1…nd, with windings wi=±2π and total winding 0. The total dislocation-contributed fields are:

𝐼 !,!,! !"" 𝑥, 𝑦 = 𝐴 !"" 1 + 𝜀 ! 𝐴 ! 𝑥, 𝑦 𝐴 ! 𝑥, 𝑦 𝐶𝑜𝑠 2𝜋𝑥/𝜆 ! + 𝜀 ! 𝜑 ! 𝑥, 𝑦 + 𝜑 ! 𝑥, 𝑦 + 𝜑 !"" , 𝐼 ! !"" 𝑥, 𝑦 = 𝐴 !"" 1 + 𝜀 ! 𝐴 ! 𝑥, 𝑦 𝐶𝑜𝑠 𝜀 ! 𝜑 ! (𝑥, 𝑦) + 𝜑 !"" , ( 
𝐴 ! 𝒙 = (1 -𝑒𝑥𝑝 -|𝒙 -𝒙 ! |/𝜉 ! ) ! ! !!! 𝜑 ! 𝑥, 𝑦 = 𝐴𝑟𝑔 𝑠𝑔𝑛(𝑤 ! ) 𝑥 -𝑥 ! + 𝑖 𝑦 -𝑦 ! ! ! !!!
, where the amplitude recovery length is ξd=a, motivated by 𝑍 𝒓, 𝐸 .

Then the training set for each category C combines the different form factor components into image intensity at pixel position (x,y) in units of a through 𝐼 ! 𝑥, 𝑦 = 𝐼 !,!"" 𝑥, 𝑦 * 𝐷 𝑥, 𝑦 + 𝐼 !"" 𝑥, 𝑦 * 𝑆 𝑥, 𝑦 , using atomic masks: the SFF mask 𝑆 𝑥, 𝑦 is a sum of two-dimensional Gaussians with maxima equal to one and spatial widths equal to 0.35a, each located at a Cu atom position (x,y integer), while the DFF mask 𝐷 𝑥, 𝑦 is a sum of positive Gaussians at locations of Ox and negative ones at Oy's. The total intensity 𝐼 ! 𝑥, 𝑦 of all simulated images is normalized to take values between 0 and 1. All simulated images have 6 pixels per nearest Cu-Cu distance a, and contain 2x86x86 unit-cells, for the total size of 516x516pixels.

4

Configuration of Artificial Neural Network (ANN).

In a feed-forward fullyconnected artificial neural network, the neurons form a layered structure and the output of each neuron is sent to all the neurons in the subsequent layer. Each neuron assesses all the inputs with a series of weights w, and an additive constant b known as the bias, and For supervised machine learning, we divide the data set into a training set containing 90% of the images and the rest 10% for unbiased validation, speed control, and overfitting detection during the training. The weights and biases of the ANN are optimized using stochastic gradient descent to minimize the cross-entropy cost function:

𝐶 = 1 𝑁 𝑦 ! 𝑙𝑛(𝜎 ! ) + (1 -𝑦 ! )𝑙𝑛(1 -𝜎 ! ) ! !!! 𝒙 ,
where yi and 𝜎 ! are, respectively, the desired output consistent with the label and the actual ANN output for each of the input image data x. We use a batch size of 50, and L2 regularization to avoid overfitting. We include 50 neurons in the hidden layer and choose the sigmoid function as the neuron activation function unless stated otherwise. In Extended Data Fig. 5a we show examples of the cost function as well as the accuracy on the validation data set for both choices of the sigmoid and the ReLU activation functions during the training. Extended Data Fig. 5b shows the achieved accuracy and cross-entropy cost after 25 epochs as a function of the number of neurons in the single hidden layer. We have trained 81 ANNs with random initial conditions by using a stochastic training process. The outputs of the finalized ANNs are robust and quantitatively consistent with each other. Our results in the main text show the average and standard deviations from all 81 ANNs.

To verify that our results are robust against changes to the architecture of the ANN, we have trained 6 ANNs with 100 neurons in the single hidden layer, and 6 ANNs with two hidden layers, and we found that the results agree with each other within error bars.

Because they are drawn from a historic image-array archive not designed for ML based studies, the SI-STM image-arrays 𝑍 𝒓, 𝐸 vary in spatial resolution from sample to sample from 1.7 to 11.5 pixels per a, the average Cu-Cu distance. The number of CuO2 unitcells in experimental images also varies from 2x55x55 to 2x175x175. The Cu and Ox,y atom positions, registered from the topograph, show random distortions of the lattice due to the STM tip drift effect (Extended Data Fig. 6a).

To correct for the drift and standardize all the 𝑍 𝒓, 𝐸 , we prepare each 𝑍 𝒓, 𝐸 : (1) using interpolation we map the 𝑍 𝒓, 𝐸 to the resulting input image, in a way that each topographic atom position maps onto a position in a perfect atomic lattice with Cu-Cu distance of a=6pixels (see Extended data Fig. 6b,c), which corrects both the drift effect and standardizes the spatial resolution; (2) we crop or tile the image to size 516x516pixels; (3) to study the degree of unidirectionality, for each input image we create a copy rotated by 90 o , since the training images have modulations only along X direction for simplicity and clarity. An example Mathematica notebook file for data preparation is available. Extended Data Fig. 7 shows the 𝑍 𝒓, 𝐸 and prepared input data at different dopings of Bi2Sr2CaCu2O8.

It should be noted that the results are reliable only if the test data lie reasonably consistently within the input space given by the synthetic training sets.

5

Validation and Benchmarking. To assess the discriminatory power of ANNs' categorization, we study obvious modulations in two experimental images (Extended Data We also checked the robustness of our approach against existence of Bi2Sr2CaCu2O8 superlattice modulations. The assessment of the ANN's were independent of existence or absence (data with superlattice modulation removed from the FT) of the superlattice modulations.

We and complete confusion over different candidate categories for p=0.2 (Extended Data Fig. 9e and j). The energy dependence comparison between the ANN's assessments in the main text (Extended Data Fig. 1a or Extended Data Fig. 9e) and the assessments of the ANN trained with the altered disorder model (Extended Data Fig. 9j) shows that the tie between the onset of preference for the commensurate period 4a0 and the nematicity at the pseudogap energy scale is equally robust against variations in the disorder model used to train ANN's.

6

Discommensurations and Maximum Intensity Wavevector. The Fourier transform(FT) based linear analysis of equivalent data in Ref.28 was carried out using the fact that the power spectral density is not smoothly distributed (Extended Data Fig. 10a,b, reproduced from the SI of Ref.28.). We had introduced the concept of demodulation residue (DR), using

𝑹 𝒒 ! 𝜓 ≡ 𝑑 ! 𝒙 𝐿 ! 𝑅𝑒 𝛹 𝒒 * 𝒙 -𝑖𝜕 ! 𝛹 𝒒 𝒙 , 𝛼 = 
𝑥, 𝑦, which measures the phase fitness of the q-modulation in spatial pattern ψ(r) through filtered FT:

𝛹 𝒒 𝒌 = 𝑒𝑥𝑝 - 𝒌!𝒒 ! !! ! 𝑒𝑥𝑝 -𝑖 𝒒 • 𝒙 𝜓(𝒒 + 𝒌), (S2)
where 𝜓(𝒌) is the FT of the data. By minimizing the DR, 𝑅 𝒒 [𝜓] ≡ 𝑹 𝒒 ! 𝜓 ! + 𝑹 𝒒 ! 𝜓 ! , for a given modulation while considering different q-modulations, we showed that one can obtain the phase averaged wave vector 𝑸 of DW modulations. Within the limits of Fourier transform, which is a linear basis transform, this approach was an advancement in dealing with situations when the amplitude does not show well defined peaks, due to severe disorder.

However, there are limitations in this approach because FT is a linear transformation of basis and is useful when the desired phenomenon has sharp features in the new basis: the wavevector basis. However, when there are randomly placed, highly disordered, patches of a real-space DW pattern with sprinkles of topological defects, Fourier transform based methods perform very poorly. Obviously, one would not attempt a

Fourier transform in trying to recognize human faces in an image for precisely this reason.

The limitation of the FT-based methods is evident in that, even when a modulation pattern consists of commensurate period 4a0 modulation (Q0=2π/4a0) everywhere except for a sequence of discommensurations (phase slips in commensurate modulation pattern), the Furthermore, the DR based approach therein averaged over topological defects (dislocations) ignoring their role. Finally, the DR based approach required manual choice of Fourier cutoff (𝛬 in Eq.S2) again based on human visual inspection of the data. Hence the entire process is time consuming and high-level human labor intensive and fraught with human perceptual bias. It is therefore not possible to study the largest SISTM image-arrays with this FT approach in any consistent way, rendering it impossible to inspect the complete electron-density and electron-energy dependence of the largest EQM image-array archives.

The ANN-based approach we introduce in the main text is far more powerful, selection of Fourier regions of interest, and is not tied to any basis. The ANN is inherently non-linear and an ANN with sufficient number of neurons can express/detect any function. 33 Due to the versatility of ANN's, our ANN-based approach allows us to rapidly analyze a complete image-array data set in its entirety, without any ad-hoc Fourier filtering or selection. Hence the ANN approach is quite unbiased. Moreover, once the ANN's are trained, the automatic assessment of new data set takes minutes, allowing for a highthroughput analysis. It is this efficiency that allowed discovery of the connection between nematic state and commensurate density wave state, both setting in at the pseudogap energy scale (Extended Data Fig. 1).

Methods References

33 Cybenko, G. Approximation by superposition of a sigmoidal function. Math. Control Signals Systems 2, 303-314 (1989). 

Extended Data

  Fig. 1e), to recognize spatial modulations in a variety of distinct categories, to identify their fundamental periodicity and lattice register throughout an image, and to distinguish if the modulations are unidirectional or bidirectional. The first stage is generation of sets of ANN training images, each labeled by a hypothesis: the different DW modulations to be discerned. Here, we test four hypotheses associated with four distinct types of ideal periodic modulations, all with a d-symmetry form factor, and with fundamental wavelengths λ=4.348a0, 4.000a0, 3.704a0, 3.448a0 respectively. Notice that only category 2 represents a commensurate pattern with 𝜆 = 4𝑎 ! . Four training sets for categories C=1,2,3,4 are then generated using identical procedures, in which we introduce specific forms of heterogeneity designed to mimic the noise, intrinsic disorder and topological defects of experimental data (Fig. 2a and Methods Section 3). Throughout these simulated training-image-sets, the heterogeneity disrupts the long-range ordered patterns in r-space, as shown for a typical training image in Fig. 2b. It also scrambles the peaks in the d-symmetry Fourier transforms 17 of the training images, rendering them broad and chaotic (Fig. 2c). In the second stage, we establish an ANN architecture that trains well with these training-image-sets. During training, the parameters of the ANN are adjusted iteratively to minimize a cross-entropy cost function 29 . Stochastic gradient descent along with backpropagation 30 is used for lowering the cost function. The training is complete and all parameters of each ANN are set when the cross-entropy 31 saturates. Each finalized ANN

Figure 1 .(

 1 Figure 1. Electronic quantum matter imaging in hole-doped CuO2. a, Schematic phase diagram of hole-doped CuO2. At p=0 a single electron is localized at each Cu site in a Mott insulator (MI) state. As holes are introduced (electrons removed) the MI disappears quickly. The high temperature superconductivity (SC) emerges at slightly higher p, reaching its maximum critical temperature Tc near p~0.16. However, in the range p<0.19 and up to temperatures T * an enigmatic phase of EQM, dubbed the pseudogap (PG) phase, is known to contain periodic charge density modulations of imprecise wavevector Q. b, In the CuO2 Brillouin zone, the Fermi surface is defined as the 𝒌-space contour 𝒌 𝐸 = 0 that separates the occupied from unoccupied electronic states, and its locus changes rapidly with changing carrier density p. Density wave (DW) states may then appear at a wavevector 𝑸(𝒌 ! 𝐸 = 0 -𝒌 ! 𝐸 = 0 ) if the electron states 𝒌 ! 𝐸 and 𝒌 ! 𝐸 are "nested" (red and yellow arrows). c, Strongly correlated electrons may be fully localized in the Mott insulator phase, or self-organized into electronic liquid crystal states in 𝒓 -space. Schematically shown here is a simple example of a state with unidirectional charge density modulations in the CuO2 plane, having wavelength 𝜆 = 4𝑎 ! or wavevector 𝑸 = !! ! ! 0.25,0

Figure 2 .

 2 Figure 2. Training ANN to identify broken-symmetry states in SISTM data. a, The ANN array is trained to recognize a DW in electronic structure images (e.g. 𝑍 𝒓, 𝐸 ) representing different EQM states. A synthesized training-image set for the ANNs is obtained by appropriately diversifying pristine images of 4 distinct electronic ordered states. Each translational symmetry-breaking ordered state is labeled by a category 𝐶 = 1,2,3,4 associated with its wavelength: 𝜆 ! = 4.348𝑎 ! , 4𝑎 ! , 3.704𝑎 ! , 3.448𝑎 ! respectively. The training-images in each category are diversified by appropriate addition of noise, short correlation-length fluctuations in amplitude and phase, and topological defects. b, Example of a training-image in category C=2 which is a d-symmetry form factor (dFF) DW along xaxis with 𝜆 = 4𝑎 ! within which smooth amplitude and phase fluctuations and randomized positions of topological defects (dislocations) have been added to simulate typical phenomena encountered in experimental EQM visualization (e.g. 1D). The full 516x516 pixel image contains 2x86x86 entire CuO2 unit-cells with Cu-Cu distance of 6 pixels diagonally. c, The d-symmetry Fourier transform of b. Absence of a well-defined modulation wavevector 𝑸 within the modulations in b has been successfully simulated in the training-image as seen by the region of 𝒒-space (grey dashed circle) within which strong variation in the amplitudes at different wavevectors occur. Grey dots are at 𝒒 = !! ! ! ±0.5,0 ; 0, ±0.5 . d, Each ANN is trained by minimizing the cross-entropy cost

Figure 3 .

 3 Figure 3. ANN analysis of experimental EQM visualization data. a, Typical measured 16nmX16nm 𝑍 𝒓, 𝐸 = 84𝑚𝑒𝑉 image of Bi2Sr2CaCu2O8 with p=0.08 (Tc=45K). The disorder and complexity of cuprate EQM are manifest. b, Typical measured 𝑍 𝒒, 𝐸 = 84𝑚𝑒𝑉 image of Bi2Sr2CaCu2O8 with p=0.08 (Tc=45K) being the d-symmetry Fourier transform of a. The disorder and complexity of EQM are equally vivid here in the broad and fluctuating peaks around 𝑄 ! ± 𝛿𝑄 ! , 𝛿𝑄 ! 2𝜋/𝑎 ! and (𝛿𝑄 ! , 𝑄 ! ± 𝛿𝑄 ! )2𝜋/𝑎 ! with 𝛿𝑄 ! = 𝛿𝑄 ! ≈ 0.2. Grey dots are at the 0.4,0 ; 0,0.4 2𝜋/𝑎 ! points. c, Schematic of ANN analysis procedure for experimental 𝑍 𝒓, 𝐸 images: the successfully trained neural network with fixed parameters (weights W (1) and W (2) of the hidden layer and the output layer respectively and biases) is a classifier: It classifies each experimental image as belonging into one of the four categories. Neuron activation functions in our ANNs are taken to be the sigmoid function.

Figure 4 .

 4 Figure 4. ANN detection of broken-symmetry evolution with electron-density. a-e, Measured 16nmX16nm 𝑍 𝒓, 𝐸 images of Bi2Sr2CaCu2O8 in the range p=0.06,0.08,0.085,0.14,0.20 (Tc(K)=20,45,50,74,82). Each image is measured at 𝐸 = Δ ! (𝑝) the pseudogap energy at that electron-density. Obviously disorder and complexity of cuprate EQM abound throughout this whole electron-density range (black double headed arrow in Fig. 1A). f-j, The d-symmetry Fourier transforms 𝑍 𝒒, 𝐸 from a-e. The disorder and complexity of EQM are equally vivid as broad fluctuating peaks around 𝑄 ! ± 𝛿𝑄 ! , 𝛿𝑄 ! 2𝜋/𝑎 ! and (𝛿𝑄 ! , 𝑄 ! ± 𝛿𝑄 ! )2𝜋/𝑎 ! . Grey dots are at the 0.4,0 ; 0,0.4 2𝜋/𝑎 ! points. k-o, Output categorization by 81 ANNs of the input data from a-e. Top row numbers: the category's fundamental wavelength, in units of 𝑎 ! . We take statistics of independent assessment on the given experimental image by 81 ANN's that are independently trained to arrive at the probabilities P(C) of the image belonging to category C. The error bars mark the statistical spread (one standard deviation) of P(C) among 81 independently trained ANN's (see Methods). Since the training-images for ANNs are unidirectional, i.e., their pristine orders are along x-axis, categorization results for two modulation orientations X,Y (red and yellow bars) are obtained by inputting to ANNs the 𝑍 𝒓, 𝐸 images and their 90-degree rotated versions, respectively.

Figure 5 .

 5 Figure 5. ANN detection of broken-symmetry at different electron-energies. a-d, Measured 16nmX16nm 𝑍 𝒓, 𝐸 images of Bi2Sr2CaCu2O8 in a range of electron-energy 𝐸=66,96,126,150 (meV) for p=0.08 (Tc(K)=45K). EQM complexity in the identical field of view, now evolves rapidly with electron-energy, a purely quantum mechanical effect. e-h, The d-symmetry Fourier transforms 𝑍 𝒒, 𝐸 from a-d. The disorder and complexity of EQM are strong as seen in the broad fluctuating peaks around 𝑄 ! ± 𝛿𝑄 ! , 𝛿𝑄 ! 2𝜋/𝑎 ! and (𝛿𝑄 ! , 𝑄 ! ± 𝛿𝑄 ! )2𝜋/𝑎 ! but now 𝛿𝑄 ! , 𝛿𝑄 ! evolve rapidly with electron-energy (another quantum mechanical effect). Grey dots occur at 0.4,0 ; 0,0.4 2𝜋/𝑎 ! points. i-l, Output categorization by 81 ANNs of the input data from a-d. Top row numbers: the category's fundamental wavelength, in units of 𝑎 ! . We take statistics of independent assessment on the given experimental image by 81 ANN's that are independently trained to arrive at the probabilities P(C) of the image belonging to category C. The error bars mark the statistical spread (one standard deviation) of P(C) among 81 independently trained ANN's (see Methods). Categorization results for two modulation orientations X,Y (red and yellow bars) are obtained by inputting to ANNs the 𝑍 𝒓, 𝐸 image-array and its 90-degree rotated version, respectively.

3

  Training image set generation. The diversification of synthetic images of a unidirectional DW to create a training image set (see Extended Data Fig.4) starts from dwave and s-wave form factor (DFF and SFF) components, and includes (1) heterogeneity through independent amplitude and phase fluctuations and (2) topological defects or dislocations in DFF. For any of the C=1,2,3,4 categories with representative wavelength λ ! ,

  S1)with overall constants ADFF=1, ASFF=0.5 and phase offsets 𝜑 !"" = 𝜋/4, 𝜑 !"" = 0. Here the amplitude field 𝐴 ! (𝑥, 𝑦) and the phase field 𝜑 ! (𝑥, 𝑦) capture smooth fluctuations (different random realizations in 𝐼 !,!,! !"" 𝑥, 𝑦 and 𝐼 ! !"" 𝑥, 𝑦 ), and 𝐴 ! (𝑥, 𝑦), 𝜑 ! (𝑥, 𝑦) capture dislocation defects. For each category, we generate different realizations labeled by f and d. For each realization f the 𝐴 ! (𝑥, 𝑦) field is two-dimensional Gaussian fluctuation field with spatial length scale ξA=8a, normalized between (-1) and 1, while 𝜑 ! (𝑥, 𝑦) is two-dimensional Gaussian fluctuation field with the same spatial lengthscale ξφ=8a, normalized between -π and π. The values of correlation lengthscales ξA, ξφ are motivated by a simple analysis of an SI-STM 𝑍 𝒒, 𝐸 Fourier transform (Fig.3). The strengths of amplitude and phase fluctuations εA=0.8, εφ=0.5 are also chosen to produce images in rough consistency with a typical 𝑍 𝒓, 𝐸 . In each image, there are nd=2 dislocations at random positions xi=(xi,yi),

  determines the output through a non-linear transformation 𝑓(𝒘 • 𝒙 + 𝑏) , called the activation function. The bias b and the weights 𝒘, are the parameters of the ANN and adjusted during the training. The activation function usually takes the form of the sigmoid function or the rectified linear unit, see the inset of Extended Data Fig.5a. We also use a softmax function 𝜎(𝒙) ! = 𝑒 ! ! / 𝑒 ! ! ! for the output layer to normalize the output and allow a probabilistic interpretation for the different categories.

Fig. 8 )

 8 Fig.8): (1) Topograph of Bi2Sr2CaCu2O8, which has no human-discernible modulation except for the Cu atomic lattice (an SFF at Q=0); (2) 𝑍 𝒓, 𝐸 of NCCOC, with obvious commensurate period 4a0 modulations, apparent in a DFF Fourier transform. The ANNs' categorization is in full accord.

  further tested the robustness of the ANN decisions against change in the disorder model. For this we trained a new ANN with the training set generated with different disorder parameters. Specifically, we decreased the amplitude fluctuation intensity εA by 13%, and phase fluctuation intensity εφ by 20%, while making the disorder profiles vary more rapidly in space by decreasing the correlation lengths ξA, ξφ by 6%.Repeating the assessment of experimental data shown in Fig.4k,l,m,o and Extended Data Fig.1awith the new ANN, we find the results remain unchanged. This is shown through the comparison between the reprint of Fig.4k,l,m,o and Extended Data Fig.1ahere as Extended Data Fig.9a-e respectively and the output from the ANN trained with the new disorder model as Extended Data Fig.9f-j. Robust observations are 1) preference for the commensurate period 4a0 for systems with 0.06<p<0.14 (Extended Data Fig.9a-d, and f-i)

  Rq[ψ] minimization (as well as the FT amplitude maximization) incorrectly identifies an apparent period of 𝑄=0.3*2π/a0 (Extended Data Fig.10e). Although in Ref.28 the DR minimization yielded 𝑄 = 2𝜋/4a0 for pseudogap energy data (single data set for each doping) for various dopings, this depended critically on human visual inspection to identify commensurate patches in Fig.S6Bof Ref.28 (see also Extended Data Fig.3here).

  Fig. 1 ANN detection of unidirectionality at different electronenergies. a, b, Output categorization by 81 ANNs of the 16nmX16nm 𝑍 𝒓, 𝐸 images of Bi2Sr2CaCu2O8 in a range of electron-energy 𝐸=30...150 (meV) in steps of 6 meV for p=0.08 (Tc(K)=45K). Plot symbols are larger than the statistical spread (one standard deviation) of the ANN outputs, as estimated from our ensemble of 81 ANN realizations (see Methods). a, Output for modulation orientation X is obtained by inputting to ANNs the 𝑍 𝒓, 𝐸 imagearray. b, Output for modulation orientation Y is obtained by inputting to ANNs the 90degree rotated versions of the 𝑍 𝒓, 𝐸 used for a. Extended Data Fig. 3 Local commensurate motifs in STM images. a, Large field of view, high precision, STM image of electronic structure integrated to E=100meV in Bi2Sr2CaCu2O8 with p~0.08. Inset shows the power spectral density FT while lower-right inset shows that data plotted along a line from 0.1 to 0.5 in units of 2π/a0. Clearly, the maximum intensity peak occurs at <Q>=0.28. b, Within each of the eight 6.5nm-square regions taken from a there are many commensurate, unidirectional 4a0 electronic-structure motifs (inside white rectangles). The Cu sites, independently determined from topographic imaging, are shown as fine dots. 44 Extended Data Fig. 10 Weakness of Fourier Transform analysis of EQM. a, b, The DFF Fourier amplitude, |Ψ 𝒒 |, with wavevector 𝒒 restricted to a square area with corner at the Fourier space origin (black square) and center at 𝑸 ! = ! ! 𝑮 ! (in a) or 𝑸 ! = ! ! 𝑮 ! (in b), where 𝑮 ! and 𝑮 ! are the Bragg peaks. Data from Bi2Sr2CaCu2O8 sample at doping level p=0.10 (Tc(K)=65K). c, Modulation is the real part of complex wave 𝜓 𝑥 = 𝐴(𝑥)𝑒 !(! ! !!!(!)) having commensurate domains with local wavevector 𝑄 ! = ). The amplitude 𝐴 𝑥 ≥ 0 varies smoothly around value 1. Phase slips are incorporated in 𝜑(𝑥) (see d). The average wavevector is 𝑄 = 0.3× !! ! . d, The local phase 𝜑(𝑥) of 𝜓 𝑥 in c, constructed as a discommensuration (DC) array in the phase argument Φ 𝑥 = 𝑄 ! 𝑥 + 𝜑(𝑥) . Phase slips of all DC's are set to +𝜋 . The distances between neighboring DC's vary randomly around average distance set by value of incommensurability 𝛿 = 𝑄 -𝑄 ! = 0.05× !! ! . e, Fourier amplitudes |𝜓 𝑞 | of the modulation 𝜓 𝑥 in c (blue line) show narrow peak at 𝑄 = 0residue |𝑅 ! | (red dashed line) has the minimum exactly at the average 𝑄.

  

  

  

  

  

  𝛿𝑄 ! , 𝛿𝑄 ! 2𝜋/𝑎 ! and (𝛿𝑄 ! , 𝑄 ! ± 𝛿𝑄 ! )2𝜋/𝑎 ! in Here the ANNs reveal that, on the average, the phenomenology of the C=2, 𝜆 = 4𝑎 ! training-images has the highest probability of being recognized within the 𝑍 𝒓, Δ ! image array, but only for electron-densities 0.06 ≤ 𝑝 ≤ 0.14. 𝐸 into 𝒌 ! 𝐸 , resulting in quantum inference at wavevectors 𝑸 !" 𝐸 = 𝒌 ! 𝐸 -𝒌 ! 𝐸 , and generating modulations of 𝑁 𝒓, 𝐸 or its Fourier transform 𝑁 𝑸 !" , 𝐸 .

	o we show the response of the ANNs as the probability P(C) that the presented EQM image
	is identified in the category C. Thus, the ANNs identify a predominant translational symmetry breaking, occurring
	commensurately with the specific wavelength 𝜆 = 4𝑎 ! (Fig. 4a-d). Overall, the ANNs
	conclude that the identical, commensurate, 4𝑎 ! periodic, electronic structure modulations
	were hidden throughout the 𝐸 ≈ Δ ! EQM images from the 0.06 ≤ 𝑝 ≤ 0.14 area of the CuO2
	and Methods Section 4). Statistical reliability of this ML system against phase diagram.
	different network architectures and different initial conditions is achieved by training 81
	distinct ANNs in parallel with the same training image-set (Methods Section 4). 8 A second key physics issue is the energy dependence within an 𝑍 𝒓, 𝐸 image-array.
	Quasiparticle scattering interference 17 (QPI) occurs when an impurity atom scatters wave-
	7 arrays versus changing electron-density. The measured 𝑍 𝒓, 𝐸 electronic-structure images Our ANN ensemble is first used to hypothesis test the experimental EQM image-are from samples of the hole-doped cuprate Bi2Sr2CaCu2O8 that span the range 0.06 ≤ 𝑝 ≤ like states 𝒌 ! QPI is a distinct physical phenomenon from a DW state because, while the modulation
	0.20. Obviously disorder and complexity of EQM abound in 𝑍 𝒓, Δ ! throughout this whole wavevectors of the former evolve rapidly with 𝐸, for latter they do not. Therefore, the
	electron-density range (black double headed arrow in Fig. 1a) and are equally apparent in ANNs explore a Bi2Sr2CaCu2O8 𝑍 𝒓, 𝐸 array of 16nmX16nm EQM images, that are
	the broad fluctuating peaks around 𝑄 ! ± 𝑍 𝒒, Δ ! (see Figs. 3a,b). Definite fundamental periodicities seem undetectable in these
	Z 𝒓, Δ ! data. The set of experimental Z 𝒓, 𝐸 image-arrays have FOV 16nmX16nm, but are
	measured in a sequence of independent experiments on distinct crystals with p≈0.06, 0.08,
	0.085, 0.14, 0.20 (Tc(K)=20, 45, 50, 74, 82). The ANNs analyze these 𝑍 𝒓, Δ ! images as a
	function of p, focusing on the pseudogap energy 𝐸 = Δ ! 𝑝 because cuprate EQM
	symmetry-breaking emerges at this energy 17,25 . Figures 4a-e show the actual 𝑍 𝒓, Δ !
	images presented to the trained ANN system while Figs. 4f-j show their d-symmetry
	Fourier transforms. The ANN's succeed with high reliability in discriminating and
	identifying the periodic motifs throughout these images (Methods Section 5). In Figures 4k-

measured in a sequence of independent experiments at distinct electron-energy

𝐸=66, 96, 126, 150(meV) 

on the same crystal with p=0.08. Figures

5a-d

show this 𝑍 𝒓, 𝐸 image set that is presented to the same ANN system. EQM complexity in the identical field of view now evolves rapidly with electron-energy because they are dominated by QPI. Similarly, Figures 5e-h are the d-symmetry Fourier transforms Z 𝒒, 𝐸 from Figures 5a-d, showing broad fluctuating peaks that evolve rapidly with electron-energy as expected in QPI. Welldefined fundamental periodicities appear indiscernible in these Z 𝒓, 𝐸 (A-D); Z 𝒒, 𝐸 (E-H) data. However, Figures 5j-l demonstrate that the ANN suite finds the hypothesis category
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Extended Data Fig. 2 Schematic image of density waves arising from strong coupling position-based theories in CuO2 plane. a, The d-symmetry 4a0 charge density wave. The charge density at Ox site is modulating with four-unit-cell periodicity along horizontal direction, and similarly for that at Oy but out of phase by π (d-symmetry). Cu locations are marked by small dots. b, The 8a0 pair density wave state. The d-wave Cooper pair density is modulated with eight-unit-cell periodicity along horizontal direction. Such modulation in Cooper pair density can cause 4a0-period modulation in the local density of states N(r). Extended Data Fig. 6 Experimental SI-STM images. a, Example 𝑍 𝒓, 𝐸 of underdoped Bi2Sr2CaCu2O8 with hole density p=0.06 (Tc(K)=20). The inset is a zoom-in with marked atom positions determined from topograph (Cu: red/light, O: purple/dark). b. A small region of a. c, The standardized version of b (see Methods). Extended Data Fig. 8 Benchmarking categorization using experimental images. a, Input data for the topograph of overdoped Bi2Sr2CaCu2O8 with p=0.22 (Tc(K)=70). b, Output categorization by 81 ANNs of a, showing absence of translation-breaking signal. Results for two modulation orientations X,Y are obtained by inputting to ANNs the image in a and its 90-degree rotated version, respectively (see Methods). c, The input data for 𝑍 𝒓, 𝐸 of NCCOC at doping p=0.12 at E=150meV. d, Output categorization by 81 ANNs of c, showing commensurate modulations (category 2).