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Summary

The reconstruction of blood velocity in a vessel from contrast enhanced X-ray CT
projections is a complex inverse problem. It can be formulated as reconstruction
problem with a partial differential equation constraint. A solution can be estimated
with the a variational adjoint method and proper orthogonal decomposition basis.
In this work, we investigate new inversion approaches based on proper orthogonal
decompositions coupled with deep learning methods. The effectiveness of the re-
construction methods is shown with simulated realistic stationary blood flows in a
vessel. The methods outperform the reduced adjoint method and show large speed-
up at the online stage.
KEYWORDS:
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1 INTRODUCTION

The study of blood flow is crucial for the treatment of cardiovascular diseases1,2,3 but it remains a difficult task. There are non-
invasive quantitative imaging methods of intravascular hemodynamics. A low spatiotemporal resolution is obtained with imaging
modalities like magnetic resonance and ultrasound4,5,6,7 and some hemodyamic parameters cannot be calculated accurately. X-
ray CT have been much less investigated8,9,10,11,12. The proposed methods rely often on the evolution of the tracer concentration
gradients. Recently, we have studied a new reconstruction approach for the velocity field in a vessel with contrast enhanced
spectral CT13. The Radon projections are measured perpendicularly to the vessel axis. A transport partial differential equation is
used to model the propagation of the tracer injected in the inlet. Simulations experiments have shown that the velocity field can
be estimated with a good resolution with the adjoint method14,15 but the computational time remains too high. In order to reduce
the compational costs of the adjoint method, we have also investigated reduced-order modeling based on Proper Orthogonal
Decomposition (POD)16. The principle of the method is to represent the velocity field, the Radon projections and the adjoint
variable in terms of known basis functions that capture the more important information. The governing equations of the adjoint
method are then projected onto the linear subspaces estimated with this principal component analysis. A large reduction of the
computation time is obtained in comparison with high-fidelity simulations and the dominant flow patterns are identified. Yet,
the method is still time consuming since we have to evaluate repeatedly the ouput of forward and adjoint partial differential
equations to solve the inverse problem. Moreover, the structure of the physical problem and the governing equations for the
diffusion of the tracer must be known precisely.

On the other hand, novel methodologies based on deep learning have been proposed recently to solve complex inverse prob-
lems17. There are many situations in which data are abundant but governing laws are uncertain or do not exist. The use of deep
learning models is particularly promising in scientific problems involving processes that are not completely understood, or where
it is computationally infeasible to run models at high resolutions in space and time. Deep learning structures are often used as a
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surrogate model where the goal is to accurately reproduce the behavior of model at substantially reduced computational cost. For
complex scientific and engineering applications, deep learning alone can not be considered sufficient. Many hybrid physics-deep
learning frameworks have been studied, that integrate traditional physics-based modeling approaches with state-of-the-art ma-
chine learning or deep learning technique18,19. Several methods incorporate physical knowledge into loss functions to help deep
learning models to capture patterns consistent with physical laws. They thus considered physics-guided loss functions where
the governing equations are used as regularizers to reduce the search space of parameters20,21,22,23. In several works, a neural
network is used to approximate the solution operator mapping elements of the space of the parameters of a Partial Differential
Equation (PDE) and the space of the solutions of this PDE by minimizing a loss functional using the discretized values of the
solution and of the parameters. These approaches may be successful but are not robust to mesh refinement. In order to overcome
some limitations of these works, there has been some work about operator approximations with deep learning techniques that
have the property of discretization invariance. These neural networks are defined to act between infinite-dimensional function
spaces. PCA-Net uses neural networks to map between PCA coefficients representing input and output functions24,25. Recently,
DeepONet have been investigated for operator approximation comprising two sub-networks, the branch and trunk network26,27.
In28, the authors couples a POD with a convolutional network to solve the cardiac electrophysiology inverse problem.

In this work, inspired by these approaches and in order to improve the reconstruction results obtained for blood velocity recon-
struction with our POD-adjoint approach, we investigate the coupling of POD model reduction with deep learning techniques.
We compare several neural network architectures to approximate the inverse operator. The quantitites of interest, the velocity
field and Radon projections, corresponding to the inputs and the outputs of our inverse problem are expanded in terms of ap-
propriate sets of basis functions obtained from snapshots. Various neural network architectures are used to map the coefficient
associated to the representations of these functions. The efficiency of the framework is demonstrated with numerical examples
with stationary velocity fields with realistic simulations.

The paper is organized as follows. After the introduction, in section 2, the inverse problem will be presented and the varia-
tional inversion methodology based on POD will be summarized. Then the deep learning approaches studied to approximate
the unknown velocity field are described in detail. In section 4, the simulation results achieved with these methods to solve the
inverse problem are detailed and discussed.

2 THEORETICAL FRAMEWORK

2.1 Inverse problem formulation and adjoint method with POD reduction
The inverse problem formulation for parametrically varying conditions has been presented in detail in16. In this section, we
summarize here the set up and the adjoint method based on Proper Orthogonal Decomposition. A set of model parameters 𝛍 in
the set  is used to parametrize the inverse problem. Two-dimensional Radon projections are acquired perpendicularly to the 𝑧
axis which is the main vessel axis and flow direction. We denote𝑄 = Ω×[0, 𝑇 ] the space-time box where Ω is a bounded spatial
domain and [0, 𝑇 ] the time interval. A convection-diffusion equation is used to model the propagation of the contrast agent in
the vessel with the velocity field 𝐕 = (𝑢, 𝑣,𝑤) ∶ [0, 𝑇 ] × Ω → ℝ3 obtained with the Navier-Stokes (NS) equations13 which
depends on the first subset 𝛍𝟏 of 𝛍 related to the boundary and initial conditions. The contrast agent enters the vessel through
a disk () in the plane 𝑧 = 0. The transport equation of the tracer concentration 𝑓 (𝐱, 𝑡) with initial and boundary conditions is
written as follows:

⎧

⎪

⎨

⎪

⎩

𝑒(𝑓,𝐕, 𝜇) = 𝜕𝑓 (𝐱,𝑡)
𝜕𝑡

+ 𝐕 ⋅ ∇𝑓 (𝐱, 𝑡) −𝐷△ 𝑓 (𝐱, 𝑡) = 0
𝑓 (𝐱, 𝑡) = 𝑓𝑖𝑛 ∀𝑥 ∈ () ∀𝑡 ∈ [0, 𝑇 ]

𝑓 (𝐱, 0) = 0 ∀𝑥 ∈ Ω − ()
(1)

where the convective term is given by:
𝐕 ⋅ ∇𝑓 (𝐱, 𝑡) = 𝑢

𝜕𝑓 (𝐱, 𝑡)
𝜕𝑥

+ 𝑣
𝜕𝑓 (𝐱, 𝑡)
𝜕𝑦

+𝑤
𝜕𝑓 (𝐱, 𝑡)
𝜕𝑧

(2)
The inlet concentration of the tracer 𝑓𝑖𝑛 and the diffusion coefficient 𝐷 that are used to parametrize the transport equation
correspond to the second subset 𝛍𝟐 of the model parameters 𝛍 . The density of the other materials is neglected and the evolution
of the Radon projections with time is related to tracer concentration. Let Σ ∈ ℝ2 be a bounded Lipschitz domain, the Radon
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transform of the concentration of the tracer can be written as:
𝑅𝑓 (𝜃, 𝑠) = ∫

Σ∩𝐿𝑟(𝜃,𝑠)

𝑓 (𝐱)𝑑𝑙(𝐱) (3)

X

Y

s

q

(S)
Lr(s,q)

Figure 1 Principle of integral Radon transform.

The line 𝐿𝑟(𝜃, 𝑠) is determined by the angle 𝜃 ∈ [0, 𝜋] and by the distance 𝑠 ∈ [−𝑎, 𝑎] from the origin as displayed on Figure
129. The scanner is rotating with time and the Radon projections are acquired for 𝑁𝜃 projection angles regularly distributed in
the angular range Δ𝜃(𝑡). For each angle, 𝑁𝑝 projections are measured and the 2D Radon projections are obtained for 𝑁𝑧 values
along the z axis, with 𝑧 ∈ [0, 𝑧𝑚𝑎𝑥].

Our aim is to estimate the velocity 𝐕(𝐱, 𝑡) from the linear equations 𝑅𝑓 (𝜃, 𝑠, 𝑧) = 𝑝𝛿(𝜃, 𝑠, 𝑧), where 𝑝𝛿 are the noisy projec-
tions, 𝑠 and 𝑧 are coordinates of the two-dimensional detector. In the framework of the adjoint method, the inverse problem is
formulated as a constrained minimization problem with the Lagrangian 𝐿𝑎 obtained with a dual variables ℎ ∶ [0, 𝑇 ] → 𝐿2(Ω)
and written as:

𝐿𝑎(𝑓,𝐕, ℎ,𝛍) = 𝐽 (𝑓,𝐕,𝛍) + 𝛽
𝑇

∫
0

< 𝑒(𝑓,𝐕,𝛍), ℎ(𝑡) > 𝑑𝑡 (4)

where 𝛽 is a Lagrangian parameter and < ., . > denotes the 𝐿2(Ω) scalar product. The cost functional J can be written as:
𝐽 (𝑓,𝐕,𝛍) = 1

2
∫ 𝑇
0 ‖𝑅𝑓 (𝜃, 𝑠, 𝑧) − 𝑝𝛿(𝑡)‖22𝑑𝑡 +

𝛼𝑠
2
‖|∇𝐕|‖22 (5)

with 𝛍 = (𝛍𝟏,𝛍𝟐) and 𝛼𝑠 a regularization parameter16. The system of PDE equation used in the adjoint method is based on the
optimality conditions for the Lagrangian13. The adjoint method with the POD reduced approach is based on the assumption that
the solution manifold {𝑓 (𝛍),𝐕(𝛍), ℎ(𝛍);𝛍 ∈ } can be approximated by a low dimensional subspace in an offline phase by
the snapshots, {𝑓 (𝛍),𝐕(𝛍), ℎ(𝛍);𝛍 ∈ 𝑠} where 𝑠 is a discrete subset of parameters 𝑠 ⊂. The snapshots are projected
on low dimensional spaces to obtain the reduced basis (Ψ𝑓,𝑖)1≤𝑖≤𝑁𝑓

, (𝚿𝑉 ,𝑗)1≤𝑗≤𝑁𝑣
, (Ψℎ,𝑘)1≤𝑘≤𝑁ℎ

with dimensions 𝑁𝑓 , 𝑁3
𝑉 and

𝑁ℎ. The offline step consists in building these POD basis for the tracer concentration, velocity and adjoint variables. For the
tracer concentration, the POD basis vectors are obtained with the minimization of the projection error:

1
𝑁𝑠

∑

𝛍∈𝑠

‖𝑓 (𝛍) − ΠΨ𝑓
𝑓 (𝛍)‖2𝐿2(Ω×[0,𝑇 ])

(6)

where 𝑁𝑠 is the total number of snapshots, ΠΨ𝑓
denotes the projection on the reduced finite dimensional space spanned by the

basis (Ψ𝑓,𝑖)1≤𝑖≤𝑁𝑓
. Similar error metrics are used for the adjoint variable and the velocity field.

During the online phase, for a test value of 𝛍, 𝑓 (𝛍),𝐕(𝛍), 𝑝(𝛍) are projected onto the reduced subspaces. A system of low
dimensional ordinary differential equations is thus obtained. The PDE constraint 𝑒(𝑓,𝐕,𝛍) = 0 can then be formulated as
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𝑑𝑓
𝑑𝑡

= �̂�𝑓 with 𝑓 = Ψ𝑓𝑓 , and 𝑓 the reduced coefficients for the tracer concentration and �̂� = Ψ𝑡
𝑓𝐴Ψ𝑓 the reduced operator

corresponding to the transport equation. The model reductions applied to adjoint equation and to the gradient of the functional
are detailed in13. This approach is still very time consuming and we will present new deep learning methods.

2.2 Inverse problem formulation with deep learning approaches
The approaches studied in this work combine model reduction with deep neural networks to learn the mapping between two
Hilbert spaces, 𝑉 = 𝐿2(Ω → ℝ3) for the velocity field 𝐕 and 𝑝 = 𝐿2([0, 𝑇 ] × [−𝑎, 𝑎] ×

[

0, 𝑧𝑚𝑎𝑥
]

→ ℝ) for the Radon
projections 𝑝. We consider only stationary velocity fields but we have to include the time domain to describe the evolution of
the tracer density and of the Radon projections. In the following, the POD for the Radon projections includes the time domain.

The velocity space 𝑉 is considered as the product of three spaces 𝑉 = 𝑥𝑉 × 𝑦𝑉 × 𝑧𝑉 of three spaces corresponding to
the components of the velocity field. We have 𝑥𝑉 = {𝑉𝑥 ∶ Ω → ℝ} for the velocity component along 𝑥 and similar definitions
hold for the other directions. Our aim is to determine a nonlinear inverse operator Ψ = Ψ𝑥 ×Ψ𝑦 ×Ψ𝑧 ∶ 𝑝 → 𝑉 from samples
corresponding to the two probability measures on these spaces, the probability measures 𝜈 on 𝑝 and its pushforward measure
Ψ∗𝜈 on 𝑉 . With these notations, for given Radon projections 𝑝, the velocity component are given by 𝑉𝑥 = Ψ𝑥(𝑝), 𝑉𝑦 = Ψ𝑦(𝑝)
and 𝑉𝑧 = Ψ𝑧(𝑝). This operator is approximated with a class of parametric operatorsΨ𝜃 = Ψ𝑥

𝜃×Ψ
𝑦
𝜃×Ψ

𝑧
𝜃 ∶ 𝑝 → 𝑉 with different

neural network architectures, where 𝜃 ∈ ℝ𝐷 denotes the set of the 𝐷 neural network parameters. This corresponds to an inverse
nonlinear operator learning. The direct learning of solution operators of inverse problems is currently a popular research area,
and many deep neural networks architectures have been proposed17. One difficulty is the interplay between the ill-posedness of
the learning and ill-posedness of the inverse problem itself. In practice, a finite number 𝑁 of samples for the Radon projections
and velocity measures are available {𝑝𝑛}1≤𝑛≤𝑁 and {𝑉𝑛 = Ψ(𝑝𝑛)}1≤𝑛≤𝑁 defining empirical measures. To determine the optimal
parameter 𝜃∗,we will use the cost function :

 = 1
𝑁

𝑁
∑

𝑛=1

𝐸𝑥
𝑛 + 𝐸

𝑦
𝑛 + 𝐸𝑧

𝑛

‖Ψ𝑥(𝑝𝑛)‖2 + ‖Ψ𝑦(𝑝𝑛)‖2 + ‖Ψ𝑧(𝑝𝑛)‖2
(7)

where 𝐸𝑥
𝑛 = ‖Ψ𝑥(𝑝𝑛) − Ψ𝑥

𝜃(𝑝𝑛, 𝜃)‖
2
𝐿2

= ‖𝑉𝑥(𝑝𝑛) − Ψ𝑥
𝜃(𝑝𝑛, 𝜃)‖

2
𝐿2

is the reconstruction error along 𝑥 and similar definitions hold
for the other axes. In practice, in view of the non-convex nature of the optimization over 𝜃 , we may only have access to an
approximation of 𝜃∗.

In this work, we have used approaches similar to the ones presented in25,28. In order to learn a data-driven mapping between
the two Hilbert spaces, we first estimate finite dimensional approximations of these spaces with POD. We approximate the
identity mappings 𝐼𝑝 and 𝐼𝑉 by the composition of two maps, a linear encoder and a linear decoder, with finite-dimensional
range and domain respectively. The finite-dimensional outputs of the encoders are called latent codes corresponding to the POD
coefficients and we will build a mapping 𝛼 between these latent codes. In the following, we will denote 𝐹𝑝 and𝐺𝑝 the encoder
and the decoder of the space 𝑝. Similarly, we will denote 𝐹𝑉 and 𝐺𝑉 the encoder and the decoder of the space 𝑉 . To
summarize we have the following approximations, 𝐼𝑝 ≃ 𝐺𝑝◦𝐹𝑝 , 𝐼𝑉 ≃ 𝐺𝑉 ◦𝐹𝑉 ; Ψ𝜃 ≃ 𝐺𝑉 ◦𝛼◦𝐹𝑝 . The combination of
POD with a neural network is the basis of the computational methodology.

In the framework of the deep learning approaches, the dimension reduction is not performed on the density, the adjoint variable
and the velocity field as in the adjoint method, but on the Radon projections and the velocity field. We will denote 𝑁𝑅 and
𝑁3
𝑉 the number of basis elements for the Radon projections and the velocity field respectively. It should be noted that the POD

could be replaced by encoding/decoding with nonlinear auto-encoders. The first step thus consists to obtain finite dimensional
approximations on the velocity and Radon projection spaces. The POD presented above lead to orthonormal bases {𝜓𝑅𝑓,𝑖}1≤𝑖≤𝑁𝑅pour 𝑝 and {𝜓𝑉 ,𝑖}1≤𝑖≤𝑁𝑉

× {𝜓𝑥
𝑉 ,𝑖}1≤𝑖≤𝑁𝑉

× {𝜓𝑦
𝑉 ,𝑖}1≤𝑖≤𝑁𝑉

× {𝜓𝑧
𝑉 ,𝑖}1≤𝑖≤𝑁𝑉

for 𝑉 which are truncated to the first 𝑁𝑅 et 𝑁𝑉 first
modes before the training of the network.

a) POD-FC method
The first approach presented in this section is similar to the work presented in25,24 to achieve modeling of nonlinear operators.
The method is based on a fully connected network (FC) and it will be called POD-FC in the following. Given Radon projetions
𝑝 ∈ 𝑝, the operator Ψ𝜃 is defined for the 𝑥 component with:

Ψ𝑥
𝜃(𝑝, 𝜃)(𝑀) =

𝑁𝑉
∑

𝑗=1
𝛼𝑥𝑗 (𝐹𝑝𝑝, 𝜃)𝜓

𝑥
𝑉 ,𝑗(𝑀) (8)
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for 𝑀 ∈ Ω for stationary velocity fields. The function 𝛼𝑥𝑗 ∶ ℝ𝑁𝑅 × ℝ𝐷 → ℝ, for 1 ≤ 𝑗 ≤ 𝑁𝑉 , is mapping the coefficients
obtained for the POD of 𝑝 , 𝐹𝑝𝑝 = {(𝜓𝑅𝑓,𝑖, 𝑝)}1≤𝑖≤𝑁𝑅

and the coefficients corresponding to the velocity field along 𝑥, 𝐹 𝑥
𝑉
𝑉 .

The others definitions are similar for the other axes.
b) POD-CNN method

The second neural network architecture studied is based on a Convolutional Neural Network (CNN) 𝛼 and it will be called
POD-CNN. It leverages some ideas presented in28. In this work, the authors proposed a slightly different architecture, for car-
diac electrophysiology inverse problems, leading to an approximation of the mapping between the input surface potentials and
the epicardial potential field. The predicted solutions is also consistent with the problem physics, approximated by means of
PDEs and the approach is also an instance of physics informed deep learning model, that exploits physical laws to improve the
predictive power of the model. By resorting to reduced order modeling techniques, they managed to mitigate the effects of the
ill-posedness of the inverse problem with a dimensionality reduction of the solution space. The network learns a latent reduced
representation of the epicardial potential field and an data-driven approximate version of the inverse operator. This latent repre-
sentation corresponds to the the coefficients arising from the projection of the epicardial potential field onto a spatio-temporal
reduced subspace. The space of admissible solutions for the inverse problem is further shrinked, as additional physical con-
straints have been added, and it ultimately reduces to a low-dimensional and physically consistent manifold. For our inverse
problem, the corresponding approximate inverse operator can be written for the 𝑥 component as:

Ψ𝑥
𝜃(𝑝, 𝜃)(𝑀) =

𝑁𝑉
∑

𝑗=1
𝛼𝑥𝑗 (𝑝, 𝜃)𝜓

𝑥
𝑉 ,𝑗(𝑀) (9)

with similar defintions for 𝑦 and 𝑧. It should be noted that the operator 𝐹𝑝 and the Proper Orthogonal Decomposition in the
input space are not used. The two architectures will be tested in the next section with numerical experiments.

3 NUMERICAL EXPERIMENTS

In this section, we detail some numerical experiments to test the deep learning approaches on a realistic numerical phantom
with complex flows described by Navier-Stokes equations. We will focuss here on stationary velocity fields. In order to train the
neural networks, we have to first to build POD basis for the velocity field for the POD-CNN method and the bases for the Radon
projections and the velocity for the POD-FC method. We summarize the finite elements simulation and POD bases construction.
They are detailed in13,16. Then we present the neural network architectures and training methodology.

3.1 Finite elements simulation details, POD bases construction and data generation
The vessel used for the simulations is displayed in Figure 2. Steady-state Navier-Stokes equation have been used to simulate real-
istic velocity fields to be reconstructed 𝐕∗(𝐱)13. The velocity fields are used in the transport equation (Eq.1) to estimate the tracer
concentration and the Radon projections. The finite elements simulations have been performed with the Fenics software30,31.
For time domain, we have used [0, 𝑇 ] = [0𝑠, 0.5𝑠], with 𝑁𝑡 = 10 steps and a time step 𝑑𝑡 = 0.01𝑠 for Euler explicit time dis-
cretization 32. Longer simulations gives similar reconstruction errors and results for the comparison between the methods. The
spatial domain is discretized with 𝑃1 finite elements and 56845 nodes. For the simulation of the Navier-Stokes equation, Taylor-
Hood (𝑃2 − 𝑃1) finite elements have been used33,34,35. The Navier-Stokes have been simulated with the Incremental Pressure
Correction scheme in Fenics30,31. Regularly spaced Radon projections perpendicular to the vessel direction are calculated with
the Scipy python library36 for 𝑁𝑧 = 100 values. They are estimated for 𝑁𝑝𝑟𝑜𝑗 = 285 values, for 𝑁𝜃 = 30 projection angles
in the angular range Δ𝜃 = 180° for each time step. A Gaussian white noise with peak-to-peak signal-to-noise ratio (PPSNR)
between 0 and 20 dB is used to corrupt the projections, which is defined as:

𝑃𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔(
𝑆𝑚𝑎𝑥
𝑛𝑚𝑎𝑥

) (10)
where 𝑆𝑚𝑎𝑥 is the maximum signal amplitude and 𝑛𝑚𝑎𝑥 the maximum noise amplitude. The snapshots for the Radon projection
distribution are sampled both in time and parameter space with a a regular grid sampling. For the velocity, they are only sampled
in parameter space. The first subset 𝛍𝟏 of the model parameters 𝛍 = (𝛍𝟏,𝛍𝟐) is related to the initial/boundary conditions for the
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Figure 2 The finite element mesh used for the simulations.
.

velocity field. The NS equation in an incompressible viscous flow is:
⎧

⎪

⎨

⎪

⎩

𝐕.∇𝐕 + ∇𝑝 − 𝜈△ 𝐕 = 0
∇.𝐕 = 0

𝐕 = 𝐕𝜕Ω 𝑜𝑛 𝜕Ω
(11)

where 𝜈 is the kinematic viscosity, 𝑝(𝐱) the pressure field and 𝐕𝜕Ω the velocity field on the boundary 𝜕Ω. The time derivative
of the velocity is cancelled for the steady-state equation. The boundary 𝜕Ω = Γ𝑖𝑛 ∪ Γ𝑜𝑢𝑡 ∪ Γ𝑠 of the spatial domain Ω consists
of an inflow part Γ𝑖𝑛 on the plane 𝑧 = 0, of an outflow boundary Γ𝑜𝑢𝑡 on the output plane and of the lateral side of the vessel
Γ𝑠. A parabolic profile is used in the inlet boundary with a maximum value in the middle of this region denoted as 𝐕Γ𝑖𝑛,𝑚𝑎𝑥. We
assume that the velocity on the boundary Γ𝑠 vanishes. For the oulet, we use 𝜈𝜕𝐍𝐕 + 𝑝𝐍 = 0 where 𝐍 is the unit normal vector
and 𝜕𝐍 the normal derivative .

The stationary velocity fields will be parametrized with 𝜇1 = (𝐕Γ𝑖𝑛,𝑚𝑎𝑥, 𝑝Γ𝑜𝑢𝑡), where 𝑝Γ𝑜𝑢𝑡 is the pressure on the outflow part.
This parameter is sampled regularly for inlet velocities between 0.02 and 0.6 m/s and for output pressures between 0 and 1000
Pa. The largest outlet of the vessel has a diameter which is 1.5 larger than the one of the small outlet and as a first approximation,
the same outlet pressure is used for both.

The POD basis for the Radon projections are obtained from the tracer concentration field computed with using Eq.1, the former
velocity fields depending on 𝛍𝟏 and from parametrized inlet tracer concentration 𝑓𝑖𝑛 and diffusion coefficient 𝐷. The second
component of 𝛍 is denoted as 𝛍𝟐 = (𝑓𝑖𝑛, 𝐷, 𝑡𝑖) where 𝑡𝑖 is the selected time in [0, 𝑇 ]. The inlet tracer concentration is sampled
regularly between 0.5 and 1.5 𝑘𝑔∕𝑚3 and the diffusion coefficient 𝐷 between 0.001𝑐𝑚2∕𝑠 and 0.00001𝑐𝑚2∕𝑠 The choice of the
number of basis element for the POD is based on the projection error controlling the quality of the POD approximation. The
methodology to check the accuracy of the approximation is detailed in16. We have retained 𝑁𝑉 = 2 elements for each velocity
component along 𝑥,𝑦 or 𝑧 in the stationary case and 𝑁𝑅 = 6× 8 basis functions for the Radon projections. Good reconstruction
results can be obtained with this small number of basis elements which is nearly optimal for the simple flow patterns investigated
and this choice enables a comparison with the POD-adjoint method.

After this offline stage, in order to train the network, we have generated 800 samples for the velocity field and their paired
Radon projections, and we have estimated their POD coefficients. For the test data set, 200 snapshots data have been used for
each noise level to obtain Monte-Carlo estimate of the errors. For comparison with POD adjoint based method, 50 samples have
been used to estimate the errors with this variational method.
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3.2 Neural network architecture and training
In this section, we detail the network architectures and the training method. The training was implemented using the open-
source library Keras 2.2.5 with Tensorflow backbone and performed on a modern HPC cluster with 10 processors. Different
architectures have been considered for the two POD based netwokrs which are displayed on the schematic Figure 3. For the
POD-FC network, the best results have been obtained with a fully connected neural network with 4 internal layers of width
(500, 1000, 1000, 1000) between the input and the output with Relu activation function, except in the last layer. For this network
architecture, the best results have obtained with a dropout layer after the first layer with a rate of 0.2 to avoid overfitting.
For the POD-CNN network, we use a 3D convolutional architecture to extract the POD coefficients characterizing the reduced
dynamics from the Radon projections snapshots input dataset. The 3D CNN operations, filter lengths and strides are summarized
in Figure 3. The input to the convolutional layers is a 4D tensor, except for the input layer which is of shape (𝑁𝑡, 𝑁𝜃 , 𝑁𝑧).
The projection value used for each angle 𝜃 is the average along the 𝑠 direction. The 𝐿𝑡ℎ layer takes each 3D slice of the tensor
of the layer 𝐿 − 1 and convolve them with all the kernels to create a 4D tensor. For any convolutional layer 𝐿, we denote
𝑘𝐿 the number of feature channels. We can group these kernels of size 𝑓𝑥 × 𝑓𝑦 × 𝑓𝑧 into a 4D tensor 𝐾𝐿 ∈ ℝ𝑓𝑥×𝑓𝑦×𝑓𝑧×𝑘𝐿 . A
schematic drawing together with the shapes (𝑓𝑥, 𝑓𝑦, 𝑓𝑧, 𝑘𝐿) are presented in Figure 3 We use three convolutional layers with
shapes (𝑓𝑥, 𝑓𝑦, 𝑓𝑧) = (5, 5, 5) and strides (2,2,2). The 3D convolutional layers are followed by a feed forward networks with 300
neurons to return a vectorized feature map (𝛼𝑥𝑗 )1≤𝑗≤𝑁𝑉

× (𝛼𝑦𝑗 )1≤𝑗≤𝑁𝑉
× (𝛼𝑧𝑗 )1≤𝑗≤𝑁𝑉

. Nonlinearities are introduced in the network
with RELU activation function. The number of hidden layers, the number of weights per hidden layer, the nonlinear activation
functions, the batch size for mini-batch gradient descent, the number of epochs to perform training have been optimized. The
network is trained on 100 epochs, with an Adam optimizer, and a decreasing learning rate between 10−3 and 10−4. The cost
function used is given in Eq.7. We did not used U-net architecture for comparison because several studied have shown that
with this architecture , the choice and training of parameters is linked to the grid resolution. The methods used in this work are
resolution invariant.

Figure 3 Architecture of the networks a) POD-CNN network b) POD-FC-POD network.
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4 RESULTS AND DISCUSSION

4.1 Results
In this section, we present numerical results and we compare the proposed POD based deep learning methods against the adjoint
method. We test the proposed algorithms on stationary velocity fields. We compare the results for different noise levels, visualize
the recovered solutions and analyze the accuracy of the reconstruction of the various approaches.

For a qualitative evaluation of the POD-FC method, some examples of reconstruction of the various components of the
velocity field is presented on Figure 4 together with the ground truth velocity for a high noise level, for selected simulation
times and cross-sections. Results for high and low inlet velocities are displayed in order to show that the methods work for a
large range of velocity values. The figure also dislays the error maps for the velocity components. The reconstructions obtained
with POD-CNN is rather similar. The error fields of POD-FC and POD-CNN have similar structures, length scales, and error
magnitudes, indicating that their output spaces are similar. This figure shows that the approaches based on deep learning leads
to good reconstruction results.

In order to evaluate quantitatively the studied coupled POD-deep learning approach, we have compared the reconstructed
velocity fields with the ground truth fields based on the normalized root mean square defined by:

𝐸(𝐕) =
‖𝐕 − 𝐕𝑡𝑟𝑢𝑒‖2

‖𝐕‖2
(12)

where 𝐕 is the reconstructed velocity and 𝐕𝑡𝑟𝑢𝑒 the corresponding true one in the 3D domain. The same normalized error can
be claculated for the component along 𝑥,𝑦 and 𝑧 of the velocity field. We have calculated the meand and the standard deviations
for these errors on the test dataset. The Monte-Carlo estimate was evaluated with 200 snapshots for the samples obtained with
deep learning. The studied algorithm was evaluated for several noise realizations. The results are summarized in Table 1. The
reconstruction times are 35 s and 3.8e-3s and 9.6e-4s for the POD-adjoint, POD-CNN and POD-FC methods respectively for
one test sample.

Table 1 Comparison of the reconstruction errors for the methods POD-FC POD-adjoint and POD-CNN for two noise levels.
The mean and standard deviation are given for each method and noise level.

NMSE PPSNR(dB) POD-adjoint POD-CNN POD-FC
V 20 0.061 (0.042) 0.025 ( 0.062 ) 0.01 (0.040)
V 0 0.082 (0.061) 0.024 (0.035) 0.024 (0.033)
𝑉𝑥 20 0.081 (0.085) 0.028 (0.045) 0.014 (0.086)
𝑉𝑥 0 0.096( 0.090) 0.025 (0.038) 0.027 (0.038)
𝑉𝑦 20 0.070 (0.075) 0.029 (0.035) 0.010 (0.040)
𝑉𝑦 0 0.082 (0.086) 0.026 (0.032) 0.029 (0.032)
𝑉𝑧 20 0.051 (0.042) 0.024 (0.040) 0.009 (0.060)
𝑉𝑧 0 0.074 (0.062) 0.022 (0.036) 0.029 (0.033)

The CPU time for the generation of one snapshot for the tracer concentration is 700 s and the training of the deep learning
models requires 6000 s. Thus the offline CPU time is twice higher for the adjoint method than for the deep learning methods
because the evolution with time of the adjoint variable has also to be calculated.

In this work, we consider the 𝑧 axis is the main flow direction but this choice is arbitrary. In order to show that the method can
be applied for complex geometries, we display some reconstructions results near the bifurcation of the vessel and in the curved
part of the vessel in Figure 5 and 6. This figures show that the reconstruction errors are small in this regions.
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(a) Ground true velocity along x (b) Reconstructed velocity along x (c) Error map for velocity along x

(d) Ground true velocity along y (e) Reconstructed velocity along y (f) Error map for velocity along y

(g) Ground true velocity along z (h) Reconstructed velocity along z (i) Error map for velocity along z

(j) Ground true velocity along z (k) Reconstructed velocity along z (l) Error map for velocity along z

Figure 4 Example of velocity field reconstruction obtained with POD-DL approach, for the section z=0.155. Figures (a-i )cor-
respond to an inlet velocity 0.5 m/s, outlet pressure 500Pa, inlet tracer concentration 1.1 kg/𝑚3, diffusion coefficient D=1e-5,
noise level 0dB. Figures (j-l) correspond to an inlet velocity of 0.025 m/s.
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(a) Ground true velocity along x (b) Reconstructed velocity along x (c) Error map for velocity along x

(d) Ground true velocity along y (e) Reconstructed velocity along y (f) Error map for velocity along y

(g) Ground true velocity along z (h) Reconstructed velocity along z (i) Error map for velocity along z

Figure 5 Example of velocity field reconstruction obtained with POD-DL approach, for the section z=0.165, inlet velocity 0.5
m/s, outlet pressure 500Pa, inlet tracer concentration 1.1 kg/𝑚3, diffusion coefficient D=1e-5, noise level 0dB.

4.2 Discussion
A large number of studies have shown the decisive role of blood flow and disturbed shear stress patterns in clinical atheroscle-
rosis. The studied appoaches achieve a more detailed flow information than classical methods like NMR or ultrasound with a
better spatial resolution. The accuracy of the reconstruction of the longitudinal component of the velocity field is improved. In
the framework of our simulations, the resolution for the longitudinal component of the velocity can be estimated as the maxi-
mum size of the tetrahedra in the mesh. The estimated resolution, 0.1mm, is better than the typical resolution for phase contrast
MRI5. The developed inversion methods can also estimate accurately the transverse components of the velocity field.

The methods based on a coupling of POD and deep learning significantly outperform the adjoint method for both noise levels.
The POD-FC method achieves slightly lower reconstruction errors compared to the approach based on a CNN. The accuracy of
the reconstrutions decreases when the noise level increases. In terms of complexity, and simulation times the POD-FC networks
is slightly better. For a low noise level, the reconstruction errors are slower for the POD-FC networks compared to the ones of
the POD-CNN. These errors are similar for higher noise levels. Good reconstructions results are also obtained for the transverse
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(a) Ground true velocity along x (b) Reconstructed velocity along x (c) Error map for velocity along x

(d) Ground true velocity along y (e) Reconstructed velocity along y (f) Error map for velocity along y

(g) Ground true velocity along z (h) Reconstructed velocity along z (i) Error map for velocity along z

Figure 6 Example of velocity field reconstruction obtained with POD-DL approach, for the section y=0.144, inlet velocity 0.5
m/s, outlet pressure 500Pa, inlet tracer concentration 1.1 kg/𝑚3, diffusion coefficient D=1e-5, noise level 0dB.

components of the velocity field. The simultaneous reconstruction of the axial and transverse components of the velocity can thus
be achieved. When more basis functions are included in the POD approach, the errors stagnates and the basis can be considered
as nearly optimal for the inversion for the range of 𝛍 values studied associated to simple flow patterns. All the approaches have
a high offline cost since they are based on the calculation of the POD bases. The online runtime of the presented deep learning
methods is significantly smaller than the one of the classical variational method and the deep learning methods are practical
methods. The small convergence times of the numerical solution can be useful for clinical applications. They are the more
suitable approach for applications where the velocity field has to be estimated several times. It makes it a practical method when
needing to compute several solutions in parallel.

In this work, we have leveraged some ideas proposed in recent papers for data-driven approximation of nonlinear mappings
with model reduction. The models use couplings between reduced bases and deep neural networks. They are examples of physics
informed deep learning approaches. The numerical experiments on realistic examples show the effectivenes of the proposed
approaches for the solution of our nonlinear dynamic inverse problem and illustrate the interest of deep learning methods for
inverse problems wih parametric partial differential equation constraints. They perform well even in the presence of noise. The
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POD acts as a physics based regularization. The deep learning techniques investigated can reduce the expensive computational
time required for complex biomedical Computational Fluid Dynamics simulations.

The adjoint method based on POD model reduction has the major disadvantage of being intrusive since it requires the knowl-
edge of the system operators and of the governing transport pde during the projection step. In conventional Computational Fluid
Dynamics simulations, realistic boundary conditions, initial conditions, and material properties are required. However, deter-
mining these conditions is usually challenging and sometimes becomes impossible if the measurement methods are invasive.
In this work, we have investigated non-intrusive, purely data-driven reduced order modeling. The methods presented do not re-
quire the knowledge of the forward mapping. The deep learning approaches can give accurate reconstruction without the precise
knowledge of underlying physics like the intial and boundary conditions for 𝑓 , for 𝑉 and like the diffusion coefficient 𝐷 in the
transport equation.

We can mention several limitations of the proposed approach and possible directions for future research. We have only con-
sidered stationary velocity fields and the method must be extended to more complex non stationary velocity fields with inflow
weveforms. Linear projection-based reduced order methods may not be optimal for dimensionality reduction for complex flow
patterns because the number of required modes increases significantly. Manifolds for real data are expected to be strongly non-
linear and one needs to make use of nonlinear techniques. Neural network-based autoencoders37 have been investigated as an
alternative for nonlinear approximation because they can address some of the limitations of linear projection techniques. Au-
toencoders allow to learn nonlinear relations between the input and the output datasets and nonlinear manifolds. They provide
a greater flexibility for the dimensionality reduction38,39,40,41. Some architectures combining deep learning and reduced order
modeling with this type of network have been proposed to improve predictions abilities for 2D flows42. The use of autoencoders
and nonlinear representations could thus improve the results presented in this work when the methods will be applied to more
complex flow patterns. Our geometry is precisely defined and known accurately and no motion of the vessel is taken into ac-
count. We have not considered varying domains with fluid-structure interactions. Yet, it will be possible extend the presented
approach with geometrical parametrization and with a dimension reduction applied to moving domains and meshes. Auto-
encoders could provide a great flexibility for the dimensionality reduction for the degrees of freedom corresponding to different
types of blood vessel geometry. We have made also the assumption of Newtonian and incompressible fluid flow governed by the
Navier-Stokes equations. Whereas blood can be assumed to be a Newtonian fluid in large vessels (especially in most arteries),
its viscosity varies with flow rate in smaller arteries and capillaries. For medical conditions such as stenosis, a non-Newtonian
model may be preferred over a Newtonian model . Yet, the proposed algorithms can also be used when the underlying physics
is non-Newtonian for example with blood flows in small vessels. With the proposed method, we can estimate the velocity of
the blood from the Radon projections of the tracer but we can not retrieve the pressure field because we use as regularization
the transport equation which only involves the velocity field. This is a drawback of the approach since the pressure field is an
important hemodynamic parameter for diagnosis. Yet, it could be interesting to post-process the velocity field to retrieve the
pressure field with networks like physics-informed neural networks based on the Navier-Stokes equation.

The presented study uses only synthetically generated data. We intend to apply the approach to real-world cardiovascular data
in order to obtain an accurate quantification of the hemodynamics in the vascular networks to improve the clinical diagnosis of
vascular diseases. In order to apply the studied approach to real clinical and imaging problems, patient specific vessel models
should first be obtained with CT images. A database of several solutions must then be collected by solving the original high
fidelity model for different physical and/or geometrical parameters during the offline phase.

5 CONCLUSION

We have developed a new inversion methods to estimate the blood flow from Radon projections perpendicular to a vessel
direction. The approaches presented couple POD reductions with deep learning networks. The methods extracts a reduced bases
from a collection of high-fidelity solutions via a proper orthogonal decomposition and employs artificial neural networks, fully
connected neural networks or convolutional neural networks, to accurately approximate the coefficients of the velocity field
to be reconstructed. Numerical results on steady velocity fields confirm the accuracy of the proposed methods and show the
substantial speed-up enabled at the online stage as compared to a traditional POD strategy with the adjoint method. The best
results are obtained when the POD is performed on the input and output spaces with a fully connected network mapping the
coefficients of the decompositions.
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