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Hierarchical classification scheme for real-time recognition of physical
activities and postural transitions using smartphone inertial sensors

Sid Ahmed Walid Talha1, Anthony Fleury1 Member, IEEE and Stéphane Lecoeuche1

Abstract— This paper introduces a novel approach for real-
time classification of human activities using data from inertial
sensors embedded in a smartphone. We propose a hierarchical
classification scheme to recognize seven classes of activities
including postural transitions. Its structure has three internal
nodes composed of three Support Vector Machines (SV Ms)
classifiers, each one is associated with a set of activities.
Moreover, each SV Ms is fed with a feature vector from an
adapted and optimal frequency band. Experimental results
conducted on a challenging publicly available dataset named
SBHAR show that our method is effective and outperforms
various state-of-the-art approaches. We also show the suitability
of our method to recognize postural transitions.

I. INTRODUCTION

Human activity recognition (HAR) has become an impor-
tant research area due to a high demand in various application
domains, including healthcare monitoring. Computer vision
has been the canonical way to develop HAR systems for
decades, using several types of cameras as RGB [1] or more
recently RGB-D cameras [2]. However, these approaches
suffer from some limitations due to environmental restric-
tion, such as illumination conditions or occlusions due to
people and objects. Moreover, regarding the privacy context,
cameras are more intrusive and disruptive for users.

Recent developments in wearable sensing technologies
such as inertial sensors offer an interesting choice since it
allows a continuous monitoring compatible with the user’s
privacy. However, wearable based approaches employ several
sensors placed on different body locations. In addition to
the cost, it can be uncomfortable to wear these sensors,
especially for a long-term monitoring purpose.

More recently, sensors embedded in smartphones have
gained the attention of researchers. Indeed, almost all smart-
phones include a complete Inertial Motion Unit (IMU)
with a triaxial accelerometer, gyroscope and magnetometer.
Nowadays, smartphones become more ubiquitous and widely
used in our daily life, it can be a very good alternative to
wearable devices. Moreover, smartphone-based approaches
do not require any infrastructure to operate.

Several HAR approaches using inertial sensors have been
proposed by researchers. The general architecture of a HAR
system can be divided into the following modules: window-
ing, pre-processing, feature extraction and classification. The
first main step is the windowing operation, it prepares the
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continuous data streaming for feature extraction process, i.e.,
inertial signals are divided into equal segments of size Tw,
with a degree of overlap named Ov between consecutive
segments. A wide range of window sizes has been used in
HAR literature, from Tw = 1s in [3], until Tw = 30s in [4]. The
size Tw is generally determined in an empirical way based on
system accuracy. In [5], [6], after testing different window
sizes, T is fixed to 5 seconds. The obtained segments can be
pre-processed (optional) using filtering techniques in order
to remove undesirable information. A Butterworth low-pass
filter was employed in [7], the cutoff frequency was fixed to
20Hz. In [8], a moving average filter was applied.

To describe each human activity, a vector of relevant
features noted F is constructed. Features can be divided into
three categories: time domain features (first and second order
statistics, correlation coefficient, histogram, etc.), frequency
domain features, extracted from Discrete Fourier Transform
(DFT) using Fast Fourier Transform (FFT) algorithm, and
time-frequency domain features, extracted from Discrete
Wavelet Transform (DWT) or Wavelet Packet Decomposition
(WPD). In order to obtain better accuracy, features are
generally extracted from both frequency and time domains
resulting in a high dimensional feature vector. In [7], [9]
F ∈ R512. However, This method may require a high com-
putational complexity and energy consumption to extract a
large number of features or carry out the classification.

For the classification stage, various methods have been
investigated in the state-of-the-art. Traditional classifiers such
as k-Nearest Neighbors (kNN), Naive Bayes or decision trees
are widely used. More recently, deep neural networks are
employed [10], [11], mostly Convolutional Neural Networks.

In addition to physical activities, some researchers used
wearable devices to detect transitions between postures [8],
[12]. However, a few works fulfilled the classification of
postural transitions using a smartphone. In [7], two different
implementations are proposed: in the first one, only physical
activities are learned by the classifier, transitions on the other
hand, are considered as a switch of activities detected by
the system. In the second approach, in addition of physical
activities, transitions are learned by the classifier, they are
considered as an additional class.

In this paper, a novel HAR method using inertial signals
from a smartphone is proposed. It aims to carry out a
real-time classification of physical activities and postural
transitions. The main contribution of this work is the de-
velopment of a hierarchical classification scheme to classify
three groups of activities: postures, dynamic activities and
postural transitions. Each internal node of the model is
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Fig. 1: Overview of the proposed system.

composed of SV Ms classifier fed with an adapted feature set.
We demonstrate experimentally that the proposed method is
effective and outperforms various state-of-the-art approaches.

The remaining of the paper is organized as follows:
Section II introduces the proposed methodology. Section III
describes the experimental setups, then presents the results
with a comparison over existing approaches. Finally, section
IV concludes this work.

II. METHOD

The overview of our approach is shown in Figure 1.
Inertial signals collected from a triaxial accelerometer and
gyroscope sensors are employed in our methodology, it
involves: acceleration (Ax,Ay,Az), angular rate (Gx,Gy,Gz),
and their magnitudes Am and Gm with Am =

√
A2

x +A2
y +A2

z

and Gm =
√

G2
x +G2

y +G2
z .

A. Windowing

In the state-of-the-art approaches, a rectangular window
function is generally employed in windowing operation.

However, in our methodology, features are extracted from
frequency domain of inertial signals, hence, a rectangular
window is not an advantageous choice, it presents a high
leakage factor (ratio of power in the side lobes to the
total window power), therefore, to minimize this effect, a
Hamming window is employed instead. The size of the
window is fixed at 2.56s, and the degree of overlap Ov at
50% of the window size, these parameters are set equal to
HAR approaches experimented on SBHAR dataset, so a fair
comparison can be carried out.

B. Feature extraction and classification algorithms

In our approach, features are extracted from frequency
domain following the algorithm 1: for each signal, after
windowing operation, DFT is obtained by the FFT, then
the Energy Spectral Density (ESD) containing the energy
distribution at each frequency bin is calculated. Afterwards,
feature vector is constructed from coefficients included in
frequency band [0Hz− FrHz] (Fr denote the cutoff fre-
quency). The size of the frequency band depends on the
classification problem. As displayed in Figure 1, a hierarchi-
cal classification method composed of three SV Ms classifiers
is fed with three vectors of features named: FC, FD and FP
({C,D,P} denotes “category of activity”, “dynamic activity”
and “posture”). Each couple (Fi,SV Msi) with i ∈ {C,D,P}
is designed to solve a specific classification problem. In
the first level of the scheme, activities are separated into
three categories: dynamic activities, postures and postural

Algorithm 1: Feature construction algorithm
Data:
A: Segments of acceleration signals // (Ax,Ay,Az)
Am: Segments of magnitude of acceleration signals
G: Segments of angular rate signals // (Gx,Gy,Gz)
Gm: Segments of magnitude of angular rate signals
Tw: Window size
Fr1 = 2.3: Frequency range for SV MC // [0 Hz−2.3 Hz]
Fr2 = 3.5: Frequency range for SV MD // [0 Hz−3.5 Hz]
Fr3 = 3.5: Frequency range for SV MP // [0 Hz−3.5 Hz]
Function Feature construction(A,Am,G,Gm)

w = 0.54−0.46cos
(

2πn
M−1

)
; // Hamming window

S1←Spectrum(A.w); // Spectrum of Ax,Ay and Az
S2←Spectrum(Am.w);
S3←Spectrum(G.w);
S4←Spectrum(Gm.w);
k1 = round(Tw.Fr1);
k2 = round(Tw.Fr2);
k3 = round(Tw.Fr3);
FC← [S1(1 : k1) S2(1 : k1) S3(1 : k1) S4(1 : k1)];
FD← [S1(1 : k2) S2(1 : k2) S3(1 : k2) S4(1 : k2)];
FP← [S1(1 : k3) S2(1 : k3) S3(1 : k3) S4(1 : k3)];

end
Function Spectrum(S)

S f ←fft(S); // Fast Fourier transform calculation
SESD← S f .S∗f ; // Energy spectral density calculation (S∗f

is the complex conjugate of S f )
return SESD;

end



transitions. Here, SV MsC classifier is fed by feature vector
FC = [C1, ..,C7] containing ESD coefficients in [0Hz−2.3Hz].
In the second level, dynamic activities are classified using
SV MsD classifier, the vector FD = [C1, ..,C10] is employed
as input (Fr2 = 3.5Hz). In a similar way, postures are rec-
ognized employing SV MsP classifier fed by FP = [C1, ..,C10]
with Fr3 = 3.5Hz. Noted that the frequency bands presented
here are determined empirically based on system accuracy,
i.e., the model is evaluated by varying Fr for each feature
vector from 0Hz (DC components) to 25Hz (all coefficients).
The results of this experiment are detailed in section III-B.

C. Correction of misclassification

The output label given by SV Ms classifiers is put in a
misclassification correction process.The impulsive prediction
error is rectified based on the following hypothesis: in our
experiments, as Ov = 50%, then a segmented window at an
instant t named Wt shares 50% of data with Wt−1, and the
remaining 50% with Wt+1. It implies that in the case of Wt−1
and Wt+1 outputs the same activity label, it should be equal to
Wt output label. The implementation of the proposed solution
is reported in the algorithm 2.

Algorithm 2: Correction of misclassification
Data:
F(t): Feature extracted from inertial signals at an instant t
PR(t−1) = [pred(t−N), .., pred(t−2), pred(t−1)]: Vector
containing labels of predicted activities
pr← SV M Predict(F(t));
if [pr 6= PR(end)] AND [pr == PR(end−1)] then

PR(end)← pr;
end
PR = [PR pr];

III. EXPERIMENTS

A. Experimental setup

The experiments are conducted on SBHAR dataset [7], it
contains acceleration and angular rate signals sampled at Fs =
50Hz. Six activities are performed by thirty subjects, each
one wore a Samsung Galaxy S2 smartphone on the waist.
Three of collected activities are static (standing, sitting and
lying) and three are dynamic (walking, up and down stairs).
In addition, the dataset also contains transitions between
static activities named postural transitions (stand to sit, sit
to stand, sit to lie, lie to sit, stand to lie, lie to stand). Each
subject performed a scenario of sequential activities twice.

In order to estimate the overall recognition performance
of our system and to compare it to state-of-the-art meth-
ods, four metrics are calculated: recall, precision, F1 score
and accuracy. In the state-of-the-art methods evaluated on
SBHAR dataset, different scores are calculated, mostly ac-
curacy. Hence, in order to make a fair comparison with these
approaches, for each method, recall, precision, accuracy and
F1 scores are either recovered if it was already estimated like
in our paper or recomputed using the confusion matrix that
is given in the article. For papers where two methods are

proposed, a comparison with each method noted m1 and m2
is carried out.

A subject-independent validation is carried out using
leave-one-subject-out-cross-validation (LOSOCV) and hold-
out subjects (proposed by [13]), where data from 21 ran-
domly selected subjects are used for training, and the re-
maining 9 subjects for the test.

B. Optimal frequency band
Before presenting the results, an experimental study is

carried out to determine the optimal frequency bands to
construct FD and FP vectors. In this experiment, LOSOCV
strategy is applied. The recall score is calculated for each
value of cutoff frequency Fr. The obtained results are shown
in the Figure 2. We can see clearly a growth of the score
for postures and dynamic activities, the maximum is reached
at the frequency Fr ' 3.5Hz, a slight decrease is observed
beyond this frequency. Noted that in this experiment, the vec-
tor FC is constructed from coefficients included in the band
[0Hz−2.3Hz], a perfect separation between the postures and
dynamic activities is then achieved (score of 100%).
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Fig. 2: Recall score depending on Fr.

C. Experimental results
In the state-of-the-art, a few works investigated the recog-

nition of postural transitions using a smartphone, hence, in
our experiments, the performances of physical activities and
postural transitions are presented separately.

1) Physical activities: Table I reports performance scores
of our system to recognize the physical activities and a com-
parison with state-of-the-art methods. It shows scores around
97% for both LOSOCV and hold-out subjects strategies,
outperforming the existing approaches tested on SBHAR
dataset. The confusion matrix is shown in Table II. All
activities achieve a good performance score. However, some
confusions appear for “sitting” and “standing” postures due
to the position of the smartphone (waist), making the output
signals similar for these postures.

2) Postural transitions: Table III reports performance
scores of our method to recognize postural transitions and
comparison with two methods proposed by [7] (the only
existing method performing recognition of PTs on SBHAR
dataset). It shows that the proposed approach achieves a
recall score of 99.81% using LOSOCV strategy, outperform-
ing both methods proposed by [7]. With hold-out subjects
strategy, an overall recall of 99.63% is obtained.



Validation
strategy

Relevant
Studies

Recall
(%)

Precision
(%)

F-score
(%)

Accuracy
(%)

LOSOCV1

[7] (m1) 96.74
[7] (m2) 96.50
[14] 78.23 78.45 78.34 77.81
Ours 97.09 97.10 97.10 97.09

HS2

[13] 89.35 89.23 89.29 88.97
[15] 83.51
[16] (m1) 88.12 87.30 87.71 87.03
[16] (m2) 90.35 89.75 90.05 90.13
[17] 92.67 92.95 92.81 92.92
[18] 95.18
[10] (m1) 94.79 94.78 94.79 94.50
[10] (m2) 95.75
[11] 95.46
[19] 95.90 95.97 95.93
[20] 96.59 96.86 96.72 96.64
Ours 97.02 97.17 97.10 97.04

1 Leave-one-subject-out cross-validation.
2 Hold-out subjects.

TABLE I: Scores of relevant studies on SBHAR dataset.

W WU WD Si St L PT
Walking 97.83 2.07 0 0 0 0 0.1

W. upstairs 0.19 95.49 3.5 0 0 0 0.82
W. downstairs 0.23 1.37 98.25 0 0 0 0.15

Sitting 0 0 0 95.05 4.78 0 0.17
Standing 0 0 0 5.26 94.69 0 0.05
Laying 0 0 0 0 0 99.58 0.42

P. transition 0 0 0 0.14 0.05 0 99.81

TABLE II: Confusion matrix on SBHAR dataset (%).

Validation
strategy

Relevant
Studies

Recall
(%)

Precision
(%)

F-score
(%)

LOSOCV1
[7] (m1) 92.18
[7] (m2) 99.76
Ours 99.81 98.29 99.04

HS 2 Ours 99.63 97.89 98.75
1 Leave-one-subject-out cross-validation.
2 Hold-out subjects.

TABLE III: Scores of postural transitions.

IV. CONCLUSIONS

In this paper, we introduced a novel method to carry out
a real-time recognition of physical activities and postural
transitions. Three meta-classes representing the different cat-
egories of activity (postures, dynamic activities and postural
transitions) have been created. A hierarchical classification
scheme has been proposed to classify efficiently each group
of activity. Each internal node is composed of SV Ms clas-
sifier and made of frequency domain features extracted
from an optimal frequency band determined empirically.
The experimental results on a challenging publicly available
dataset named SBHAR have demonstrated that our method is
effective and outperforms various state-of-the-art approaches,
reaching overall scores around 97% for physical activities
and 99.81% for postural transitions.
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