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A B S T R A C T

Background: Outcomes are variables monitored during a clinical trial to assess the impact of an intervention on
humans’ health.Automatic assessment of semantic similarity of trial outcomes is required for a number of tasks,
such as detection of outcome switching (unjustified changes of pre-defined outcomes of a trial) and im-
plementation of Core Outcome Sets (minimal sets of outcomes that should be reported in a particular medical
domain).
Objective: We aimed at building an algorithm for assessing semantic similarity of pairs of primary and reported
outcomes.We focused on approaches that do not require manually curated domain-specific resources such as
ontologies and thesauri.
Methods: We tested several approaches, including single measures of similarity (based on strings, stems and
lemmas, paths and distances in an ontology, and vector representations of phrases), classifiers using a combi-
nation of single measures as features, and a deep learning approach that consists in fine-tuning pre-trained deep
language representations.We tested language models provided by BERT (trained on general-domain texts),
BioBERT and SciBERT (trained on biomedical and scientific texts, respectively).We explored the possibility of
improving the results by taking into account the variants for referring to an outcome (e.g.the use of a mea-
surement tool name instead on the outcome name; the use of abbreviations).We release an open corpus with
annotation for similarity of pairs of outcomes.
Results: Classifiers using a combination of single measures as features outperformed the single measures, while
deep learning algorithms using BioBERT and SciBERT models outperformed the classifiers.BioBERT reached the
best F-measure of 89.75%.The addition of variants of outcomes did not improve the results for the best-per-
forming single measures nor for the classifiers, but it improved the performance of deep learning algorithms:
BioBERT achieved an F-measure of93.38%.
Conclusions: Deep learning approaches using pre-trained language representations outperformed other ap-
proaches for similarity assessment of trial outcomes, without relying on any manually curated domain-specific
resources (ontologies and other lexical resources). Addition of variants of outcomes further improved the per-
formance of deep learning algorithms.

1. Introduction

Outcomes in clinical research are the variables monitored during
clinical trials to assess how they are affected by the treatment taken or
by other parameters. Outcomes are one of the most important elements
of trial design: they represent the objectives of the trial; the primary
outcome (the main monitored variable) is used to determine the trial’s
statistical power and to calculate the needed sample size.

There are several data sources that contain information on trial

outcomes. First, outcomes of clinical trials are recorded in trial re-
gistries - open online databases that store information on planned,
ongoing or completed research. Second, outcomes are defined in pro-
tocols of clinical trials. Last, outcomes are presented in texts of medical
research articles, where they can occur in two main types of contexts: 1)
definition of outcomes that were assessed in the trial (“Primary outcome
will be overall survival.”) – context similar to that in protocols; and 2)
reporting of results for an outcome (“Patients of the treatment condition
showed significantly greater reduction of co-morbid depression and
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anxiety as compared to the waiting list condition.”). We will refer to the
outcomes occurring in the first type of contexts as pre-defined outcomes,
and to the outcomes occurring in the second type of context as reported
outcomes.

A number of tasks require comparing two outcomes (from the same
or different sources) to establish if they refer to the same concept.

First of all, assessing similarity between pairs of outcomes is vital to
detect outcome switching. Outcomes should normally be clearly de-
fined before the start of a trial, usually at the moment of the first re-
gistration [1,2], and should not be changed without a justification.
Consistency in trial outcome definition and reporting is essential to
ensure reliability and replicability of a trial’s findings and to avoid false
positives based on reporting only the variables that showed statistically
significant results confirming the researchers’ hypothesis. Despite the
widely acknowledged importance of proper reporting of outcomes,
outcome switching – omitting pre-defined outcomes of a trial or adding
new ones – remains a common problem in reporting clinical trial re-
sults. The COMPare Trials project [3,4] showed that, in 67 assessed
trials, 354 pre-defined outcomes were not reported, while 357 out-
comes that had not been defined in advance were added to the trial’s
report. Outcome switching can occur at several points: pre-defined
outcomes in a medical article may be changed compared to those re-
corded in trial registry/protocol; reported outcomes in an article may
differ compared to those recorded in trial registry/protocol or to those
pre-defined in the article.

Outcome switching is directly related to two well-known problems
of medical research reporting: bias, i.e. choosing only the outcomes
supporting the trial hypothesis [5–7], and spin, i.e. reporting only fa-
vourable outcomes and thus making research results seem more posi-
tive than the evidence justifies [8–13]. Spin in clinical trials assessing
an intervention poses a serious threat to the quality of health care:
clinicians reading trial reports with spin tend to overestimate the effects
of the intervention studied [14]. Besides, spin in research articles causes
spin in health news coverage and press releases [15,16], that can raise
unjustified positive expectations regarding the intervention among the
public.

Checking an article for outcome switching is a part of assessment for
bias and spin. The checks can be performed at several levels: the out-
comes recorded in the corresponding trial protocol/registry entry
should be compared to the primary and secondary outcomes defined in
the article; the pre-defined primary and secondary outcomes (in the
protocol/registry and in the article) should be compared to the out-
comes reported in the article. To perform all these comparisons, it is
necessary to assess pairs of outcomes for their semantic similarity.

Another task that requires comparing outcomes concerns the core
outcome sets (COS) - agreed minimum sets of outcomes to be measured
in trials in particular domains1. The core outcome set for a domain that
a trial belongs to should be compared to the outcomes defined in a trial
protocol/registry entry, to identify gaps in the trial planning at an early
stage and improve the trial design. Besides, the COS can be compared to
the article reporting a trial to check if results for all the core outcomes
are reported.

In this paper, we propose an approach to measuring semantic si-
milarity between phrases referring to outcomes of clinical trials. It is
important to note that an outcome is a complex notion that is char-
acterized by several aspects:

• outcome name: “depression severity”;

• measurement tool used if the outcome cannot be measured directly:
“depression severity measured by the Beck Depression Inventory-II
(BDI-II)”,

• time points at which the outcome is measured: “differences in the
Symptom Index of Dyspepsia before randomization, 2weeks and 4

weeks after randomization, and 1month and 3 months after com-
pleting treatment”;

• patient-level analysis metric, e.g., change from baseline, final value,
time to event: “change from baseline in body mass index (BMI)”
population-level aggregation method, e.g. mean, median, propor-
tion: “the mean number of detected polyps”, “the proportion of pa-
tients suffering from postoperative major morbidity and mortality”;

• type of analysis of results based on the population included, i.e.
intention-to-treat analysis (all the enrolled patients are analyzed,
even those who dropped out) or per-protocol analysis (only the
patients who followed the protocol are analyzed): “the change in IOP
from baseline to week 4 at 8 a.m. and 4 p.m. for the per protocol (PP)
population using a “worse eye” analysis”;

• covariates that the analysis of the outcome is adjusted for: “whole
body bone mineral content of the neonate, adjusted for gestational age
and age at neonatal DXA scan”;

• reasons for using a particular outcome (explanation of relevance,
references to previous works using the outcome): “the physical and
mental component scores (PCS and MCS) of the Short Form 36 (SF-36),
a widely used general health status measure”.

Outcome mentions necessarily contain the outcome name or the
measurement tool name, which are used to refer to the outcome.
However, all the other items are not mandatory. The level of detail in
an outcome mention can differ between different data sources: e.g.
registry outcomes tend to be longer and described in more detail than
those defined in the articles. Thus, an inherent problem for establishing
the similarity between two outcomes is comparing detailed outcome
descriptions to under-specified ones. Besides, it is questionable whether
two outcomes differing in e.g. type of analysis (intention-to-treat vs per-
protocol) are different outcomes or different aspects of the same out-
come. In this work, we consider two outcomes to refer to the same
concept if the outcome/measurement tool names of the two are the
same, disregarding the other aspects.

To the best of our knowledge, automatic outcome similarity as-
sessment has not been addressed yet. We present the first corpus of
sentences from biomedical articles from PubMed Central (PMC)2 an-
notated for outcomes and their semantic similarity. This corpus has
been created in the context of a project aimed at automating spin de-
tection in clinical articles, which is a part of the Methods in Research on
Research (MiRoR) programme3, an international multi-disciplinary re-
search project aiming at reducing the waste in biomedical research.

We propose deep learning methods using pre-trained language re-
presentations to evaluate similarity between pairs of outcomes. We
compare a number of representations, pre-trained on general-domain
and on domain-specific datasets. We compare the deep learning ap-
proach to some simple baseline similarity measures.

2. Related work

The previous work distinguished between the notions of semantic
similarity and semantic relatedness. Pedersen and colleagues [17] de-
fine relatedness as “the human judgments of the degree to which a
given pair of concepts is related”, and state that it is a more general
concept of semantics of two concepts, while similarity is a type of re-
latedness, usually defined via the “is-a” relation between the concepts
in a taxonomy or ontology. Measuring semantic similarity of clinical
trial outcomes has not been addressed as a separate task before, but
semantic similarity and relatedness assessment and paraphrase re-
cognition attracts substantial attention as it is required in a wide range
of domains and applications. Similarity is measured between long or
short texts or concepts. Measures used are often based on specialized

1 http://www.comet-initiative.org/glossary/cos/.

2 https://www.ncbi.nlm.nih.gov/pmc/.
3 http://miror-ejd.eu/.
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lexical resources (thesauri, taxonomies). In this section, we provide on
overview of several works on similarity and relatedness in the biome-
dical domain.

The measures of semantic similarity and relatedness can be divided
into the following groups: string similarity measures, path-based mea-
sures, information content-based measures, and vector-based measures.
Similarity and relatedness can be measured on different levels: word,
term, concept, or sentence.

2.1. String similarity measures

String-based similarity measures are the simplest similarity mea-
sures based only on the surface form of the compared phrases, without
taking into account the semantics. Still, they find their use in measuring
the semantic similarity in the biomedical domain, e.g. the work of
Sogancioglu and colleagues [18] used, among other measures of simi-
larity, a number of string-based measures: q-gram similarity (the
number of q-grams from the first string over the q-grams obtained from
the other string), block distance (the sum of the differences of corre-
sponding components of two compared items), Jaccard similarity (the
number of common terms in two sets over the number of unique terms
in them), overlap coefficient (the number of common terms in two sets
divided by the size of the smaller set), and Levenshtein distance (the
minimum number of changes required to transform one string into
another).

2.2. Ontology-based measures

2.2.1. Path-based measures
Ontologies contain a formal, structured representation of knowl-

edge. A number of similarity measures based on paths between the
concepts in ontologies exist, such as the path similarity (the shortest
path connecting the concepts in the hypernym–hyponym taxonomy);
the Leacock-Chodorow similarity score [19] (the shortest path con-
necting the concepts and the maximum depth of the taxonomy used);
the Wu-Palmer similarity score [20] (the depth of the senses of the
concepts in the taxonomy and that of their most specific ancestor node);
a metric of distance in a semantic net, introduced by Rada and col-
leagues [21], calculated as the average minimum path length between
all combinations of pairs of nodes corresponding to concepts; the
minimum number of parent links between the concepts [22]. The most
commonly used ontology in the general domain is WordNet [23],
however, similarity measures based on general-domain resources are
stated to be ineffective for domain-specific tasks [17]. A number of
works proposed to adapt the existing measures of semantic similarity,
which are based on WordNet, to the biomedical domain using the
available medical ontologies, in particular SNOMED CT4, MeSH5

(Medical Subject Headings), or the Gene Ontology [21,17,24,25,22,18].
Importantly, when similarity is assessed on the sentence level, tools
such as Metamap [26] are needed to map the sentence text to concepts
from the Unified Medical Language System (UMLS) [18]. Metamap
finds both words and phrases corresponding to medical concepts, which
makes this approach more reliable that assuming that each word is a
concept.

2.2.2. Information content-based measures
Information content (IC) reflects the amount of information carried

by a term in a discourse. The notion of IC was introduced by Resnik
[27] who proposed to measure the IC of a concept as = −IC c logp c( ) ( ),
where c denotes a concept and p(c) denotes the probability of the
concept c occurring in a corpus. IC can be used to measure the simi-
larity of two concepts by calculating the amount of information shared

by them. Resnik [27] proposed to measure the similarity of concepts as
the IC of their least common subsumer (the most specific taxonomical
ancestor of the two terms).

IC-based similarity measures have been used in the biomedical do-
main. Pedersen and colleagues [17] assessed IC-based measures in-
troduced by Resnik [27] and Lin [28] on a set of pairs of medical terms.
Sánchez and Batet [29] proposed an overview of IC-based similarity
measures (e.g. [27,28]) and developed a method of computing IC from
the taxonomical knowledge in biomedical ontologies, in order to pro-
pose new IC-based semantic similarity measures. Benaouicha and Hadj
Taieb [30] proposed to measure semantic similarity based on IC, using
topological parameters of the MeSH taxonomy.

A notable work of Harispe and colleagues [31] provides a more
systematic view at ontology-based similarity measures. The authors
analyzed a number of ontology-based semantic similarity measures to
assess whether some of the existing measures are equivalent and which
measures should be chosen for a particular application. The authors
classify the similarity measures into a few categories: edge-based
measures (similarity of two concepts is calculated according to the
strength of their interlinking in an ontology); node-based measures,
divided into feature-based approaches (evaluating a concept by a set of
features made of its ancestors) and approaches based on information
theory (similarity of concepts is calculated according to the amount of
information they provide, as a function of their usage in a corpus); and
hybrid approaches, combining edge-based and node-based approaches.

Apart from representing the compared concepts, ontologies can be
used to exploit contextual features to assess the similarity of new terms.
Spasic and Ananiadou [32] proposed to represent the context of a term
by syntactic elements annotated with information retrieved from a
medical ontology. The sequences of contextual elements are compared
using the edit distance (number of changes needed to transform one
sequence into another).

2.3. Vector-based measures

Distributional models of semantics, representing term information
as high-dimensional vectors, are successfully used in a number of tasks,
including semantic similarity assessment (e.g. [33]). In the biomedical
domain, Sogancioglu and colleagues [18] used distributed vector re-
presentations of sentences built with the word2vec [34] model to
compute sentence-level semantic similarity. Henry and colleagues [35]
compared a number of multi-word term aggregation methods of dis-
tributional context vectors for measuring semantic similarity and re-
latedness. The methods assessed include summation or mean of com-
ponent word vectors, construction of compound vectors using the
compoundify tool (a part of the Perl word2vec interface package6), and
construction of concept vectors using MetaMap. None of the evaluated
multi-word term aggregation methods was significantly better than the
others. Park and colleagues [36] developed a concept-embedding
model of a semantic relatedness measure, combining the UMLS and
Wikipedia as an external resource to obtain contexts texts for words not
presented in the UMLS. Concept vector representations were built upon
the context texts of the concepts. The degree of relatedness of concepts
was calculated by the cosine similarity between corresponding vectors.
This approach is stated to overcome the issue of limited word coverage,
which the authors state to pose problems for earlier approaches.

2.4. Methods combining several measures

Some approaches combine several of the above-listed measures of
similarity and/or relatedness. Sogancioglu and colleagues [18] devel-
oped a supervised regression-based model combining the string simi-
larity measures, ontology-based measures, and distributed vector

4 http://www.snomed.org/.
5 https://www.nlm.nih.gov/mesh/meshhome.html. 6 https://sourceforge.net/projects/word2vec-interface/.
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representations as features. Henry and colleagues [37] developed an
approach combining statistical information on co-occurrences of UMLS
concepts with structured knowledge from a taxonomy, based on con-
cept expansion using hierarchical information from the UMLS.

The common feature of the majority of the listed approaches to
semantic similarity assessment is the use of domain-specific resources
such as ontologies, that require laborious curation. Recently, Blagec
and colleagues [38] suggested an alternative approach to evaluating
semantic similarity of sentences from biomedical literature. The authors
employed neural embedding models that are trained in an unsupervised
manner on large text corpora without any manual curation effort
needed. The models used in this work were trained on 1.7 million
PubMed articles. The models were evaluated on the BIOSSES dataset of
100 sentence pairs [18]. The unsupervised model based on the Para-
graph Vector Distributed Memory algorithm showed the best results,
outperforming the state-of-the-art results for the BIOSSES dataset. The
authors also proposed a supervised model including string-based simi-
larity metrics and a neural embedding model. It was shown to out-
perform the existing ontology-dependent supervised state-of-the-art
approaches.

3. Existing datasets

A few datasets annotated for semantic similarity of biomedical
concepts or texts exist. Pedersen et al. [17] were the first to introduce a
set of 30 pairs of medical terms annotated for semantic relatedness by
12 annotators on a 10-point scale.

Pakhomov and colleagues [39] created a set of 101 medical term
pairs that were rated for semantic relatedness on a 10-point scale by 13
medical coding experts. The set was initially compiled by a practicing
Mayo Clinic physician.

Pakhomov and colleagues [40] compiled a set of 724 pairs of
medical terms from the UMLS, belonging to the categories of disorders,
symptoms and drugs. The dataset included only concepts with at least
one single-word term, to control for impact of term complexity on the
judgements on similarity and relatedness. Further, a practicing physi-
cian selected pairs of terms for four categories: completely unrelated,
somewhat unrelated, somewhat related, and closely related. Each ca-
tegory comprised approximately 30 term pairs. The pairs were rated for
semantic similarity and relatedness by 8 medical residents.

The BIOSSES dataset [18] contains 100 pairs of sentences selected
from the Text Analysis Conference Biomedical Summarization Track
Training Dataset. The sentence pairs were rated for similarity on a 5-
point scale by five human experts.

Wang and colleagues [41] aimed at creating a resource for semantic
textual similarity assessment in the clinical domain. The authors as-
sembled MedSTS, a set of 174,629 sentence pairs from a clinical corpus
at Mayo Clinic. Two medical experts annotated a subset of 1,068 sen-
tence pairs with similarity scores in the range from 0 to 5.

Table 1 summarizes the characteristics of the existing datasets.

4. Annotation of outcome pairs

For us the application of interest is detection of spin related to in-
correct reporting of the primary outcome in abstracts of articles re-
porting randomized controlled trials (RCTs), in particular, omission of
the primary outcome. This task is very specific and requires a corpus
with annotations for semantic similarity of pairs of primary and re-
ported outcomes. The task of semantic similarity assessment of out-
comes can be regarded as a subtask of semantic similarity assessment of
medical term pairs, which has been explored in previous works and for
which a few datasets exist. However, there is an inherent difference
between a corpus of outcome pairs and the existing corpora of medical
term pairs: while the existing corpora of medical term pairs contain
terms belonging to different categories (e.g. drugs, symptoms and dis-
orders), all the terms in a corpus of outcome pairs belong to the same Ta
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class (outcomes, i.e. measures or variables). In a corpus containing
several categories, it can be expected that the items of the same cate-
gory are judged to be more similar to each other than to the items of
other categories (e.g. all the drug names are more similar to each other
than to the names of disorders), while in a corpus with a single category
this criterion does not apply. The relation of semantic similarity is
simpler for outcomes: two outcome mentions are either same (refer to
the same measure/variable), or different, hence the relation is binary
and can be annotated on a 0–1 scale. On the contrary, in the existing
corpora multi-item scales were necessary to annotate similarity/relat-
edness (drugs names are more similar to each other than disorder
names, but the level of similarity within the category of drug names
vary).

As no corpus with annotation for semantic similarity of outcomes
exists, we created and annotated our own, that we release as a freely
available dataset [42]. It is based on a set of 3,938 articles from PMC7

with the publication type “Randomized controlled trial”. The corpus
annotation proceeded in two steps: annotation of primary and reported
outcomes, and annotation of semantic similarity between them. As it
proved to be impossible to recruit within a reasonable time frame
several annotators with sufficient level of expertise in the domain of
medical research reporting, the annotation work was performed by one
single annotator with expertise in NLP, trained and consulted by three
experts in clinical research reporting.

4.1. Annotation of outcomes

The annotation and extraction of primary and reported outcomes is
the subject of a separate paper, here we only present in brief the an-
notation principles that are important for the topic of this paper.

For primary outcome annotation, we aimed at annotating contexts
that explicitly define the primary outcome of a trial, e.g.:

“We selected the shortened version of the Chedoke Arm & Hand
Activity Inventory (CAHAI-7) as the primary outcome measure.”

To find these contexts, we randomly selected 2,000 sentences that
contain the word “primary” or its synonyms, followed by the word
“outcome” or its synonyms, with the distance no more than 3 token
between them. The synonyms of the words “primary” and “outcome”
used in sentence selection are shown in Table 2. The sentences were
selected from full-text articles. We annotated the longest continuous
text span that includes all the relevant information about the trial’s
outcome, such as measurement tool used, time points, etc.

For reported outcomes annotation, we selected the Results and
Conclusions sections of the abstracts of the articles for which we pre-
viously annotated the primary outcomes. 1,940 sentences constituted
the corpus for reported outcomes annotation.

Reporting outcomes are characterized by high diversity: they can be
expressed by a noun phrase, a verb phrase or an adjective. The same
outcomes can be reported in different ways, e.g. the following sentences
report the same outcome:

1. “At 12-month follow-up, the intervention group showed a significant
positive change (OR=0.48) in receiving information on healthy
computer use compared to the usual care group.”

2. “The intervention group showed a significant positive change
(OR=0.48) in receiving information on healthy computer use at
12-month follow-up, compared to the usual care group.”

3. “Receiving information on healthy computer use in the intervention
group showed a significant positive change (OR=0.48) at 12-month
follow-up, compared to the usual care group.”

In different variants of the sentence, it is possible to annotate as the
outcome either:

1. “change (OR=0.48) in receiving information on healthy computer
use”,

2. “receiving information on healthy computer use at 12-month follow-up”,
or

3. “Receiving information on healthy computer use”.

However, it appears reasonable to have the same outcome anno-
tated in all of the variants. Thus, we annotated the shortest possible text
span for reported outcomes.

4.2. Annotation of semantic similarity of pairs of outcomes

To annotate the similarity between primary and reported outcomes,
we took pairs of sentences from the corpora annotated for outcomes:
the first sentence in each pair comes from the corpus of primary out-
comes, the second sentence comes from the corpus of reported out-
comes, and both sentences are from the same article (to ensure that
primary and reported outcomes exist in the same document, in order to
avoid a too high percentage of dissimilar pairs in the final corpus). We
used a binary flag to annotate the pairs of outcomes: if both outcomes in
a pair are considered to refer to the same outcome, the pair is assigned
the ‘similar’ label; otherwise the ‘dissimilar’ label. Interestingly, out-
comes can refer to the same concept by using antonyms: e.g. “ICP
(Intracranial Pressure) control” vs. “uncontrollable intracranial pressure”.

It is important to note that the annotated primary outcomes in-
cluded all the possible information items present in the sentence (time
points, measurement methods, etc.), while the annotated reported
outcomes contain the minimal information (usually, the outcome or
measurement tool name). Thus, primary outcomes typically contain
more information than reported outcomes. When annotating semantic
similarity, we disregarded possible differences in additional informa-
tion such as time points: outcomes were annotated as similar if the
outcome/measurement tool used is the same. Table 3 shows some ex-
amples of the outcome pairs that were judged to refer to the same (si-
milarity= 1) or different (similarity= 0) concept.

Differences in additional information items (time points, analysis
metrics, etc.) are important for a more fine-grained assessment of out-
come similarity. However, annotating this information would make the
annotation much more complex. We regard comparing additional in-
formation on outcomes as a separate task and thus do not include it in
the current approach.

Absence of medical knowledge can cause difficulties in annotating
outcome similarity. In cases of doubt, the annotator referred to the
whole article text or conducted additional research to make the final
decision. The total of 3,043 pairs of outcomes were annotated: 701 (612
after deduplication) “similar” and 2,342 (2,187 after deduplication)
“dissimilar” pairs.

4.3. Expanded dataset

The ways of referring to an outcome may differ: e.g., the outcome
defined as “the quality of life of people with dementia, as assessed by QoL-
AD” may be referred to by the outcome name (“the quality of life of
people with dementia”) or by the measurement tool name (“QoL-AD”),
which can in turn be used in the abbreviated or full (“Quality of Life-
Alzheimer’s Disease”) form. We expect the variability in choosing one of
these options to negatively affect the performance of the similarity

Table 2
Synonyms of the words ”primary” and ”outcome” used in sentence selection.

Word Synonyms

Primary Main, first, principal, final, key
Outcome Endpoint/end-point/end point, measure, variable, assessment,

parameter, criterion

7 https://www.ncbi.nlm.nih.gov/pmc/.
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assessment. Thus, we tried to account for this variability in two ways.
First, we searched for abbreviations and their expansions in the full

text of the article where a given outcome occurs, using regular ex-
pressions. We chose this approach instead of using medical thesauri and
automated tools such as Metamap [26] based on the thesauri, because
abbreviations can have several possible expansions depending on the
particular medical domain. Thus, selecting the correct expansion from a
thesaurus would require some additional steps such as detecting the
topic of the article. On the contrary, in the text of an article abbrevia-
tion expansions are unambiguous. After extracting abbreviations and
their expansions, we replace the abbreviations in the outcome mentions
by their expansions. For example, for the outcome “EBM knowledge” we
obtain the expanded variant “evidence-based medicine knowledge”.

Second, we looked for measurement tool names within outcome
mentions, using linguistic markers such as “measured by”. We keep the
text fragment preceding such markers as the outcome name, and the
text following them as the measurement tool name, e.g. for the outcome
“cognitive functioning, as measured by the ADAS-Cog, a 0–70 point scale
with a higher score indicating worse cognition”, we add two variants:
“cognitive functioning” and “the ADAS-Cog, a 0–70 point scale with a
higher score indicating worse cognition”.

By applying these algorithms, we obtain an expanded version of the
corpus which contains 5,050 pairs of outcomes (1,222 similar and
3,828 dissimilar pairs).

5. Methods

Many existing approaches to semantic similarity assessment rely on
manually curated domain-specific resources, such as ontologies or other
lexical resources. Although this kind of approach can show good results,
its disadvantage consists in the limited word coverage of existing re-
sources and in the need to use tools such as Metamap to map a text to
biomedical concepts, resulting in a complex multi-step system with
many dependencies.

5.1. Deep learning approach

In the general domain, it was recently shown that unsupervised pre-
training of language models on a large corpus, followed by fine-tuning
of the models for a particular task, improves the performance of many
NLP algorithms, including semantic similarity assessment [43,44]. In
the biomedical domain, Blagec and colleagues [38] showed that neural
embedding models trained on large domain-specific data outperform
the state-of-the-art approaches for similarity assessment.

We explored these novel methods in order to propose an algorithm
for assessment of semantic similarity that does not rely on domain-
specific resources such as ontologies and taxonomies. We adopt the
approach that was recently introduced by Devlin et al. [44] and has
already been shown to be highly performant. It consists in fine-tuning
language representations that were pre-trained on large datasets, on a
limited amount of task-specific annotated data.

Devlin et al. [44] proposed a new method of pre-training language
representations, called BERT (Bidirectional Encoder Representations

from Transformers). The principle consists in pre-training language
representations with the use of a masked language model (MLM) that
randomly masks some of the input tokens, allowing pre-training of a
deep bidirectional Transformer on both the left and right context.
BERT-based pre-trained models can be easily fine-tuned for a su-
pervised task by adding an additional output layer. For our semantic
similarity assessment task, we employ the similar architecture as that
used for sentence pair classification by Devlin et al. in BERT [44]: a self-
attention mechanism is used to encode a concatenated text pair. The
task-specific input is fed to the output layer of BERT model, and the
end-to-end fine-tuning of all the model parameters is performed. The
details on the implementation can be found in Devlin et al. [44].

BERT models were pre-trained on the joint general-domain corpus
of English Wikipedia and BooksCorpus, with the total of 3.3B tokens.
Two domain-specific version of BERT are of interest for our task:
BioBERT [45], pre-trained on a large biomedical corpus of PubMed
abstracts and PMC full-text articles comprising 18B tokens, added to the
initial BERT training data; and SciBERT [46], pre-trained on a corpus of
scientific texts with the total of 3.1B tokens, in addition to the initial
BERT training corpus.

BERT provides several models: cased and uncased (differing with
regard to the input data preprocessing); base and large (differing with
regard to the model size). We fine-tuned and tested both cased and
uncased base models. We did not perform experiments with BERT-Large
due to limited computational resources. BioBERT has only cased model,
with a few versions with different pre-training data (PubMed abstracts
only, PMC full-text articles only, or both). We used the model pre-
trained on both datasets. SciBERT provides both cased and uncased
models and has two versions of vocabulary: BaseVocab (the initial
BERT general-domain vocabulary) and SciVocab (the vocabulary built
on the scientific corpus). The uncased model with SciVocab is re-
commended by the authors, as this models showed the best perfor-
mance in their experiments. We tested both cased and uncased models
with SciVocab.

The hyperparameters used for fine-tuning of BERT-based models are
shown in the Table 4.

5.2. Baseline approach

We compare the BERT-based approaches to a few simple domain-
independent baseline measures that fall into the following categories:

1. string measures:

• normalized Levenshtein distance [47] (in Tables referred to as
levenshtein_norm) - the minimal edit distance between two strings
(number of edits needed to change one string into the other). We
calculate the Levenshtein distance using the Python Levenshtein
package and normalize it by dividing it by the length of the longer
string.

• a measure based on the Ratcliff and Obershelp algorithm [48] (in
Tables referred to as difflib) which calculates the number of
matching characters in two strings divided by the total number of
characters. We use the implementation proposed by the Python

Table 3
Examples of outcomes that are judged as similar(similarity= 1)/different (similarity= 0).

Primary outcome Reported outcome Similarity

The change relative to baseline in the multiple sclerosis functional composite score (MSFC) MSFC score 1
The recruitment rate The overall recruitment yield 1
The maximum % fall in FEV1 7 h after the first AMP challenge FEV1 1
ICP control Uncontrollable intracranial pressure 1
Body weight Body composition 0
The volume of blood loss between T1 and T4 Bleeding duration 0
Tube dependency at one-year Hospital admission days 0
HbA1c Attendance at yoga classes 0
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difflib library (SequenceMatcher function).
2. lexical measures reflecting the number of lexical items shared by the

compared phrases:

• the proportion of lemmas occurring in both compared outcomes
(in Tables referred to as lemmas), calculated as the proportion of
the lemmas shared by the compared phrases divided by the length
(in lemmas) of the shorter outcome. Lemmatization was per-
formed with the help of WordNetLemmatizer function of Python
NLTK library.

• the proportion of stems occurring in both compared outcomes (in
Tables referred to as stems), calculated as the proportion of the
stems shared by the compared phrases divided by the length (in
stems) of the shorter outcome. Stemming was performed using the
PorterStemmer function of Python NLTK library.
In both lexical measures, stop-words and digits were excluded, as
well as some words with general semantics typical for outcome
mentions (e.g. “change”, “increase”, “difference”).

3. vector-based measures:

• a cosine similarity between the compared outcomes (in Tables
referred to as gensim), using vector representation obtained with
Latent Semantic Analysis using singular value decomposition. We
use the implementation proposed by the Python gensim [49] li-
brary8.

• a cosine similarity between the compared outcomes (in Tables
referred to as spacy), using an average of word vectors. We use the
implementation proposed by the Python spaCy [50] library.

4. ontology-based measures:

• path similarity score (in Tables referred to as path) is a WordNet-
based measure of similarity of two word senses calculated as the
shortest path connecting them in the hypernym–hyponym tax-
onomy.

• Leacock-Chodorow similarity score [19] (in Tables referred to as
lch) is a WordNet-based measure of similarity of two word senses
based on the shortest path connecting them and the maximum
depth of the taxonomy in which they are found.

• Wu-Palmer similarity score [20] (in Tables referred to as wup) is a
WordNet-based measure of similarity of two word senses based on
the depth of the senses in the taxonomy and that of their most
specific ancestor node.
For all three measures, we use the functions implemented in the
Python NLTK library. The final scores are calculated as proposed
by Mihalcea and colleagues [51].

Each of these measures returns a similarity score on a certain scale
(most typically, between 0 and 1). After testing several cut-off values,
we manually set a threshold for each measure to maximize the F-
measure: pairs of outcomes with the similarity measure above the

threshold are considered similar. The thresholds chosen for each mea-
sure are shown in Table 5.

5.3. Feature-based machine-learning approach

Following the approach proposed by Sogancioglu et al. [18], we
trained and tested a number of classifiers, taking the above-listed single
similarity measures as the input features. We evaluated several classi-
fiers: Support Vector Machine (SVM) [52]; Decision Tree Classifier
[53]; MLP Classifier [54]; K-neighbors Classifier [55]; Gaussian Process
Classifier [56]; Random Forest Classifier [57]; Ada Boost Classifier
[58]; Extra Trees Classifier [59]; Gradient Boosting Classifier [60]. We
used the implementation provided by Python scikit-learn library [61].
We performed hyperparameters tuning via exhaustive grid search (with
the help of the scikit-learn GridSearchCV function). The chosen hy-
perparameters are shown in Table 6 (for the experiments on the original
corpus) and Table 7 (for the experiments on the expanded corpus).

5.4. Experiments on the expanded dataset

The expanded dataset (with expanded abbreviations and added
variants of referring to an outcome by the measurement tool name or by
the outcome name) is used in the experiments in the following way. For
individual similarity measures, we compare all the combinations of
variants for both outcomes. Out of the similarity scores obtained for all
the variants, we take the maximum value as the final evaluation score.
For machine learning approaches, we expanded the original annotated
corpus by the extracted variants of the outcomes. We trained and tested
the machine learning and deep learning approaches on both the ori-
ginal corpus an on the expanded corpus.

6. Results and discussion

For the deep learning approach, we performed the evaluation using
10-fold cross-validation, with the dataset split into train and develop-
ment sets in the proportion 9:1. The performance is reported for the
development set. For scikit-learn classifiers, we performed 10-fold
cross-validation using the scikit-learn built-in cross_validate function.

Table 8 below presents the results of our experiments on the original
and expanded corpus, respectively. We use the following notations in
the results tables: BioBERT, SciBERT uncased, SciBERT cased, BERT un-
cased and BERT cased refer to the results of fine-tuning of the corre-
sponding language model. RandomForest, MLP, GaussianProcess, Gra-
dientBoosting, KNeighbors, ExtraTrees, AdaBoost, DecisionTree, and SVC
refer to the results of the corresponding scikit-learn classifier. stems and
lemmas refer to the lexical similarity measures (the proportion of stems/
lemmas occurring in both compared outcomes). gensim and spacy refer
to vector-based measures (cosine similarity as implemented by gensim
and spacy packages, respectively). levenshtein_norm refers to the nor-
malized Levenshtein distance, difflib refers to the Ratcliff and Obershelp

Table 4
BERT/BioBERT/SciBERT hyperparameters.

Hyperparameter Value Definition

do_lower_case True (uncased models)/False (cased models) Whether to lower case the input text
max_seq_length 128 The maximum total input sequence length after WordPiece tokenization
train_batch_size 32 Total batch size for training
eval_batch_size 8 Total batch size for eval
predict_batch_size 8 Total batch size for predict
learning_rate 5e-5 The initial learning rate for Adam
num_train_epochs 3.0 Total number of training epochs to perform
warmup _proportion 0.1 Proportion of training to perform linear learning rate warmup for
save_checkpoints _steps 1000 How often to save the model checkpoint
iterations_per _loop 1000 How many steps to make in each estimator call
use_tpu False Whether to use TPU or GPU/CPU
master None TensorFlow master URL

8 https://radimrehurek.com/gensim/tut3.html.
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algorithm-based measure. path refers to the path similarity score; lch
refers to the Leacock-Chodorow similarity score; wup refers to the Wu-
Palmer similarity score.

Among the single similarity measures tested on our original (non-
expanded) corpus, the best performance was shown by the stem-based
measure (F-measure= 71.35%). Among the classifiers using the com-
bination of measures as features, the best results were achieved by the
Random Forest Classifier (F-measure= 84.73%). Among the deep
learning models, the fine-tuned BioBERT model showed the highest
performance (F-measure= 89.75%).

These results clearly show that, out of the three tested approaches
(baseline single similarity measures, machine learning classifiers using
the single measures as features, and deep learning), the best results on
the original corpus were shown by the deep learning approaches. All
the single measures were inferior to the classifiers based on the com-
bination of the single measures. Thus, we can state the measures
complement each other. Further, all the deep learning BERT-based
approaches showed better performance than each of the classifiers,
which indicates that the pre-trained representations are more powerful
in reflecting semantic similarity than the measures used.

On the expanded corpus, the performance of single measures
changed slightly compared to that on the original corpus (cf. Table 8).

The best result, achieved by the stem-based measure, was not im-
proved. The performance of machine learning classifiers on the ex-
panded corpus dropped significantly (the highest F-measure was
66.13% vs. 84.73% on the original corpus). On the contrary, the per-
formance of all the fine-tuned deep learning models was better on the
expanded corpus than on the original corpus. The best result, similarly
to the original corpus, was shown by the fine-tuned BioBERT model: F-
measure was 93.38%.

6.1. Error analysis

We provide here the error analysis of the best-performing model
(fine-tuned BioBERT) on the original corpus. The most common cases of
errors are as follows:

1. Use of abbreviations which leads to false negatives, e.g.:

• Uncontrollable intracranial pressure – ICP control

• sickness absence – SA days

• pain catastrophising – global PC

• controlling intracranial pressure – ICP control

• the Yale-Brown Obsessive–Compulsive Scale – the change in YBOCS
score from baseline to endpoint

2. Terms that are semantically close but refer to different measured
variables result in false positives, e.g.:

• coma recovery time – total coma duration

• patient satisfaction – patient comfort

• time to azoospermia time to severe oligozoospermia
In particular, this type of error can be observed when the terms
are hyponyms of the same term, e.g.:

• child body mass index (BMI) z-score – parent BMI

• foot pain – ‘first-step’ pain

• the proportion of delivered compressions within target depth compared
over a 2-min period within the groups and between the groups – the
proportion of delivered compressions below target depth
Besides, this type of error occurs when the outcomes refer to
different aspects of one parameter, e.g. (words indicating the
differences in semantics of the phrases are in bold):

• the GSRS subscores for abdominal pain – the GSRS total score

• The frequency of acute exacerbation – duration of acute

Table 5
Thresholds set for the similarity measures.

Measure Threshold

difflib 0.4
levenshtein_norm 0.3
lemmas 0.6
spacy 0.6
gensim 0.9
stems 0.6
path 0.4
wup 0.5
lch 2.5

Table 6
Hyperparameters for classifiers on the original corpus.

Classifier Hyperparameters

RandomForest max_depth=25, min_samples_split = 5, n_estimators= 300
MLP activation = ‘tanh’, alpha=0.0001, hidden_layer_sizes =

(50, 100, 50), learning_rate = ‘constant’, solver = ‘adam’
GaussianProcess 1.0 ∗RBF(1.0)
GradientBoosting default
KNeighbors n_neighbors= 13, p= 1
ExtraTrees default
AdaBoost default
DecisionTree default
SVC C=1000, gamma=0.001, kernel = ‘rbf’

Table 7
Hyperparameters for classifiers on the expanded corpus.

Classifier Hyperparameters

RandomForest max_depth=25, min_samples_split = 5, n_estimators= 300
KNeighbors n_neighbors= 9, p= 5
GradientBoosting learning_rate= 0.25, max_depth=23.0, max_features= 7,

min_samples_leaf = 0.1, min_samples_split = 0.2,
n_estimators= 200

MLP activation = ‘relu’, alpha= 0.0001, hidden_layer_sizes =
(50, 100, 50), learning_rate = ‘adaptive’, solver = ‘adam’

GaussianProcess 1.0 ∗RBF(1.0)
ExtraTrees default
AdaBoost learning_rate= 0.1, n_estimators= 500
SVC kernel=‘linear’, C= 1, random_state= 0
DecisionTree max_depth=1.0, max_features= 2, min_samples_leaf= 0.1,

min_samples_split = 1.0

Table 8
Results.

On the original corpus On the expanded corpus

Algorithm Precision Recall F1 Precision Recall F1

BioBERT 88.93 90.76 89.75 92.98 93.85 93.38
SciBERT uncased 87.99 90.78 89.3 91.3 91.79 91.51
SciBERT cased 87.31 91.53 89.3 89 92.54 90.69
BERT uncased 85.76 88.15 86.8 89.31 89.12 89.16
RandomForest 86.76 82.92 84.73 74.09 60.12 66.13
BERT cased 83.36 85.2 84.21 88.25 90.1 89.12
MLP 87.79 80.61 83.95 72.21 58.05 63.87
GaussianProcess 86.69 81.11 83.74 72.08 57.13 63.58
GradientBoosting 87.84 79.96 83.63 72.94 58.4 64.72
KNeighbors 87.35 78.81 82.75 75.24 58.13 65.31
ExtraTrees 85.26 79.29 82.08 71.83 57.14 63.47
AdaBoost 86.08 77.99 81.79 72.66 55.87 62.97
DecisionTree 81.66 79.62 80.53 62.73 63.09 60.61
SVC 82.3 78.32 80.19 73.2 54.42 62.26
stems 64.03 80.56 71.35 64.03 80.56 71.35
lemmas 64.75 77.45 70.54 63.18 78.23 69.91
gensim 55.71 83.66 66.88 54.98 79.14 64.89
path 60.06 65.36 62.6 58.04 69.47 63.24
wup 53.26 68.14 59.78 52.15 73.35 60.96
levenshtein_norm 65.87 49.84 56.74 64.64 56.14 60.09
difflib 47.08 71.08 56.64 63.84 61.73 62.77
lch 59.42 53.59 56.36 62.95 25.02 35.81
spacy 35.86 75.65 48.66 35.86 75.65 48.66
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exacerbation

• costs per quality adjusted life years (cost/QALY) – Quality ad-
justed life years

• time needed to perform the motor task – degree of help needed to
perform the task

• the mean time to onset of the first 24-h heartburn-free period after
initial dosing – The mean number of heartburn-free days by D7

• the proportion of patients with plasma HIV-1 RNA levels<200 copies/
mL at week 24 – HIV-1 RNA <50 copies/mL

3. Use of terms for which the similarity can only be established based
on domain knowledge but not by their textual features leads to false
negatives, e.g.:

• HSCL-25 – the severity of symptoms of depression and anxiety (HSCL-
25 is a checklist measuring the symptoms of anxiety and depres-
sion9)

• response rate – took part in the Link-Up Study

• return of final follow-up questionnaire or reminder by the participant –
the response rates

4. Significantly different level of detail in two mentions of the same
measure can lead to false negatives, e.g.:

• the incidence of oxygen desaturations defined as a decrease in oxygen
saturation ⩾5%, assessed by continuous pulse oxymetry, at any time
between the start of the induction sequence and two minutes after the
completion of the intubation – oxygen desaturations

6.2. The best method for assessing semantic similarity

On the original outcome pairs corpus, the best-performing single
similarity measure is the stem-based one (F1= 71.35%), followed by
the lemmas-based and gensim measures (Table 8). The gensim measure
shows the best recall (83.66%).

All the scikit-learn classifiers trained on the original corpus using
the combination of the single measures as features outperformed single
measures (Table 8). The best results were achieved by the Random
Forest Classifier (F-measure of 84.73%).

When trained on the original corpus, all the BERT-based models,
except for the one using the BERT cased model, outperformed the
feature-based classifiers and single similarity measures (Table 8). The
best results were shown by the fine-tuned BioBERT model, reaching the
F-measure of 89.75%. Results of fine-tuned SciBERT models (both cased
and uncased) reached the F-measure of 89.3%, closely following Bio-
BERT; the SciBERT cased model demonstrated the best recall (91.53%).

These results show that fine-tuned models using deep pre-trained
language representations can outperform all the other tested similarity
measures, with an additional advantage of not requiring any specialized
resources or specific text preprocessing such as mapping to the UMLS
concepts. Pre-training of language models on biomedical texts proves to
be an advantageous approach as it allows to learn representations for
domain-specific words, including abbreviations, from the available
large unstructured data.

6.3. Does the addition of variants of referring to an outcome help?

For the single measures of similarity, expansion of the corpus by the
variants of outcomes improved the performance of Wordnet-based and
string-based measures, but did not improve the results of the three best-
performing measures - stem- and lemma-based ones and the gensim
measure (cf. Table 8).

A possible explanation for the absence of improvement in the stem-
and lemma-based measures is that the primary outcomes are usually
rather lengthy and detailed, and tend to include all the variants: ab-
breviations and their expansions, measurement method. Thus, addi-
tional variants are not in fact needed. For example, the primary

outcome “depression severity measured by the Beck Depression Inventory-II
(BDI-II)” may be reported as “depression severity”, “the Beck Depression
Inventory-II” or “BDI-II”, but all these variants are already present
within the primary outcome mention, thus, measuring the intersection
in terms of stems or lemmas will return a high similarity score. At the
same time, for string-based and WordNet-based measures, addition of
variants is useful: for the example above, if the outcome is reported as
“BDI-II”, it will be expanded as “the Beck Depression Inventory-II”, which
will have high similarity scores with the variant “the Beck Depression
Inventory-II (BDI-II)” of the primary outcome.

For the classifiers using single similarity measures as features,
adding outcome variants to the training corpus did not prove useful: the
results of the classifiers trained on the corpus expanded by the outcome
variants dropped significantly (cf. Table 8).

It should be highlighted that single measures and classifiers in our
approach account for outcome variants in different ways: single mea-
sures compare all the pairs of variants and take the highest score as the
final result, thus, low similarity between some of the variants does not
affect the results. On the contrary, the classifiers use the expanded
corpus to train, and thus, pairs of variants with low similarity scores but
with the ‘similar’ label can negatively impact the results.

Interestingly, the addition of the variants to the training corpus can
be useful: performance of all the BERT-based systems improved on the
corpus expanded by outcome variants (cf. Table 8). The best result was
achieved by the fine-tuned BioBERT model, with the F-measure of
93.38%.

The difference between the results of classifiers using single mea-
sures as features and the fine-tuned BERT-based models on the ex-
panded corpus demonstrates differences between these approaches.
BERT-based models successfully train on the expanded corpus as they
use deep pre-trained language representations and fine-tune to learn
the features required for a given task, while the training of classifiers is
likely to be undermined by the pairs of outcome variants with low
scores on the single similarity measures.

The results of these experiments should, however, be taken with
caution, as the expansion of the corpus by outcome variants was per-
formed automatically. We manually checked the quality of the algo-
rithm, but it does not exclude presence of some noise. Still, we believe
that this approach is promising for our task.

6.4. What metrics are best able to identify similar or dissimilar outcomes?

Out of single similarity measures, the best ability to distinguish
between similar and dissimilar outcomes, in both the original and the
expanded corpora, was shown by the stem-based measure, followed by
the lemma-based measure (Table 8).

6.5. What classifiers are best able to distinguish between similar and
dissimilar outcome pairs?

In our experiments, the Random Forest Classifier showed the best
results in the task of distinguishing between similar and dissimilar
outcome pairs, compared to a range of other classifiers (MLP, Gaussian
Process Classifier, Gradient Boosting Classifier, K-neighbors Classifier,
Extra Trees Classifier, Ada Boost Classifier, Decision Tree Classifier, and
SVM) (Table 8).

6.6. What language representation is best able to represent outcomes?

Our experiments showed that the best performance for semantic
similarity assessment of outcomes is shown by the fine-tuned BioBERT
model, i.e. a language model pre-trained on a large (18B tokens) bio-
medical corpus in addition to a 3.3.B tokens general domain-corpus.
This model outperformed the models trained on the general-domain
corpus only (BERT) and the models trained on a smaller (3.1) corpus of
scientific paper in addition to the general domain corpus (SciBERT)9 http://hprt-cambridge.org/screening/hopkins-symptom-checklist/.
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(Tables 8).

7. Conclusion

Evaluation of similarity assessment of trial outcomes is a vital part
of tasks such as assessment of an article for outcome switching, re-
porting bias and spin; besides, it can be used to improve the adherence
to Core Outcomes Sets use. In this work, we introduced a first open-
access corpus of pairs of primary and reported outcomes, annotated on
a binary scale as similar or different. We presented our experiments on
developing an algorithm of semantic similarity assessment not using
domain-specific resources such as ontologies and taxonomies. We tested
a number of single similarity measures, classifiers using the combina-
tion of single measures as features, and a number of deep learning
models. We explored the possibility of using variants of referring to
outcomes (abbreviations, measurement tool names) to improve the
performance of similarity assessment.

The best results were shown by the deep learning approach using
the BioBERT fine-tuned model, both on the original corpus and on the
corpus expanded by the outcome variants.
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