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Highlights

Data–Driven Games in Computational Mechanics

K. Weinberga, L. Stainierb, S. Contic and M. Ortizc,d

• Game theory is concerned with scenarios involving several players seeking strategies that
strive to minimize their respective costs. It has been of foundational importance in a variety
of fields, but applied sparingly to mechanical problems. Here we bring game-theoretical
concepts to computational solid mechanics to provide a unified view on variants of data-
driven mechanics.

• From a mechanics perspective, deterministic game-theoretical problems may be regarded
as instances of coupled problems with a particular variational structure.

• We resort to game theory in order to formulate Data-Driven methods for solid mechanics
in which stress and strain players pursue different objectives.

• The new non-cooperative Data-Driven games identify an effective material law from the
data and reduce to conventional displacement boundary-value problems, which facilitates
their practical implementation.

• The new non-cooperative Data-Driven games are unsupervised, ansatz-free, parameter-
free and follow in the vein of prior cooperative Data-Driven games by striving to effect a
direct, unsupervised, model-free connection between data and prediction.

• We present selected examples of implementation and application that demonstrate the
range and versatility of the approach.
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Abstract

We resort to game theory in order to formulate Data-Driven methods for solid mechanics in
which stress and strain players pursue different objectives. The objective of the stress player
is to minimize the discrepancy to a material data set, whereas the objective of the strain player
is to ensure the admissibility of the mechanical state, in the sense of compatibility and equilib-
rium. We show that, unlike the cooperative Data-Driven games proposed in the past, the new
non-cooperative Data-Driven games identify an effective material law from the data and reduce
to conventional displacement boundary-value problems, which facilitates their practical imple-
mentation. However, unlike supervised machine learning methods, the proposed non-cooperative
Data-Driven games are unsupervised, ansatz–free and parameter–free. In particular, the effective
material law is learned from the data directly, without recourse to regression to a parameterized
class of functions such as neural networks. We present analysis that elucidates sufficient con-
ditions for convergence of the Data-Driven solutions with respect to the data. We also present
selected examples of implementation and application that demonstrate the range and versatility
of the approach.

Keywords: data-driven methods, game theory, computational solid mechanics, non-cooperative
data-driven games, unsupervised machine learning, effective material law

1. Introduction

Game theory concerns itself with scenarios involving several players seeking strategies that
strive to minimize their respective costs or, equivalently, maximize their respective payoffs. In
general, the cost of one player’s strategy depends on the strategies adopted by the remaining
players and, in consequence, the optimal strategies of the players are coupled to each other. In
one scenario, the players optimize their strategies cooperatively by striving to minimize a joint
cost computed as a weighted average of all costs, a condition known as Pareto optimality. In
another scenario, the players proceed non-cooperatively by each seeking to minimize its own
cost independently. Game theory was pioneered, inter aliis, by economists Vilfredo Pareto [1]
and John Nash [2], and mathematician John von Neumann [3], in seminal contributions and
has been of foundational importance in a variety of fields, including economics, social sciences,
evolutionary biology, computer science, and others.
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Despite its phenomenal success in other fields, game theory has been applied sparingly to
mechanics or not at all. From a mechanics perspective, deterministic game-theoretical problems
may be regarded as instances of coupled problems with a particular variational structure (cf. Sec-
tion 2 for a brief review). Among these problems, inf-sup problems may be regarded as zero-sum
games. These correspondences and others open up the opportunity of bringing game-theoretical
concepts, tools and results to bear on a wide range of problems in mechanics, a potential that
remains largely unattained at present.

In this work, we resort to game theory in order to formulate Data-Driven methods for solid
mechanics in which stress and strain players pursue different objectives: the objective of the
stress player is to minimize the discrepancy to a material data set, whereas the objective of the
strain player is to ensure the admissibility of the mechanical state, in the sense of compatibility
and equilibrium. We show that, unlike the cooperative Data-Driven games proposed in the past
[4, 5, 6, 7, 8], the new non-cooperative Data-Driven games identify an effective material law
from the data and reduce to conventional displacement boundary-value problems, which facil-
itates their practical implementation. In particular, the Data-Driven effective material law can
be conveniently implemented as a standard user-supplied material in commercial finite-element
software.

This change of mood notwithstanding, it bears emphasis that, unlike supervised machine
learning methods, the proposed non-cooperative Data-Driven games are unsupervised, ansatz–
free and parameter–free. In particular, the effective material law is learned from the data directly,
without recourse to regression to a parameterized class of functions such as neural networks. In
this sense, the new non-cooperative Data-Driven games follow in the vein of prior cooperative
Data-Driven games [4, 5, 6, 7, 8] by striving to effect a direct, unsupervised and model–free
connection between data and prediction.

By identifying stress and strain as players, the proposed non-cooperative Data-Driven games
fall within the set-oriented formulation of mechanics problems, briefly reviewed in Section 3.
The connection between such problems and game theory is introduced in Section 4 in the con-
text of cooperative games, in which stress and strain strive to achieve a common objective of
minimizing distance to a material set while satisfying the field equations of compatibility and
equilibrium. This cooperative strategy reproduces—and provides a game-theoretical interpre-
tation for—set-oriented Data-Driven methods proposed in [4, 5, 6, 7, 8]. The transition from
cooperative to non-cooperative moods is presented in Section 5 by regarding stress and strain as
adversarial players, each pursuing its own objective. Evidently, this strategy is suboptimal with
respect to the cooperative Data-Driven strategy, but it offers the significant practical advantage
of reducing to a conventional and well-posed displacement problem, Section 5.2, amenable to
approximation, Section 5.3.

A particularly important case concerns approximations based on empirical point-data sets,
Section 6, e. g., measured empirically or computed from micromechanics. The central ques-
tion then concerns the elucidation of conditions on the data that ensure the convergence of the
Data-Driven solutions to the solution of the underlying—and unknown—material law. We pro-
vide rigorous conditions for convergence with respect to the data for two different scenarios:
i) Uniformly convergent data, in which the sampling error decreases as data is added to the
material-data set in a uniform manner controlled by strict upper bounds, Section 6.3.1, and ii)
noisy data with outliers, in which the data concentrates around the limiting material law in a
weak or average sense that allows for the presence of outliers, Section 6.3.2. In this second sce-
nario, convergence requires regularization in the form of local data averages taken over carefully
chosen local neighborhoods in order to mitigate the effect of the outliers, Section 6.2.
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Finally, we present selected examples of implementation and application that demonstrate
the range and versatility of the approach, Section 7. In particular, the examples illustrate how
the approach can be implemented within a standard displacement finite-element framework in
any dimension, with and without regularization, and using interative solvers such as dynamic
relaxation and Newton-Raphson iteration. The examples also bear out the type of convergence
with respect to the data anticipated by the analysis.

2. Elements of game theory

Game theory is a well-developed branch of mathematics (cf., e. g., [9] for a general modern
account), but it has not been extensively applied to solid mechanics and may, therefore, stand a
brief review. We specifically collect basic elements of the theory required in subsequent devel-
opments.

For present purposes, it suffices to consider two-player, finite dimensional games (cf., e. g.,
[10, 11]). Specifically, we consider two players seeking strategies u ∈ Rm and v ∈ Rn who
strive to minimize their costs F(u, v) and G(u, v), respectively. They can do so cooperatively, by
minimizing a weighted average of their costs

J(u, v) = λF F(u, v) + λGG(u, v), λF ≥ 0, λG ≥ 0, λF + λG = 1, (1)

i. e., by seeking a joint strategy (u∗, v∗) such that

J(u∗, v∗) ≤ J(u, v), for all u ∈ Rm, v ∈ Rn, (2)

a condition known as Pareto optimality; or they can do so non-cooperatively, by each player
seeking strategies such that

F(u∗, v∗) ≤ F(u, v∗), for all u ∈ Rm, (3a)
G(u∗, v∗) ≤ G(u∗, v), for all v ∈ Rn, (3b)

a condition known as Nash equilibrium.
We note that, in both (1) and (3), the cost of each player depends on the strategy of the

competitor, which they do not control. The players seek to minimize their own costs either
jointly, as in (1) or without regard for the cost of the competitor, as in (3).

An important class of non-cooperative games is that of two-player zero–sum games. These
are games in which the cost of one player is the negative of the other, i. e., one player loses what
the other player gains. Under these conditions, we have

F(u, v) = L(u, v), G(u, v) = −L(u, v), (4)

for some Lagrangian L(u, v), and the Nash equilibrium conditions (3) become

L(u∗, v) ≤ L(u∗, v∗) ≤ L(u, v∗), (5)

which defines a saddle-point or inf–sup problem.
Problems (1) and (3) were introduced by economists Vilfredo Pareto [1] and John Nash [2]

in seminal contributions. From a mechanics perspective, problems (1) and (3) are instances of
coupled problems with a particular variational structure.
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Example 2.1 (Quadratic cost). Suppose

F(u, v) =
1
2

Au · u +Cv · u − f · u, (6a)

G(u, v) =
1
2

Dv · v + Bu · v − g · v, (6b)

where A ∈ Rm×m, C ∈ Rm×n, B ∈ Rn×m, D ∈ Rn×n, A = AT , A > 0, D = DT , D > 0, f ∈ Rm,
g ∈ Rn, (·) denotes the dot product and we write Cu · v = (Cu) · v, et cetera, for short. Then, the
Nash-equilibrium equations are

Au +Cv = f , (7a)
Bu + Dv = g, (7b)

or, in matrix form, (
A C
B D

) {
u
v

}
=

{
f
g

}
, (8)

which is a particular type of linear coupled problem characterized by symmetric and positive-
definite diagonal blocks. We also note that C , BT in general, with the result that there is no joint
minimum principle for both players to appeal to together. Evidently, a unique Nash equilibrium
(u∗, v∗) exists if and only if the matrix of the system (8) is non-singular.

An alternative form of the problem is

a(z, y) = b(y), for all y ∈ Z, (9)

where a : Z × Z → R and b : Z → R, Z = Rm × Rn, defined as

a(z, y) = (α|β)
(

A C
B D

) {
u
v

}
, b(y) = (α|β)

{
f
g

}
, (10)

with y = (α, β) and z = (u, v), are non-symmetric bilinear and linear forms, respectively. Then,
by the Lax-Milgram theorem [12] a unique Nash equilibrium exist if and only if

a(z, z) ≥ λ ∥z∥2, (11)

for some λ > 0, i. e., if a(·, ·) is coercive. Suppose that the cost functions of the players are
separately coercive, i. e., there are λA > 0 and λD > 0 such that

Au · u ≥ λA∥u∥2, Dv · v ≥ λD∥v∥2, (12)

for all u ∈ Rm and v ∈ Rn, respectively. Suppose, in addition, that there is 0 ≤ µ < 1 such that∣∣∣(B +CT )u · v
∣∣∣ ≤ µ (

Au · u + Dv · v
)
, (13)

for all u ∈ Rm and v ∈ Rn. Then,

a(z, z) = Au · u + Bu · v +Cv · u + Dv · v

≥
(
Au · u + Dv · v

)
−

∣∣∣(B +CT )u · v
∣∣∣

≥ (1 − µ)
(
Au · u + Dv · v

)
≥ (1 − µ) min{λA, λD}∥z∥2.

(14)

Thus, the coercivity condition (13) ensures that a(·, ·) be coercive with λ = (1 − µ) min{λA, λD}

and, by Lax-Milgram, it ensures the existence of a unique Nash equilibrium. □
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3. Set–oriented formulation of problems in mechanics

We consider finite-dimensional mechanical systems comprising m components, e. g., struc-
tural members, material points, et similia, whose state is characterized by two work-conjugate
fields ϵ ≡ {ϵe ∈ Rd, e = 1, . . . ,m} and σ ≡ {σe ∈ Rd, e = 1, . . . ,m}. We refer to the
space of pairs Ze = {ze ≡ (ϵe, σe) ∈ Rd × Rd} as the local phase space of component e, and
Z = Z1 × · · · ×Zm = RN ×RN , N = md, as the global phase space of the system. We suppose that
a suitable norm is defined in Z, e. g.,

∥z∥ =
( m∑

e=1

we∥ze∥
2
e

)1/2
=

( m∑
e=1

we
(
Ceϵe · ϵe + C−1

e σe · σe
))1/2

, (15)

where we > 0 are weights and Ce ∈ Rd×d
sym,+ are positive-definite symmetric matrices, e = 1, . . . ,m.

3.1. Classical solutions

We begin by assuming linearized kinematics and compatibility and equilibrium constraints
of the general form

m∑
e=1

weBT
e σe = f , (16a)

ϵe = Beu + ge, e = 1, . . .m, (16b)

where u ∈ Rn is the array of degrees of freedom of the system, we are positive weights, Be ∈ Rd×n

is a discrete gradient operator, BT
e is a discrete divergence operator, f ∈ Rn is a force array

resulting from distributed sources and Neumann boundary conditions and the arrays ge ∈ Rd

follow from Dirichlet boundary conditions. In terms of global arrays,

wBTσ = f , (17a)
ϵ = Bu + g, (17b)

where we write w = diag(w1, . . . ,wm), B = (B1, . . . , Bm), ϵ = (ϵ1, . . . , ϵm), σ = (σ1, . . . , σm) and
g = (g1, . . . , gm).

Classically, the problem is closed by assuming a material law of the form

σe = σ̂e(ϵe), (18)

or, in terms of global arrays,

σ = σ̂(ϵ) = {σ̂1(ϵ1), . . . , σ̂m(ϵm)}, (19)

where σ̂e(·) are material-specific functions. Existence and uniqueness of displacement solutions
then follows under suitable restrictions on Be and σ̂e(·), cf. Prop. 5.4.

3.2. Set–oriented reformulation

An alternative set–oriented representation of the material law σ̂(ϵ) is to view it as a graph D
in phase space Z, or material set. In this representation, the material law is regarded as a material-
specific N-dimensional manifold, or graph, in the 2N-dimensional phase space Z. Similarly, the
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constraints (16) are material independent and define an affine subspace E of Z, or constraint set.
The constraint set E encodes all the data of the problem, including geometry, loading and bound-
ary conditions. From elementary linear algebra considerations, it follows that the constraint set
E is an affine subspace of Z of dimension N and co-dimension N [8]. The actual states z = (ϵ, σ)
of the system in phase space, if they exist, lie in the intersection D ∩ E, i. e., are the admissi-
ble states that are consistent with the material law, or, equivalently, the material states that are
compatible and in equilibrium. Evidently, classical solutions exist if the sets D and E have a
non-empty intersection, i. e., if they are transversal [6].

4. Cooperative Data–Driven games in mechanics

Suppose that, as is often the case in practice, the graph D of the material law is not known
in its entirety, but only through an approximating sequence of data sets. For instance, the sets
D may consist of increasing collections of points (ϵ, σ) in phase space Z obtained, e. g., by
experimental measurement. In general, the intersection between the admissible set E and the
material data sets D may be empty, in which case no classical approximating solution exists in
the sense of Section 3. One way to circumvent this excessive rigidity of the classical paradigm
is to relax the notion of ’solution’ and replace intersection by a regularized optimality criterion
[4, 6]. We regard the resulting paradigm as well-posed if the corresponding approximate Data–
Driven solutions converge to the exact solution as the data sets D sample the exact material-law
graph D with increasing fidelity. In this section, we appeal to game-theoretical concepts in order
to formulate well-posed Data-Driven approaches.

4.1. Cooperative game-theoretical reformulation

Data–Driven problems of the type proposed in [4, 5, 6, 7, 8] can be interpreted as cooperative
game problems in the sense of Pareto optimality. Thus, suppose that the material behavior is
characterized by a material law with graph D in phase space Z and that the equilibrium, com-
patibility, Dirichlet and Neumann constraints are represented by an affine subspace E of Z of
dimension N and co-dimension N. Let

ID(y) =
{

0, if y ∈ D,
+∞, otherwise, (20)

and

IE(z) =
{

0, if z ∈ E,
+∞, otherwise, (21)

be the corresponding indicator functions. Suppose, in addition, that we are given a discrepancy
function Φ : Z × Z → R with the properties: i) Φ is convex; ii) Φ is non-negative; and iii)
Φ(y, z) = 0 iff y = z. We may then introduce the cost functions

F(y, z) = ID(y) + Φ(y, z), (22a)
G(y, z) = IE(z) + Φ(y, z). (22b)

Evidently, for given z the function F(·, z) requires y to be in D, whereupon it penalizes its distance
to E; and for given y the function G(y, ·) requires z to be in E, whereupon it penalizes its distance
to D.
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The Data–Driven solution (y∗, z∗) is now the minimizer of the function

J(y, z) = wF F(y, z) + wG G(y, z), (23)

with wF > 0, wG > 0 and wF + wG = 1, i. e., (y∗, z∗) is the solution of the cooperative game

J(y∗, z∗) ≤ J(y, z), for all y, z ∈ Z, (24)

in the sense of Pareto optimality. In this strategy, y∗ is the material state that is closest to being
admissible and z∗ is the admissible state that is closest to being material, as desired. We note that,
owing to the constraints (1) on the Pareto weights and the invariance of the indicator functions
under multiplication by positive constants, the combined cost functional (23) evaluates to

J(y, z) = Φ(y, z) + ID(y) + IE(z), (25)

independent of the Pareto weights, and the solution (y∗, z∗) is also in Nash equilibrium.
An appeal to direct methods of the calculus of variations shows that the solutions exist if, in

addition to the assumed convexity properties, Φ satisfies a growth condition of the form [4, 6]:
Φ(y, z)→ +∞ if ∥y∥ + ∥z∥ → +∞ with y ∈ D and z ∈ E, and both sets are closed. This condition
generalizes the intersection notion of transversality between the sets D and E to sets that may
be discontinuous, e. g., point sets, and may lack a proper intersection. Evidently, every classical
solution in the intersection D ∩ E is also a Data–Driven solution.

4.2. The long and short games

We can reduce the problem to the determination of admissible states z by eliminating out the
material state variable y in the cooperative game (24). By analogy to the game of golf, we may
think of point data sets D as a collection of holes in a links. The player z plays the long game,
or game of approach to the holes. For a given outcome z of an approach shot, the player y then
plays the short game of putting the ball as close as possible to the nearest hole.

The short game is, therefore, defined by the functional

H(z) = inf
y∈Z

J(y, z) = IE(z) + φD(z), (26)

where
φD(z) = inf

y∈D
Φ(y, z) (27)

measures the deviation of z from the data set D. The remaining long game is

H(z∗) ≤ H(z), for all z ∈ Z, (28)

which endeavors to minimize the deviation φD(z) from D among all admissible state z ∈ E.
We note that the sequence of long and short games is equivalent to (24), since the game is
cooperative.

4.3. Minimum–distance Data–Driven game

The Data–Driven paradigm formulated in [4, 6] may be rephrased as a cooperative game by
setting

Φ(y, z) = ∥y − z∥2. (29)
7



Evidently, Φ is convex, non-negative and Φ(y, z) = 0 if y = z, as required. In addition, Φ satisfies
the required growth condition iff D and E are transverse. In addition,

φD(z) = inf
y∈D
∥y − z∥2 = dist2(z,D), (30)

where dist(z,D) denotes the distance between z and the set D. The resulting long game is,
therefore

z∗ ∈ argmin{dist2(z,D) : z ∈ E}, (31)

i. e., finding the admissible state that is closest to the material set. If, for instance, the distance is
computed from the norm (15) and the material is elastic with

D = {y = (ϵ, σ) : σ = Cϵ}, (32)

then a straightforward calculation gives [4]

φD(z) =
1
2

m∑
e=1

weC−1
e (σe − Ceϵe) · (σe − Ceϵe) ≡

1
2
∥σ − Cϵ∥2. (33)

Evidently, H vanishes on D and grows away from it, as required. Thus, H(z) measures the
distance from z to the material data set D and the long-game endeavors to minimize that distance
for all admissible states z ∈ E.

4.4. Convex Data–Driven games
The preceding example is a particular case of a more general class of convex games. Suppose

that the material behavior is characterized by a convex strain energy function W(ϵ) with well
defined dual stress energy function W∗(σ). Then, the material set is the graph

D = {y = (ϵ, σ) ∈ Z : σ = DW(ϵ)}
= {y = (ϵ, σ) ∈ Z : ϵ = DW∗(σ)}.

(34)

By convexity and the Fenchel-Taylor theorem [13], we have

f (ϵ, σ) ≡ W(ϵ) +W∗(σ) − σ · ϵ ≥ 0, (35)

and
f (ϵ, σ) = 0 iff (ϵ, σ) ∈ D. (36)

Hence, f (ϵ, σ) quantifies the deviation of (ϵ, σ) from D. Consider the discrepancy function

Φ(y, z) = f (ϵ − α, σ − β) = W(ϵ − α) +W∗(σ − β) − (σ − β) · (ϵ − α), (37)

with y = (α, β) and z = (ϵ, σ). An appeal to duality and the Fenchel-Taylor theorem gives, with
w = (ξ, η),

φD(ϵ, σ) = inf
y∈D
Φ(y, z) = inf

y∈D
f (ϵ − α, σ − β) =

lim
λ→+∞

inf
y∈Z

(
f (ϵ − α, σ − β) + λ f (α, β)

)
=

lim
λ→+∞

inf
y∈Z

sup
w∈Z

(
η · (ϵ − α) −W∗(η) + ξ · (σ − β) −W(ξ)−

(σ − β) · (ϵ − α) + λ f (α, β)
)
=

8



lim
λ→+∞

sup
w∈Z

inf
y∈Z

{
η · ϵ −W∗(η) + σ · ξ −W(ξ) − σ · ϵ+

λ
(
λ−1(σ − η) · α + λ−1(ϵ − ξ) · β +W(α) +W∗(β) − β · α

)}
=

(38)

lim
λ→+∞

sup
w∈Z

{
η · ϵ −W∗(η) + σ · ξ −W(ξ) − σ · ϵ+

λ f ∗
(
λ−1(η − σ), λ−1(ξ − ϵ)

)}
=

sup
w∈Z

{
η · ϵ −W∗(η) + σ · ξ −W(ξ) − σ · ϵ+

Dη f ∗
(
0, 0)(η − σ) + Dξ f ∗(0, 0)(ξ − ϵ)

}
=

sup
w∈Z

{
η · ϵ + σ · ξ −W∗(η) −W(ξ) − σ · ϵ

}
=

W(ϵ) +W∗(σ) − σ · ϵ = φD(ϵ, σ).

Thus, it follows that the corresponding long game (28) endeavors to minimize the deviation from
D, as measured by φD, among all admissible states z ∈ E.

5. Non-cooperative Data–Driven games

We now change moods and propose a new class of non-cooperative Data–Driven games as
an alternative to the cooperative Data–Driven games described in the foregoing. We specifically
focus on the long game (28). We recall that this long game results from explicitly or implicitly
minimizing out the material state y over D, so that the resulting cost function H(z) represents the
deviation of an admissible state z ∈ E from the material set D. The long game that remains is
then to minimize such deviation among all admissible states.

5.1. Data–Driven game with adversarial stresses and strains

In the cooperative mood adopted in Section 4, the minimization of the cost H(z), with z =
(ϵ, σ), is pursued jointly in ϵ and σ. The compatibility constraint can be enforced constructively
by setting ϵ = Bu, with u a displacement field. In addition, the equilibrium constraint on σ can
be enforced by means of Lagrange multipliers. This implementation of the game results in two
standard linear problems for the displacements u and the Lagrange multipliers v, regardless of
the nature of the material data [4].

As an alternative, here we explore a reformulation of Data-Driven game in which the players
(ϵ, σ) are adversarial: The objective of the stress player σ is to minimize the discrepancy to the
data set D for fixed ϵ; the objective of the strain player ϵ is to ensure the admissibility of the state
z for fixed σ. The corresponding non-cooperative game is

φD(ϵ∗, σ∗) ≤ φD(ϵ∗, σ), for all σ ∈ RN , (39a)

φE(ϵ∗, σ∗) ≤ φE(ϵ, σ∗), for all ϵ ∈ RN , (39b)

where the function φE penalizes deviations from E. For instance, proceeding as in the cooperative
game (24), we have φE(ϵ, σ) = IE(z) with z = (ϵ, σ), or explicitly in stress-strain variables,

φE(ϵ, σ) =
{

0, if ϵ = Bu, wBTσ = f ,
+∞, otherwise. (40)

9



The corresponding Nash-equilibrium conditions are

∂φD

∂σ
(ϵ, σ) = 0, (41a)

ϵ = Bu, wBTσ = f , (41b)

and the optimal strategies (ϵ∗, σ∗) are the solutions of these equations, if any. Indeed, for φE(ϵ, σ)
as in (40) to be finite we must have z ∈ E, whence (41b) follows.

An alternative means of deriving (41b) is by regularization of the indicator function and a
subsequent passage to the limit. Thus, we may define the sequence of regularized functionals

φE,δ(ϵ, σ) =
{

δ
2 (BT wCB)u · u + wσ · Bu − f · u, if ϵ = Bu,
+∞, otherwise, (42)

with δ ↓ 0 and the stiffness matrix (BT wCB) introduced for dimensional consistency. We note
that compatibility can be enforced constructively, leading to the reduced functional

φE,δ(u, σ) =
δ

2
(BT wCB)u · u + wσ · Bu − f · u. (43)

The corresponding Nash equilibrium condition is

∂φE,δ

∂u
(u, σ) = δ(BT wCB)u + wBTσ − f = 0, (44)

and (41b) is recovered by passing to the limit δ→ 0.

Example 5.1 (Distance deviation function). With the deviation function (33), the Nash equilib-
rium condition (41a) specializes to

2weC−1
e (σe − Ceϵe) = 0, e = 1, . . . ,m, (45)

and the effective constitutive relation is given locally by Hooke’s law

σ̂e(ϵe) = Ceϵe, e = 1, . . . ,m, (46)

as expected. In addition, we note that the Nash equilibrium conditions (41) can be expressed
jointly as (

0 wBT

−wB wC−1

) {
u
σ

}
=

{
f
0

}
, (47)

which is of the form (8). These equations follow jointly as Euler-Lagrange equations of the
Lagrangian

L(u, σ) = wσ · Bu − f · u −
1
2

wC−1σ · σ, (48)

corresponding to the inf–sup problem

inf
u

sup
σ

L(u, σ) = inf
u

(1
2

wCBu · Bu − f · u
)
, (49)

which identifies the effective problem as a zero–sum game. □
10



Example 5.2 (Convex deviation function). Suppose now that the deviation function is given by
(35) as in Example 4.4, the Nash equilibrium condition (41a) specializes to

2we(DW∗e (σe) − ϵe) = 0, e = 1, . . . ,m, (50)

and the effective constitutive relation is given locally by

σ̂e(ϵe) = DWe(ϵe), e = 1, . . . ,m, (51)

as expected. As in the preceding problem, the Nash equilibrium conditions (41) follow jointly
from the Lagrangian

L(u, σ) =
m∑

e=1

(
weσe · Beu −W∗e (σe)

)
− f · u (52)

corresponding to the inf–sup problem

inf
u

sup
σ

L(u, σ) = inf
u

( m∑
e=1

weWe(Beu) − f · u
)
, (53)

which again identifies the effective problem as a zero–sum game. □

5.2. Existence

Solving (41a) for the stresses, we obtain a relation of the form

σ = σ̂(ϵ), (54)

which defines an effective, or learned, constitutive law. Conditions on φD(ϵ, σ) for the function
σ̂(ϵ) to exist and be continuous are given by the implicit function theorem [14]. Eq. (41b) then
requires

BT wσ̂(Bu) = f , (55)

which defines an effective displacement problem. A first fundamental question is whether the
problem (55) is well-posed in the sense of existence and uniqueness of solutions.

We note that problem (55) is not required to have a variational structure, e. g., to derive from
a minimum energy principle. Nevertheless, existence of solutions follows if the local material
laws σ̂e(ϵe) are coercive, in the sense of material stability, and the structure is likewise stable,
in the sense of not allowing zero-strain mechanisms. Uniqueness of the solution follows if, in
addition, the material law is strictly monotone.

A general framework for existence and convergence of approximations is set forth by the
following propositions, which are adapted from [12], §9.1, to the present setting.

Lemma 5.3 (Zeros of a vector field). Suppose that a continuous function v : Rn → Rn satisfies

v(u) · u ≥ 0, if ∥u∥ = r, (56)

for some r > 0. Then, there exists a point u∗ ∈ Rn, ∥u∗∥ ≤ r, such that v(u∗) = 0.

The proof of the lemma is based on Brouwer’s fixed point theorem and can be found in [12],
§9.1.
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Proposition 5.4 (Existence of solutions). Let we > 0 and σ̂e : Rd → Rd continuous functions,
e = 1, . . . ,m. Let f ∈ Rn and B : Rn → Rmd. Suppose that:

i) Material stability. There are a > 0, b ≥ 0 such that, for all ϵe ∈ Rd,

σ̂e(ϵe) · ϵe ≥ a∥ϵe∥
2
e − b. (57)

ii) Structural stability. There is c > 0 such that, for all u ∈ Rn,

∥u∥2 ≤ c∥Bu∥2. (58)

Then, problem (55) has a solution u∗ ∈ Rn that satisfies the bound

∥u∗∥2 ≤
(a

c
− ϵ

)−1( 1
4ϵ
∥ f ∥2 + bV

)
, (59)

for all ϵ < a/c and V =
∑m

e=1 we. Suppose, in addition:

iii) Strict monotonicity. There is θ > 0 such that, for all ϵ′e, ϵ′′e ∈ Rd,(
σ̂e(ϵ′e) − σ̂e(ϵ′′e )

)
· (ϵ′e − ϵ

′′
e ) ≥ θ ∥ϵ′e − ϵ

′′
e ∥

2
e . (60)

Then, the solution is unique.

We note that condition (i) stipulates coercivity of the material laws, whereas condition (ii)
requires the absence of mechanisms, i. e., displacements that occur at zero strain. The proof
of the proposition is illustrative of the roles played by material and structural stability and is
therefore included next in full.

Proof. Let (e1, . . . , en) be the standard orthonormal basis of Rn. Define the continuous function
v : Rn → Rn by setting

vi(u) = wσ̂(Bu) · Bei − f · ei, (61)

for every u ∈ Rn. From (i), we find

v(u) · u = wσ̂(Bu) · Bu − f · u ≥ a∥Bu∥2 − bV − f · u, (62)

and by (ii),
v(u) · u + bV + f · u ≥

a
c
∥u∥2. (63)

For every ϵ > 0, we have the estimate

| f · u| ≤ ϵ∥u∥2 +
1
4ϵ
∥ f ∥2, (64)

which, inserted into (63), gives

v(u) · u + bV + ϵ∥u∥2 +
1
4ϵ
∥ f ∥2 ≥

a
c
∥u∥2. (65)

Rearranging terms,

v(u) · u ≥
(a

c
− ϵ

)
∥u∥2 − bV −

1
4ϵ
∥ f ∥2, (66)
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Hence, v(u) ·u ≥ 0 if ∥u∥ = r, provided that we select ϵ small enough and r > 0 sufficiently large.
By Lemma 5.3, there is u∗ ∈ Rn such that v(u∗) = 0, i. e., u∗ is a solution of (55). In addition,
from (66) the solution satisfies the bound(a

c
− ϵ

)
∥u∗∥2 ≤

1
4ϵ
∥ f ∥2 + bV, (67)

which implies (59), as advertised. Assume, in addition, that (iii) holds. Suppose that there are
two solutions u′, u′′ ∈ Rn. Then, for all v ∈ Rn,

wσ̂(Bu′) · Bv = wσ̂(Bu′′) · Bv = f · v, (68)

whence
w
(
σ̂(Bu′) − σ̂(Bu′′)

)
· Bv = 0. (69)

Setting v = u′ − u′′ and using (ii) and (iii)

0 = w
(
σ̂(Bu′) − σ̂(Bu′′)

)
· B(u′ − u′′) ≥ θ∥Bu′ − Bu′′∥2 ≥

θ

c2 ∥u
′ − u′′∥2, (70)

which requires ∥u′ − u′′∥ = 0 and u′ = u′′, as advertised.

5.3. Approximation

Suppose now that the local material laws σ̂e(ϵe) in problem (55) are not known exactly but
only approximately through a convergent sequence of approximate local material laws σ̂e,h(ϵe).
The approximate local material laws set forth a sequence of approximating problems

BT wσ̂h(Bu) = f , (71)

where we write σ̂h(ϵ) = (σ̂e,h(ϵe))m
e=1. We wish to ascertain conditions under which the solutions

u∗h of problems (71) converge to the solution u of the limiting problem (55).
The following proposition sets forth conditions under which approximation of the local ma-

terial laws results in convergent approximate solutions.

Proposition 5.5 (Approximation). Let we > 0 and σ̂e,h : Rd → Rd continuous functions, e =
1, . . . ,m, h ∈ N. Let f ∈ Rn and B : Rn → Rmd. Suppose that:

i) The sequence (σ̂e,h) is uniformly stable in the sense of Prop 5.4(i), i. e., there are a > 0,
b ≥ 0 independent of h such that, for all ϵe ∈ Rd,

σ̂e,h(ϵe) · ϵe ≥ a∥ϵe∥
2
e − b. (72)

ii) B is stable in the sense of Prop 5.4(ii).

iii) The local material laws σ̂e,h are continuous and converge to local material laws σ̂e uni-
formly on compact sets.

Then, the solutions u∗h of problem (71) converge, up to subsequences, to a solution of the limiting
problem (55).
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We recall that, by the Arzelà-Ascoli theorem, (iii) is ensured if the sequences (σ̂e,h) are
uniformly bounded and equi-continuous, in which case the limiting laws σ̂e are also continuous.
If the approximate local material laws (σ̂e,h) are differentiable, then equi-continuity is ensured if
the derivatives of (σ̂e,h) are uniformly bounded.

Proof. By Prop. 5.4, the approximating problems (71) have solutions u∗h, not necessarily unique,
satisfying vh(u∗h) = 0, with vh defined from σ̂e,h as in (61), and uniformly bounded as in (59). By
this latter property, there is a subsequence (not renamed) that converges to some u∗ ∈ Rn. By
uniform convergence,

v(u∗) = lim
h→∞

vh(u∗h) = 0, (73)

with v defined from σ̂e as in (61), which shows that u∗ is in fact a solution of the limiting problem
(55).

The main conclusion afforded by the preceding propositions is that existence and convergence
can be elucidated, for any stable structure and applied loading, locally at the material point level,
simply by examining the properties and convergence of the local material laws. We also remark
that, by applying Cauchy’s test, convergence of the approximating sequences of local material
laws can be established without knowing the limiting local material laws explicitly. Such inferred
convergence then guarantees that the approximating solutions in turn converge to the solutions
of the (unknown) limiting problem.

Examples of approximation and convergence are presented in Section 6.3.3 for the important
case of approximation by empirical point data.

6. Approximation by empirical point data

An important property of the set–oriented Data–Driven games defined in the foregoing is
that they remain applicable when the exact material data set, e. g., the graph of the underly-
ing constitutive relation, is replaced by an approximation D thereof in the form of a point set,
e. g., measured empirically or computed from micromechanics. A central question is then to
ascertain conditions ensuring the convergence of the Data-Driven solutions to the solution of the
(unknown) limiting material law. In this section, we specifically consider two different scenar-
ios: i) Uniformly convergent data, in which the sampling error decreases as data is added to the
material-data set in a uniform manner controlled by strict upper bounds, and ii) noisy data with
outliers, in which the data concentrates around the limiting material law in a weak or average
sense that allows for the presence of outliers.

6.1. Distance-based Data-Driven game

Suppose that the material behavior is local, i. e., D = D1 × · · · × Dm, with local material data
sets De = {ye,i ∈ Ze : i = 1, . . . ,Ne}. Then,

φD(z) =
m∑

e=1

φD,e(ze) (74)

with
φD,e(ze) = inf{Φe(ye, ze) : ye ∈ De}, (75)
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and the Nash equilibrium condition for the stress player reduces to

σ̂e(ϵe) = ηe, with (ξe, ηe) ∈ argmin {Φe(ye, ze) : ye ∈ De}. (76)

In the special case of a distance-based discrepancy function, (76) reduces to

σ̂e(ϵe) = ηe, with (ξe, ηe) ∈ De and ξe closest to ϵe. (77)

Thus, the effective constitutive law σ̂e(ϵe) learned by the Data–Driven game consists of looking
in the data set De for the point (ξe, ηe) such that ξe is closest to ϵe and taking the corresponding
stress ηe as the value of σ̂e(ϵe).

6.2. Max-ent regularization, clustering and smoothing

Remarkably, the game just defined for point-data results in a ’learned’ stress-strain relation
(76), or (77), that is discontinuous and multiply-valued, e. g., if the query strain is equidistant
from more than one strain in the data set. This lack of continuity places the effective stress-strain
relation (76) out of scope of Prop. 5.5, which requires continuity, and necessitates the use of
specialized solvers such as dynamic relaxation, cf. Sections 7.2.1 and 7.2.2, or smoothing over a
carefully chosen strain range, cf. Section A.1. An additional difficulty arises from outliers in the
data, i. e., points that deviate markedly from the general trend in the data. Indeed, uncontrolled
outliers can bias the Data-Driven solution and forestall convergence.

These difficulties can be overcome by means of a max-ent regularization of the problem [5].
As before, we suppose that the data set is a collection of local point–data sets, D = D1×· · ·×Dm,
with De = {ye,i ∈ Ze : i = 1, . . . ,Ne}. We begin by noting that the local deviation function (75)
can equivalently be expressed as

φD,e(ze) =

inf
{ Ne∑

i=1

pe,iΦe(ye,i, ze) :
Ne∑
i=1

pe,i = 1, pe,i ≥ 0, i = 1, . . . ,Ne

}
.

(78)

The weights {pe,i}
Ne
i=1 quantify how well a point ze of local phase space Ze is represented by a point

ye,i in the corresponding local material data set De, or, conversely, the relevance of a point ye,i

in the local material data set to a given point ze in local phase space. Evidently, the minimizing
weights concentrate on the material points that minimize their deviation from ze, whereupon (75)
is recovered.

The measure-theoretical representation (78) can now be conveniently regularized through the
addition of a small entropy term, with the result

φD,e(ze; βe) =

inf
{ Ne∑

i=1

pe,i

(
Φe(ye,i, ze) + β−1

e log pe,i

)
:

Ne∑
i=1

pe,i = 1
}
,

(79)

with βe → +∞. The regularization term can indeed be interpreted as the negative of Shannon’s
information-theoretical entropy [15], hence the term maximum-entropy, or ’max-ent’, regular-
ization. The entropy term ensures that the distribution of weights is as unbiased as possible. The
regularized functional thus has the structure of a free energy, with the first term representing the
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internal energy of the system. In this interpretation, the problem (79) expresses the principle of
minimum free energy, βe plays the role of a local reciprocal temperature and the limit βe → +∞

is the corresponding zero-temperature, or athermal, limit.
We additionally recall that the entropy term measures the Kullback-Leibler discrepancy [16,

17] between the empirical and weighted measures

µD,e =

Ne∑
i=1

δye,i and νD,e =

Ne∑
i=1

pe,iδye,i . (80)

By this interpretation, the entropy term in (79) aims to minimize the discrepancy between the
two measures (80), i. e., to render the weights pe,i as uniform as possible. The local deviation
function Φe(ye,i, ze) in turn ensures that points ye,i in the local data set De that are distant from
the query point ze are accorded less weight than nearby points. Evidently, the optimal weights
now follow as the result of a competition between the deviation function and entropy, with β−1

e
playing the role of a local Pareto weight.

Conveniently, the minimizing weights and the minimum of the functional (79) follow explic-
itly as

p∗e,i(ze; βe) =
1

Ze(ze; βe)
e−βeΦe(ye,i,ze), (81a)

Ze(ze; βe) =
Ne∑
i=1

e−βeΦe(ye,i,ze), (81b)

φ∗D,e(ze; βe) = −β−1
e log Ze(ze; βe), (81c)

which are a discrete Gibbs distribution, partition function and equilibrium free energy, respec-
tively. In addition, the Nash equilibrium condition (41a) corresponds to minimizing the local
free energy to with respect to the stress σe at fixed strain ϵe. Appealing to the optimality of the
weights, we compute

∂φ∗D,e

∂σe
(ze; βe) =

Ne∑
i=1

p∗e,i(ze; βe)
∂ΦD,e

∂σe
(ye,i, ze) = 0, (82)

where we write ze = (ϵe, σe).
It follows from (81a) that points in the data set De that deviate from ze much more than β−1/2

e
have negligible weight, whereas, conversely, the local behavior at ze is dominated by the local
cluster of data points in the β−1/2

e –neighborhood of ze, hence the term clustering. In particular,
outliers, or points outside that neighborhood, have negligible weight.

Example 6.1 (Minimum–distance deviation). For a local discrepancy function of the form

Φe(ye, ze) = ∥ye − ze∥
2
e , (83)

corresponding to a global discrepancy function of the form (29), the Nash equilibrium condition
(82) reduces to

σe =

Ne∑
i=1

p∗e,i(ze; βe)σe,i, (84)
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where we write ye,i = (ϵe,i, σe,i) ∈ De. Evidently, condition (84) stipulates that the local stress
σe be the mean of its local cluster in the data set, hence the connection to k-means clustering
[18]. It should be noted that condition (84) is implicit by virtue of the dependence of the optimal
weights p∗e,i on σe. However, we can render the stress computation explicit if we specifically
assume local discrepancy functions of the form

Φe(ye, ze) = ∥ξe − ϵe∥
2
e , (85)

where we write ye = (ξe, ηe) and ze = (ϵe, σe). Then, (84) specializes to

σ̂e(ϵe) =
Ne∑
i=1

p∗e,i(ϵe; βe)σe,i, (86)

with
p∗e,i(ϵe; βe) =

1
Ze(ϵe; βe)

e−βe∥ϵe,i−ϵe∥
2
e , (87)

and

Ze(ϵe; β) =
Ne∑
i=1

e−β∥ϵe,i−ϵe∥
2
e , (88)

which is now explicit. We note that the stress σe = σ̂e(ϵe) is given by (86) as an average of the
stresses σe,i sampled at strains ϵe,i in a neighborhood of ϵe of size ∼ β−1/2

e , with Gaussian weights
depending on the distance ∥ϵe,i − ϵe∥e. □

6.3. Analysis of convergence

(a) (b)

outlier

Figure 1: Two data-convergence scenarios. a) Uniform convergence: The data is contained within an increasingly
narrow error band around a limiting stress-strain graph and samples the band uniformly and with increasing density. b)
Noisy data with outliers: The data concentrates increasingly around a limiting stress-strain graph but exhibits scatter and
outliers.

The convergence analysis presented in Section 5.2 can be adapted to the case of approxima-
tion by point data sets in order to ascertain general conditions for convergence with respect to
the data. For definiteness, we contemplate two data-convergence scenarios, shown schematically
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in Fig 1. The first scenario, which we refer to as uniform convergence, arises when the data is
contained within an increasingly narrow error band around the limiting stress-strain graph and
samples the band uniformly and with increasing density over an increasingly larger data-coverage
region of stress-strain space, Fig 1a. The second scenario concerns the case of noisy data with
outliers, where the data concentrates increasingly around the limiting stress-strain graph but ex-
hibits random scatter with outliers. For each of these two data-convergence scenarios, we proceed
to discuss heuristically conditions on the data under which the Data-Driven solutions converge
to a solution of the limiting problem. Rigorous mathematical statements and proofs are given in
Appendix A.

6.3.1. Uniformly converging data
We assume that σ̂e : Rd → Rd are continuous functions which obey material stability, in the

sense of (57). We denote by

Ge := {(ϵe, σ̂e(ϵe)) : ϵe ∈ Rd} ⊆ Ze (89)

the graph of σ̂e. For every h ∈ N, we consider a discrete set of points De,h ⊆ Ze, which can be
seen as a discrete approximation of Ge. Starting from these data, we define an approximate stress
function σ̂e,h without regularization as in Section 6.1. It bears emphasis that the functions σ̂e,h

thus defined are ansatz-free and follow directly from the data.
Conditions on the data ensuring convergence of the Data-Driven solutions are set forth in the

following theorem, which we enunciate heuristically. A rigorous statement and proof is given in
Appendix A.1.

Proposition 6.2 (Uniform approximation, heuristics). Let we > 0 and let σ̂e : Rd → Rd be
continuous functions which obey material stability, in the sense of (57), and which are sufficiently
regular. Let B : Rn → Rmd obey structural stability, in the sense of (58). Assume that the
sequence (De,h) defines a locally uniform approximation, in the sense that:

(i) The data sets De,h are contained within an increasingly narrow error-band around the
limiting graph Ge.

(ii) There is a bounded region covered by the data set De,h such that, for every point on the
limiting graph Ge, there is an increasingly close point in the data set De,h.

(iii) The regions covered by the data sets increase in size.

Then, there are Data-Driven approximate solutions uh that converge to a solution u of the con-
tinuous problem (55). If the functions σ̂e are strictly monotone, then the solution u of the limiting
problem is unique.

Note that the functions σ̂e,h defined in Section 6.1 are not continuous. Therefore the approxi-
mate problems do not, strictly speaking, have solutions. However, this difficulty can be overcome
by recourse to mollification, or smoothing, as discussed in Appendix A.1.

We can make the heuristic assumptions in Prop. 6.2 quantitative by introducing a sequence
th → 0 such that the distance of any point in De,h to Ge is no larger than th, cf. Fig. 1a. In addition,
we introduce sequences ρh → 0 and Rh → ∞ such that, for any strain ϵe not larger than Rh, there
is at least one data point which approximates the pair (ϵe, σ̂e(ϵe)) with an error no larger than
ρh, cf. Fig. 1a. These assumptions are similar to the fine and uniform approximation properties
formulated in [6, Th. 3.3]. We show in Proposition A.1 that, if σ̂e is sufficiently regular and
suitable relations between the sequences th, ρh and Rh hold, then there are approximate solutions
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to the problem with stress function σ̂e,h, constructed solely from the data De,h, that converge to
solutions of the limiting problem with stress function σ̂e. Numerical examples illustrating this
mode of convergence are presented in Section 6.3.3.

6.3.2. Noisy data with outliers
As above, we still assume that σ̂e : Rd → Rd are continuous functions which obey material

stability, in the sense of (57), and denote by Ge the graph of σ̂e, in the sense of (89). For every
h ∈ N, we consider a discrete set of data points De,h ⊆ Ze, which can again be seen as a discrete
approximation to Ge. Starting from these data, we define an approximate stress function σ̂e,h

with regularization as in (86). We remark that, since De,h is a nonempty finite set the weights are
all positive and depend continuously on ϵe. In particular, the functions σe,h defined as in (86) are
continuous.

The following proposition ensures that, if De,h is a good approximation of the graph of σ̂e,
then the solutions of the problems defined by the functions σ̂e,h converge to solutions of the
limiting problem defined by the functions σ̂e. A rigorous statement and proof are given in Ap-
pendix A.2.

Proposition 6.3 (Noisy data with outliers, heuristics). Let we > 0 and let σ̂e : Rd → Rd

be continuous functions which obey material stability, in the sense of (57), and are sufficiently
regular. Let B : Rn → Rmd obey structural stability, in the sense of (58). For every h ∈ N,
consider a finite set of data points De,h ⊆ Ze. Assume:

(i) There are sufficiently few outliers.
(ii) The data do not cluster in strain space and the covering of strain space is approximately

uniform.
(iii) The region of stress-strain space covered by the data is bounded and increasingly large.
(iv) For the sampled strains, there are incresingly many data points in stress-strain space that

are close to the limit stress-strain graph.

Then, the Data-Driven solutions uh converge to a solution u of the continuous problem (55). If
the functions σ̂e are strictly monotone, then the solution u of the limiting problem is unique.

As before, we can make the heuristic assumptions in Prop. 6.3 quantitative. First, as De,h is
finite, it is necessarily bounded with bound Rh → ∞. We denote by ρh the resolution in strain
space. We assume that there are many data points that correctly characterize strains which are not
too large. Specifically, we assume that the number of data points with strain in a neighborhood of
size ρh of every strain ϵe, with ∥ϵe∥e ≤ Rh, is contained between Nh and Ch, with 1 ≪ Nh ≪ Ch.
In addition, we require that there not be too many outliers. We say that a pair (ξe, ηe) ∈ De,h is an
outlier if the measured stress ηe differs from the ‘true’ stress σ̂(ξe) corresponding to the measured
strain ξe by more than th. Then, we assume that the number of outliers in the vicinity of every
strain ϵe is bounded by Mh. The proposition then ensures that, if appropriate relations between
these quantities hold, there is a sequence βe,h → ∞ such that the data-driven solution converges
to the ‘true’ solution.

6.3.3. Numerical examples
The examples that follow illustrate the type of convergence that can be expected when the

effective material laws are inferred from point material data, including max-ent regularization.
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Figure 2: Two-hundred data-point set. The strains are uniformly distributed and the data points are obtained by adding
random Gaussian noise to the limiting stress-strain curve.

We specifically consider the simple case of a uniaxial material obeying the stress-strain relation

ϵ =
σ

C0
+

( σ
C1

)2
. (90)

This material behavior is tested and a sample point-data set of N points is generated. The test
apparatus is imprecise and the data exhibits additive Gaussian noise evaluated using the Box-
Muller transformation [19]. A representative sample corresponding to C0 = 200MPa, C1 =

44.7214MPa, strain standard deviation 0.05%, stress standard deviation 1Mpa and N = 200, is
shown in Fig. 2.

For simplicity, we choose a strain-controlled discrepancy function (85) and compute stresses
as in (86). Fig. 3 shows four regularized effective stress-strain curves obtained from the data
of Fig. 2 with β = 1600, 160, 16 and 1.6. As may be seen from the figures, the max-ent regu-
larization has the effect of increasing the smoothness of the effective stress-strain curve, which
becomes monotonically increasing for sufficiently small β.

Fig. 4 illustrates convergence of the effective material law with respect to the data. Guided
by Prop. 6.3, we consider data sets that improve steadily by virtue of an increasing sample size
and a simultaneous decrease in the size of the noise. This type of data convergence may be
expected to result, e. g., from experimental campaigns in which both the size of the samples
and the precision of the measurements increase steadily. Specifically, in the example shown in
Fig. 4 the strain standard deviation is assumed to decrease with the number N of data points as
(10/N)%, and the stress standard deviation as (200/N) MPa, along the sequence of material data
sets. The annealing sequence is chosen so that 1/

√
β is commensurate with the strain standard

deviation. Specifically, we choose β = 103(N/5)2. As sequence of material data samples of
increasing size N = 10, 32, 100, 316 and 1000 are shown in the left column of Fig. 4. The right
column shows the corresponding effective material laws and the limiting material law (90), or
’ground truth’, for comparison. The expected uniform convergence of the effective material laws
to the limiting material law over the strain interval under consideration is evident from the figure.
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Figure 3: Regularized effective stress-strain curves. a) β = 1600; b) β = 160; c) β = 16; and d) β = 1.6.

7. Implementation and examples of application

We conclude with examples of application that illustrate the suitability of Data-Driven game-
theoretical approaches for implementation and application within a standard finite element frame-
work. This property notwithstanding, we emphasize that all the calculations that follow are car-
ried out directly from material data and that at no time the data is modelled in the sense of fitting
to ad hoc predetermined classes of functions, such as neural networks.

7.1. Evaluation of effective material laws

We recall that unregularized Data-Driven games result in effective local material laws of the
form (76). The local evaluation of the effective constitutive relation is summarized in Algo-
rithm 1. The effective problem (55) can then be solved for the displacements, e. g., by means of
a matrix-free iterative solver such as dynamic relaxation [20], cf. § 7.2.1 and 7.2.2.

Algorithm 1 Game-theoretical Data–Driven material law – Unregularized

Require:
i) Local stress-strain point-data set De.
ii) Local strain ϵe.
Then:
i) Find (ξe, ηe) in De such that ξe is closest to ϵe.
ii) Return σe = ηe.
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Figure 4: Example of convergence of the effective material laws with respect to noisy data. Left column: Sampled
material data sets; Right column: Regularized effective material laws (blue) and exact material law (orange). a,b) N = 10;
c,d) N = 32; e,f) N = 100; g,h) N = 316; i,j) N = 1000.
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Regularized Data-Driven games, by contrast, result in effective local material laws of the
general implicit form (82), for a general discrepancy function. For the particular choice of a
distance discrepancy function, (82) reduces to the implicit form (84), if the discrepancy function
combines stress and strain states, or to the explicit form (86) if the discrepancy function refers to
strain states only.

We recall that, when the system is regularized properly, the effective local material laws
σ̂e(ϵe) are smooth and have well-defined material tangents Dσ̂e(ϵe). An expression for the tan-
gents can be derived by differentiation of (82) taking into account the implicit dependence of the
weights p∗e,i on the local state ze = (ϵe, σe), with the result

∂p∗e,i
∂ϵe
= −βe p∗e,i

(∂Φe,i

∂ϵe
−

Ne∑
j=1

p∗e, j
∂Φe, j

∂ϵe

)
, (91)

where we write Φe,i = Φe(ye,i, ze). In the particular case of a distance local discrepancy function
(83), the tangents follow by differentiation of (84) and (91) specializes to

∂p∗e,i
∂ϵe
= −2βe p∗e,i

[
Ce : (ϵ̄e − ϵe,i) + (σe − σe,i) : C−1

e :
∂σe

∂ϵe

]
, (92)

with ϵ̄e =
∑Ne

i=1 p∗e,iϵe,i, whereupon the tangents follow as

∂σe

∂ϵe
=

[
I −

Ne∑
i=1

2βe p∗e,i
(
σe,i ⊗ [C−1

e : (σe,i − σe)]
)]−1

[ Ne∑
j=1

2βe p∗e, jσe, j ⊗
(
Ce : (ϵe, j − ϵ̄e)

)]
, (93)

where I denotes the 4th order identity tensor. Finally, for discrepancy functions of the strain-
distance type (85), the tangents follow by differentiation of (86, whereupon (93) further special-
izes to the simple form

∂σe

∂ϵe
=

Ne∑
j=1

2βe p∗e, jσe, j ⊗
(
Ce : (ϵe, j − ϵ̄e)

)
, (94)

which can be evaluated explicity from the strains.
We note that, unlike the cooperative case, the tangent moduli Dσ̂e(ϵe) resulting from the

non-cooperative Data-Driven games are non-symmetric in general, which attests, to the non-
variational global structure of said games. In the cooperative mood, simple estimates additionally
show that the tangent moduli are positive definite for βe large enough [5]. In the non-cooperative
mood, the effective material law σ̂e(ϵe) is expected to be monotonic for sufficiently large βe,
cf. Prop. A.2, which in turn requires the symmetric part of Dσ̂e(ϵe) to be positive definite.
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Algorithm 2 Game-theoretical Data–Driven material law – Regularized

Require:
i) Local regularization parameter βe.
ii) Local stress-strain point-data set De.
iii) Local strain ϵe.
Then:
i) Solve (82), or (84), for stress σe; or evaluate σe from (86).
ii) Evaluate tangents Dσe from (91), or (93), or (94).
iii) Return σe, Dσe.

The evaluation of the effective regularized constitutive laws and attendant tangents is summa-
rized in Algorithm 2. The effective problem (55) can then be solved for the displacements, e. g.,
by means of standard solvers such as Newton-Raphson or nonlinear Krylov-GMRES, cf. § 7.2.3.

7.2. Illustrative examples
We conclude this section with three simple examples of application intended to demonstrate

how the proposed non-cooperative game-theoretical Data-Driven paradigm can be implemented
and deployed, with or without regularization, within a standard finite-element framework. We
note that, a detailed convergence analysis of the global results is not necessary since convergence
can be ascertained entirely at the local level, cf. Section 6.3.3.

7.2.1. Rotating rod

(a)

(b)

Figure 5: A) Linear-elastic rod rotating with angular velocityω. B) Local material point-data set De obtained by sampling
Hooke’s law at equidistant strains.

A first simple illustration of the non-cooperative Data-Driven paradigm is provided by the
problem of a rod rotating around one end with angular velocity of ω, Fig. 5a. The spinning
motion is simply accounted for through a constant centrifugal body force of magnitude ρω2. The
rod behaves in uniaxial stress and the material obeys Hooke’s law. In calculations, the rod is
discretized into equal linear finite elements along its length.

The local material point–data sets De are obtained by sampling without noise the material
law at equidistant strains over the expected range covered by the solution, Fig. 5b. The figure
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Figure 6: Rotating rod problem discretized into 20 equal linear finite elements. Non-cooperative Data-Driven stress and
displacements for l = 1 m, A = 1 mm2, C = 100 000 MPa, ρ = 20 g/cm3, ω = 0.5s−1, and a local material point-data set
De covering the range 0–250 MPa with 51 data points.

also shows the effective piecewise constant, or stepwise, local material law that results from a
minimum strain distance game with no regularization, cf. Section 6.1 and Example 6.1. In order
to render the effective stress-strain relation single-valued, at strains equidistant from the sampling
strains we choose the smallest, in absolute value, of the two possible stresses. Owing to the lack
of smoothness of the resulting material law, solutions must be obtained using matrix-free solvers.
In calculations, we specifically use dynamic relaxation [20].

Figure 7: Rotating rod problem discretized into 100 equal linear finite elements. Convergence of the L2–error in the
stress field with increasing number of points in the local material data set De.

Figure 6 shows stress and displacement fields computed for a rod of length l = 1 m, cross
section A = 1 mm2, Hooke’s modulus C = 100 000 MPa, and mass density ρ = 20 g/cm3

rotating with angular velocity of ω = 0.5s−1, cf. Fig. 5a, and a local material point-data set De
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covering the range 0–250 MPa with 51 data points, cf. Fig. 5b. In the calculations, the rod is
discretized into 20 equal linear finite elements. As may be seen from the figure, the Data-Driven
solution approximates the limiting displacement and stress fields closely, despite the coarseness
of the discretization and material sampling. The goodness of the approximation is all the more
remarkable given the lack of regularization in the calculations and the attendant discontinuous
character of the effective material law, and owes partly to the stabilizing effect of inertia [21].

Figure 7 finally shows the L2–error of the cooperative and non-cooperative Data-Driven stress
fields as a function of the number of material data points. The results are computed using 100
equal linear finite elements in the discretization of the rod. Remarkably, both the cooperative and
non-cooperative Data-Driven games afford a nearly identical linear range of convergence with
respect to material data. Evidently, the convergence of the discrete rod problem with respect to
the data observed in the calculations is expected in view of Prop. A.1, but the calculations addi-
tionally supply a precise convergence rate that renders the analysis of convergence quantitative.

7.2.2. Perforated plate

Figure 8: a) Plate with circular perforation of radius a under uniform remote tension σ0. b) Computational finite element
cell of size b loaded by tractions computed from the exact analytical and discretized into linear triangular elements.

As a two-dimensional example, we consider an isotropic plate with a circular perforation of
radius a = 200 mm deforming under the action of remote tension in the horizontal direction,
Fig. 8a. A quadrant of a square computational cell of size b = 500 mm is discretized into
720 linear triangular elements, Fig. 8b. For linear-elastic material, the exact solution of the
problem is known analytically [22] and the corresponding tractions are applied to the boundary
of the computational cell. Local material data sets De are generated by sampling without noise
Hooke’s law with Lamé constants λ = 0 and µ = 500 MPa over a regular Cartesian grid spanning
a stress range of ±0.1 to ±100 MPa. Choosing a strain-distance discrepancy function without
regularization, cf. Section 6.1 and Example 6.1, the data define a non-cooperative Data-Driven
problem that is solved by dynamic relaxation [20]. As in the preceding spinning-rod example,
the unregularized effective stress functions σ̂e(ϵe) are piecewise constant over the Voronoi cells
of the sampled strains.

Fig. 9 compares the Data-Driven horizontal stress component σx for three material data sets
of size 1013, 2013 and 8013, respectively. The exact analytical solution is also shown for com-
parison. We note that the Data-Driven stresses in the figure are shown exactly as computed at the
element level and are not in any way smoothed, which accounts for the patchy look of the figure.
Despite the non-informative nature of the material data, a general trend towards convergence of
the Data-Driven solutions is evident from the figure, as expected from Prop. A.1.
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Figure 9: Perforated plate problem. Comparison of exact (top left) and Data-Driven horizontal stress component σx for
1013, 2013 and 8013 points in the local material data set.

7.2.3. Torsion of a cube
As a final three-dimensional example, we consider the torsion of a cube whose bottom face

is clamped while a planar rotation is imposed on the top face. The cube is meshed using 4635
linear tetrahedral elements. Horizontal (x − y plane) displacements of nodes located on the top
face are prescribed corresponding to a rotation of 10−3π rad around the central axis. Vertical
displacements are left free. We further consider a material governed by the non-linear elastic
relation

σ = K
(
1 + Tr[ϵ]2

)
Tr[ϵ]δ +G(1 + Dev[ϵ] : Dev[ϵ]) Dev[ϵ]. (95)

Data sets were generated by sampling this relation with Young modulus of 1011 Pa and a Poisson
ratio of 0.35 over the intervals [−0.004, 0.004] for ϵxx, γxy, ϵyy, ϵzz, and [−0.008, 0.008] for γxz

and γyz, cf. Table 1, yielding data sets containing 75625, 405769 and 1476225 pairs of stress and
strain tensors, respectively.

# sampling points ϵxx γxy ϵyy ϵzz γxz γyz

75625 (D1) 5 5 5 5 11 11
405769 (D2) 7 7 7 7 13 13

1476225 (D3) 9 9 9 9 15 15

Table 1: 3D strain tensor sampling schemes.

These data sets were used to solve the problem using a regularized Data-Driven formula-
tion, cf. Section 7.1. The smoothness afforded by the regularization allows to use non-linear
solvers such as Newton-Raphson or iterative gradient descent algorithms. In calculations, we
use a Krylov-GMRES algorithm from SciPy 1.10.1 [23]), initially preconditioned by the tangent
computed at zero strain. The solution is then obtained in 4 or 5 Krylov iterations. Note that, in
order to obtain this performance, the regularization parameter β needs to be carefully chosen. In
the calculations, we specifically use values of β ranging from 1.2× 10−6 to 2.4× 10−6, increasing
with data density, in combination with a distance defined by an isotropic elasticity tensor com-
puted from a Young modulus of 1012 Pa and a Poisson ration of 0.3 (chose different from the
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Figure 10: Torsion of a non-linear elastic cube, equivalent von-Mises strain. Clockwise: Data-Driven solutions for
material data sets of sizes 75625, 405769 and 1476225, and reference finite-element solution.
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linearized elastic response at zero strain to avoid any bias). Optimal values of β for a given data
set have been derived in [5, 7, 24].

The resulting Data-Driven von Mises shear strain and yz shear stresses for the three material
data sets are shown in Figs. 10 and 11, respectively. A standard non-linear finite element solution
computed from the limiting material law (95) is also shown in the figures for comparison. A
general trends towards convergence towards the reference solution can be observed in the figures,
with stress errors under 2% for the largest data set.

8. Summary and concluding remarks

We have resorted to game-theoretical concepts to formulate Data-Driven methods for solid
mechanics in which stress and strain are adversarial players and pursue different–and competing–
objectives: the objective of the stress player is to minimize the discrepancy to a material data set
that characterizes material behavior; the objective of the strain player is to ensure the admissi-
bility of the mechanical state, in the sense of satisfying compatibility and equilibrium. The main
properties of the proposed non-cooperative Data-Driven games are:

(i) Unlike the cooperative Data-Driven games proposed in the past [4, 5, 6, 7, 8], the new
non-cooperative Data-Driven games identify an effective material law from the material
data.

(ii) The data from which the effective material law is identified is fundamental, i. e., a set of
observed material states in stress-strain, or phase, space. In particular, the material data is
not subordinate to—or parameterized in terms of—a particular, a priori surmised, material
model.

(iii) The effective material law follows directly from the material data, all the material data,
and nothing but the material data, together with material-independent notions of distance
and proximity in stress-strain space.

(iv) At no time during the calculations—or during the evaluation of the effective material law—
is the data set replaced by an ad hoc parameterized funcion, e. g., a neural network, fitted
to the data, which inevitably results in biasing and loss of information.

(v) The proposed non-cooperative Data-Driven games reduce to conventional displacement
boundary-value problems in which the material is characterized by the effective material
law.

(vi) The displacement boundary-value problems set forth by the proposed non-cooperative
Data-Driven games can be implemented within a standard finite-element framework in
which the effective material law is evaluated at each material or quadrature point, e. g.,
through a user-supplied material law.

(vii) For structurally stable systems, the convergence of the Data-Driven solutions with respect
the material data can be analyzed and ascertained entirely at the local material point level
in terms of the convergence of the effective material law.

We have presented rigorous analyses that elucidate sufficient conditions for convergence of
the Data-Driven solutions with respect to the material data in two scenarios: i) Uniformly con-
vergent data, in which the sampling error decreases as data is added to the material-data set in a
uniform manner controlled by strict upper bounds, and ii) noisy data with outliers, in which the
data concentrates around the limiting material law in a weak or average sense that allows for the
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Figure 11: Torsion of a non-linear elastic cube, σyz stress. Clockwise: Data-Driven solutions for material data sets of
sizes 75625, 405769 and 1476225, and reference finite-element solution.
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presence of outliers. These results supply conditions under which the proposed non-cooperative
Data-Driven games and well-posed in the sense of convergence of the solutions with respect to
the material data to a limiting material law.

We have also presented selected examples of implementation and application that demon-
strate how the proposed non-cooperative Data-Driven games can be conveniently combined with
the finite-element method for solving specific boundary-value problems. When the material
data is sampled from an underlying ’true’ material law, presumed unknown, we find that the
Data-Driven solutions exhibit accuracy comparable to that of a reference finite-element solution
formulated in terms of the underlying material law, even for relatively sparse and non-adaptive
material sets.

In closing we note that, while not based on regression, e. g., to neural networks, the proposed
approach may be considered a form of unsupervised, set-oriented, machine learning, in which
the objective is to learn the structure of the material data set (cf., e. g., [25] for background on set-
oriented machine learning). A number of issues pertaining to this viewpoint arise immediately,
among which are the following.

Data structures and fast searches. Evidently, for large material-data sets the speed of the
search algorithms used to interrogate the material data sets while evaluating the effective ma-
terial law is a computational bottleneck and requires careful attention in order to ensure adequate
performance. For regularized Data-Driven problems, the rapid decay of exponential functions
appearing in (81a) can be exploited to limit evaluations to nearest-neighbours. These local neigh-
borhoods can be searched for in large data sets by means of efficient techniques such as kd-tree
data structures or approximate nearest neighbours (ANN) algorithms. A review of recent de-
velopments and an assessment of a number of search algorithms in the context of Data-Driven
methods can be found in [26].

Data sampling and adaptive learning. A central issue in data science concerns the efficient
sampling of the data. In general, the dimensionality stress-strain or phase space is too large to al-
low for unstructured uniform sampling of the material behavior and more finely-tuned techniques
need to be adopted in which the sampling is adapted to particular problems. One such technique
is active or adaptive learning [27]. In this setting, a coarse material data set covers the regions
of phase space which are relevant to a specific problem of interest. In subsequent iterations, the
material data set is augmented with additional data sampled in regions covered by the solution
to achieve increased accuracy. In addition, non-informative data far from the phase-space set
covered by the solution are excluded from the data set in order to speed up subsequent iterations.
Further details of implementation can be found in [28] and applications of adaptive learning to
Data-Driven problems can be found in [29, 21, 30].
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Appendix A. Approximation via point sets

In this appendix, we provide rigorous statements and proofs of the propositions enunciated
heuristically in Section 6.3.

A.1. Uniform approximation

We revisit the scenario considered in Section 6.3.1. In order to make it possible to work with
finite sets De,h, we use a cutoff procedure with extrapolation to infinity. We first define a map
fe,h : Rd → Rd, and then regularize it to obtain σ̂e,h. Fix a large number Rh > 0, which will
diverge in the limit. Working with the distance-based discrepancy function, for bounded strains
∥ϵe∥e < Rh we consider the stress corresponding to the closest pair in De,h, in the sense that
se,h(ϵe) = ηe, with ηe defined as in (77). For large strains ∥ϵe∥e ≥ Rh, we instead set

se,h(ϵe) = Ceϵe (A.1)

where Ce ∈ Rd×d is an arbitrary positive definite matrix. The result does not depend on the choice
of Ce. We then select a small regularization distance δh > 0, and define

σ̂e,h(ϵe) = (ψδh ∗ se,h)(ϵe) (A.2)

where ψδ ∈ C∞c (Bδ; [0,∞)) is an even mollification kernel on scale δ. This definition ensures
continuity of σ̂e,h (whereas the function fe,h is not continuous, even for small strains). Further, it
only requires sampling the data set in a bounded region, and therefore a good approximation can
be obtained with finite sets De,h. We shall show that if De,h is a good approximation of the graph
of σ̂e then the solutions converge.

We quantify the goodness of the approximation via three separate parameters. First, th → 0
gives the scale of the uniformity of the approximation, in the sense that no points contains an
error larger than th. Second, Rh → ∞ gives the size of the region which is covered by the
approximation. Third, ρh → 0 quantifies the fineness of the approximation, in the sense that any
strain smaller than Rh has been tested, up to a precision ρh. Finally, δh → 0 is the scale of the
mollification in (A.2).

Proposition A.1 (Uniform approximation). Let we > 0 and let σ̂e : Rd → Rd be continuous
functions which obey material stability, in the sense of (57), and which are locally Lipschitz
continuous, in the sense that for any R > 0 there is LR > 0 such that

∥σ̂e(ϵ) − σ̂e(ϵ′)∥e ≤ LR∥ϵ − ϵ
′∥e for all ϵ, ϵ′ with ∥ϵ∥e < R, ∥ϵ′∥e < R. (A.3)

Let B : Rn → Rmd obey structural stability, in the sense of (58).
For every h ∈ N, consider discrete set of points De,h ⊆ Ze. Assume that each De,h is a locally

uniform approximation, in the sense that there are sequences th → 0, ρh → 0, δh → 0 and
Rh → ∞ such that

(i) De,h ⊆ (Ge)th , meaning that for any ye ∈ De,h there is ze ∈ Ge with ∥ze − ye∥e < th, where
Ge is the graph of σ̂e, defined as in (89);

(ii) for every ϵe ∈ Ze with ∥ϵe∥e ≤ 2Rh there is ye ∈ De,h with ∥(ϵe, σ̂e(ϵe)) − ye∥e < ρh.
(iii) limh→∞ L2Rh (th + ρh + δh) = 0.
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Let σ̂e,h be defined as in (A.2) above, and let σ̂h = (σ̂1,h, . . . , σ̂N,h).
Then for sufficiently large h, for any f ∈ Rn the problem

wBT σ̂h(Buh) = f (A.4)

has a solution uh, and up to subsequences the solutions uh converge to a solution u of the contin-
uous problem (55). If the σ̂e are strictly monotone in the sense of (60) then the solution u of the
limiting problem is unique and the entire sequence uh converges to u.

Proof. We first show that, for sufficiently large h, the functions σ̂e,h obey the material stability
condition (57) uniformly. As they are continuous by construction, and structural stability holds,
existence of solutions uh for each h will then follow from Proposition 5.4.

Fix ϵe, and consider some ϵ′e with ∥ϵ′e − ϵe∥e < δh. We distinguish two cases. Assume first
∥ϵ′e∥e ≥ Rh, then

se,h(ϵ′e) · ϵe =Ceϵ
′
e · ϵe ≥ Ceϵe · ϵe − ∥Ce∥ ∥ϵe∥e ∥ϵ

′
e − ϵe∥e

≥â∥ϵe∥
2
e − ∥Ce∥ ∥ϵe∥eδh ≥

1
2

â∥ϵe∥
2
e −

1
2

â
(A.5)

where in the last step we assumed that h is sufficiently large that ∥Ce∥δh ≤ â and used 2x ≤ x2+1.
Assume now that ∥ϵ′e∥e < Rh. By definition of se,h, there is ξ′e such that (ξ′e, se,h(ϵ′e)) ∈ De,h

and ξ′e is (one of the) points which minimizes the distance to ϵ′e.
By (ii) there is (ξe, ηe) ∈ De,h such that ∥(ξe, ηe) − (ϵe, σ̂e(ϵe))∥e < ρh, so that by minimality

∥ξ′e − ϵ
′
e∥e ≤ ∥ξe − ϵ

′
e∥e ≤ ∥ξe − ϵe∥e + ∥ϵe − ϵ

′
e∥e < ρh + δh. (A.6)

By (i), there is ξ′′e such that

∥(ξ′′e , σ̂e(ξ′′e )) − (ξ′e, se,h(ϵ′e))∥e < th. (A.7)

Combining the two,

∥ξ′′e − ϵ
′
e∥e ≤ ∥ξ

′′
e − ξ

′
e∥e + ∥ξ

′
e − ϵ

′
e∥e ≤ th + ρh + δh (A.8)

and
∥ξ′′e − ϵe∥e ≤ ∥ξ

′′
e − ϵ

′
e∥e + ∥ϵ

′
e − ϵe∥e ≤ th + ρh + 2δh. (A.9)

In particular, ∥ξ′′e ∥e ≤ Rh + th + ρh + δh ≤ 2Rh, and the same for ϵe (for h sufficiently large).
Therefore, using (A.7) and (A.3),

∥se,h(ϵ′e) − σ̂e(ϵe)∥e ≤∥se,h(ϵ′e) − σ̂e(ξ′′e )∥e + ∥σ̂e(ξ′′e ) − σ̂e(ϵe)∥e
≤th + L2Rh∥ξ

′′
e − ϵe∥e ≤ (1 + L2Rh )(th + ρh + 2δh).

(A.10)

In particular, this implies

se,h(ϵ′e) · ϵe ≥σ̂e(ϵe) · ϵe − (1 + L2Rh )(th + ρh + 2δh)∥ϵe∥e

≥a∥ϵe∥
2 − b −

√
ab∥ϵe∥e

≥
1
2

a∥ϵe∥
2
e − 2b.

(A.11)
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where in the second step we used (57), and assumed that h is sufficiently large that (1+L2Rh )(th+
ρh + 2δh) ≤

√
ab (this is possible by assumption (iii)). Recalling (A.5), the same estimate holds

for ∥ϵ′e∥e ≥ Rh, possibly with different values of the constants a and b. Therefore it holds for all
ϵ′e with ∥ϵe − ϵ

′
e∥e < δh, and by convexity of the mollification we conclude

σ̂e,h(ϵe) · ϵe ≥ a′∥ϵe∥
2
e − b′ (A.12)

for all ϵe, with a′ := min{ 12 a, 1
2 â} and b′ := max{2b, 1

2 â}. This proves material stability and hence
existence of solutions for each fixed h.

Finally, from (A.10) we obtain locally uniform convergence. In particular, fix M > 0. For h
sufficiently large we have M + δh < Rh. Therefore (A.10) holds for all pairs ϵe, ϵ′e with ∥ϵe∥e < M
and ∥ϵe − ϵ

′
e∥e < δh. Again, by convexity

∥σ̂e,h(ϵe) − σ̂e(ϵe)∥e ≤ (1 + L2Rh )(th + ρh + 2δh) (A.13)

for all ϵe with ∥ϵe∥e < M. By (iii), we obtain uniform convergence. The rest follows from
Proposition 5.5.

A.2. Noisy data with outliers
We revisit the scenario considered in Section 6.3.3. As in the preceding section, in order

to make it possible to work with finite sets De,h, we use a cutoff at infinity. Precisely, we fix a
function ψ ∈ C1

c (B1; [0, 1]) with ψ = 1 on B1/2 and set

σ̂e,h(ϵe) := ψ
(

1
Rh
∥ϵe∥e

)
σ∗e,h(ϵe) +

(
1 − ψ

(
1

Rh
∥ϵe∥e

))
Ceϵe (A.14)

where Ce is a fixed positive definite matrix as in (A.1) and

σ∗e,h(ϵe) =
Ne∑
i=1

p∗e,h,i(ϵe; βh)σe,h,i. (A.15)

Also in this case, we shall show that the limit does not depend on the choice of Ce. The proof
uses some ideas from [8, 24].

Proposition A.2 (Discrete approximation with outliers). Let we > 0 and let σ̂e : Rd → Rd be
continuous functions which obey material stability, in the sense of (57), and which are locally
Lipschitz, in the sense that for any R > 0 there is LR > 0 such that (A.3) holds. Let B : Rn → Rmd

obey structural stability, in the sense of (58).
For every h ∈ N, consider a finite set of data points De,h ⊆ Ze. Assume that De,h is a good

approximation with few outliers, in the sense that there are sequences th, ρh, δh → 0 and Ch, Nh,
Mh, Rh, R∗h → ∞ such that

(i) For every ϵe with ∥ϵe∥e < Rh one has

#{(ξe, ηe) ∈ De,h : ξe ∈ ϵe + [0, ρh)d, ∥ηe − σ̂e(ϵe)∥e > th} < Mh; (A.16)

(ii) For every ϵe one has

#{(ξe, ηe) ∈ De,h : ξe ∈ ϵe + [0, ρh)d} < Ch; (A.17)
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(iii) For any ye ∈ De,h one has ∥ye∥e ≤ R∗h;
(iv) For every ϵe with ∥ϵe∥e < 2Rh one has

#{(ξe, ηe) ∈ De,h : ξe ∈ ϵe + [0, ρh)d} ≥ Nh; (A.18)

(v) limh→∞ βhρ
2
h = 0, limh→∞ LRh+R∗hCh/(β

1/2
h Nh) = 0, and limh→∞(2 + LRh+R∗h )R∗hMh/Nh = 0.

Let σ̂e,h be defined as in (A.14) above, and let σ̂h = (σ̂1,h, . . . , σ̂N,h).
Then for sufficiently large h, for any f ∈ Rn the problem

wBT σ̂h(Buh) = f (A.19)

has a solution uh, and up to subsequences the solutions uh converge to a solution u of the contin-
uous problem (55). If the functions σ̂e are strictly monotone in the sense of (60) then the solution
u of the limiting problem is unique and the entire sequence uh converges to u.

Proof. Fix a possible strain ϵe ∈ Rd. Assume first that ∥ϵe∥e ≤ Rh. From (A.15), using∑
i p∗e,h,i(ϵe; βh) = 1,

∥∥∥σ∗e,h(ϵe) − σ̂e(ϵe)
∥∥∥

e =

∥∥∥∥∥∥∥
Ne,h∑
i=1

p∗e,h,i(ϵe; βh)(σe,h,i − σ̂e(ϵe))

∥∥∥∥∥∥∥
e

≤

Ne,h∑
i=1

p∗e,h,i(ϵe; βh)
∥∥∥σe,h,i − σ̂e(ϵe)

∥∥∥
e .

(A.20)

With another triangular inequality, (A.3), and (iii), writing Lh := LRh+R∗h for brevity,

∥σe,h,i − σ̂e(ϵe)∥e ≤∥σe,h,i − σ̂e(ϵe,h,i)∥e + ∥σ̂e(ϵe,h,i) − σ̂e(ϵe)∥e
≤∥σe,h,i − σ̂e(ϵe,h,i)∥e + Lh∥ϵe,h,i − ϵe∥e.

(A.21)

We separate the two terms, and for the first one treat separately the values of i for which it is
larger than th. We obtain, recalling that

∑
i p∗e,h,i(ϵe; βh) = 1,

∥σ∗e,h(ϵe) − σ̂e(ϵe)∥e ≤th + I + II, (A.22)

where

I :=
∑

i:∥σe,h,i−σ̂e(ϵe,h,i)∥e>th

p∗e,h,i(ϵe; βh)∥σe,h,i − σ̂e(ϵe,h,i)∥e,

II :=Lh

Ne,h∑
i=1

p∗e,h,i(ϵe; βh)∥ϵe,h,i − ϵe∥e.

(A.23)

At this point we localize. Let P := ρhZd and Qp := p + [0, ρh)d. Obviously the cubes {Qp}p∈P

form a disjoint cover of Rd. For any p ∈ P, any ϵe, and any q, q′ ∈ Qp we have

|∥q − ϵe∥e − ∥q′ − ϵe∥e| ≤ ∥q′ − q∥e ≤ diam(Qp) = ρhke, (A.24)

where ke := diam([0, 1]d) is a constant that depends only on d and on the norm ∥ · ∥e. Therefore

1
2
∥q − ϵe∥

2
e − k2

eρ
2
h ≤ ∥q

′ − ϵe∥
2
e ≤ 2∥q − ϵe∥

2
e + 2k2

eρ
2
h. (A.25)
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Averaging over Qp, we obtain that for any q′ ∈ Qp and any β > 0

e−2k2
eβρ

2
h

|Qp|

∫
Qp

e−2β∥q−ϵe∥
2
e dq ≤ e−β∥q

′−ϵe∥
2
e ≤

ek2
eβρ

2
h

|Qp|

∫
Qp

e−
1
2 β∥q−ϵe∥

2
e dq. (A.26)

Therefore, using the definition (88), then (A.26) and (ii) give

Ze,h(ϵe; β) =
∑
p∈P

∑
i:ϵe,h,i∈Qp

e−β∥ϵe,h,i−ϵe∥
2
e

≤
ek2

eβρ
2
h

|Qp|

∑
p∈P

∑
i:ϵe,h,i∈Qp

∫
Qp

e−
1
2 β∥q−ϵe∥

2
e dq

≤
Chek2

eβρ
2
h

|Qp|

∑
p∈P

∫
Qp

e−
1
2 β∥q−ϵe∥

2
e dq

=
Chce

|Qp|
ek2

eβρ
2
h (β/2)−d/2,

(A.27)

where in the last step we used that by scaling there is a constant ce > 0 such that∫
Rd

e−β∥q∥
2
e dq = ceβ

−d/2, (A.28)

for any β > 0.
A similar computation using (iv) instead of (ii) leads to

Ze,h(ϵe; βh) =
∑
p∈P

∑
i:ϵe,h,i∈Qp

e−βh∥ϵe,h,i−ϵe∥
2
e

≥
Nhe−2dβhρ

2
h

|Qp|

∑
p∈P,|p|<2Rh−ρhke

∫
Qp

e−2βh∥q−ϵe∥
2
e dq

≥
c′eNhe−2k2

eβhρ
2
h

|Qp|
(2βh)−d/2,

(A.29)

where in the last step we used that ∥ϵe∥ ≤ Rh and that there is c′e > 0 such that∫
BR

e−β∥q∥
2
e dq ≥ c′eβ

−d/2 (A.30)

whenever R ≥ 1 and β ≥ 1.
We next estimate the two terms introduced in (A.23). We write

II = Lh
1

Ze,h(ϵe; βh)

Ne,h∑
i=1

e−βh∥ϵe,h,i−ϵe∥
2
e ∥ϵe,h,i − ϵe∥e. (A.31)
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We use that te−t2
≤ e−t2/2 for all t ≥ 0 to obtain

II ≤Lhβ
−1/2
h

1
Ze,h(ϵe; βh)

Ne,h∑
i=1

e−
1
2 βh∥ϵe,h,i−ϵe∥

2
e

=Lhβ
−1/2
h

Ze,h(ϵe; 1
2βh)

Ze,h(ϵe; βh)

≤Lhβ
−1/2
h

Chce4de3k2
eβhρ

2
h

Nhc′e
,

(A.32)

where in the last step we estimated the partition function with (A.29) and (A.27). We remark that
the last bound depends only on h and is uniform in ϵe.

For the term I we argue similarly. We use the uniform bound on the stresses in ((iii)), the
Lipschitz condition, and choose h sufficiently large that ∥σ̂e(0)∥e ≤ R∗h to write

∥σe,h,i − σ̂e(ϵe,h,i)∥e ≤∥σe,h,i∥e + ∥σ̂e(ϵe,h,i) − σ̂e(0)∥e + ∥σ̂e(0)∥e
≤R∗h + LhR∗h + ∥σ̂e(0)∥e ≤ (2 + Lh)R∗h.

(A.33)

With the bound on the number of outliers in (i) and (A.26) we obtain, with a computation similar
to (A.32),

I ≤(2 + Lh)R∗h
1

Ze,h(ϵe; βh)

∑
p∈P

∑
i:ϵe,h,i∈Qp ,

∥σe,h,i−σ̂e (ϵe,h,i )∥e>th

e−βh∥ϵe,h,i−ϵe∥
2
e

≤
(2 + Lh)R∗hMhek2

eβhρ
2
h

|Qp|

1
Ze,h(ϵe; βh)

∑
p∈P

∫
Qp

e−
1
2 βh∥q−ϵe∥

2
e dq.

(A.34)

With (A.28) and (A.29) we conclude

I ≤(2 + Lh)R∗h
ceMh2de3k2

eβhρ
2
h

c′eNh
. (A.35)

Collecting terms, (A.22), (A.32) and (A.35) give

∥σ∗e,h(ϵe) − σ̂e(ϵe)∥e ≤ th + c′′e (1 + Lh)R∗h
Mhe3k2

eβhρ
2
h

Nh
+ c′′′e

LhChe3k2
eβhρ

2
h

β1/2
h Nh

, (A.36)

with c′′e and c′′′e depending only on the dimension d and the norm ∥·∥e. Recalling the assumptions
in (v),

ωh := sup
ϵe:∥ϵe∥e<Rh

∥σ∗e,h(ϵe) − σ̂e(ϵe)∥e (A.37)

tends to zero as h→ ∞. In particular, from (57),

σ∗e,h(ϵe) · ϵe ≥ σ̂e(ϵe) · ϵe − ωh∥ϵe∥e ≥ a∥ϵe∥
2
e − b − ωh∥ϵe∥e ≥

1
2

a∥ϵe∥
2
e − 2b (A.38)

provided h is sufficiently large to have ωh ≤
√

ab. As Ce was chosen positive definite, Ceϵe · ϵe ≥

â∥ϵe∥
2, and using (A.14) and ψ ∈ [0, 1] we conclude that σ̂e,h is coercive. Existence of solutions

follows then from Proposition 5.4.
Finally, the conditions Rh → ∞ and ωh → 0 imply uniform convergence of σ∗e,h to σ̂e, and

with Rh → ∞ and (A.14) the same holds for σ̂e,h. By Proposition 5.5 the solutions converge.
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