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Abstract

In this paper, we consider networks where every transmitted message is received by all
of the transmitter’s neighbors. Typical such networks are wireless networks, in which to
dedicate a message to a specific neighbor, the sender must specify who the recipient is by
specifying the recipient’s ID. Adding an identifier has a non-negligible cost, more precisely
O(log n) bits in an n-node graph. Token Circulation (TC) is a fundamental problem that
consists in guaranteeing that a single token circulates from one node to another, the token
fairly visiting every node infinitely often. TC inherently requires that the token holder selects
a unique neighboring node to which to pass the token. This paper proposes a solution that
overcomes the communication of identifiers. It achieves optimal space complexity for the
token circulation problem.

The contribution of this paper is fourfold. First, we present the first deterministic depth-
first token circulation algorithm for rooted wireless networks that uses only O(log log n) bits
of memory per node. This is an exponential improvement compared to the classical ad-
dressing. Our algorithm assumes a Destination-Oriented Directed Acyclic Graph (DODAG)
spanning the network. Less popular than spanning trees, DODAGs are nonetheless more
general and adaptable spanning structures, since they do not need to distinguish one neigh-
boring node as unique parent. Second, our algorithm has the very desirable property of being
self-stabilizing. This means that starting from a configuration where zero or more than one
token circulate in the network, the system is guaranteed to eventually work correctly, i.e.,
a single token eventually fairly visits every node infinitely often, following a depth-first or-
der. Third, it works under the unfair scheduler, that is the most challenging scheduling
assumption of the model. Finally, we show that our algorithm is optimal in terms of space
complexity. Meaning that, for every n-node network, no TC algorithm can use less than
Ω(log log n) bits of memory per node, even given a rooted spanning tree and even without
considering self-stabilization.

Keywords: Distributed algorithms, transient faults, self-stabilization, token circulation,
memory optimization.
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1 Introduction

In recent decades, wireless network technology has gained tremendous importance. It not
only more and more replaces so far “wired” network installations, but also gives rise to new
applications and with them, new tech and soft stacks enabling specific communications. Many
distributed algorithms written for wired networks assume that every node v of the system is
equipped with a local set of labels, sometimes also referred to as port labels. This set maps the set
of v’s neighbors, that is the set of nodes directly linked to v by bidirectional communication links.
By using their respective port sets, two neighboring nodes u and v can directly communicate
by exchanging messages with each other without interfering with other nodes, and without any
further specific information such as IDs. Furthermore, port labels allow to maintain global
distributed spanning data structures such as various types of trees, rings, and so on, which
makes solving many problems much easier.

By contrast, in wireless networks, nodes have a priori no knowledge of their neighborhood.
In particular, without further information (particularly, IDs), nodes are unable to distinguish
from which node a message is received, neither to pick out a particular node to whom send a
message. Thus, in wireless networks, to differentiate the recipient or the sender of a particular
message, classically, the message includes the identifier of the recipient. This identifier will
be stored (temporarily or permanently) in the receiver’s memory. In n-node networks, the
inclusion of the identifier requires Ω(log n) bits. The dark side effect of the ID’s inclusion
is that, depending on the task considered, the message size is only determined by the size
of the identifiers. Several problems can be specified by a constant number of bits, like the
leader election or the token circulation, or by the number of bits depending of the degree of
the network, like the coloration of the nodes. In this type of problem, the space complexity
is entirely consumed by the inclusion of the identifier in the messages. Moreover, this is not
appropriate to many settings, including sensor networks or swarms of robots, in which the
memory of each process must be kept as small as possible, ideally constant.

Token Circulation, also referred to as token passing, is a fundamental problem to guarantee
that a single token circulates from one node to another, and the token fairly visits every node
infinitely often. The most popular way to implement such a mechanism in an arbitrary topology
deterministically is the Depth-First Token Circulation (DFTC, for short). Briefly, this well-
known mechanism takes place by executing successive traversals, each of them initiated by a
specific node, called the root. In each traversal, the token is passed among the nodes following
a depth-first order. A traversal ends when the root holds the token again after every node
has been visited by the token at least once. The overall DFTC mechanism is implemented by
restarting traversals one after another by the root. By construction, the DFTC mechanism is
fair, since the unvisited nodes become visited only once during each traversal cycle.

We are interested in self-stabilizing [12] token circulation in distributed systems. A self-
stabilizing algorithm must return the system to a correct behavior in finite time, whatever
its initial configuration. In the context of token circulation, typical examples of initial ar-
bitrary system configurations are scenarios in which either no token or several tokens exist
in the network. To satisfy the requirement of self-stabilization, a distributed token circula-
tion algorithm must return in finite time the system in a configuration which contains exactly
one token. Actually, it must do more than that: the algorithm must also guarantee that,
eventually, this single token fairly circulates among the nodes. Following the seminal work of
Dijkstra [12], token circulation has been widely investigated deterministically in the context
of self-stabilization, on rings [8, 16], on (spanning) tree networks [7, 15, 20], and on arbitrary
shaped networks [17, 13, 18, 11, 9, 20, 10], to quote only a few.

All the above algorithms were written in the well known (atomic-)state model [12], in the
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sequel denoted S, a high-level model where communication between nodes is abstracted by
the ability for a node to atomically read the content of its neighbor registers, and update its
own registers. More precisely, all of them were written assuming the ability for each node to
locally select at least one of its neighbors: the one to which to pass the token. Such ability is
commonly made with variables called pointers that maps N(v), the set of neighbors of v. Given
two neighbors u and v, by reading pv, one of v’s pointers, u is able to know whether pv maps the
edge vu, i.e., the link leading to itself or not. Pointers are typically implemented in two ways:
(i) the nodes use their identifiers, i.e., in the example, pv = u’s ID, (ii) the model assumes port
labels that maps N(v), the set of neighbors of v. So, if pointers are implemented with node IDs,
then they require Ω(log n) bits of memory. If pointers are implemented with port labels, then
they need Ω(log∆) bits (∆ refers to the maximum degree of the network), but nodes must be
able to recognize which of its neighbor port labels links it back to itself. Note that the use of
pointers is particularly helpful for the problem of Token Circulation, where sending the token
to exactly one neighbor is crucial to maintain the unicity of the token.

In this paper, we assume a model where no node is able to locally select one of its neighbors,
except by its identifier. In S, this assumption makes the design of algorithms much more
challenging, which often require the use of node identifiers or the construction of an underlying
vertex coloring. Token circulation algorithms for S are proposed in [2, 1, 4]. All these algorithms
work over tree topologies and use Θ(log n) bits of memory per node.

Aside from focusing on the algorithmic aspects of the self-stabilizing DFTC problem in
S, we also aim to reduce the memory required to solve this problem. Note that memory
optimization for the self-stabilizing token circulation has been widely addressed in the literature.
As mentioned earlier, all of them assume pointers implemented over local ports and achieving
O(log∆) bits of memory per node, namely [12, 8, 16, 7, 15] on rings or chains, [20] on trees,
and [11] on arbitrary networks. Except [8] which assumes a uniform prime size ring, all the
above algorithms require a root, i.e., a node with a particular local algorithm with respect to
the other nodes.

In S, it has been shown that many standard “one-shot” tasks like leader election and span-
ning tree construction can be constructed in a self-stabilizing manner with memory O(log log n+
log∆) bits in any n-node network with maximum degree ∆ [5, 6]. This indicates that some
tasks can be achieved in S with only sublogarithmic memory. As suggested by the results es-
tablished in [3], it is much harder to reach o(log log n) memory. No previous work addresses the
self-stabilizing DFTC in S without pointers.

1.1 Contributions

We present the first deterministic self-stabilizing depth-first token circulation algorithm in S that
uses only O(log log n) bits of memory per node. This is an exponential improvement compared
to the classical addressing. Our algorithm does not use any pointer variable. However, like
many works in the fields of self-stabilization and networks, our algorithm assumes a specific
underlying spanning distributed structure called Destination-Oriented Directed Acyclic Graph,
DODAG for short [19]. DODAGs are bi-directional spanning data structure in which each
edge is given an orientation, so that the resulting graph contains no loop, and has exactly one
root: a node with only incoming edges from its neighbors. Less popular than other spanning
data structures like virtual rings or spanning trees, DODAGs are nonetheless more general and
adaptable than trees, since they do not need to distinguish one neighboring node as unique
parent. Furthermore, they are particularly desirable in wireless networks because they allow
multiple communication paths from every node to one single sink, thus limiting congestion and
supporting link failures, as opposed to rooted spanning trees. As a matter of fact, DODAGs
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are the basic structures used in practice by RPL (Routing Protocol for Low power and lossy
networks [22]), which is the standard routing protocol for IPv6-based multi-hop wireless sensor
networks [21]. By contrast with rooted spanning trees, DODAGs allow the nodes to have more
than one single parent, which drastically increases the difficulty to implement the DFTC.

Another quality of our algorithm is that is works under the unfair scheduler, the most
powerful distributed scheduler. Roughly speaking, a scheduler is considered as an adversary
which tries to prevent the protocol to behave as expected. The more powerful the scheduler is,
the more it can prevent the algorithm to work correctly. The nuisance power of the scheduler
is modeled by the notion of fairness. The scheduler is considered to be fair if it cannot prevent
forever a node to execute an action (if it has one to execute). By contrast, the unfair scheduler
can prevent forever a node to execute an action, unless if it is the only node able to execute an
action.

Finally, we show that our algorithm is optimal in terms of space complexity. Meaning
that, for every n-node network, no token passing algorithm can use less than Ω(log log n) bits
of memory per node, even given a rooted spanning tree and even without considering self-
stabilization.

1.2 Outline of the paper.

In Section 2, we describe the distributed systems and the model in which our self-stabilizing
DFTC algorithm is written. Section 3 describes our algorithm. Due to the lack of space, the
details of the correctness of our algorithm and the proof of space optimality are postponed in
the appendix. However, both are sketched in Section 4. Finally, we make concluding remarks
in Section 5.

2 Model and definitions

2.1 Algorithm syntax and semantics

A distributed system is formalized by a n-nodes graph. When two nodes u and v are able
to communicate with each other, this bi-directional communication is represented by an edge
between u and v. The nodes u and v are said to be neighbors. A distributed system is semi-
uniform if only one node is designated to have a particular role, in this paper we call this node
root. In a distributed system, all the nodes have the same code, in semi-uniform system the
root can have a different code. Let us formalise the semi-uniform distributed system, by an
n-node graph G = (V,E, r), where V is the set of nodes, E is the set of edges, and r is the root.
We consider an id-based system, where every node has a distinct identifier. Note that, like in a
classical distributed system, the identifiers are not consecutive between 1 and n, but are taken
in [1, nc] where c > 1 is a constant. A system is said anonymous if nodes do not have identifiers.

Space-complexity in self-stabilization considers only mutable memory, the memory whose
content changes during the execution of the algorithm. Mutable memory includes the space
allocated for algorithm variables. On the other hand, the content of the non-mutable memory
does not change during the execution. It typically stores the code, the constants (including
the port label set, if any), and the node identifier. Therefore, IDs size is not a part of the
space-complexity.

Each node contains variables and rules. Variable ranges over a domain of values. The
variable varv denotes the variable var located at node v. A rule is of the form [12]:

⟨label⟩ : ⟨guard⟩ −→ ⟨command⟩
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A guard is a boolean predicate over node variables. A command is a set of variable-assignments.
A command of a node u can only update its own variables. On the other hand, u can read the
variables of its neighbors. This classical communication model is called the state model.

An assignment of values to all variables in the system is called a configuration. Let Γ be
the set of system configurations. A rule whose guard is true on one node u in some system
configuration γ ∈ Γ is said to be enabled on u in γ. Similarly, u is said to be enabled in γ. The
atomic execution of a subset of enabled rules (at most one rule per node) results in a transition
of the system from one configuration to another. This transition is called a step. A run of a
distributed system is a maximal alternating sequence of configurations and steps. Maximality
means that the execution is either infinite or its final configuration has no rule enabled.

2.2 Schedulers

The asynchronism of the system is modeled by an adversary (a.k.a. scheduler) which chooses,
at each step, the subset of enabled nodes that are allowed to execute one of their rules during
this step. Those schedulers can be classified according to their characteristics (like fairness,
distribution, ...), and a taxonomy was presented in [14]. In this paper, we assume an unfair
asynchronous scheduler. Unfairness means that even if a node u is continuously enabled, then u
may never be chosen by the scheduler, unless u is the only enabled node. Asynchronous implies
that during a computation step, if one or more nodes are enabled, then the scheduler chooses
at least one (possibly more) of these enabled nodes to execute an action. This scheduler is the
most challenging since no assumption is made on the subset of enabled nodes chosen by the
scheduler at each step.

2.3 Self-Stabilization

A predicate is a boolean function over the set of configuration Γ. A configuration γ ∈ Γ satisfies
some predicate R, if R evaluates to true for γ. Otherwise, γ violates R. We define a special
predicate true as follows: for any γ ∈ Γ, γ satisfies true. We use the terms closure and attractor
in the definition of stabilization. Given a predicate R, provided that the system starts from a
configuration in Γ satisfying R, R is said to be closed for a certain run r, if every configuration
of that run satisfies R. Given two predicates R1 and R2 over Γ, R2 is an attractor for R1 if every
run that starts from a configuration that satisfies R1 contains a configuration that satisfies R2.

The specification SPP of a problem P is a predicate over runs of the system, which describes
a specific behavior of the system. A distributed algorithm A solves a problem P under a certain
scheduler if every execution of A under that scheduler satisfies the specification of P .

Definition 1 (Self-stabilization)

A distributed algorithm A is self-stabilizing for a specification SPP if there exists a predicate
R for P such that:

• (Convergence) R is an attractor for true,

• (Closure) Any run of A starting from a configuration satisfying R satisfies R.

2.4 DODAGs

We assume that each edge {u, v} ∈ E is a bidirectional communication link provided with
an orientation, from u to v, or from v to u, so that the resulting directed graph forms a
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Destination-Oriented Directed Acyclic Graph [19] (DODAG), i.e., a Directed Acyclic Graph
(DAG) with a unique root (see Fig. 1). Such orientation assumption is similar the one that

R

A B C

D E F

Figure 1: A
DODAG.

assumes a consistent global orientation of a (virtual) ring—each node lo-
cally knows how to distinguish between its right and its left neighbor—, or
of a spanning tree—each node knows locally how to distinguish between
neighbors that do and do not belong to the spanning tree, and among those
that do belong to the tree, between its descendants and a single parent.

Consider an oriented edge from node u to node v of the DODAG, we
said v is the parent of u and u is the child of v. Thus each node v has
two sets of neighbors, the set of parents and the set of children. Note
that unlike in tree topologies a node can have several parents—refer to
Appendix A, Subsection A.1 for the formal definitions.

2.5 Bit-by-Bit Communication of Identifier

In S, nodes cannot communicate information to one single neighbor without using the fact that
identifiers are, at least locally, unique (this is formally proven in Section C.4). In other words,
nodes must communicate their identifier stored in the immutable memory to their neighbors to
address information to a unique neighbor. The size of an identifier is Θ(log n) bits, while we
aim at designing a sub-logarithmic algorithm. To reach a Θ(log log n) memory, [5] make the
nodes communicate their identifier by smaller pieces, more precisely bit by bit. They define a
function called Bitv(i), which returns the position of the ith most significant bit equal to 1 in
idv. In this paper, to achieve Θ(log log n) bits of memory per node, we use a similar Bitv(i)
function as [5] (Appendix A.2).

3 Algorithm

Our token circulation algorithm is based on a perpetual Depth-First traversal from the root r
to the other nodes of the network. The classical DFS algorithm can be summarized as follows:
first r has the token, then, the token is given to one unvisited neighbor v of r, which becomes r’s
child and r becomes v’s parent. Node v then sends the token to one of its unvisited neighbors,
and the token keeps being given from node to node until it reaches a node w such that w has no
unvisited neighbors. At this point, node w sends the token back to its parent, which resumes the
process of selecting unvisited neighbors. This traversal continues until all nodes in the network
have been visited and the token is returned to the root node r. We focus on DODAGs, so a
node v with the token selects the next node in the DODAG traversal among its children, rather
than among all of its neighbors. From a local point of view, the tasks for a node v are as follows:
receive the token from a node p, check whether it has any unvisited children, and if so, pass the
token to one of them; if not, send the token back to its parent p.

So the self-stabilizing implementation of the DFS token circulation relies on several key
concepts, including the presence or absence of the token, the identification of unvisited and
visited neighbors, the selection of an unvisited neighbors, and the recording of the neighbor
from which the token was received (i.e., the parent).

In order to prevent token loss or duplication, the circulation of unique token cannot occur
in a single step and requires acknowledgment messages. A node v must inform node u that it
is sending the token, and once u has confirmed receipt, v must delete the token. If v sends the
token but does not verify that u has received it, the token may be lost. If u receives the token
but does not verify that v has deleted the token, the token may be duplicated.
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In this work, we consider the problem of token circulation in networks with sub-logarithmic
memory available in each node. Storing identifiers in variables is not feasible, as a result,
selecting the next unvisited child to receive the token becomes a non-trivial task that cannot
be achieved in a single step. To address this, we propose a negotiation step where the node
with the token interacts with its unvisited children. During this step, each child announces
its identifier piece by piece, and the child with the largest identifier wins the negotiation. We
also account for unvisited children who did not win the negotiation by proposing a mechanism
to ensure that they will be visited later. Self-stabilizing algorithms must be able to detect
and correct inconsistencies locally caused by transient faults. One fundamental idea in the
design of our algorithm is to minimize the frequency of node repairs. Firstly, the algorithm is
already highly complex due to the numerous tasks that nodes must execute to achieve fair token
circulation. Introducing additional rules to repair inconsistent situations would complicate both
the algorithm and its proof. Secondly, in most cases, it is unnecessary to repair nodes as the
token will eventually circulate in the network if the algorithm is resilient enough. The presence
of the token and the rules for fair executions will allow the network to stabilize. However, there
are some exceptions, i.e., repairing rules that are necessary for convergence.

To summarize our approach, let us introduce an informal algorithm (see Figure 2) that
describes the steps of the algorithm for a node v.

Algorithm 1: Local DFS(v)

if The token is present and some inconsistency is detected then
Release the token and consider that the token is in one of your descendants

else
if Received token from the parent then

- Switch as a visited node;
- Wait for parent to release the token;

if Received token from a visited child then
Wait for child to release the token;

if v has the token and nobody in its neighborhood has a token then
if ∃ unvisited children then

while ∃ more than one unvisited child which are candidates to receive the token do
- Ask all the candidates unvisited children for a piece of their IDs;
- Publish the strongest piece;
- Wait for all the candidates which do not have the strongest piece to declare
themselves losers;

- Send the token to the winner;
- Wait for the winner to receive the token;
- Ask the losing unvisited children to be ready for the next negotiation;
- Wait for the update of the unvisited children;
- Release the token;

else
- Send the token to the parent;
- Wait for the parent to receive the token;
- Release the token;

Figure 2: Local algorithm for a node v of DFS Token circulation

3.1 Variables

Before presenting the rules of our algorithm, let us first introduce the four variables it uses.
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Visited and Unvisited Children. Nodes have to remember which of their children have
already been visited in order to either send the token to unvisited children or to send it back
to a parent. Classically, we implement this with a boolean variable color :

cv ∈ {red, green}

Visited nodes are nodes that have the same color as the root. Nodes change from the state
“unvisited” to “visited” (during a traversal initiated by the root) by changing their color upon
receipt of the token, detailed bellow. The choice of the next child to be visited is based on the
identifier of the unvisited children of the token holder: the chosen child is the one with highest
identifier. As a consequence, the circulation of the token always follows the same traversal path,
depending on the relative order of the identifiers in the DODAG. Let us consider a node v with
the token, and choose one of its unvisited neighbors u and sends the token to it, and so on to a
node w surrounded by visited nodes. The node w sends the token back to its parent wp which
sends it to one of its unvisited children. The process is repeated until all nodes are visited,
and the token returns to the node r. By construction the DFS token circulation is fair, since
the unvisited nodes become visited exactly once. When the root r has no unvisited children,
r switches its color to the other value (from red to green for example). Immediately, all the
visited nodes become unvisited, for they now have the opposite color of r. This guarantees that
this fair token circulation is perpetual. Only one operation, denoted by cv := ¬cv, is used in
this variable, which is switching its value from red to green and vice versa.

State of the Token. To achieve atomicity of the operations required to maintain the network
in a consistent state, we need to define a variable which takes eight different values.

tokv ∈ {⊥,⋆, •,⇊,⟲, ↓, ◦, ↑}

Let us give some explanations on those different values. The state tokv = ⊥ corresponds to
nodes that are away from the current token circulation. For example, when the root has the
token, all the other nodes are such that tokv = ⊥. Reciprocally ⊥ is a value that cannot be
taken by the root, which would mean that no token is circulating in the network.

When a node that is not involved in the current token circulation receives the token from
its parent, it simultaneously switches it color, and switches its token value to tokv = ⋆. This
value corresponds to the moment when a node receives the token from its parent, which
is supposed to happen exactly once in each circulation round.

When the parent of v has finally left the token (recall that such operations are not atomic),
v can start negotiating with its children to decide to which one it will send the token. To do
that, it sets tokv = •, and keep that state until one winner is elected.

Once a winner u is elected i.e. when all nodes of a different color than v have declared
themselves losers, u excepted, v updates tokv =⇊ to offer the token to one of its children.
After that, the child u that won the negotiation can update its own variable toku to ⋆.

After its child u took the token, v updates its variable to tokv =⟲, to let its children which
lost the negotiation reset their variable in order to be ready for the next negotiation, when
v will receive back the token from u.

When all the children of v have finished resetting their variable, v sets tokv =↓, which
indicates that it is a node involved in a token circulation, but that the token it had is below
it, to one of its descendants. After u has finished the token circulation below it, it sets toku =↑,
to send the token back to v. If nothing wrong happened, v has only one child with a value
tok ̸= ⊥ at that moment, and therefore can take the token. To do so, it updates tokv = ◦, and
then waits for u to effectively drop the token, by setting toku = ⊥.
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Figure 3: Transition diagram for variable tokv.

After that, v restarts a negotiation, setting tokv = •. After some time, v has no more
children of a different color. When this happens, v offers the token to its parent w by
setting tokv =↑. Before effectively dropping the token, v waits that w acknowledges the token
by updating its variable to tokw = ◦, but it also waits for all of its children to update their
variable linked to the negotiation.

Indeed, in the current situation, all the children of v have successively won the token. As
explained above, those nodes are prevented from taking one token of another color, to avoid
livelocks. But now, the circulation of the token of v is terminated, so this becomes irrelevant.
Worse, if nodes do not reset their variable to a value that allows them to negotiate, then they
will all be ignored when a token from another color will come the next round. When all the
children of v have reset their variable, v finally drops the token, and sets tokv = ⊥.

Remark that for a node v with tokv /∈ {⊥, ↓}, there is a strong pressure on the possible
values of toku, where u us a child of v, and most combinations are actually not supposed to
occur in an execution. To summarize the Figure 3 represents the order between the different
states taken by the variable tok.

Negotiation Variables: Bit-by-Bit Communication. To determine which of its children
will receive the token, the parent progressively eliminates them, until only one remains. When
it has exactly one child running for the token, it can finally declare that it gives the token. All
the children that were eliminated ignore that message, and the one winner can take the token
from its parent, and therefore no duplication of the token can occur.

The elimination process relies on the identifiers of the children, and on one additional variable
which allows unvisited nodes to declare themselves as negotiating, or as losers of the negotiation.
Step by step, the parent asks for the value of the i-th bit of the identifier of its children, and when
all have answered, it reveals the biggest value it sees. All the nodes that have not announced this
value consider themselves as eliminated until their parent allows them to negotiate again. This
moment, when the parent allows its children who lost the election to negotiate again happens
immediately after the winner of the election takes the token.

To negotiate for the token, nodes send bit-by-bit the value of their identifier to their parent.
Two variables are required for that. The first one, ph, is used to communicate the position of
the bit that is currently asked. It takes values between 1 and N , where N is the largest length
of an identifier in the network, and thus N ∈ O(log n). The second variable is b, and is used to
communicate the value of the bit that each child has, and for the parent to communicate the
highest value it has seen. The variable bv is used to communicate the values given by function
Bitv. It takes values in {0, 1,⊥}, where ⊥ is the value that corresponds, for children, to the
absence of a bit at that position (the identifier is too short), and, for the parent, to the request
of the value of the bit. For simplicity, we denote the tuple (phv, bv) by the notation idv.
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Figure 4: Process of the designation of one child to give the token to. The parent reveals the
biggest bit announced, then the children with small identifiers quit the negotiation, and in the
end the winner takes the token and the losers are ready to negotiate again.

The general scheme is the following: first the parent sets idv = (1,⊥). Then all the children
answer with the value of their first bit, by setting idu = (1, Bitu(1)). After all the children have
answered, v sets idv = (1, b) where b is 1 if v saw a 1 in its children, and 0 otherwise. Then,
all the children that do not have answered (1, b) lose the negotiation. After all losers have left
the negotiation, v sets idv = (2,⊥), and so on until only one node remains.

Negotiation Variables: State in the Negotiation Process. In addition to the identifier
variables ph and b, we need a variable to remember where each node is in the negotiation
process. This variable is denoted by play and takes four values:

playv ∈ {P, L, W, F}

Nodes v such that playv = P are the nodes that are available for a negotiation process with
any of their parent that has a different color. They are the only nodes which can participate
to a negotiation, the others have either already won, or lost. Note that P also stands for players.

When a node v loses the negotiation, it sets playv = L, and thus becomes a loser, and is
not involved in the current negotiation process anymore.

When a node v wins the negotiation and receives the token, it updates its color, its variable
tokv, and it also updates playv to W, to signify that it won a negotiation. After that, and until
its parent sends the token back to its own parent, v won’t negotiate with any of its parents. This
guarantees that whatever the initial configuration of the system, v will not create oscillations
between two tokens, and therefore no livelock.

However, the color is not sufficient to prevent livelocks or deadlocks caused by multiple
circulating tokens. Indeed, even assuming only two tokens, one can design pathological con-
figurations, and especially if the two tokens are of different colors. What we must absolutely
prevent is situations in which one node alternatively takes a red token from one parent, sends
it back later, then switches color and takes the green token from its other parent, sends it back,
and then takes the red one again, and so on. With two such children, we can design scenarios
where the tokens are in a livelock, and the circulation is blocked.

Note that nodes can neither simply ignore the token, for it would create a deadlock: both
token would be blocked. To avoid such situations, we force a node that has received the token
from one of its parents to not being available for a new token until this parent has sent the token
back to its own parent. This requires being more subtle in how we define the election-related
variables on the children.

As a consequence, we need the fourth value F to overcome a tricky situation. Recall that
when a node u sends back the token to its parent w, it first waits for its children who won the
negotiation (i.e. such that playv = W) to reset their variable playv to P, so that they will be
able to negotiate during the next circulation round. But in triangle configurations, it might be
that one such node v with playv = W has a common ancestor, with its parent u, as depicted in
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Figure 5. In such a situation, v should not update playv = P. Indeed if it does, then from w’s
perspective, it is exactly as if we never introduced the value W: it has one child who won the
token and is at P. In particular, we can now create a livelock at the level of w.

But v can neither keep its value at W. That would create a deadlock with its parent u.
Therefore, v fakes resetting its variable playv, by setting it to F, which is understood by its
parent with toku =↑ as a P value, but both v and its grandparent w do recall that v has already
had the token. This requires that as soon as possible, node v update its variable playv = W,
otherwise it could miss the opportunity to eventually reset its variable at P, notably if w sets
tokw =↑.

↓, W

↑, W

⊥, W⊥, W

w

u

v

◦, W

↑, W

⊥, F⊥, P

w

u

v

◦, W

⊥, W

⊥, F⊥, P

w

u

v

•, W

⊥, W

⊥, F⊥, P

w

u

v

Figure 5: Cleaning children before sending up the token in a triangle: playv = F.

Although the alternating between two colors and the state playv = W share the common
goal, which is to prevent a node to have several times the token, they are relevant in totally
different situations. The alternation between two colors is built to prevent a node from receiving
twice the same token, from parents that might be totally unrelated in the DODAG. On the other
hand, the value W prevents a node from oscillating between two colors, from two different parents,
which would block the circulation of the token.

3.2 Rules of our algorithm

Due to the lack of space, the formal descriptions and subtleties of the rules of our algorithm are
reported in Appendix B. Figure 6 presents how the different rules follow each other during the
execution of the algorithm, one rule, specific to the root is not presented ni this section. For
the sake of readability, we have grouped the rules according to the task to which they relate:
error handling, negotiation to choose the unvisited child, returning the token back to the parent,
sending the token to a child.

Error. As hinted above, some combinations of the variable tok should not occur on a node
and its children. To repair such errors, the principle is that the parent trusts its child, in the
sense that if both v and u believe they have a token, then v forgets its token, and repairs itself
by setting tokv =↓, acknowledging the fact that there is a token below it. The illegal pairs
are detected by the predicate Er(v) and the correctness of the state of the token of node v is
handled by Rule ETrustChild. All the other rules of the algorithm suppose that node v is not in
such an error. For homogeneity and readability, we constrained the other rules with ¬Er(v).

Negotiation. In a negotiation, two types of nodes are involved, the parent v which owns the
token, and the unvisited children involved in the negotiation (we call these children “players”
formally defined by the set Players(v)).

Before describing the negotiation itself, let’s explain how the nodes involved in the negotia-
tion can leave it. The parent can leave the negotiation phase in two ways. The first is captured
by Rule ROfferUp, when the parent observes that the set of players(v) is empty, which means
that it has finished circulating below itself. As a consequence, v returns the token to its own
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parent (tokv =↑). The second possibility happens when node v has exactly one child u in
Players(v), after verifying some tricky problems (see Appendix B), v can send the token to u,
to achieve that, v puts tokv :=⇊, thanks to Rule RGive. The first action that v takes, after u
has actually received the token, is switching its variable tok to ⟲ to inform its other unvisited
children who lost the negotiation (aka the losers) that the negotiation phase is terminated, this
is made by Rule RNewPlay. So the losers can change theirs variables playw = P and become
players again when v will receive the token back (see Rule RReplayD). Let us now consider the
children u ∈ Players(v), u quits the negotiation if it quits Players(v). The node u can do
this in three ways, u detects an inconsistent behavior in his neighborhood (see Rule RFakeWin),
u wins negotiation (see Rule RWin), u loses in the negotiation (see Rule RLose).

Now let us focus on the negotiation itself. When a node v has finished receiving the token
(i.e., the parent of v has released the token tokp(v) =↓, Rule RDrop), it can begin the nego-
tiation (execution of Rule RNego). When all players have announced their binary value (see
Rule RNewBit), v announces the highest value (see Rule RmaxPos). After that, some players lose
the negotiation and others remain players. If there is only one player left, the negotiation is
over, otherwise v continues the negotiation (see Rule RNewPh).

Reception of the Token from a Child. Now consider the actions when a child u offers the
token to its parent v by setting toku =↑. The node v needs to be sure that it does not have
any other children involved in a token circulation. If it has, then taking the token would lead
to an inconsistent configuration, where one token is above an other one. Actually, u may have
several parents related to each other, and only the deepest should take the token. If v can take
the token, it executes the Rule RReceive signifying to u that it has taken the token. Thus, when
u is sure that v has taken the token, u can release the token and v can resume negotiating with
its remaining players (Rule RReNego).

End of the Circulation. After it has offered the token to its parent, a node v which is not
the root should eventually drop the token, and set tokv = ⊥ (Rule RReturn). Before that, it
must check that all its children have correctly updated their variable from W to P to assure that
when a token of the other color will come, all those nodes will be available for a negotiation
phase.

In a similar situation, where all of its children have repaired themselves, the root does not
drop the token, for it would simply destroy it. When the root is in such a situation, it means
that the current circulation round is terminated, and one other can start. To achieve that the
root changes its color, and thus if the circulation has already stabilized, the root has one color
and all the node have the other color (i.e. all the other nodes are unvisited).

Let us consider a node v having parents that are sending the token higher and no other
parent involved in a token circulation. If a node v is not ready to play again, then v cleans its
variable playv to be ready for the next circulation round (Rule RReplayUp).

If v has some parents sending the token higher, and other parents which do not have termi-
nated their token circulation, it must update its variable playv = F (Rule RFake).

Finally, we must design a rule to cancel the effect of updating one’s variable at F, to reset
it at W, without Rule RReWin, the token could not be sent higher.

To summarize. Figure 6 presents the scheme of an execution of our algorithm. It presents
the update of the variables of one node v by the different rules of our algorithm.
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Figure 6: Chain of the states taken by a node during the execution of the algorithm. The
update of cv is represented by color gray. Rules in blue corresponds to the negotiation. Rules
in red correspond to the sending of a token from a child to a parent. Rules in black correspond
to the sending of a token from a parent to a child.

4 Correctness

Due to the lack of space, the details of the correctness of our algorithm are postponed to
Appendix C, but let us draw here a roadmap of it. We prove that our algorithm is a self-
stabilizing algorithm for the token circulation problem, and we also prove that it is optimal in
terms of memory, i.e. that any algorithm solving T C in S requires Ω(log log n) bits per nodes,
even under less general hypothesis than ours.

This correctness is subdivided into four parts. First, we establish that maximal executions
of our algorithm are infinite (Appendix C.1). Formally, we prove that in any configuration,
there is at least one enabled node. This part of the proof is static, in the sense that we do not
need to consider an execution of the algorithm but only isolated configurations. It boils down
to a syntactical analysis of the guards of the rules of our algorithm (Algorithm 2), and to an
induction for one specific case.

Although the previous does not need to consider executions, the two following parts of the
proof are trickier. We aim at proving that eventually, one token fairly circulates in the network,
in a self-stabilizing way. Therefore, we have to consider configurations in which several token
exist in the network. To do so, we introduce a ad hoc structure which corresponds to the
paths from the root to the tokens in the network, which is a DODAG. More precisely, it is a
sub-DODAG of the DODAG representing the network. But there may exist some tokens that
are not connected to the root by an admissible path. For these tokens, we also define this
sub-DODAG structure, but we distinguish these tokens by saying that they are not pointed by
the root. All the reasoning of the two following parts rely on these sub-DODAGs structures.

Secondly, we establish at once two crucial properties for the validity of our algorithm (Ap-
pendix C.2). The first property is that if a token is not pointed by the root of the network, then
it can only circulate a finite number of times before being blocked, or deleted. This guarantees
that no scheduler, even unfair, can create an execution in which the token pointed by the root is
never activated. The second property is that even the token pointed by the root is restricted in
its circulation, in the sense that it can only circulate a finite number of times before it reaches
the root again, and the root ”resets” it by the execution of a rule specific to the root, Rr

NewDFS.
The combination of these two properties, and of the liveness established in Appendix C.1 leads
to the guarantee that there is an infinity of finite circulations in any maximal execution of our
algorithm. To prove both properties, we define a potential function, which associates a positive
value (a weight) to each token in any configuration. Then, we establish that any computing
step decreases the weight of the token, unless the token is reset by an execution of Rr

NewDFS. This
establishes that a token cannot circulate indefinitely, since any step it takes makes a positive
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quantity decrease, unless this token is anchored at the root and there are an infinity of new
circulations. Since we also prove that no token can be created, this guarantees that at some
point, although several tokens may exist, only one is activated, the one which is pointed by the
root.

Thirdly, we establish that our algorithm behaves correctly (Appendix C.3). By ”behaves
correctly” we mean that the token eventually fairly visit all the nodes of the network. To
establish that, we largely use the previous results. In particular, we start the reasoning at a
moment where the algorithm has already partly converged, in the sense that all the tokens
except the one pointed by the root are not activated anymore. Then, we first establish some
additional stability properties on the underlying structure of the DODAG which corresponds
to the path from the root to the token. Then, after having properly defined what ”to have the
token” is, we establish that if one node receives the token from one of its parent, then all of
its children that are able to receive the token will actually receive it at some point. On the
other hand, we prove that if some children of one such node cannot receive the token, then
after one or two additional circulations of the token, then these children will be able to receive
it, and by the previous, will receive it. Therefore, circulation after circulation, the token visits
nodes in deeper and deeper parts of the network. By induction, we finally prove that the token
eventually fairly visits all the nodes of the network, indefinitely. In particular, this guarantees
that all the other token were reached by the token pointed by the root, and merged with it.

Joined, these three first parts of the proof establish that our algorithm is a self-stabilizing
algorithm for the fair token circulation in arbitrary DODAGs.

Finally, we extend the results of [3] to prove that the space complexity of our algorithm
is optimal (see Appendix C.4). More precisely, we prove that no algorithm can solve the
fair token circulation problem using o(log log n) bits of memory per node, even under least
challenging hypothesis than ours. We prove that even under a central strongly fair scheduler,
or a synchronous scheduler, on a tree topology, and without the requirement of being self-
stabilizing, no algorithm can solve the fair token circulation problem in anonymous network.
The result established in [3] concludes to the space optimality of our algorithm.

5 Conclusion

In this paper, we have presented a memory-optimal self-stabilizing algorithm for the fair token
circulation in arbitrary DODAGs under the unfair scheduler. Our algorithm works in the
state model where no information is given on the neighbors, and requires only Θ(log log n) bits
per node. To our knowledge, this is the first self-stabilizing algorithm achieving this space
complexity in this model for graphs of arbitrary degree.

Of course, the construction of a DODAGs with the same space complexity remains an
open question. Beyond the issue of DODAGs, our algorithm is providing hope that it might
be possible to design self-stabilizing token circulation algorithms for arbitrary networks with
space-complexity O(log log n) bits per node. The design of such algorithms requires to overcome
at least two problems: the presence of more than one root, and the symmetry caused by the
presence of cycles. The presence of multiple roots is an issue which may not be too dramatic,
as it may be possible to let several tokens circulate, one per root, and to remove the tokens
one by one until a single token remains. The symmetries caused by the presence of cycles
appear to cause severe difficulties, and our current knowledge is insufficient to guarantee that
a space-complexity of O(log log n) bits per node can be achieved under such symmetries.

Such an algorithm with space-complexity Θ(log log n) bits per node, solving token circulation
on arbitrary graphs would be a valuable toolbox which could be used to solve other problems,
such as leader election, spanning tree construction, etc.
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[5] Lélia Blin and Sébastien Tixeuil. Compact deterministic self-stabilizing leader election on a
ring: the exponential advantage of being talkative. Distributed Computing, 31(2):139–166,
2018. doi:10.1007/s00446-017-0294-2.
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[9] Alain Cournier, Stéphane Devismes, Franck Petit, and Vincent Villain. Snap-stabilizing
depth-first search on arbitrary networks. The Computer Journal, 49(3):268–280, 2006.
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A Appendix on Model and formalisations

A.1 DODAG formalisation

Let us be more formal:

Definition 2 (Destination-Oriented Directed Acyclic Graph, DODAG)

A DODAG is a tuple D = (G,→) where G = (V,E) is a graph and → is a relation between
the nodes of G which:

• covers the edges of G: (u → v ∨ v → u) ⇐⇒ {u, v} ∈ E,

• is acyclic: there does not exist any path from one node v to itself w.r.t. →, and

• is rooted: there exists one node r ∈ V such that ∀v ∈ V, v →∗ r.

The nodes of D are V , and the edges of D are →.
By the acyclic property, such a node r is unique, and is called the root of D. Also by

the acyclic property, for any edge {u, v} ∈ E, we have either u → v or v → u but not both.

In practice, the relation → is implemented at the layer of the local port numbers of the
nodes. A DODAG is a graph in which the port numbers can be split into two disjoint sets
port+ and port−, and the relation → is defined by u → v ⇐⇒ portu(v) ∈ port+.

In the latter, we often need to consider, on one node v, the set of its neighbors that precedes
it, and the set of neighbors that it precedes. We call those sets the parents and the children of
the node, by analogy with the lexical field relative to trees.

Note that contrary to what is possible in trees, nodes may have several parents in DODAGs.

Definition 3 (Parental Relationships in a DODAG)

Let D = (G,→) be a DODAG.
We call parents of v in D the set P(v) = {u ∈ Nv : v → u}.
We call children of v in D the set C(v) = {u ∈ Nv : u → v}.

Remark 1

The information of the set of the parents of each node is equivalent to the information of
the relation →. In practice, we define a DODAG by the parental relationship it induces
more than by expliciting the relation →.

It will be useful in the latter to reason on sub-structures of the DODAG in which our
algorithm is executed. In most cases, the sub-structures considered also have the desirable
property of being DODAGs. A sub-DODAG of D is any DODAG whose nodes and edges are
a subset of those of D.

Definition 4 (Sub-DODAG of G, Anchor)

A tuple D′ = (G′,→′) is a sub-DODAG of D = (G,→) if

• D′ is a substructure of D: (V ′ ⊆ V ) ∧ (→′⊆→) ∧ (→′⊆ V ′ × V ′).

• D′ is a DODAG

Remark that the root of D′ may not be the same than the root of D. To avoid being
misleading, we call the root of a sub-DODAG an anchor.
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Remark 2

Following what was stated in Remark 1, we will not use relation →′ to define sub-DODAGs
in practice, and rather use the underlying set of parents and children, PD′ and CD′ .

One typical example of sub-DODAG is the restriction of the DODAG to the nodes which
can reach one particular node (other than the root) in (G,→).

Definition 5 (Ga DODAG under a)

Let (G,→) be a DODAG, and let a ∈ V .
We denote by Va the nodes that can reach a by →: Va = {v ∈ V : v →∗ a}. We

denote by Ea and →a the restrictions of E and → to nodes of Va: Ea = E ∩ P2(Va) and
→a=→ ∩(Va × Va).

We denote by (Ga,→a), or simply Ga, and call the DODAG under a, the sub-DODAG
((Va, Ea),→a).

a

Figure 7: Example of a DODAG under the anchor a in blue, and of a sub-DODAG of G in red

Although DODAGs are the structure in which our algorithm and our proofs are established,
it is often simpler to reason on linear structures than on DODAGs. In the latter, we will consider
branches of DODAGs, which are descending paths from one node to one of its descendants.

Definition 6 (Branch of a DODAG)

We call branch of a DODAG D = (G,→) a path of nodes in D (which is a path of nodes
in G w.r.t. →). For the sake of readability, we denote branches by starting at the highest
node. For example, if w → v → u is a path in D, then we say that uvw is a branch of D.

We denote branches by the letter B.
A branch B = v0v1 . . . vk of a DODAG D is maximal if v0 is the root (or the anchor) of

D, and if vk does not have any children in D.

Given a sub-DODAG of D, it will be interesting to consider the longest branches it shares
with D. These longest branches are called projections of the sub-DODAG on branches.

Definition 7 (Projection of a sub-DODAG on a Branch)

Let us consider a DODAGD, and a sub-DODAG ofD with anchor a,Da. Let B = v1v2 . . . vk
be a maximal branch of Ga, the DODAG under a. In particular, v1 = a.

18



We denote Da(B), and call the projection of Da on B the longest branch of Da that
coincides with B:

Da(B) = v1v2 · · · vj where ∀i < j, vi+1 ∈ CDa(vi) and vj+1 /∈ CDa(vj) (recall that v ∈
CDa(u) ⇐⇒ v →Da′ u).

Remark 3 (DODAG ≡ Do)

In the latter, we consider different types of DODAGs, depending on their purpose. For the
sake of readability, we will use Do as an alias for the classical notion of DODAG, and CDo,
WDo, FDo as aliases for particular types of DODAG.

A.2 Bit-by-Bit Communication of Identifier

We use a similar technique as [5], but for the sake of simplicity, we slightly modified this
function for this work, and send the identifier bit-by-bit, which does not change the asymptotic
complexity. Essentially, nodes do not communicate their entire identifier at once, but when
asked for, they send to their neighbors the value of their i-th bit (which is 0 or 1). Although
the value of the bit is 1-bit long, we must take into account the fact that the position of the bit
which is asked, i, is now part of the message.

This position variable i takes value between 1 and the maximal length of an identifier, which
is in Θ(log n). Therefore, it is encoded on Θ(log log n) bits. To simplify, we suppose that all
nodes are given a local function Bit that associates to each position, the value of the bit at
this position in their identifier. If the position asked is bigger than the length of their identifier,
then the function simply returns ⊥. Suppose for example that node v has identifier idv = 1011.
Then we define the function Bitv by:

Bitv(i) :=


1 if i=1
0 if i=2
1 if i=3
1 if i=4
⊥ if i > 4

Nodes keep storing their own identifier in their immutable memory, but what is commu-
nicated to the neighbors through the immutable memory is the tuple (i, bit), which requires
Θ(log log n) bits. Remark that since the identifiers are globally unique, the different functions
Bit are also globally unique, although they can coincide for some values of i.

A.3 Well-Founded Sets

Recall that an ordered set (M,⪯) is well-founded if there does not exist infinite sequence of
elements of M , v0v1 . . . such that ∀i ∈ N, vi+1 ≺ vi. Such relations are very desirable to
prove termination of algorithms, or their convergence. In the latter, we consider an arbitrary
well-founded set (M,⪯).

Given (M,⪯), we can define an order on tuples of elements of M , which is itself well-founded
when restricted to sequences of length at most k, for any k.

Definition 8 (Lexicographic Order)

For any k ≥ 1 we define the lexicographic order on Mk induced by ⪯, and denote ⪯k
lex, by:

(u1, . . . , uk) ≺k
lex (v1, . . . , vk) ⇐⇒ ∃i ∈ [1, k] :

{
(u1, . . . , ui−1) = (v1, . . . , vi−1)
ui ≺ vi
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In our proof, we are sometimes led to compare sequence of elements ofM which have variable
length. We extend the definition of lexicographic order to sequences of arbitrary length, which
corresponds to the alphabetical order. The resulting order is itself well-founded.

Definition 9 (Alphabetical Order)

The lexicographic order on (possibly empty) sequences of elements of M induced by ⪯, is
denoted ⪯α and defined by:

(u1, . . . , uk) ≺α (v1, . . . , vl) ⇐⇒


∃i ≤ min k, l : (u1, . . . ui) ≺i

lex (v1, . . . vi)
∨
k < l ∧ (u1, . . . , uk) = (v1, . . . , vk)

A.4 Token Circulation

In this article, we consider the problem of fair token circulation, which requires that one unique
token perpetually circulates through the network.

The part of the specification of the token circulation problem which corresponds to the
existence and unicity of the token is not complicated to state, and is basically what is made
in [3] when the authors give a specification for the leader election problem. It boils down to
defining a local predicate on nodes, which represents the fact that the token is held by that
node, and guaranteeing that the predicate is evaluated to true on exactly one node in each
configuration. This first predicate will be denoted by T , for token.

It is a bit harder to formally specify the fairness circulation property. For a token circulation
to be fair, one could expect that all nodes have the token at the same rate. But the more a
node has children, the more it will receive it back from its children before sending it to its
other children. We must be more specific on what fairness is. We define a more restrictive
local predicate, which represents the fact that the node has the token and is allowed to use it
to access the resource, the service. . . This second predicate will be denoted by R, for resource
access.

Now that we have this second predicate, we only have to guarantee that, between two
configurations in which one particular node has access to the resource, then all the other nodes
also have it, and exactly once. In practice, the node that we consider to delimit fairness is the
root. A sub-execution in which the root receives the token for access, then drops it, and then
receives it back for access, is called a round, or a circulation round.

Definition 10 (Round according to R)

Let R be a local predicate, and let ϵ = γ0 → γ1 → · · · be an execution.
A sub-execution ϵ′ = γi → · · · → γj of ϵ is a round according to R if:

• ¬Rγi−1(r)

• Rγj+1(r)

• ∃i ≤ k < j such that

– ∀t ∈ [i, k], Rγt(r)

– ∀t ∈ [k + 1, j],¬Rγt(r)

Note that by construction, circulation rounds perfectly follow each other in any execution.
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We say that a circulation round is fair if for any node v, there exists exactly one continuous
sequence of configurations in which v has access to the resource.

Definition 11 (Fair Round according to R)

Let ϵ = γ0 → γ1 → · · · be an execution, and let ϵ′ = γi → · · · → γj be a round according to
R.

ϵ′ is fair if for any v ∈ V , there exist i ≤ t1 < t2 ≤ j such that

• ∀t ∈ [t1, t2], R
γt(v)

• ∀t ∈ [i, j] \ [t1, t2],¬Rγt(v)

We can now formally define the specification of Fair Token Circulation:

Specification 1 (Token Circulation)

T C (Token Circulation) is defined by the existence of two local predicates T and R such
that ¬T ⇒ ¬R.

A configuration γ is correct if it contains one unique token

UT C(γ) ≡ ∃!v ∈ V : T γ(v)

An execution ϵ = γ0 → · · · is correct if

1. All its configurations are correct: ∀i ≥ 0, UT C(γi).

2. ϵ is infinite and can be divided into an infinite number of rounds according to R.

3. All of these rounds are fair

Definition 12 (Circulation Rounds)

In the context of Token Circulation, we call Circulation Round a round according to the
predicate R.

B Appendix on our Algorithm

B.1 Common Sets

To define the rules of our algorithm, some sets are especially useful. An important distinction
that nodes almost systematically do is the difference between their parents with the same color,
and their parents with the other color.

Peq(v) = {u ∈ P(v) | cu = cv} (1)

Pneq(v) = {u ∈ P(v) | cu ̸= cv} (2)

Similarly, nodes distinguish their children with the same color from their children with the
other color.

Ceq(v) = {u ∈ C(v) | cu = cv} (3)

Cneq(v) = {u ∈ C(v) | cu ̸= cv} (4)

One other central set for the negotiation is the set of the nodes with whom the parent
negotiates. The parent negotiates with its children that do not have the same color, and such
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that playu = P. A node that negotiates is not supposed to have any children u such that
toku ̸= ⊥, and a specific rule is designed for such erroneous situations. Yet, to simplify some
reasoning, we also add as a constraint the fact that v only negotiates with its children such that
toku = ⊥. In the latter, we call these nodes the players of v.

Players(v) = {u ∈ Cneq(v) |tokv = ⊥ ∧ playu = P} (5)

B.1.1 Rules of the Algorithm

In this section, we present the predicates, actions, and rules of our algorithm. For the sake of
readability, we have grouped the rules according to the task they relate to. In Section B.1.1, we
present the rule dedicated to deal with inconsistencies of the variable tok. In Section B.1.3, we
present the negotiation process, based on the identifiers of the children of the node holding the
token. In Section B.1.2 we present the rules that make nodes quit that negotiation process. In
Section B.1.4 we present the rules which reset variables of nodes to a proper value after the end
of the negotiation process. In Section B.1.5 we present the rules that allow one node to receive
the token back from one of its children. In Section B.1.6 we present the rules that are executed
when one circulation below a node is terminated, whether the node is the root or another node.
Finally, in Section B.1.7, all the rules are gathered to allow an easy access during the reading
of the proofs.

Error As hinted above, some combinations of the variable tok should not occur on a node
and its children. In general, a node v that has the token, or which is very near a token, i.e. with
tokv ∈ {⋆, •,⇊,⟲, ◦, ↑}, should only have children u with toku = ⊥, with a few exceptions.

Indeed, if tokv ∈ {⇊,⟲}, then v is allowed to have a child such that toku = ⋆, the child to
which it just gave the token.

If tokv = ◦, then v is allowed to have a child such that toku =↑, the child from which it is
receiving the token.

One other exception is when tokv =↑. In this case, v is sending the token back to its parent,
which means that it is on its way to set tokv = ⊥. We do not consider any error for such nodes,
since it would not be very effective, and could create an error at the level of its own parent.

To repair such errors, the principle is that the parent trusts its child, in the sense that if
both v and u believe they have a token, then v forgets its token, and repairs itself by setting
tokv =↓, acknowledging the fact that there is a token below it.

The illegal pairs are detected by the predicate Er(v) and the correctness of the state of the
token of node v is handled by the rule ETrustChild.

Er(v) ≡
(
tokv ∈ {•,⋆} ∧ ∃u ∈ C(v) : toku ̸= ⊥

)
∨

(
tokv ∈ {⇊,⟲} ∧ ∃u ∈ C(v) : toku /∈ {⊥,⋆}

)
∨

(
tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}

)
−→ tokv :=↓

(6)

ETrustChild : for all v ∈ V

Er(v) −→ tokv :=↓

All the other rules of the algorithm suppose that node v is not in such an error. For
homogeneity and readability, we constrained all rules with ¬Er(v), even rules which suppose
that tokv ∈ {⊥, ↓, ↑}.
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B.1.2 End of the Negotiation Phase

Before showing how the negotiation phase is implemented, let us first explain how nodes may
quit this phase. In a negotiation, two types of nodes are involved, the parent v which has the
token, such that tokv = •, and the children u elements of Players(v).

The parent can quit the negotiation phase by two means.

Rule ROfferUp The first one is when the parent observes that all of its children in Players(v)
have been visited, which means that it ended the circulation below itself. When this happens
the parent sends the token back to its own parent.

Before doing so, the parent must first be assured that it is not in a situation as depicted
in the last configuration of Figure 5. If v has a child u such that playu = F, then it is a node
which actually won the token, but faked being reset to P to another parent p such that tokp =↑.
If v is the last parent of u, and switches tokv =↑, then u will never be reset to P, which breaks
the fairness of the token circulation. Therefore, before executing this action, v waits that all of
its children have quit the value F.

The predicate WaitSib corresponds to this requirement.

WaitSib(v) ≡ ∃c ∈ Ceq(v) : playc = F (7)

ROfferUp : for all v ∈ V

¬Er(v)∧tokv = •∧¬WaitSib(v)∧(∀u ∈ Cneq(v) : playu ∈ {W, F}) −→ tokv :=↑

Note that even if the root has no parent, it may execute rule ROfferUp when it does not have
any more children to visit. Since some operations subsequent to having finished circulation
below oneself are identical for the root and the other nodes, we factorize the rules as far as
possible.

Rule RGive The second possibility for a parent to quit the negotiation is to decide to offer the
token to one of its children. This happens when node v has exactly one child in Players(v).

But there is one other situation to which we must give attention. Suppose that due to a
wrong initialization of the network, no node belongs to Players(v), but the circulation is not
over yet, for one or several children of v are losers, i.e. playu = L. In this situation, node
v needs to reset the variable play of these children to P, and then will perform a negotiation
between them. One simple way to do that is to follow the transition diagram of tok depicted
in Figure 3. No child of v will take the token offered by tokv =⇊, but immediately after, when
tokv is set to ⟲, the losers will update playu = P, which will allow a further negotiation process.

Actually, v basically executes a full round of its variable tok just to refresh its wrongly
initialized children. Note that this may only be caused by a corrupted initial configuration, and
that after convergence, this part of the rule becomes useless.

The predicate Give describes the situations in which node v ends the negotiation by sending
the token to one of its children.

Give(v) ≡ |Players(v)| = 1 ∨ (|Players(v)| = 0 ∧ ∃u ∈ Cneq(v) : playu = L) (8)

RGive : for all v ∈ V

¬Er(v) ∧ tokv = • ∧ Give(v) −→ tokv :=⇊
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Let us now consider the children u ∈ Players(v). A child quits the negotiation if it quits
Players(v). It may do that by three means.

Rule RFakeWin The first situation in which a child quits the negotiation is when it has an
inconsistent parenthood. More precisely, if v has several parents that are dealing with a token.
Such parents are those whose value tokp /∈ {⊥, ↓, ↑}.

We do not consider the nodes who are not involved in a token circulation (tokp = ⊥) neither
do we consider the nodes who announce a token in their descendants (tokp =↓). We also do
not consider ↑ for the same reason that it was ignored in predicate Er: such parent is about to
drop the token to its own parent, it is therefore unnecessary to consider it.

The parents which may force v to quit the negotiation are ParNeg:

ParNeg(v) = {p ∈ P(v) | tokp ̸∈ {⊥, ↑, ↓}} (9)

Let us describe the situations where v does not have to quit the negotiation due to an
inconsistent parenthood. First, if v has exactly one parent in ParNeg(v), then there is no
inconsistency. If v has no parent in ParNeg(v), there is no inconsistency either.

There is one other situation that may occur in legal execution. In a triangle configuration, v
has two parents and one of them is the children of the other. Then the middle one receives the
token and set its variable tok to ⋆, there is a moment where v has its variable playv = P and
also has two parents in ParNeg(v), since the other parent is at ⟲. This is described in Figure 8

�

⊥, P

⊥, L

�

F

⊥, L

	

F

⊥, L

	

F

⊥, P

Figure 8: Node with several parents indicating a token

Formally, the situations that do not force v to interrupt the negotiation are:

OkNeg(v) ≡


|ParNeg(v)| ≤ 1
∨
(|ParNeg(v)| = 2 ∧ {tokp | p ∈ ParNeg(v)} = {⟲,⋆})

(10)

When a node decides to stop negotiating with its parent for inconsistency reasons, it fakes
winning the token, in the sense that it becomes visited by switching its color, and updates its
variable play, but does not actually take the token. In most cases, switching to W is sufficient.
Hence, if before switching its color, v has a parent of the other color, such that tokp =↑, then
at the next computing step, v will update playv to F, as shown in Figure 5. In order to spare
one computing step, and to simplify some proofs, we set playv at the right value at once.

The action corresponding to the rule RFakeWin is given by FakeWin:

FakeWin(v) ≡


cv := ¬cv;

playv :=

{
W if ∀p ∈ Pneq(v), tokp ̸=↑;
F if ∃p ∈ Pneq(v), tokp =↑;

(11)
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RFakeWin : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ ¬OkNeg(v) :−→ FakeWin(v)

Rule RWin The second situation in which a child quits the negotiation is when it wins the
negotiation. A node v wins the negotiation if its parents are not in an inconsistent configuration
(which is OkNeg(v)), and if it is still at playv = P when its parent offers it the token (i.e. when
tokp =⇊).

The predicate WinNeg is dedicated to detect such situations.

WinNeg(v) ≡ OkNeg(v) ∧ ∃p ∈ Pneq(v) : tokp =⇊ (12)

When a node v wins the negotiation, it takes the token, and switches its color. Furthermore,
it updates its variable playv to W. Contrary to how we did for FakeWin, we do not have to
worry about the precise value of playv right now. Indeed, since v has a value different that ⊥
for tokv, v does not have to worry about the moment where it will be reactivated by its parent,
which happens at the end of the circulation of its parent.

Win(v) ≡


tokv := ⋆;

cv := ¬cv;
playv := W;

(13)

RWin : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ WinNeg(v) −→ Win(v)

Rule RLose The third and last situation in which a child quits the negotiation is when it
loses it. The exact condition of how a child loses the negotiation will be properly defined in
the following section. For now, let us just consider that there exists a predicate LosePar(v, p),
which depends on the values of idv and idp, where p ∈ Pneq(v), which describes that v should
lose the negotiation according to p.

A node loses the negotiation if its parents are not in an inconsistent configuration (which is
OkNeg(v), and if it does not win the negotiation (which is ¬WinNeg(v)).

All these conditions are grouped in the predicate LoseNeg(v):

LoseNeg(v) ≡ OkNeg(v) ∧ ¬WinNeg(v) ∧ ∃p ∈ Pneq(v) : (tokp = • ∧ LosePar(v, p)) (14)

When v loses the negotiation, it simply sets playv = L.

RLose : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ LoseNeg(v) −→ playv := L

B.1.3 Negotiation Identifier-Based

In the negotiation phase, the only children which are relevant to consider, from the parent’s
perspective, are the children in Players(v). In the description of the rules, we write players
instead of children in Players(v), to facilitate the reading.
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Let us first describe the general mechanism of the election, then explain some subtleties,
before presenting the rules of the bit-by-bit negotiation.

One first important idea is that the parent does not execute any action unless all of its
players have executed their rule. In particular, the parent waits for all of its players to be at
the same value of ph as it is.

Synch(v) ≡ ∀u ∈ Players(v), phu = phv (15)

One other general principle, which is crucial due to the asynchrony of the system, and due
to the self-stabilizing requirement, is that nodes do not correct their answer. More precisely, if
one node v (parent or child in the negotiation) is in a state that may have an influence on the
execution of a rule by one other node u, then v does not update its state. Even if this state is
inconsistent with its identifier, for a child, or with the values of idu on its players, for a parent, v
waits that its neighbors have finished interpreting this state, and accept the consequences of this
error. Such inconsistencies are typically due to an incorrect initialization of the system. This
general principle only applies to the negotiation rules, and does not prevent nodes to execute
rules such as ETrustChild, RFakeWin, or RGive for example.

Let us recall the general scheme of how the negotiation process happens

0. Parent v asks for the value of the first bit of its players u ∈ Players(v), by setting
idv = (1,⊥).

1. Players u of v answers with their own value (1, Bitu(1)) (rule RNewBit).

2. When all its players have answered, i.e. when all have the right value phu = 1, v announces
the biggest value it sees, by setting idv = (1, b) (rule RmaxPos).

3. Players u of v which have a lower value than bv lose the negotiation (rule RLose).

4. When all of its players have phu = 1 and bu = bv, v asks for the value of the second bit
of its remaining players, by setting idv = (2,⊥) (rule RNewPh), and so on.

A particular situation is when all the players u of v answer (ph,⊥), i.e. when all the players
declare that they do not have a long-enough identifier to provide a ph-th bit. This situation
is not possible in correct executions, since all identifiers are distinct, we cannot reach a point
where several identifiers are similar and terminated. Hence, this may happen in the early steps
of an execution which starts in an inconsistent configuration. Either at least one child has an
identifier actually greater than ph, and could go further, but due to an incorrect initialization,
it has a wrong value for b, either due to an incorrect initialization of the parent, the negotiation
process did not start at ph = 1 but further, and we could have missed the opportunity to
distinct the identifiers of the nodes in Players(v).

When this happens, the parent cannot simply increase ph, since its players formulate that
they can’t even reach the current value of ph. Therefore, if all of its players answer (ph,⊥),
then the correct move for the parent is to restart at phv = 1. Only one exception to that rule,
is when it happens when phv = 1 already. In this situation, v would not change a single bit of
information by setting idv = (1,⊥). We suppose that all identifiers have at least one bit, even
if it is a single bit 0. Therefore, (1,⊥) can never be a valid answer for a child. In consequences,
without any contradiction with the previous principle stating that no possibly valid answer can
be revised, players such that idv = (1,⊥) can actually update their state to send their actual
value for Bitu(1). This is not true for other values of ph: if idv = (ph,⊥) with ph > 1 and
Bitv(ph) ̸= ⊥, then to avoid confusing its parent, it does not update its state.

Let us now treat the different rules corresponding to the scheme presented above.
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Rule RNewBit Some first conditions for a node v to answer the negotiation is that its parenthood
is not inconsistent, and it is not winning the negotiation, nor losing it. This corresponds to the
partial predicate OkNeg(v) ∧ ¬WinNeg(v) ∧ ¬LoseNeg(v).

The other condition is that v is in a situation where it is its turn to answer. One first situation
in which it should answer is when it does not have the same value of ph as its negotiating parent
p. The second situation is the particular case where phv = php = 1, and v has answered ⊥,
which is never a valid answer, and the parent p is still waiting for its players to answer. Indeed,
in an poorly initialized configuration, the parent p could have already decided which value was
the highest, and thus v must not answer.

This is synthesized in predicate AnswerPar:

AnswerPar(v, p) ≡ phv ̸= php ∨


php = 1

bp = ⊥
bv = ⊥

(16)

We also define the predicate which excludes concurrency with RFakeWin, RWin, and RLose:

AnswerNeg(v) ≡
{

OkNeg(v) ∧ ¬WinNeg(v) ∧ ¬LoseNeg(v)∧
∃p ∈ Pneq(v) : (tokp = • ∧ AnswerPar(v, p))

(17)

The action which corresponds to answering the negotiation is updating variable phv to the
value of our parent, and bv according to function Bitv.

Remark that such a parent p is necessarily unique, due to OkNeg(v). To simplify the nota-
tions, we consider that such parent p is given as an external information to the action which
corresponds to AnswerNeg, Announce:

Announce(v) ≡ idv := (php, Bitv(php) (18)

RNewBit : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ AnswerNeg(v) −→ Announce(v)

Rule RmaxPos One first condition for the parent to announce the maximal value it sees on its
players is that the negotiation is not over yet, i.e. there are at least two players.

One second condition is that all of those players have answered, i.e. that they have the
same value as itself for ph, which is captured by Synch(v).

One third condition is that it does not have already announced a value, i.e. bv = ⊥.
There are two more subtleties. The first one is that if we have phv = 1 then v actually waits

for all of its players to produce a non-empty answer, a value for bu which is not ⊥, an invalid
answer for ph = 1.

The second subtlety is that if, for a value of ph greater than 1, all the players of v announce
⊥, then it is irrelevant to keep increasing phases, and actually irrelevant to answer ⊥ as well. In
this situation, the correct move is to restart the negotiation from phv = 1, which will be dealt
by rule RNewPh.

The last condition and the subtleties are described by predicate NextPlay.

NextPlay(v) ≡ bv = ⊥ ∧


phv = 1 ∧ ∀u ∈ Players(v), bu ̸= ⊥

∨
phv ̸= 1 ∧ ∃u ∈ Players(v) : bu ̸= ⊥

(19)
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Once all these conditions are fulfilled, v can announce the biggest value of b it sees in its
playing childhood (classically we have ⊥ < 0 < 1). This action is denoted MaxPos.

MaxPos(v) ≡ bv := max
u∈Players(v)

bu (20)

RmaxPos : for all v ∈ V

¬Er(v)∧tokv = •∧|Players(v)| ≥ 2∧Synch(v)∧NextPlay(v) −→ MaxPos(v)

Predicate for Rule RLose In the previous section we did not explicitly give the predicate
LosePar. One node v loses the negotiation when they have the same value of ph as their parent,
and that the answer provided by their parent is different from the one they have.

LosePar(v, p) ≡ php = phv ∧ bp ̸= ⊥ ∧ bp ̸= bv (21)

Rule RNewPh The parent increases its phase only when the negotiation round is terminated,
which means that nonetheless all its players have the same value as it has, for ph, but also that
they all have the same value as is has for b.

Either this value is ⊥, and therefore all players are out of bits, and the new phase should
be 1, either it is not ⊥, and therefore all the nodes asked to lose have actually lost and are now
out of Players(v), and the new phase should be one more than the current one.

There is one particular case where this increase should not happen: when we have ph = 1
and b = ⊥ (on both the parent and its players), since it does not correspond to a valid answer.
Predicate PhComplete summarizes that.

PhComplete(v) ≡ (phv ̸= 1 ∨ bv ̸= ⊥) ∧ ∀u ∈ Players(v), bu = bv (22)

PhasePlus(v) ≡


bv := ⊥

phv :=

{
1 if ∀u ∈ Players(v), bu = ⊥
phv + 1 if ∃u ∈ Players(v), bu ̸= ⊥

(23)

RNewPh : for all v ∈ V

¬Er(v)∧tokv = •∧|Players(v)| ≥ 2∧Synch(v)∧PhComplete(v) −→ PhasePlus(v)

B.1.4 Operations Post-Negotiation

In this section we consider actions subsequent to the executions of RGive by the parent, and
RWin by one child, which were presented in Section B.1.2. The parent has its variable tok =⇊,
the winning player has its variable tok = ⋆, and the other children that have not received the
token yet have their variable play = L.

Rule RNewPlay The first action that the parent takes, after its child has actually received the
token, is switching its variable tok to ⟲ to inform its other children that the negotiation phase
is terminated, and that they are free to negotiate again. This is necessary to ensure a proper
depth-first traversal, since some of them may also be children of the winning player.

This can be done as soon as v does not have any players. Since we classically suppose that
v is not in error, it means that its children u of the opposite color are either at toku = ⋆, or
at playu ̸= P.
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RNewPlay : for all v ∈ V

¬Er(v) ∧ toku =⇊ ∧(∀u ∈ Cneq(v) : playu ̸= P ∨ toku = ⋆) −→ tokv :=⟲

Rule RReplayD When v has one parent which notifies that it can reset its value of playv to
P, v first gets sure that it is not near one other negotiation phase. Indeed, v should not join
a running negotiation phase by updating playv from L to P. In correct executions, v cannot
be close to several negotiation phases, by unicity of the token. Yet, due to an inconsistent
initialization of the network, this must be considered.

Parents that correspond to ongoing negotiation phases are those with tokp = • and tokp =⇊.

ReplayL(v) ≡ ∀u ∈ Pneq(v), toku /∈ {•,⇊} ∧ ∃u ∈ Pneq(v), toku ∈ {⟲, ◦} (24)

Note that we also consider situations where v has a parent p with tokp = ◦. This corresponds
to a similar situation, which we will develop in Section B.1.5

When this predicate is satisfied, v updates playv to P, and simultaneously resets its variable
idv to a neutral value.

Replay(v) ≡
{

playv := P;
idv := (1,⊥)

(25)

RReplayD : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = L ∧ ReplayL(v) −→ Replay(v)

Rule RDrop When all of its children have reset their variable play from L to P, node v can
finally update its variable tok to ↓, which terminates the passing of the token to the child who
won the negotiation.

To avoid deadlocks due to an inconsistent initial configuration, we must consider situations
in which some child of v has the token (toku = ⋆) but also has its variable playu at L. Rather
than creating a new rule to make u updates its variable play, we chose to let v drop the token
in such situations.

RDrop : for all v ∈ V

¬Er(v) ∧ tokv =⟲ ∧(∀u ∈ Cneq(v) : playu ̸= L ∨ toku = ⋆) −→ tokv :=↓

Rule RNego Once the parent of the node v who won the negotiation has terminated the previous
actions, and has set its variable tok to ↓, v can finally start negotiating with its own children,
by setting tokv = • and its variables ph and b to the initial value of the negotiating process.

StartNego(v) ≡
{

tokv := •;
idv := (1,⊥);

(26)
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RNego : for all v ∈ V

¬Er(v) ∧ tokv = ⋆ ∧ (∀p ∈ P(v) : toku ̸∈ {⇊,⟲}) −→ StartNego(v)

Figure 10 presents the process of how a token is given to a child.
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Figure 9: Execution of rules for returning the token back to one child. The activated node is
the one with its line doubled

B.1.5 Reception of the Token from a Child

In this section we consider actions subsequent to the execution of ROfferUp (presented in Sec-
tion B.1.2). We consider one node v such that tokv =↓, which has one child u that offered the
token to its parent by setting toku =↑.

Rule RReceive When node v has its child u announcing that it returns the token back, v needs
to be sure that it does not have any other children which is involved in a token circulation, in
which case it cannot take the token before its other children have terminated their circulation.

If v takes the token while having another child involved in a token circulation, it becomes
in error, and thus executes ETrustChild, and sets tokv =↓, which may create a livelock.

RReceive : for all v ∈ V

¬Er(v) ∧ tokv =↓ ∧(∀u ∈ C(v), toku ∈ {⊥, ↑}) −→ tokv := ◦

Rule RReNego If node v did not have any children and took the token by setting tokv = ◦ with
rule RReceive, then before starting negotiating, it waits that its child, from which it received the
token, actually drops it.

More precisely, v start negotiating only if it all of its children are such that toku = ⊥,
otherwise it would create an error by setting tokv = •. The following predicate guarantees that
one node has no children involved in a token circulation:

Leaf(v) ≡ ∀u ∈ C(v), toku = ⊥ (27)

Furthermore, before starting a negotiation round, v also waits that all its children which
have not won the token yet have properly reset their variable play to L. This is guaranteed
since Rule B.1.4 applies to situations where the parent has its variable tok = ◦.

RReNego : for all v ∈ V

¬Er(v) ∧ tokv = ◦ ∧ Leaf(v) ∧ ∀u ∈ Cneq(v) : playu ̸= L −→ StartNego(v)
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B.1.6 End of the Circulation

In this section we also present actions subsequent to the execution of ROfferUp (presented in
Section B.1.2), but from the child perspective. We consider the node which executed ROfferUp,
and its potential children.

Rule RReturn After it has offered the token to its parent, a node v which is not the root should
eventually drop the token, and set tokv = ⊥. Before that, it must check that all its children
have correctly updated their variable W to P to assure that when a token of the other color will
come, all those nodes will be available for a negotiation phase. This only applies to children of
v which have the same color as v, since other children may be involved in a concurrent token
circulation, and we do not want to create any livelock. Also, it only applies to nodes which are
not involved in any circulation of the token, i.e. such that toku = ⊥ (recall that since tokv =↑,
v cannot be in error).

If such children u of v, with playu = W still have parents involved in a negotiation, they will
shift that value to F, faking a reset to v. Thus, v should tolerate children u with playu = F.

On the other hand, if v has children u which have their variable playu = L, those children
might be involved in another negotiation phase, which they have lost. Those children should
not reset their variable play to P, for it would harm the negotiation process.

Thus, v checks that all of its children with the same color have a value of play different
from W before it sends the token back.

We add one more consistency check, which is that v does not have any parent in error,
i.e. parents p such that tokp ∈ {⋆, •,⇊,⟲}. If it has, it waits for those parents to execute
ETrustChild before returning the token to its parents. This predicate is not necessary for our
algorithm to work, but it may make convergence faster.

These predicates are combined in predicate MayDropUp.

MayDropUp(v) ≡
{

∀p ∈ P(v), tokp ∈ {⊥, ↓, ↑, ◦}
∧ ∀u ∈ Ceq(v), (toku = ⊥ ⇒ playu ∈ {P, L, F}) (28)

When this condition is fulfilled, v can drop the token. This includes setting tokv = ⊥ and
updating playv to a correct value depending on the parents of v. As depicted in Figure 5, there
are situations where nodes without a token must set their variable at F instead of W, to avoid
blocking one parent which is close to execute RReturn itself.

Drop(v) ≡


tokv := ⊥;

playv :=

{
W if ∀p ∈ Peq(v), tokp ̸=↑
F if ∃p ∈ Peq(v), tokp =↑

(29)

RReturn : for all v ∈ V \ {r}

¬Er(v) ∧ tokv =↑ ∧MayDropUp(v) −→ Drop(v)

Rule Rr
NewDFS In a similar situation, where all of its children have repaired themselves, the root

does not drop the token, for it would simply destroy it. When the root is in such a situation,
it means that the current circulation round is terminated, and one other can start.

To do that, the root reset its token value to ⋆, which corresponds to the first time the token
is held by any node in the new circulation round, and switches its color. After that, the root
will be able to execute rule RNego and to start a negotiation process with its children.
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NewToken(r) ≡
{

cr := ¬cr
tokr := ⋆ (30)

This action can be seen as one atomic execution of the two actions Drop and Win, which
corresponds to what r would have done, non-atomically, if it were not the root.

Rr
NewDFS : for v = r

¬Er(v) ∧ tokv =↑ ∧MayDropUp(v) −→ NewToken(v)

Let us now consider the actions taken by children of such a node, i.e. a node v which has
one parent of the same color and its variable tok =↑.

Rule RReplayUp If node v only has parents that are sending the token higher, i.e. no other
parent which is still involved in a token circulation, then v can reset its variable playv = P to
be ready for the next circulation round.

ReplayW(v) ≡ ∃p ∈ Peq(v) : tokp =↑ ∧∀p ∈ Peq(v), tokp ∈ {⊥, ↑} (31)

Note that v only consider its parent with the same color, since the situation which we want
to prevent is livelock caused by the oscillation between two tokens. Therefore, v can join a
negotiation of the other color by this action.

RReplayUp : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = W ∧ ReplayW(v) −→ Replay(v)

Rule RFake If v has, in addition to some parents that are sending the token higher, other par-
ents which do not have terminated their token circulation, it must update its variable playv = F.

FakeReplay(v) ≡ ∃p ∈ Peq(v), tokp =↑ ∧¬ReplayW(v) (32)

RFake : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = W ∧ FakeReplay(v) −→ playv := F

Rule RReWin Finally, we must design a rule to cancel the effect of updating one’s variable at
F, to reset it at W. Without this rule, the predicate WaitSib could be infinitely false one one
parent of v, and thus the token could not be sent higher. This rule can be activated only when
the node does not have any parent with the same color such that tok =↑.

Up to this rule, all the guards of the rules require that the node is near a token. For
consistency, we also require proximity of a token for this rule, but it is not actually necessary.

StopFaking(v) ≡ ∃p ∈ Peq(v) : tokv ̸= ⊥ ∧ ∀p ∈ Peq(v), tokp ̸=↑ (33)

RReWin : for all v ∈ V \ {r}

¬Er(v) ∧ tokv = ⊥ ∧ playv = F ∧ StopFaking(v) −→ playv := W
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Figure 9 present the process of how a token is returned to a parent.
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Figure 10: Execution of rules for returning the token back to one parent. The activated node
is the one with its line doubled

B.1.7 Complete Algorithm

Algorithm 2 presents all the rules of our algorithm.

Algorithm 2: Token Circulation algorithm

∀v ETrustChild : Er(v) −→ tokv :=↓

∀v ROfferUp :¬Er(v) ∧ tokv = • ∧ ¬WaitSib(v) ∧ (∀u ∈ Cneq(v) : playu ∈ {W, F}) −→ tokv :=↑
∀v RGive :¬Er(v) ∧ tokv = • ∧ Give(v) −→ tokv :=⇊
v ̸= r RFakeWin :¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ ¬OkNeg(v) −→ FakeWin(v)
v ̸= r RWin :¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ WinNeg(v) −→ Win(v)
v ̸= r RLose :¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ LoseNeg(v) −→ playv := L

v ̸= r RNewBit :¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ AnswerNeg(v) −→ Announce(v)
∀v RmaxPos :¬Er(v) ∧ tokv = • ∧ |Players(v)| ≥ 2 ∧ Synch(v) ∧ NextPlay(v) −→ MaxPos(v)
∀v RNewPh :¬Er(v) ∧ tokv = • ∧ |Players(v)| ≥ 2 ∧ Synch(v) ∧ PhComplete(v) −→ PhasePlus(v)

∀v RNewPlay :¬Er(v) ∧ toku =⇊ ∧(∀u ∈ Cneq(v) : playu ̸= P ∨ toku = ⋆) −→ tokv :=⟲
v ̸= r RReplayD :¬Er(v) ∧ tokv = ⊥ ∧ playv = L ∧ ReplayL(v) −→ Replay(v)
∀v RDrop :¬Er(v) ∧ tokv =⟲ ∧(∀u ∈ Cneq(v) : playu ̸= L ∨ toku = ⋆) −→ tokv :=↓
∀v RNego :¬Er(v) ∧ tokv = ⋆ ∧ (∀p ∈ P(v) : toku ̸∈ {⇊,⟲}) −→ StartNego(v)

∀v RReceive :¬Er(v) ∧ tokv =↓ ∧(∀u ∈ C(v), toku ∈ {⊥, ↑}) −→ tokv := ◦
∀v RReNego :¬Er(v) ∧ tokv = ◦ ∧ Leaf(v) ∧ ∀u ∈ Cneq(v) : playu ̸= L −→ StartNego(v)

v ̸= r RReturn :¬Er(v) ∧ tokv =↑ ∧MayDropUp(v) −→ Drop(v)
r Rr

NewDFS :¬Er(v) ∧ tokv =↑ ∧MayDropUp(v) −→ NewToken(v)
v ̸= r RReplayUp :¬Er(v) ∧ tokv = ⊥ ∧ playv = W ∧ ReplayW(v) −→ Replay(v)
v ̸= r RFake :¬Er(v) ∧ tokv = ⊥ ∧ playv = W ∧ FakeReplay(v) −→ playv := F

v ̸= r RReWin :¬Er(v) ∧ tokv = ⊥ ∧ playv = F ∧ StopFaking(v) −→ playv := W

Figures 11 and 12 present the scheme of an execution of our algorithm. These are two dual
visions of the same phenomenon. The first one focuses on the values of the different variables
of one node v, and the second on the executions of the rules on one node v.
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Figure 11: Chain of the states taken by a node during the execution of the algorithm. The
update of cv is represents by color gray. Rules in blue corresponds to the negotiation. Rules in
red correspond to the sending of a token from a child to a parent. Rules in black correspond to
the sending of a token from a parent to a child.
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C Appendix on the Correctness of our Algorithm

In this section, we prove that Algorithm 2 is a self-stabilizing algorithm for the token circulation
problem, as it is defined in Specification 1. We also prove that this algorithm is optimal in terms
of memory, i.e. that any algorithm which solves T C in S requires Ω(log log n) bits per nodes,
even under less general hypothesis than ours.

This section is subdivided in four subsections. In Section C.1 we establish that maximal
executions of our algorithm are infinite. Formally, we prove that in any configuration, there is
at least one enabled node. This work is static in the sense that we do not need to consider an
execution of the algorithm. It boils down to a syntactical analysis of the guards of the rules of
our algorithm (Algorithm 2).

In Section C.2 we establish that no token can circulate indefinitely in the Do, unless it
regularly reaches the root and is reset by the execution of Rr

NewDFS. This guarantees that a
token which is not anchored at the root of the Do either vanishes, or is eventually not activated.
Using the previous, we also establish that there are an infinite number of circulation rounds in
maximal executions of our algorithm. This guarantees that our algorithm satisfies Condition 2
of Specification 1.

In Section C.3 we use the previous results to establish that the token anchored at the root
circulates fairly in deeper and deeper parts of the Do. Thus, even if there are other tokens in
the network, they will eventually be reached and destroyed by the legitimate token anchored at
the root. Therefore we prove in this section that, at some point, the execution of our algorithm
satisfies Conditions 1 and 3 of Specification 1, which means that it is a self-stabilizing algorithm
for T D.

Finally, in Section C.4 we use the results of [3] to prove that the space complexity of our
algorithm is optimal.

In order to prove that our algorithm satisfies conditions of Specification 1, we must first
define the predicates T and R involved in this specification. One node v is considered to hold
the token if it has a non-empty value for its variable tokv, and if none of its children holds the
token. One node v is considered to have access to the resource if it is in the state where it just
received the token from its parent, which corresponds to tokv = ⋆.

Definition 13 (Predicates for our Token Circulation Algorithm)

The resolution of T D by our algorithm will be proven under the following specification
predicates:

T (v, γ) ≡ tok
γ
v ̸= ⊥ ∧ ∀u ∈ C(v), tokγu = ⊥

R(v, γ) ≡ T (v, γ) ∧ tok
γ
v = ⋆
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Definition 14 (Reset Points)

Let ϵ = γ0 → · · · be an execution. We say that γi is a reset point of ϵ if r executes Rr
NewDFS

during γi−1 → γi+1. We say that two reset points γi and γj are consecutive if i < j and
∀k ∈ [i+ 1, j + 1], γk is not a reset point.

Theorem 1 (Circulation Rounds)

Let ϵ = γ0 → · · · be an execution. Let us denote by t0 ≤ t1 ≤ · · · all the reset points of ϵ,
such that ∀i ≥ 0, γti and γti+1 are consecutive.

∀i ≥ 0, γt1 → · · · → γti+1−1 is a circulation round.

Proof : For any computing step cs = γ → γ′, we have ¬Rγ(r) ∧ Rγ′
(r) if and only if r executes

Rr
NewDFS, which is equivalent to γ′ being a reset point.

C.1 Liveness

Recall that we denote by Ae(γ) the set of the enabled nodes for A in configuration γ. In this
section, we prove that ∀γ ∈ Γ,Ae(γ) ̸= ∅.

The proof is subdivided in several lemmas. In each lemma we work under the hypothesis
that some value for tokv, on one node v, is present in γ, and in each case we prove that there
exists at least one enabled node, in γ. Not all the lemmas are independent: it happens that to
prove a lemma, we simply prove that there exists one node u with another value of toku, value
which has already been dealt in a previous lemma.

One lemma is even proven by induction, the lemma which considers as a hypothesis the
presence of a node v such that tokv =↓. Such nodes can actually pretty far from the actual
token, and thus to find an enabled node, we may have to descend a branch of the Do, until we
fall on a leaf, or on a node with a different value for tokv.

More precisely, we prove that either we can find an enabled node, either there exists one
other node u such that toku =↓, but u is deeper than v in the DODAG. Since DODAGs are
finite, and acyclic, there can only be a finite number of times where the second hypothesis is
the right one, and therefore this proves that there exists at least one enabled node.

The proofs are basically reasoning by case disjunction, which forms decision trees of variable
depth. We must guarantee that at the end of each branch i.e. at each leaf, we find one enabled
node.

Since it is basically syntactical analysis, we only present the different decision trees, which
contain all the elements of the proofs, and are easier to parse than the written version of the
proofs.

In each proof, we also provide a reasoning toolbox, to remind the reader the detail of the
predicates considered in the reasoning.
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Lemma 1

Let γ ∈ Γ. If there exists v ∈ V such that tokv =↑ in γ then Ae(γ) ̸= ∅.

Proof : The proof is given in Figure 13

tokv =↑

MayDropUp(v) v : RReturn/Rr
NewDFS

∃p ∈ P(v) : tokp ∈ {⋆, •,⇊,⟲} p : ETrustChild

∃c ∈ Ceq(v) : (tokc = ⊥ ∧ playc = W)

ReplayW(c) c : RReplayUp

¬ReplayW(c) c : RFake

Figure 13: Proof of Lemma 1

Tools Lemma 1

∀v ETrustChild : Er(v) −→ tokv :=↓
v ̸= r RReturn :¬Er(v) ∧ tokv =↑ ∧MayDropUp(v) −→ Drop(v)
r Rr

NewDFS :¬Er(v) ∧ tokv =↑ ∧MayDropUp(v) −→ NewToken(v)
v ̸= r RReplayUp :¬Er(v) ∧ tokv = ⊥ ∧ playv = W ∧ ReplayW(v) −→ Replay(v)
v ̸= r RFake :¬Er(v) ∧ tokv = ⊥ ∧ playv = W ∧ FakeReplay(v) −→ playv := F

Er(v) ≡
(
tokv ∈ {•,⋆} ∧ ∃u ∈ C(v) : toku ̸= ⊥

)
∨

(
tokv ∈ {⇊,⟲} ∧ ∃u ∈ C(v) : toku /∈ {⊥,⋆}

)
∨

(
tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}

)
−→ tokv :=↓

MayDropUp(v) ≡
{

∀p ∈ P(v), tokp ∈ {⊥, ↓, ↑, ◦}
∧ ∀u ∈ Ceq(v), (toku = ⊥ ⇒ playu ∈ {P, L, F})

ReplayW(v) ≡ ∃p ∈ Peq(v) : tokp =↑ ∧∀p ∈ Peq(v), tokp ∈ {⊥, ↑}

FakeReplay(v) ≡ ∃p ∈ Peq(v), tokp =↑ ∧¬ReplayW(v)
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Lemma 2

Let γ ∈ Γ. If there exists v ∈ V such that tokv =⇊ in γ then Ae(γ) ̸= ∅.

Proof : The proof is given in Figure 14

tokv =⇊

∀c ∈ C(v) : tokc ∈ {⊥,⋆}

∀c ∈ Cneq(v) : playc ̸= P ∨ tokc = ⋆ v : RNewPlay

∃c ∈ Cneq(v) : playc = P ∧ tokc = ⊥

OkNeg(c) c : RWin, c ̸= r

¬OkNeg(c) c : RFakeWin, c ̸= r∃c ∈ C(v) : tokc /∈ {⊥,⋆} v : ETrustChild

Figure 14: Proof of Lemma 2

Tools Lemma 2

∀v ETrustChild : Er(v) −→ tokv :=↓
∀v RNewPlay :¬Er(v) ∧ toku =⇊ ∧(∀u ∈ Cneq(v) : playu ̸= P ∨ toku = ⋆) −→ tokv :=⟲
∀v ̸= r RWin :¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ WinNeg(v) −→ Win(v)
∀v ̸= r RFakeWin :¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ ¬OkNeg(v) −→ FakeWin(v)

Er(v) ≡
(
tokv ∈ {•,⋆} ∧ ∃u ∈ C(v) : toku ̸= ⊥

)
∨

(
tokv ∈ {⇊,⟲} ∧ ∃u ∈ C(v) : toku /∈ {⊥,⋆}

)
∨

(
tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}

)
−→ tokv :=↓

WinNeg(v) ≡ OkNeg(v) ∧ ∃p ∈ Pneq(v) : tokp =⇊

OkNeg(v) ≡ |ParNeg(v)| ≤ 1 ∨ (|ParNeg(v)| = 2 ∧ {tokp | p ∈ ParNeg(v)} ∈ {{⇊,⋆}, {⟲,⋆}})

ParNeg(v) = {p ∈ P(v) | tokp ̸∈ {⊥, ↑, ↓}}
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Lemma 3

Let γ ∈ Γ. If there exists v ∈ V such that tokv = • in γ then Ae(γ) ̸= ∅.

Proof : The proof is given in Figures 15 and 16
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Tools Lemma 3

∀v ETrustChild : Er(v) −→ tokv :=↓
∀v RmaxPos :¬Er(v) ∧ tokv = • ∧ |Players(v)| ≥ 2 ∧ Synch(v) ∧ NextPlay(v) −→ MaxPos(v)
∀v RNewPh :¬Er(v) ∧ tokv = • ∧ |Players(v)| ≥ 2 ∧ Synch(v) ∧ PhComplete(v) −→ PhasePlus(v)
∀v RGive :¬Er(v) ∧ tokv = • ∧ Give(v) −→ tokv :=⇊
∀v ROfferUp :¬Er(v) ∧ tokv = • ∧ ¬WaitSib(v) ∧ (∀u ∈ Cneq(v) : playu ∈ {W, F}) −→ tokv :=↑
v ̸= r RNewBit :¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ AnswerNeg(v) −→ Announce(v)
v ̸= r RLose :¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ LoseNeg(v) −→ playv := L

v ̸= r RWin :¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ WinNeg(v) −→ Win(v)
v ̸= r RFakeWin :¬Er(v) ∧ tokv = ⊥ ∧ playv = P ∧ ¬OkNeg(v) −→ FakeWin(v)
v ̸= r RReWin :¬Er(v) ∧ tokv = ⊥ ∧ playv = F ∧ StopFaking(v) −→ playv := W

Er(v) ≡
(
tokv ∈ {•,⋆} ∧ ∃u ∈ C(v) : toku ̸= ⊥

)
∨

(
tokv ∈ {⇊,⟲} ∧ ∃u ∈ C(v) : toku /∈ {⊥,⋆}

)
∨

(
tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}

)
−→ tokv :=↓

AnswerPar(v, p) ≡ (phv ̸= php) ∨ (php = 1 ∧ bp = ⊥ ∧ bv = ⊥)

LosePar(v, p) ≡ php = phv ∧ bp ̸= ⊥ ∧ bp ̸= bv

ParNeg(v) = {p ∈ P(v) | tokp ̸∈ {⊥, ↑, ↓}}

OkNeg(v) ≡ |ParNeg(v)| ≤ 1 ∨ (|ParNeg(v)| = 2 ∧ {tokp | p ∈ ParNeg(v)} ∈ {{⇊,⋆}, {⟲,⋆}})
WinNeg(v) ≡ OkNeg(v) ∧ ∃p ∈ Pneq(v) : tokp =⇊

LoseNeg(v) ≡ OkNeg(v) ∧ ¬WinNeg(v) ∧ ∃p ∈ Pneq(v) : tokp = • ∧ LosePar(v, p)

AnswerNeg(v) ≡ OkNeg(v) ∧ ¬WinNeg(v) ∧ ¬LoseNeg(v) ∧ ∃p ∈ Pneq(v) : tokp = • ∧ AnswerPar(v, p)

Players(v) = {u ∈ Cneq(v) |tokv = ⊥ ∧ playu = P}

Synch(v) ≡ ∀u ∈ Players(v), phu = phv

NextPlay(v) ≡ bv = ⊥ ∧


phv = 1 ∧ ∀u ∈ Players(v), bu ̸= ⊥

∨
phv ̸= 1 ∧ ∃u ∈ Players(v) : bu ̸= ⊥

PhComplete(v) ≡ (phv ̸= 1 ∨ bv ̸= ⊥) ∧ ∀u ∈ Players(v), bu = bv

Give(v) ≡ |Players(v)| = 1 ∨ (|Players(v)| = 0 ∧ ∃u ∈ Cneq(v) : playu = L)

WaitSib(v) ≡ ∃c ∈ Ceq(v) : playc = F

StopFaking(v) ≡ ∃p ∈ Peq(v) : tokv ̸= ⊥ ∧ ∀p ∈ Peq(v), tokp ̸=↑
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tokv = •

∀u ∈ C(v) : toku = ⊥

|Players(v)| = 0

∃c ∈ Cneq(v) : playc = L v : RGive

∀c ∈ Cneq(v), playc ∈ {W, F}

∀c ∈ Ceq(v), playc ̸= F v : ROfferUp

∃c ∈ Ceq(v) : playc = F

∀p ∈ Peq(c), tokp ̸=↑ c : RReWin

∃p ∈ Peq(c) : tokp =↑ p : Lemma 1

|Players(v)| = 1 v : RGive

|Players(v)| ≥ 2

∃c ∈ Players(v) : ¬OkNeg(c) c : RFakeWin

∀u ∈ Players(v), OkNeg(u) ∧ ∃c ∈ Players(v) : WinNeg(c) c : RWin

∀u ∈ Players(v), (OkNeg(u) ∧ ¬WinNeg(u)) ∧ ∃c ∈ Players(v) : LoseNeg(c) c : RLose

∀u ∈ Players(v), (OkNeg(u) ∧ ¬WinNeg(u) ∧ ¬LoseNeg(u)) ∧ ∃c ∈ Players(v) : phc ̸= phv c : RNewBit

∀u ∈ Players(v), (OkNeg(u) ∧ ¬WinNeg(u) ∧ ¬LoseNeg(u)) ∧ Synch(v)
∃u ∈ C(v) : toku ̸= ⊥ v : ETrustChild

Figure 15: Proof of Lemma 3, part. 1

Synch(v)

phv = 1

bv = ⊥

∃c ∈ Players(v) : bc = ⊥ c : RNewBit

∀c ∈ Players(v), bc ̸= ⊥ v : RmaxPos

bv ̸= ⊥

∃c ∈ Players(v) : bc ̸= bv c : RLose

∀c ∈ Players(v), bc = bv v : RNewPh

phv ̸= 1

bv = ⊥

∃c ∈ Players(v), bc ̸= ⊥ v : RmaxPos

∀c ∈ Players(v), bc = ⊥ v : RNewPh

bv ̸= ⊥

∃c ∈ Players(v) : bc ̸= bv c : RLose

∀c ∈ Players(v), bc = bv v : RNewPh

Figure 16: Proof of Lemma 3, part. 2
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Lemma 4

Let γ ∈ Γ. If there exists v ∈ V such that tokv =⟲ in γ then Ae(γ) ̸= ∅.

Proof : The proof is given in Figure 17

tokv =⟲

∀c ∈ C(v) : tokc ∈ {⊥,⋆}

∀c ∈ Cneq(v) : playc ̸= L ∨ tokc = ⋆ v : RDrop

∃c ∈ C(v) : playc = L ∧ tokc = ⊥

∃p ∈ Pneq(c) : tokp ∈ {•,⇊} p : Lemma 3 or Lemma 2

∀p ∈ Pneq(c) : tokp /∈ {•,⇊} c : RReplayD

∃c ∈ C(v) : tokc ̸∈ {⊥,⋆} v : ETrustChild

Figure 17: Proof of Lemma 4

Tools Lemma 4

∀v ETrustChild : Er(v) −→ tokv :=↓
∀v RDrop :¬Er(v) ∧ tokv =⟲ ∧(∀u ∈ Cneq(v) : playu ̸= L ∨ toku = ⋆) −→ tokv :=↓
∀v ̸= r RReplayD :¬Er(v) ∧ tokv = ⊥ ∧ playv = L ∧ ReplayL(v) −→ Replay(v)

Er(v) ≡
(
tokv ∈ {•,⋆} ∧ ∃u ∈ C(v) : toku ̸= ⊥

)
∨

(
tokv ∈ {⇊,⟲} ∧ ∃u ∈ C(v) : toku /∈ {⊥,⋆}

)
∨

(
tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}

)
−→ tokv :=↓

ReplayL(v) ≡ ∀u ∈ Pneq(v), toku /∈ {•,⇊} ∧ ∃u ∈ Pneq(v), toku ∈ {⟲, ◦}
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Lemma 5

Let γ ∈ Γ. If there exists v ∈ V such that tokv = ◦ in γ then Ae(γ) ̸= ∅.

Proof : The proof is given in Figure 18

tokv = ◦

∀c ∈ C(v) : tokc = ⊥

∃c ∈ Cneq(v) : playc = L

∃p ∈ Pneq(c) : tokp ∈ {•,⇊} p : Lemma 3 or Lemma 2

∀p ∈ Pneq(c) : tokp /∈ {•,⇊} c : RReplayD

∀c ∈ Cneq(v) : playc ̸= L v : RReNego

∃c ∈ C(v) : tokc ̸= ⊥

∃c ∈ C(v) : tokc =↑ c : Lemma 1

∃c ∈ C(v) : tokc /∈ {⊥, ↑} v : ETrustChild

Figure 18: Proof of Lemma 5

Tools Lemma 5

∀v ETrustChild : Er(v) −→ tokv :=↓
∀v RReNego :¬Er(v) ∧ tokv = ◦ ∧ Leaf(v) ∧ ∀u ∈ Cneq(v) : playu ̸= L −→ StartNego(v)
v ̸= r RReplayD :¬Er(v) ∧ tokv = ⊥ ∧ playv = L ∧ ReplayL(v) −→ playv := P

Er(v) ≡
(
tokv ∈ {•,⋆} ∧ ∃u ∈ C(v) : toku ̸= ⊥

)
∨

(
tokv ∈ {⇊,⟲} ∧ ∃u ∈ C(v) : toku /∈ {⊥,⋆}

)
∨

(
tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}

)
−→ tokv :=↓

ReplayL(v) ≡ ∀u ∈ Pneq(v), toku /∈ {•,⇊} ∧ ∃u ∈ Pneq(v), toku ∈ {⟲, ◦}
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Lemma 6

Let γ ∈ Γ. If there exists v ∈ V such that tokv = ⋆ in γ then Ae(γ) ̸= ∅.

Proof : The proof is given in Figure 19

tokv = □

∀c ∈ C(v) : tokc = ⊥

∃p ∈ P(v) : tokp ∈ {⇊,⟲} p : Lemmas 2 or Lemma 4

∀p ∈ P(v), tokp /∈ {⇊,⟲} v : RNego

∃c ∈ C(v) : tokc ̸= ⊥ v : ETrustChild

Figure 19: Proof of Lemma 6

Tools Lemma 6

∀v ETrustChild : Er(v) −→ tokv :=↓
v ̸= r RNego :¬Er(v) ∧ tokv = ⋆ ∧ (∀p ∈ P(v) : toku ̸∈ {⇊,⟲}) −→ StartNego(v)

Er(v) ≡
(
tokv ∈ {•,⋆} ∧ ∃u ∈ C(v) : toku ̸= ⊥

)
∨

(
tokv ∈ {⇊,⟲} ∧ ∃u ∈ C(v) : toku /∈ {⊥,⋆}

)
∨

(
tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}

)
−→ tokv :=↓
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Lemma 7

Let γ ∈ Γ. If there exists v ∈ V such that tokv =↓ in γ then Ae(γ) ̸= ∅.

Proof : The proof is given in Figure 20

tokv =↓

∃u ∈ C(v) : toku =↓ u : Lemma:7, profu < profv

∃u ∈ C(v) : toku ∈ {⇊, •,⟲, ◦,⋆} u : Lemma 2 or Lemma 3 or Lemma 4 or Lemma 5 or Lemma 6

∀u ∈ C(v) : toku ∈ {⊥, ↑} v : RReceive

Figure 20: Proof of Lemma 7

Tools Lemma 7

∀v ETrustChild : Er(v) −→ tokv :=↓
∀v RReceive :¬Er(v) ∧ tokv =↓ ∧(∀u ∈ C(v), toku ∈ {⊥, ↑}) −→ tokv := ◦

Er(v) ≡
(
tokv ∈ {•,⋆} ∧ ∃u ∈ C(v) : toku ̸= ⊥

)
∨

(
tokv ∈ {⇊,⟲} ∧ ∃u ∈ C(v) : toku /∈ {⊥,⋆}

)
∨

(
tokv = ◦ ∧ ∃u ∈ C(v) : toku /∈ {⊥, ↑}

)
−→ tokv :=↓

Theorem 2

∀γ ∈ Γ,Ae(γ) ̸= ∅

Proof : Let γ ∈ Γ be a configuration. Since tokr ∈ {↑,⇊, •,⟲, ◦,⋆, ↓}, one of the following lemmas
applies: 1, 2, 3, 4, 5, 6, 7.

C.2 Progress

In this section we formally establish, at once, two crucial properties for the validity of our
algorithm. The first property is that if a token is not anchored at the root of the Do (we will
give later a proper definition of the anchor of a token), then it can only circulate a finite number
of times before being blocked, or deleted. This means that no scheduler, even unfair, can create
an execution in which the token held by the root is never activated.

The second property is that circulation rounds (see Section A.4), are always finite. We
actually prove that the token held by the root can only circulate a finite number of times before
it reaches the root, and the root executes Rr

NewDFS.
The combination of these two properties, and of the liveness established in Theorem 2 leads

to the guarantee that there is an infinity of finite circulation round in any maximal execution
of our algorithm. We will prove in the next section that, eventually, the circulation of the token
is fair.
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To prove both properties, we define a potential function, which associates a positive value
(a weight) to each token in any configuration. Then, we establish that any computing step
decreases the weight of the token, unless the token is reset by an execution of Rr

NewDFS. This
establishes that a token cannot circulate indefinitely, since any step it takes makes a positive
quantity decrease, unless this token is anchored at the root and there are an infinity of new
circulation rounds.

In this section we provide a formal proof of these properties. Let us have first an overview of
this proof. In a corrupted initial configuration, the network may contain several tokens, which
may have common ancestors, and also have several ancestors. To deal with the diversity of
possible configurations, we define a new object to reason on, circulation DODAGs, denoted by
CDo, for each token. Then, we define a weight function, which associates a weighted DODAG,
denoted by WDo, to each CDo. We finally prove that each time a node of a CDo is activated, the
corresponding WDo decreases. According to Theorem 2, there are at least one enabled node in
each configuration, which guarantees that WDo’s actually decrease in maximal executions.

In Section C.2.1 we present the inherent difficulties to overcome for proving our results,
and show how CDo’s and WDo’s are suitable solutions. In Section C.2.2 we formally define CDo’s
and establish basic properties on them. In Section C.2.3 we show how to define the weight
function we use, and introduce the concept of WDo’s. Then, in Sections C.2.4, C.2.5, C.2.6, C.2.7,
and C.2.8 we define the actual weight function, step by step, and prove properties on it at each
step. Finally, we establish our main theorems in Section C.2.9.

C.2.1 Difficulties to Overcome, Circulation DODAG

To associate a decreasing weight to a token, the main difficulty to overcome is that during one
circulation, the token shifts a lot, upward and downward alternately. Thus, the information
of whether the token is very close to the end of the circulation round, or still far, is not local.
This information strongly depends, for example, on which branches have already been visited
by the token, on the number of unvisited children the different nodes have, on whether one
error will be raised, etc. As a result, we cannot focus only on the token if we want to succeed
in estimating how many steps it still has to execute before it ends its circulation.

One first condition for our potential function to be consistent is that it takes into account
the variables of the node holding the token, but also information relative to some ancestors of
that node. In practice, only the ancestors which are somehow pointing to this token will be
considered.

Yet, it might happen that one node in the ancestry of the token holder has several children
involved in a token circulation. If this is due to a triangle topology, i.e. if one node has two
parents, one being the parent of the other one, then considering the ascendants of the token
is sufficient. But this could also be a situation in which one node has two independent token
circulations below it. Our algorithm does not create such situations, but they might exist due
to an incorrect initial configuration. In such a situation, our previous definition is not fully
satisfactory since it does not highlight the fact that those two token circulation are, though
independent, intertwined.

To embrace that complexity, we define an ad hoc object, called a Circulation DODAG,
denoted CDo, which has a Do structure. That new object follows the same idea as the upwards
branch starting at the token, but we reverse that idea. We first look for nodes with no ancestry
(called anchor), that is to say nodes v such that tokv ̸= ⊥ ∧ ∀p ∈ P(v), tokp ∈ {⊥, ↑}. Then,
we go down from each anchor to all its descendants, following nodes u such that toku ̸= ⊥.
Since nodes with toku =↑ can only be updated by RReturn, with effect toku := ⊥, we include
them in our structures, but not their potential descendants: such nodes are necessarily leaves
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of the CDo. Note that if the initial configuration is inconsistent, it may contain several CDo’s. In
Section C.2.2 we formally define CDo’s and we establish some basic properties on CDo’s.

Our goal is now to associate a finite positive quantity, a weight, to any CDo in any configura-
tion. Such an association will be called a weight function. A weight function is said admissible
if any activation of the CDo results in a decrease of the weight of the CDo. Since there does not
exist infinite decreasing sequence of positive integers, it comes that any CDo has a finite lifetime.
Actually, since our algorithm of token circulation does not terminate, there necessarily exists
one rule that does not respect that specification. The rule Rr

NewDFS is the only rule that increases
the weight of a CDo, as it refreshes the token by switching its color. Since only the root of the
Do can execute Rr

NewDFS, we guarantee that any other CDo, anchored at another node than the
root, has a finite lifetime.

Unfortunately, associating a simple integer to a CDo does not allow to take into account the
diversity of situations that we must consider. The appropriate quantity to reason on has itself
a Do structure, which has the same topology as the CDo to which it is associate by the weight
function. Such Do’s are called weighted DODAGs and are denoted WDo.

More precisely, a WDo is a 5-tuple of Do’s. Each component of the tuple deals with one aspect
of the algorithm. The order in which are set the different components is crucial. Indeed, it
happens that some computing step makes one of the component increase. We prove that this
can be only if one component with higher priority decreases at the same time.

• The first component of the 5-tuple evaluates the number of unvisited children of each node
of the CDo.

• The second component the numbers of errors in the network.

• The third component is dedicated to the updates of variable tok on each node, as depicted
in Figure 3.

• The fourth component to the variable play on the children of each node of the CDo.

• And the last component is dedicated to the negotiation process near nodes with tok = •.

C.2.2 Circulation DODAGs

In this subsection, we define tools to capture the behavior of the token circulation, and especially
Circulation DODAGs, CDo’s. We prove in particular that the number of CDo’s can never increase,
which is a very desirable property to have to establish that the token is eventually unique.

Remember that we denote by var
γ
v the state of variable var for the node v in configuration

γ, and by P γ(v) the values of predicate P on node v in configuration γ.
We first define the anchors of our CDo’s. The anchors are nodes v that are involved in a

token circulation, i.e. tokv ̸= ⊥, and which do not have any parent in this token circulation.
Recall that nodes u such that toku =↑ cannot be considered as parents, since they can only
execute rule RReturn, which makes them quit the circulation.

Definition 15 (Anchor)

Let γ ∈ Γ be a configuration. Node a ∈ V is an anchor in γ if

• tok
γ
a ̸= ⊥, and

• ∀u ∈ P(a), tokγu ∈ {⊥, ↑}.

We denote by A(γ) the set of all anchors at γ, and by A∗(γ) the set of all anchors except
the root.
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Remark 4

The root of G is an anchor in any configuration γ.

Now that we have defined anchors, we can define the nodes of the CDo anchored at one
particular anchor. The nodes of the CDo anchored at a are all the nodes which can reach a by
paths corresponding to a actual token circulation. In other words, we only consider paths in
which all nodes have a value tok ̸= ⊥, and such that all the nodes apart from the source have
a value tok ̸=↑. Indeed, nodes u such that toku =↑ are necessarily leaves of CDo’s.

Definition 16 (Nodes of a Circulation DODAG)

Let us consider a configuration γ ∈ Γ and an anchor a ∈ A(γ). We define by induction
the nodes of the Circulation DODAG (CDo) anchored at a in γ, and denote by V γ

a as the
smallest set which contains the node a and such that:

v ∈ V γ
a ⇐⇒

{
tok

γ
v ̸= ⊥

∃u ∈ P(v) :
(
u ∈ V γ

a ∧ tok
γ
u ̸=↑

)
.

We now give a definition of CDo and we present an example with several CDo’s in one Do in
Figure 21.

Definition 17 (Circulation DODAG)

Let us consider a configuration γ ∈ Γ and an anchor a ∈ A(γ). We define the Circulation
DODAG (CDo) anchored at a in γ, and denote Dγ

a , as the Do with nodes V γ
a , and whose

parental relationship is defined by:

∀u, v ∈ V γ
a , (u ∈ CDγ

a
(v) ⇐⇒ u ∈ CG(v) ∧ tokγv ̸=↑)

Remark 5

We use the notation v ∈ Dγ
a as an alias for v ∈ V γ

a .

Remark 6

A CDo with anchor a is a sub-Do of Ga, the D
o under a (see Definition 5).

Lemma 8 establishes that any node v such that tokv ̸= ⊥ belongs to at least one CDo. It
will be useful in the latter to prove that any action taken by some node has an effect on at least
one CDo, and therefore decreases the weight of at least one CDo.

Lemma 8

∀v ∈ V , if tokγv ̸= ⊥, then there exists an anchor a ∈ A(γ) such that v ∈ Dγ
a

Proof : Let us consider a maximal sequence v0v1 · · · vk such that v = v0 and ∀i ∈ [1, k], tokγvi /∈
{⊥ ↑} ∧ vi ∈ P(vi−1). Since the sequence is maximal, vk ∈ A(γ), and by definition we also have
∀i, vi ∈ Dγ

vk
. Consequently, v ∈ Dγ

vk
.

Lemma 9 states that the set of anchors A of G is non-increasing: if one node v is not an
anchor in a configuration γ, then it will never be an anchor in a further configuration. This
lemma justifies that focusing on the decrease of the weight of CDo is sufficient, since no CDo

appears.

48



⊥ F

↑ �

↑

↓

↓

↓

↑ ⊥

anchor of one CDo

nodes of the CDo

Figure 21: Example of three CDo’s in the same graph G

Lemma 9

Let cs = γ → γ′ be a computing step. We have A(γ′) ⊆ A(γ)

Proof : Let us prove the equivalent statement: V \ A(γ) ⊆ V \ A(γ′). Let the node v be v /∈ A(γ),
and prove that v /∈ A(γ′).

• Suppose first that tokγv = ⊥.

If tokγ
′

v = ⊥, then v /∈ A(γ′). Otherwise, we have tokγv = ⊥ and tokγ
′

v ̸= ⊥, which is
possible only if v executes RWin during cs. But this is possible only if v has one parent p
such that tokγp =⇊. But in such a case, we necessarily have tokγ

′

p ∈ {⇊,⟲, ↓}, and thus
v /∈ A(γ′).

• Suppose now that tokγv ̸= ⊥.

Since v /∈ A(γ), v has one parent p such that tokγp /∈ {⊥, ↑}. Let us prove that tokγ
′

p /∈
{⊥, ↑}. Rule ROfferUp is the only rule whose effect might update tok from a state that is
neither ⊥ nor ↑, to a state that is ⊥ or ↑. But p can execute ROfferUp during cs only if
tokγp = •. Under such circumstances, since tokγv ̸= ⊥, Erγ(p) = true, so p cannot execute

ROfferUp during cs. Thus, tokγ
′

p /∈ {⊥, ↑} and by definition, v /∈ A(γ′).

Remark 7

In the latter, when considering the effect of a computing step γ → γ′ on a CDo, we always
work under the hypothesis that a ∈ A(γ′), which also implies that a ∈ A(γ) according to
Lemma 9.

Corollary 1

The number of CDo does not increase.
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A CDo evolves through an execution of the algorithm, and in particular it can federate new
nodes during some computing steps, if some node close to the CDo executes RWin. To be able to
consider such situations, we introduce the notion of border of a CDo, which are close nodes that
might join the CDo.

Definition 18 (Border of a CDo)

Let Dγ
a be a CDo. We define the border of Dγ

a and denote B(Dγ
a) the set of nodes v ∈ V

such that tokγv = ⊥, and ∃p ∈ P(v) : p ∈ Dγ
a ∧ tok

γ
p ̸=↑.

The border of a CDo describes the nodes that can join a CDo. On the other hand, some nodes
can leave a CDo. Lemma 10 establishes that the only nodes susceptible to leave a CDo during
one computing step are the leaves of the CDo: the nodes v such that tokv =↑.

Lemma 10

Let cs = γ → γ′ be a computing step, and let a ∈ A(γ′). Let v1v2 · · · vk be a branch of Dγ
a

such that v1 = a. Then v1v2 · · · vk−1 is a branch of Dγ′
a , and if vk does not execute RReturn

during cs, then v1v2 · · · vk is a branch of Dγ′
a .

Proof : If B = v1v2 · · · vk is a branch of Dγ′

a the result is immediate. Let us rather suppose that B is
not a branch of Dγ′

a , and let us consider the highest value i such that Bi = v1v2 · · · vi is a branch
of Dγ′

a . Remark that v1 = a is necessarily a branch of Dγ′

a , so i ∈ [1, k − 1].

By definition, vi+1 ∈ CDγ
a
(vi), so tokγvi /∈ {⊥, ↑} and tokγvi+1

̸= ⊥. Let us first prove that

tokγ
′

vi /∈ {⊥, ↑}. The only possibility for the opposite would be that vi executes ROfferUp during
cs. But this implies that tokγvi = • and thus Erγ(vi) due to vi+1. Thus, if activated, vi does not
execute ROfferUp during cs but ETrustChild.

Consequently, since we have vi+1 /∈ C
Dγ′

a
(vi), we deduce that tokγ

′

vi+1
= ⊥, and thus vi+1

executes RReturn during cs. But then, tokγvi+1
=↑ and thus vi+1 has no children in Dγ

a .

We deduce that vi+1 = vk, which means that vi = vk−1 and thus v1v2 · · · vk−1 is a branch of
Dγ′

a , and if vk does not execute RReturn then v1v2 · · · vk is a branch of Dγ′

a .

Lemma 11 establishes constraints on which actions might be taken by a node.

Lemma 11

Let cs = γ → γ′ be a computing step, and let v be a node. If v = r then v can update cv
only if tokγv =↑, and if v ̸= r then v can update cv only if tokγv = ⊥.

Proof : If v = r then only Rr
NewDFS can update cv, and it is enabled only if tokγv =↑. If v ̸= r then

only RWin and RFakeWin can update cv, and both are enabled only if tokγv = ⊥.

C.2.3 Introduction to the potential function W

To prove that one CDo can only be activated a finite number of time, we associate a weight to
each CDo in each configuration γ. We design this weight function (or potential function) such
that if one node is activated in the CDo or near it during the computing step γ → γ′, then
the weight of the CDo is less in γ′ than in γ. The goal is to provide the domain of weights
with a well-founded order, so that such decreasing sequences are necessarily finite. Recall that
decreasing occurs only during periods during which no execution of Rr

NewDFS resets the weight of
a CDo to a high value.

Unfortunately, the structure of CDo is too complex for it can be valuated by a object as simple
as an integer. The most natural way to associate a weight to a CDo is to build a Do, similar to
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the CDo considered, but whose nodes are labeled with weights. We call such structures Weighted
DODAGs, denoted WDo’s for short.

In this section, we consider (M,≤) an arbitrary well-founded set. Although our weight
function is defined on CDo’s, it is simpler to work through this section by considering arbitrary
Do’s. Since CDo’s have a Do structure, all this work naturally applies to CDo’s.

Definition 19 formally introduces WDo’s: the object on which we will define a well-founded
order and that will later be considered as the weight of Do’s.

Definition 19 (Weighted DODAG)

A weighted Do (WDo) is a Do with labels in M : (Da, W), where Da is a Do and W ∈ MVa is a
map that associates an element of M to each node of Da.

The next step is to define an order of WDo’s. This is feasible only if the two WDo’s we compare
are based on Do’s having the same anchor a. This won’t be restrictive since in practice, we
compare the weights of the same CDo at different, consecutive, configuration of an execution.

To compare WDo’s, the first step is to compare branches of WDo’s. Since two WDo’s that share
the same anchor do not necessarily share the same branches in their topology, the appropriate
notion to this comparison is the projection of WDo’s on the branches of the Do under their common
anchor. This is similar to what we introduced in Definition 7.

Definition 20 (Projection of a WDo on a Branch)

Let (Da, W) be a WDo, and let B = v1v2 · · · vk be a maximal branch of Ga. We call projection
of (Da, W) on B, and denote (Da, W)(B) the sequence W(v1)W(v2) · · · W(vj), where Da(B) =
v1v2 · · · vj is the projection of Da on B.

Since the branches of two WDo’s may have variable length, we compare them using the
alphabetical order (see Definition 9). This order is well-founded since the branches of the WDo’s
are all bounded by n, the number of nodes in the graph.

To compare WDo’s, we compare the weights of all the branches which start at a. One WDo

D1
a is less than or equal to one other WDo D2

a if, for any branch B of Ga the Do under a, the
projection of D1

a on B is less than or equal to the projection of D2
a on B.

Definition 21 presents a well-founded order on WDo’s.

Definition 21 (Order on WDo’s)

We define a partial order on WDo’s which share the same anchor by:

(D′
a, W

′) ⪯ (Da, W) ⇐⇒ for all maximal branch B of Ga,
(D′

a, W
′)(B) ⪯α (Da, W)(B)

By construction, the resulting order is not a total order. Indeed, there exists Do’s and
branches such that (D′

a, W
′)(B1) ≺α (Da, W)(B1), on the one hand, and (Da, W)(B2) ≺α (D′

a, W
′)(B2)

on the other hand. Yet, we guarantee in the following sections that any computing step makes
the weight of the Do decrease (which implies that the corresponding WDo’s are comparable).

Lemma 12

Definition 21 defines a well-founded order.

Proof : By construction, ⪯ is reflexive, anti-symmetric, and transitive. Let us prove that it is also
well-founded. Consider an infinite sequence of WDo’s (Dn

a , W
n)n∈N such that ∀n, (Dn+1

a , Wn+1) ⪯
(Dn

a , W
n), and let us prove that there exists N ∈ N such that ∀n ≥ N, (Dn

a , W
n) = (DN

a , WN ).

Let B be a maximal branch ofGa, and let k be the length of B. By definition, ∀n, (Dn+1
a , Wn+1)(B) ⪯α

(Dn
a , W

n)(B). But⪯α is a well-founded order on sequences of length at most k, and ∀n, (Dn
a , W

n)(B)
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is a sequence of length at most k. Consequently, there existsNB ∈ N such that ∀n ≥ NB, (D
n+1
a , Wn+1)(B) =

(Dn
a , W

n)(B).
Since there exists a finite number of maximal branches B of Ga, let us consider N =

maxB(NB). By definition, ∀n ≥ N , for all maximal branch B of Ga, (D
n
a , W

n)(B) = (DN
a , WN )(B),

and thus, ∀n ≥ N, (DN
a , WN ) ⪯ (Dn

a , W
n). Since ⪯ is an order, we have ∀n ≥ N, (Dn

a , W
n) =

(DN
a , WN ).

We now show how to associate a WDo to any CDo as soon as we are given a weight function
W on nodes of G. This association is itself a weight function on CDo, induced by the weight
function on nodes. For simplicity, we also call W the induced weight function.

Contrary to what was presented in Definition 19, the weight function on nodes may depend
on the global configuration γ of the system, and not only of the state of nodes v. More formally,
we now consider a weight function W(v, γ) which associates an element of M to each node in a
given configuration. This does not pose any fundamental problem since, given γ, we can still
associate a WDo to any CDo Dγ

a . We can as well associate, given γ, a weight to any projection of
Dγ

a on any branch of Ga. This is formally stated in Definition 22.

Definition 22 (Weight of a circulation DAG)

Let W : V × Γ → M be a function that associates a weight to any node of a configuration.
For any fixed configuration γ ∈ Γ, we define W( · , γ) ∈ MVDa the function that associates

to any node v ∈ VDa the weight of v in γ: W( · , γ)(v) = W(v, γ).
Then, for all γ ∈ Γ, for all CDo Dγ

a at γ, we can consider W(Dγ
a , γ) the weight of Dγ

a in γ,
which is the WDo (Dγ

a , W( · , γ)).
We also define the weight of a branch B = v1v2 · · · vk ofDγ

a in γ, and denote W(Dγ
a(B), γ) =

W(Dγ
a , γ)(B) = (Dγ

a , W( · , γ))(B) = W(v1, γ)W(v2, γ) · · · W(vk, γ).

To deal with all the different aspects of the algorithm, we actually define several weight
functions in Sections C.2.4 to C.2.8, dealing with the different aspects of our algorithm. Each of
these functions defines one different WDo to the same CDo. In order to deduce global properties
on the evolution of the entire algorithm, we must combine all those function and to compare
the different induces WDo’s all at once. To do so, we simply use the lexicographic order on WDo’s
that is induced by the order ⪯ introduced in Definition 21.

Definition 23 (Lexicographic order on WDo’s)

We denote by ⪯k the lexicographic order on k-tuples of WDo’s which share the same anchor,
induced by the order ⪯.

∀k ∈ N,⪯k is a well-founded order, as a lexicographic order induced by a well-founded
order.

Our goal is now to prove two properties. The first one is that the WDo’s associated to one
CDo never increases unless the anchor of the CDo is the root, and the root executes Rr

NewDFS. The
second property is that each time one node of the CDo, or near it, is activated (by a rule which
is not Rr

NewDFS), the weight of the CDo decreases. A weight function which respects the first
property is said pre-admissible, and it is said admissible if it respects both.

Since the weight of a CDo is expressed as a tuple of WDo’s, the formal definitions of admissibility
and pre-admissibility lie on the lexicographic order introduced in Definition 23. Each potential
function has an even stronger weight as it appears on the first component of the tuple.

The exact definition of admissibility actually depends on how we define what a node near
a CDo is. This definition depends on constraints which will emerge from the definitions of the
weight functions, and therefore will be provided later, in Definition 26 of Section C.2.9.

We give here the definition of pre-admissibility.
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Definition 24 (Pre-admissible weight-functions)

Let W1, . . . , Wk : V × Γ → M be k weight functions on nodes. We say that (W1, . . . , Wk) is
pre-admissible if for any computing step cs = γ → γ′ such that r does not execute Rr

NewDFS

during cs, for all CDo Dγ′
a , we have(

W1(D
γ′
a , γ′), · · · , Wk(Dγ′

a , γ′)
)
⪯k

(
W1(D

γ
a , γ), · · · , Wk(Dγ

a , γ)
)
.

Remark 8

In order to have relatively short and readable equations in the following, the previous in-
equality will often be written:(

W1, . . . , Wk
)
(Dγ′

a , γ′) ⪯k
(
W1, . . . , Wk

)
(Dγ

a , γ)

In Sections C.2.4 to C.2.8 we define five weight functions on nodes, that belong to V ×Γ → N:
which are WCh, WEr, WCirc, WPlay and WNego. Each one of those 5 functions deals with one specific
part of the algorithm, by decreasing order of importance, and is treated separately in one of
the next five sections. Thus, we define, for each configuration, 5 WDo’s that, associated with the
lexicographic order ⪯5, will allow us to formally prove that the token circulation terminates.
Figure 22 summarizes the effects of the rules, and for each of them indicates which component
of W it decreases.

We prove that W = (WCh, WEr, WCirc, WPlay, WNego) is pre-admissible, by proving step by step
that all the prefixes of that 5-tuple are pre-admissible. We also establish some properties that
will allow us to prove, in Section C.2.9, that (WCh, WEr, WCirc, WPlay, WNego) is admissible.

C.2.4 First component of W: WCh future children of v

Explanations One property which guarantees that circulation rounds are finite is that one
node can receive the token from its parent only once, as long as the parent does not return the
token to its own parent.

Indeed, once a node u receives the token from one of its parent p, it takes the same color
as that parent, and its variable play becomes W. Variable playu then cannot be set to P before
tokp is set to ↑, which implies that u cannot take the token once again from p before p itself
returns the token to its own parent.

For that reason, the first component of the weight function W should, at least, count on each
node u ∈ V the number of children of u that are susceptible to execute RWin before u execute
ROfferUp. The variables that we must consider to establish if one node is susceptible to execute
RWin are play and c. In the following we detail how we formally define this count.

Let us consider one node v and one of its children u. Remark first that if tokv ∈ {⊥, ↑},
then the weight of v can be defined as 0. Indeed, such a node cannot be involved in a pass of
the token to its children before it itself receives the token from one of its parents. Thus, when
v receives the token from its parent, its own weight increases from 0 to the actual count of how
many children susceptible to execute RWin it has. But at the same moment, the weight of v’s
parent decreases by one due to v cannot execute RWin anymore. Consequently, due to how we
defined ⪯α on weighted chains, the weight of each branch of a CDo that contains v and its parent
decrease when v execute RWin.

We now consider one node v such that tokv /∈ {⊥, ↑} and one child u of v. In this section,
we only focus on the transmission of the token between nodes, and not on the transitions of the
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node Rule id tok c play W↘
v 6= r RWin ⊥ →F switch P→ W WCh
v 6= r RFakeWin switch P→ {W, F} WCh

∀v ∈ V ETrustChild {•,�,	, ◦,F} →↓ WEr

∀v ∈ V RGive • →� WCirc
∀v ∈ V RNewPlay �→	 WCirc
∀v ∈ V RDrop 	→↓ WCirc
∀v ∈ V RNego (1,⊥) F→ • WCirc
v 6= r ROfferUp • →↑ WCirc
∀v ∈ V RReceive ↓→ ◦ WCirc
∀v ∈ V RReNego (1,⊥) ◦ → • WCirc
v 6= r RReturn ↑→ ⊥ → {W, F} WCirc

v 6= r RLose P→ L WPlay
v 6= r RReplayD L→ P WPlay
v 6= r RReplayUp W→ P WPlay
v 6= r RFake W→ F WPlay

∀v ∈ V RmaxPos maxu∈C(v) idu WNego
∀v ∈ V RNewPh (ph + 1,⊥) WNego
v 6= r RNewBit (ph, Bit(ph)) WNego

v 6= r RReWin F→ W
r Rr

NewDFS ↑→F switch

Figure 22: Dedicated weight function for each rule. For readability, one color is associated to
each weight function.

variable tok on one node. Thus, we treat indifferently the different cases when tokv ∈ {•,⋆,⇊
,⟲, ◦, ↓}. Let us establish under which circumstances u might receive the token from v.

• Node u can receive the token, at first, if cu ̸= cv and playu ∈ {P, L}, by simply executing
RWin (or after one execution of RReplayD).

• Secondly, if cu ̸= cv and playu ∈ {W, F}, then u can execute RReplayUp, and RReWin if
necessary, and then arrives in the previous situation. Therefore, we must count u as a
node that might receive the token.

• Finally, if cu = cv and playu ∈ {P, L}, then u can execute RWin or RFakeWin, and then
arrives in the previous situation.

Note that if cu = cv and playu ∈ {W, F} then u cannot execute RWin nor RFakeWin due to playu,
and cannot execute RReplayUp since tokv ∈ {⊥, ↑}. This is described in Figure 23.

All the transitions presented in the diagram of Figure 23 bring the node that executes the
corresponding rule closer to the stable state where cu = cv ∧ playu ∈ {W, F}. We need to fully
describe the process that leads to the passing of the token to one child. Therefore, we define
WCh such that any execution of a rule that corresponds to a transition presented in Figure 23
makes WCh decrease on the parent of the node that executes it.

Yet, remark that we cannot treat RReplayUp the same way as we treat RWin and RFakeWin.
Indeed, any execution of RWin or RFakeWin by one node u requires that at least one parent v of
u has its variable tokv different from {⊥, ↑}, which means that any such execution corresponds
to a transition on that diagram for that node v. On the contrary, one node u might execute
RReplayUp without any parent v such that tokv /∈ {⊥, ↑}. Thus, although we treat some, we
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cu 6= cv

playu ∈ {P, L}
cu 6= cv

playu ∈ {W, F}

cu = cv

playu ∈ {P, L}
cu = cv

playu ∈ {W, F}

RWin (only if tokv =↓ )
RFakeWin

RReplayUp

RWin
RFakeWin

Figure 23: Evolution of the state of a child of node v with tokv /∈ {⊥, ↑}.

do not treat all possible executions of RReplayUp with WCh. This means that, by the end of this
section, we prove that any activation of RWin or RFakeWin makes W decrease, and that some
specific activation of RReplayUp make W decrease. This piece of knowledge will nevertheless be
useful in the following sections until we prove that any activation of RReplayUp makes W decrease.
This is formally stated in Theorems 3 and 4.

Definitions Since children u of v move along the different boxes of Figure 23, we must design
WCh such that any transition taken by u makes WCh(v, γ

′) < WCh(v, γ). Our solution is to attribute
different coefficients to the different boxes: the further node u is from the stable configuration
cu = cv ∧ playu ∈ {P, L}, the higher the coefficient. Somehow, the coefficient represents the
number of transitions needed by one node to reach the stable configuration. The coefficients
are the integer above and below the boxes in Figure 24.

AllCand(v) ReplayCand(v) EqColCand(v)

cu 6= cv

playu ∈ {P, L}
cu 6= cv

playu ∈ {W, F}

cu = cv

playu ∈ {P, L}
cu = cv

playu ∈ {W, F}

RWin
RFakeWin

RReplayUp

RWin
RFakeWin

×1 ×2

×0
×3

Figure 24: Weight associated to a child of node v with tokv /∈ {⊥, ↑}.

In practice, to make the proof easier to approach, we define 3 sets on each node v, such
that any transition taken by one child u of v brings u out of one of the set. Those sets have a
non-empty intersection, and are such that the coefficient attributed to one node is the number
of sets it belongs to.

• One set includes all the nodes that are potential candidates to receiving the token from
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v, that is to say all the children u of v that are not in a stable state.

• One other set, included in the first one, includes all of those candidates that must execute
RReplayUp before they might receive the token from v.

• Finally, the last set, included in the second one, includes all of those candidates that must
execute RWin or RFakeWin before they can execute RReplayUp and receive the token from v,
that are also the candidates that are the same color as v.

Let us define those three sets, starting from the last, and smallest, one.

EqColCandγ(v) = {u ∈ C(v) | cγu = cγv ∧ playγu ∈ {P, L}} (34)

ReplayCandγ(v) = EqColCandγ(v) ∪ {u ∈ C(v) | cγu ̸= cγv ∧ playγu ∈ {W, F}} (35)

AllCandγ(v) = ReplayCandγ(v) ∪ {u ∈ C(v) | cγu ̸= cγv ∧ playγu ∈ {P, L}} (36)

Finally, we can define WCh(v, γ) such that the coefficients on Figure 24 are respected:

WCh(v, γ) =

{
0 if tokγv ∈ {⊥, ↑}∣∣AllCandγ(v)∣∣+ ∣∣ReplayCandγ(v)∣∣+ ∣∣EqColCandγ(v)∣∣ otherwise

(37)

Proofs Lemmas 13, 14, and 15 state that ∀v ∈ V , the three sets defined previously can only
decrease during an execution, as long as tokv /∈ {⊥, ↑}. Basically, we prove that there is no
other transition that the ones we represented in Figure 24. These three lemmas are one of the
main arguments to establish that WCh is a pre-admissible weight function.

Lemma 13

Let cs = γ → γ′ be a computing step and let v ∈ V be a node. If tokγv /∈ {⊥, ↑} then
AllCandγ

′
(v) ⊆ AllCandγ(v).

Proof : We prove the equivalent statement:

C(v) \ AllCandγ(v) ⊆ C(v) \ AllCandγ
′
(v).

Since tokγv /∈ {⊥, ↑}, then according to Lemma 11, v does not update cv during cs. Let us
consider one child u of v such that u /∈ AllCandγ(v). By definition, cγu = cγv ∧ playγu ∈ {W, F}.
During cs, u does not execute RWin nor RFakeWin since playγu ̸= P, and does not execute Rr

NewDFS

since it has at least one parent. Furthermore, u does not execute RReplayUp during cs since

v ∈ Peq
γ(u) ∧ tokγv =↑. Thus, cγ′

u = cγ
′

v ∧ playγ
′

u ∈ {W, F}, in other words, u /∈ AllCandγ
′
(v). As

a result, C(v) \ AllCandγ(v) ⊆ C(v) \ AllCandγ′
(v).

Lemma 14

Let cs = γ → γ′ be a computing step and let v ∈ V be a node. If tokγv /∈ {⊥, ↑} then
ReplayCandγ

′
(v) ⊆ ReplayCandγ(v).

Proof : We prove the equivalent statement:

C(v) \ ReplayCandγ(v) ⊆ C(v) \ ReplayCandγ
′
(v).

Since tokγv /∈ {⊥, ↑}, then according to Lemma 11, v does not update cv during cs. Let us
consider one child u of v such that u /∈ ReplayCandγ(v). If u /∈ AllCandγ(v) then according
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to Lemma 13, u /∈ AllCandγ
′
(v) and thus u /∈ ReplayCandγ

′
(v). Let us suppose now that

u ∈ AllCandγ(v) \ ReplayCandγ(v), i.e. cγu ̸= cγv ∧ playγu ∈ {P, L}. If u executes RWin or RFakeWin

during cs, then cγ
′

u = cγ
′

v ∧ playγ
′

u = W and thus u /∈ ReplayCandγ
′
(v). Otherwise, since u has

at least one parent it does not execute Rr
NewDFS and thus does not update cv, and it can neither

update cu to W or L, and thus u /∈ ReplayCandγ
′
(v). As a result, C(v) \ ReplayCandγ(v) ⊆

C(v) \ ReplayCandγ′
(v).

Lemma 15

Let cs = γ → γ′ be a computing step and let v ∈ V be a node. If tokγv /∈ {⊥, ↑} then
EqColCandγ

′
(v) ⊆ EqColCandγ(v).

Proof : We prove the equivalent statement:

C(v) \ EqColCandγ(v) ⊆ C(v) \ EqColCandγ
′
(v).

Since tokγv /∈ {⊥, ↑}, then according to Lemma 11, v does not update cv during cs. Let us
consider one child u of v such that u /∈ EqColCandγ(v). If u /∈ ReplayCandγ(v) then according
to Lemma 14, u /∈ ReplayCandγ

′
(v) and thus u /∈ EqColCandγ

′
(v).

Let us suppose now that u ∈ ReplayCandγ(v)\EqColCandγ(v), i.e. cγu ̸= cγv ∧playγu ∈ {W, F}.
Since u has at least one parent, it does not execute Rr

NewDFS during cs, and since playγu ̸= P, u does

not execute RWin nor RFakeWin during cs. Thus, we have cγ
′

u ̸= cγ
′

v and thus u /∈ EqColCand(v, γ′).
As a result, C(v) \ EqColCandγ(v) ⊆ C(v) \ EqColCandγ′

(v).

Lemma 16 establishes that if one node executes RWin, RFakeWin, or RReplayUp, then the weight
of all its parents in any CDo decrease. Basically, we formally prove that any such activation
corresponds to one of the transition represented in Figure 24, and thus that it makes one of the
three sets decrease.

Lemma 16

Let cs = γ → γ′ be a computing step, and let v ∈ V be a node. If v executes RWin, RFakeWin,
or RReplayUp during cs, then ∀p ∈ P(v) such that tok

γ
p /∈ {⊥, ↑}, we have WCh(p, γ

′) <
WCh(p, γ).

Proof : Let us consider p ∈ P(v) such that tokγp /∈ {⊥, ↑}. Lemma 11 guarantees that cγ
′

p = cγp .

Suppose first that v executes RWin or RFakeWin during cs, which induces playγv = P and

playγ
′

v ∈ {W, F}.
If cγv = cγp then v ∈ EqColCandγ(p). But since playγ

′

v ∈ {W, F}, v /∈ EqColCandγ
′
(p), which

according to Lemma 15 means that EqColCandγ
′
(p) ⊊ EqColCandγ(p). According to Lemmas 13

and 14, we obtain WCh(p, γ
′) < WCh(p, γ).

Otherwise, cγv ̸= cγp . Since playγv = P, we have v ∈ AllCandγ(p), and since playγv ∈ {W, F}
and v switches its color during cs, we also have v /∈ AllCandγ

′
(p). According to Lemma 13,

AllCandγ
′
(p) ⊊ AllCandγ(p), and according to Lemmas 14 and 15, we obtain WCh(p, γ

′) <
WCh(p, γ).

Let us now suppose that v executes RReplayUp during cs. Since tokγp /∈ {⊥, ↑}, predicate
ReplayWγ(v) implies that cγp ̸= cγv . Since v execute RReplayUp during cs, we have playγv = W, and
thus v ∈ ReplayCandγ(p), and we also know that v updates playv to P and that it does not update

its variable cv which implies that cγ
′

v ̸= cγ
′

p ∧playγ′

v = P. Thus, v /∈ ReplayCandγ
′
(p) so according

to Lemma 14 means that ReplayCandγ
′
(p) ⊊ ReplayCandγ(p). According to Lemmas 13 and 15,

we obtain WCh(p, γ
′) < WCh(p, γ).
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Lemma 17 establishes that the function WCh is adapted to Definitions 9 and 21. Indeed,
it might happen that one node sees its weight increase, but only if all of its parents see their
weight decrease.

Lemma 17

Let cs = γ → γ′ be a computing step and let v ∈ V such that v does not execute Rr
NewDFS

during cs. If WCh(v, γ
′) > WCh(v, γ) then ∀p ∈ P(v) such that tok

γ
p /∈ {⊥, ↑}, we have

WCh(p, γ
′) < WCh(p, γ), and there exists at least one such p.

Proof : According to Lemmas 13, 14, and 15, if tokγv ∈ {•,⋆,⇊,⟲, ↓, ◦}, then WCh(v, γ
′) ≤ WCh(v, γ).

Furthermore, if tokγv =↑, then tokγ
′

v ∈ {↑,⊥} and thus WCh(v, γ
′) = WCh(v, γ).

Finally, if tokγv = ⊥, then WCh(v, γ
′) > WCh(v, γ) is possible only if v executes RWin during cs,

and thus Lemma 16 states that ∀p ∈ P(v) such that tokγp /∈ {⊥, ↑}, we have WCh(p, γ′) < WCh(p, γ).

Theorem 3 establishes that WCh is pre-admissible.

Theorem 3

Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that a

does not execute Rr
NewDFS during cs. We have WCh(D

γ′
a , γ′) ⪯ WCh(D

γ
a , γ).

Proof : Let B = v1v2 · · · vk be a maximal branch ofGa, and let v1v2 · · · vj = Dγ′

a (B) be the projection
of Dγ′

a on B. Let us consider the following cases:

• If v1v2 · · · vj is a branch of Dγ
a(B) and ∀i ∈ [1, j], WCh(vi, γ

′) = WCh(vi, γ).

Then we have WCh(v1, γ
′)WCh(v2, γ

′) · · · WCh(vj , γ′) = WCh(v1, γ)WCh(v2, γ) · · · WCh(vj , γ) and thus

WCh(D
γ′

a (B), γ′) ⪯α WCh(D
γ
a(B), γ).

• If v1v2 · · · vj is a branch of Dγ
a(B) and ∃i ∈ [1, j] : WCh(vi, γ

′) ̸= WCh(vi, γ).

Let us consider the smallest i such that WCh(vi, γ
′) ̸= WCh(vi, γ). According to Lemma 17,

WCh(vi, γ
′) < WCh(vi, γ), and as a consequence, WCh(v1, γ

′)WCh(v2, γ
′) · · · WCh(vj , γ′) ≺ WCh(v1, γ)WCh(v2, γ) · · · WCh(vj , γ).

Thus, we have WCh(D
γ′

a (B), γ′) ≺α WCh(D
γ
a(B), γ).

• If v1v2 · · · vj is not a branch of Dγ
a .

Let us consider v1v2 · · · vl = Dγ
a(B) the projection of Dγ

a on B. Since v1v2 · · · vj is not a
branch of Dγ

a we have 1 ≤ l < j, and thus l+1 ≤ j. Remark first that since (vl, vl+1) is an
edge in Dγ′

a , we have tokγ
′

vl
/∈ {↑,⊥}, and thus tokγvl ̸=↑. But vl+1 /∈ Dγ

a , so tokγvl+1
= ⊥,

and since vl+1 ∈ Dγ′

a , tokγ
′

vl+1
̸= ⊥ so vl+1 executes RWin during cs. Thus, Lemma 16

applies, and as a consequence WCh(vl, γ
′) < WCh(vl, γ).

Let us consider the smallest i ≤ l such that WCh(vi, γ
′) ̸= WCh(vi, γ). According to Lemma 17,

WCh(vi, γ
′) < WCh(vi, γ), and as a consequence,

WCh(v1, γ
′)WCh(v2, γ

′) · · · WCh(vj , γ′) ≺ WCh(v1, γ)WCh(v2, γ) · · · WCh(vl, γ).

Thus, we have WCh(D
γ′

a (B), γ′) ≺α WCh(D
γ
a(B), γ).

We prove that for any maximal branch v1v2 · · · vk of Gt, WCh(D
γ′

a (B), γ′) ⪯α WCh(D
γ
a(B), γ). By

definition, we have WCh(D
γ′

a , γ′) ⪯ WCh(D
γ
a , γ).

Theorem 4 and Lemma 18 prove that under certain circumstances, we are certain that the
weight of one CDo decreases. The first theorem focuses on the application of rules RWin and
RFakeWin, and will be useful to prove that W is an admissible weight function, but also to prove
that the other, longer, prefixes of W are pre-admissible. Indeed, if in any computing step, one
node executes RWin or RFakeWin, we do not need to look beyond the first component to be assured
that the weight does not increase, since ⪯k is a lexicographic order. The second lemma focuses
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on the length of the branches of a CDo, and is useful for us to write proofs in the following. Just
as we explained before, we can now suppose in the following proofs of pre-admissibility that
branches of CDo’s never increase, since it would make the first component of W decrease.

Theorem 4

Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that a
does not execute Rr

NewDFS during cs. If ∃v ∈ B(Dγ
a) such that v executes RWin, RFakeWin, or

RReplayUp during cs, we have WCh(D
γ′
a , γ′) ≺ WCh(D

γ
a , γ).

Proof : Let us consider one node v ∈ B(Dγ
a) that executes RWin, RFakeWin, or RReplayUp during cs. By

definition, ∃p ∈ P(v) : p ∈ Dγ
a ∧ tokγv ̸=↑. Let us consider B = v1v2 · · · vk a branch of Dγ

a such
that vk = p. According to Lemma 10, B is a branch of Dγ′

a .

According to Lemma 16, WCh(p, γ
′) < WCh(p, γ), and according to Theorem 3, WCh(D

γ′

a (B), γ′) ⪯α

WCh(D
γ
a(B), γ). Consequently, WCh(D

γ′

a (B), γ′) ≺α WCh(D
γ
a(B), γ), and thus according to Theo-

rem 3, WCh(D
γ′

a , γ′) ≺ WCh(D
γ
a , γ).

Lemma 18

Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that a
does not execute Rr

NewDFS during cs. If there exists B = v1v2 · · · vk a branch of Ga such that

Dγ′
a (B) is longer than Dγ

a(B), then WCh(D
γ′
a , γ′) ≺ WCh(D

γ
a , γ).

Proof : Let us consider v1v2 · · · vj = Dγ
a(B). Let us prove that v = vj+1 satisfies the conditions of

Theorem 4.

Remark first that tokγvi ̸=↑. Indeed, if tokγvi =↑ then tokγ
′

vi ∈ {↑,⊥}, which is contradictory
since v ∈ C

Dγ′
a
(vi). Then, we have tokγv = ⊥ which implies v ∈ B(Dγ

a), otherwise we would have

v ∈ CDγ
a
(vi). But since v ∈ Dγ′

a , we have tokγ
′

v ̸= ⊥, which is possible only if v executes RWin

during cs.

We can apply Theorem 4 to our situation, and consequently WCh(D
γ′

a , γ′) ≺ WCh(D
γ
a , γ).

C.2.5 Second component of W: WEr errors descending from v

Explanations One major quantity in our algorithm that should decrease during an execution
is the number of nodes v such that Er(v). Indeed, we expect that after some convergence time,
no node will execute ETrustChild, and that our CDo will have the expected shape. Although
that last sentence will be proven true in the following, the number of nodes v such that Er(v)
might occasionally increases. Indeed when a node executes ETrustChild, it might happen that
it creates an error in some of its parents. For example, if node v has p as a parent, and

tok
γ
v = ⋆, tokγp =⇊. We have ¬Erγ(p), but if in γ → γ′, v executes ETrustChild, then tok

γ′
v =↓

and thus Erγ
′
(p). In the described case, the number of nodes in error does not increase, but if

node v has several parents p with tok
γ
p ∈ {⇊,⟲} then that number will actually increase.

One first idea to prevent this from happening is that each node counts the number of
descendants it has that are in error. This almost works, but not totally. Indeed, suppose v has
two parents p, that both have the same parent a, and we have tok

γ
v = ⋆, tokγp =⇊, tokγa =↓.

In γ, a only has one descendant in error, but has two once v executes ETrustChild. The fact that
errors can split through several branches forces us to design WEr such that it counts a descendant
in error as many times as there exists paths to that node.

Fortunately, we can stop the count in our descendants as soon as we reach a node v such
that tokv ∈ {⊥, ↑, ↓}. Indeed, such nodes cannot execute ETrustChild, which implies that errors
cannot ride up through such nodes.
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There exists another situation that increases the number of nodes in error. Suppose one
node v executes RWin during γ → γ′. We have WEr(v, γ) = 0 by definition. Yet, it might happen

that one child u of v is such that tokγ
′

u ̸= ⊥. It might even happen that WEr(u, γ
′) > 0, with an

arbitrary value. In such a situation, the weight of v, and thus WEr(D
γ
a) can increase arbitrarily.

Hopefully, we proved in the previous section that at the same moment, WCh(D
γ
a) decreases, and

thus no problem is raised.

Definition According to what precedes, we define WEr the second component of our weight
function by 0 on nodes v such that tokv ∈ {↓, ↑,⊥}, and by the number of nodes in error they
can see within range, themselves included, otherwise.

WEr(v, γ) =


0 if tokγv ∈ {↓, ↑,⊥}∑

u∈C(v) WEr(u, γ) + 1 if Erγ(v)∑
u∈C(v) WEr(u, γ) otherwise

(38)

↑

�

F

F

�

	 ⊥

◦

↓

0

1

2

3

3

2 0

6

0

node v such that Er(v)

WEr(v, γ)

Figure 25: Example of the definition of WEr on a Do.

Proofs Lemma 19 describes under which conditions one node that is not in error before a
computing step can become in error after that computing step. It states that either it makes
WCh decrease, either it comes from the fact that one child of that node executed ETrustChild,
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which does not lead to any increase of WEr. This lemma is the main argument to establish that
(WCh, WEr) is a pre-admissible weight function.

Lemma 19

Let v ∈ V be a node and let cs = γ → γ′ be a computing step. If ¬Erγ(v) and Erγ
′
(v),

then WCh(v, γ
′) < WCh(v, γ) or v executes RWin during cs or ∃u ∈ C(v) such that u executes

ETrustChild during cs.

Proof : We prove the equivalent statement: if ¬Erγ(v) then ¬Erγ′
(v) or WCh(v, γ

′) < WCh(v, γ) or,
during cs, v executes RWin or ∃u ∈ C(v) such that u executes ETrustChild.

Since ¬Erγ(v), only few cases must be considered.

1. If tokγv = ⊥ then either v executes RWin during cs, either it does not, but then tokγ
′

v = ⊥
and thus ¬Erγ′

(v).

2. If tokγv =↑ then tokγ
′

v ∈ {↑,⊥} and thus ¬Erγ′
(v).

3. If tokγv =↓ then if v does not execute RReceive during cs, tokγ
′

v =↓ and thus ¬Erγ′
(v).

Otherwise, v executes RReceive during cs and then ∀u ∈ C(v), tokγu ∈ {⊥, ↑}. Either one
child u of v executes RWin, and then WCh(v, γ

′) < WCh(v, γ) according to Lemma 16, either
no one does, but then ∀u ∈ C(v), tokγ′

u ∈ {⊥, ↑}, and since tokγ
′

v = ◦, we have ¬Erγ′
(v).

4. If tokγv = ⋆ ∧ ∀u ∈ C(v), tokγu = ⊥ then either one child u of v executes RWin, and
then WCh(v, γ

′) < WCh(v, γ) according to Lemma 16, either no one does, but then ∀u ∈
C(v), tokγ′

u = ⊥ which means that ¬Erγ′
(v).

5. If tokγv = • ∧ ∀u ∈ C(v), tokγu = ⊥ then children u of v cannot execute RWin during cs:
either u has one other parent p such that tokγp =⇊, and then ¬OkNegγ(u), either it has

not, and thus it cannot execute RWin either. Thus, ∀u ∈ C(v), tokγ′

u = ⊥, so ¬Erγ′
(v).

6. If tokγv =⇊ ∧∀u ∈ C(v), tokγu ∈ {⊥,⋆} then children u of v cannot execute RNego since
they have one parent v with tokγv =⇊. If no children u of v executes ETrustChild during cs,
then ∀u ∈ C(v), tokγ′

u ∈ {⊥,⋆}. Furthermore, tokγ
′

v ∈ {⇊,⟲} since ¬Erγ(v). Thus, if no
children u of v executes ETrustChild during cs, ¬Erγ′

(v).

7. If tokγv =⟲ ∧∀u ∈ C(v), tokγu ∈ {⊥,⋆} then children u of v cannot execute RNego since
they have one parent v with tokγv =⟲. If no children u of v executes ETrustChild during cs,
then ∀u ∈ C(v), tokγ′

u ∈ {⊥,⋆}. Furthermore, tokγ
′

v ∈ {⟲, ↓}. Thus, if no children u of v
executes ETrustChild during cs, ¬Erγ′

(v).

8. If tokγv = ◦ ∧ ∀u ∈ C(v), tokγu ∈ {⊥, ↑} then children u of v cannot execute RWin during
cs: either u has one other parent p such that tokγp =⇊, and then ¬OkNegγ(u), either it has
not, and thus it cannot execute RWin either. This implies that ∀u ∈ C(v), tokγ′

u ∈ {⊥, ↑}
and thus ¬Erγ′

(v).

Theorem 5 establishes that (WCh, WEr) is pre-admissible.

Theorem 5

Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that a
does not execute Rr

NewDFS during cs.

We have (WCh, WEr)(D
γ′
a , γ′) ⪯2 (WCh, WEr)(D

γ
a , γ).

Proof : According to Theorem 3, we already have WCh(D
γ′

a , γ′) ⪯ WCh(D
γ
a , γ). Consequently, by

definition of the lexicographic order, we only have to establish that if WEr(D
γ
a , γ) ≺ WEr(D

γ′

a , γ′)
then WCh(D

γ′

a , γ′) ≺ WCh(D
γ
a , γ).

Let us first remark that if there exists B a branch of Ga such that Dγ′

a (B) is longer than
Dγ

a(B) then according to Lemma 18, WCh(D
γ′

a , γ′) ≺ WCh(D
γ
a , γ).

61



We suppose now that for any branch B of Ga, D
γ′

a (B) is not longer than Dγ
a(B). Let us

establish that ∀v ∈ Dγ′

a , WEr(v, γ
′) ≤ WEr(v, γ), or WCh(D

γ′

a , γ′) ≺ WCh(D
γ
a , γ). Since the branches of

Dγ′

a are included in the branches of Dγ
a , this becomes WEr(D

γ′

a , γ′) ⪯ WEr(D
γ
a , γ) or WCh(D

γ′

a , γ′) ≺
WCh(D

γ
a , γ), and thus this actually proves the theorem.

Let us prove that if ∃v ∈ Dγ′

a : WEr(v, γ
′) > WEr(v, γ) then WCh(D

γ′

a , γ′) ≺ WCh(D
γ
a , γ), and let

us consider one such v with highest depth. Let us first prove that tokγv /∈ {⊥, ↑, ↓}. Since v ∈ Dγ
a ,

tokγv ̸= ⊥. If tokγv =↑ then tokγ
′

v ∈ {↑,⊥}, and thus WEr(v, γ
′) = 0 which is contradictory with

our hypothesis, so tokγv ̸=↑. Finally, if tokγv =↓ then WEr(v, γ
′) > 0 is possible only if v executes

RReceive during cs, which implies that ∀u ∈ C(v), tokγu ∈ {⊥, ↑}. None of these children executes
RWin during cs, because if one u does then the edge (v, u) belongs toDγ′

a (because tokγ
′

v = ◦) while
it does not belong to Dγ

a , which is contradictory with our hypothesis on branches. Consequently,
∀u ∈ C(v), tokγ′

u ∈ {⊥, ↑}, and thus ¬Erγ′
(v), and WEr(v, γ

′) = 0. Thus, we can indeed assume
that tokγv /∈ {⊥, ↑, ↓}.

Since all branches of Dγ′

a are also branches of Dγ
a , and since v is one deepest node of Dγ′

a

such that WEr(v, γ
′) > WEr(v, γ), we have ∀u ∈ C(v), WEr(u, γ′) ≤ WEr(u, γ). As a consequence,

WEr(v, γ
′) > WEr(v, γ) becomes possible only if ¬Erγ(v) and Erγ

′
(v).

According to Lemma 19, this is possible only if during cs, v executes RWin, which cannot
happen since tokγv ̸= ⊥, or if WCh(v, γ

′) < WCh(v, γ) which implies that WCh(D
γ′

a , γ′) ≺ WCh(D
γ
a , γ),

or if ∃u ∈ C(v) such that u executes ETrustChild during cs. In that last case, we have Erγ(u)
so WEr(u, γ) ≥ 1, and tokγ

′

u =↓ and so WEr(u, γ
′) = 0. Since we took v one deepest node

such that WEr(v, γ
′) > WEr(v, γ), we have ∀u ∈ C(v), WEr(u, γ′) ≤ WEr(u, γ), so, by considering

the child that executes ETrustChild, we have
∑

u∈C(v) WEr(u, γ
′) <

∑
u∈C(v) WEr(u, γ), and thus

WEr(v, γ
′) ≤ WEr(v, γ).

Theorem 6 proves that under certain circumstances, we are certain that the weight of one
CDo decreases. It will be useful to prove that W is an admissible function, but also to prove that
the other, longer, prefixes of W are pre-admissible. Indeed, if in any computing step one node
executes ETrustChild then we do not need to look beyond the second component to be assured
that the weight does not increase, since ⪯k is a lexicographic order.

Theorem 6

Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that a
does not execute Rr

NewDFS during cs. If ∃v ∈ Dγ
a such that v executes ETrustChild during cs,

then (WCh, WEr)(D
γ′
a , γ′) ≺2 (WCh, WEr)(D

γ
a , γ).

Proof : Let us consider one such node v ∈ Dγ
a , and one branch B of Ga such that v ∈ Dγ

a(B). If
v /∈ Dγ′

a (B), then according to Lemma 18, we have (WCh, WEr)(D
γ′

a , γ′) ≺2 (WCh, WEr)(D
γ
a , γ).

Else, remark that WEr(v, γ) > 1 since Erγ(v), and WEr(v, γ
′) = 0 since tokγv =↓. Thus,

WEr(v, γ
′) < WEr(v, γ), and so WEr(D

γ′

a (B), γ′) ≺α WEr(D
γ
a(B), γ) since v ∈ Dγ′

a (B). Since (WCh, WEr)(Dγ′

a , γ′) ⪯2

(WCh, WEr)(D
γ
a , γ), we conclude (WCh, WEr)(D

γ′

a , γ′) ≺2 (WCh, WEr)(D
γ
a , γ).

C.2.6 Third component of W: WCirc, circulation of variable tok

Explanations Now that we have considered the cases where nodes execute ETrustChild, we
can consider that variable tok is updated in accordance with Figure 3. The third component
of the weight function should treat all the transitions of variable tok depicted in this diagram.
We could think at first sight that since the diagram is circular, we will have difficulty defining
a weight function that decreases along the diagram. Yet, if the algorithm behaves correctly,
when a node v is updated from • to ⇊, one child of v is supposed to execute RWin in the next
computing steps, and then WCh will decrease on the observed CDo. Since WCh has higher priority
in the lexicographic order than WCirc, we are going to design WCirc so that it increases exactly
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when WCh decreases. Therefore, we can cycle as many times as necessary through the transition
diagram of Figure 3 and having the 3-tuple (WCh, WEr, WCirc) decrease at each step.

To do this, we must associate a different weight to a node v with tokv =⇊ depending on
whether it still has one child that is going to execute RWin (or RFakeWin) in the next computing
steps. More precisely, if there still exists one child u of v that belongs to Players(v), we
associate a lower weight to v that if such child u does not exist. When v executes RWin or
RFakeWin, WCirc increases on v, but WCh decreases at the same time.

But since we work in the framework of self-stabilization, it might happen that registers are
incorrectly initialized, and that when node v executes RGive, and updates tokv from • to ⇊, v
immediately has no children susceptible to execute RWin. Indeed, if in the initial configuration,
idv is inconsistent with the id of its children, it might happen that after some computations,
all the children u of v such that playu = P eventually lose the negotiation. In such a situation,
after v executes RGive, we arrive in a configuration in which WCirc(v, γ

′) is already at its high
value. But this high value is precisely designed to be the highest assigned value of the diagram.
To overcome that issue, we add one possible value for WCirc(v, γ) when tok

γ
v = •, higher than

the high value for nodes with tok
γ
v =⇊. This value is taken by WCirc(v, γ) only if we detect that

after few computations, we fall into a situation where no children of v can execute RWin. It is
crucial that this situation cannot happen consecutively to an execution of RReNego, otherwise we
should also design two possible outcomes for the weight of some node v with tokv = ◦. The
predicate FullRound achieves that detection for node v such that tokv = •.

For the other values that tokv might take, we only associate integers that decrease along
the classical scheme depicted in Figure 3. The definition of WCirc is summarized in Figure 26

⊥ ⋆ • ⇊ ⟲ ↓ ◦

↑

0 8 2

(7)

1 → 6 5 4 3

1

Figure 26: Value of WCirc depending on the variable tokv.

Definitions The weight of one node v such that tokv =⇊ depends on if it has children
susceptible to take the token. If it has, then we set its weight to one low value, so that when
the child takes the token, WCh decreases on v at the same time that we make WCirc increases on
v. If it has not, then it must be a high value so that the weight of v can decrease through the
transitions of Figure 26.

W
⇊
Circ(v, γ) =

{
6 if Playersγ(v) = ∅
1 if Playersγ(v) ̸= ∅ (39)

Let us now define the weight of one node v such that tokv = •. The weight of such a node
can also be taken between two values that are 2 and 7, so that it can easily be bigger than W

⇊
Circ.

We must design W•Circ such that, if after v executes RGive we have W⇊Circ(v, γ
′) = 6 then we have

W•Circ(v, γ) = 7 just before, otherwise the weight would increase. But we also require that we

never have W•Circ(v, γ) = 2 ∧ W•Circ(v, γ
′) = 7. In other words, if W⇊Circ is set to 6 immediately

after the execution of RGive, it must be detected at the very beginning of the execution (or as
soon as tokv is set to •).

The situation described just above happens if before v executes RGive, all the nodes u ∈
Playersγ(v) execute RLose. In such a situation, no children u of v wins the negotiation, and
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v executes a full cycle of the cycle of Figure 26, which indeed forces us to attribute 7 to the
weight of v. Hopefully, the design of our algorithm guarantees that this can only happen if the
values of idv and/or idu are inconsistent. In other words, as soon as v executes one action, we
guarantee that this situation cannot occur anymore, this will be proven in Lemma 23. Thus,
we only have to deduce if u ∈ Players(v) will execute RLose before any action of v, from the
values of idv and idu. This strongly depends on the value of bγv .

If bγv ̸= ⊥ then v announces one value that defines the partial winners of that turn of
the negotiation. It the configuration is inconsistent, it is very possible that no children u ∈
Playersγ(v) has produced, neither will produce that answer. All of the nodes that have

announced a different value than b
γ
v , or that will announce a different value than b

γ
v will execute

RLose, immediately for the first ones, and after one execution of RNewBit for the second ones

Losers
γ
¬⊥(v) = {u ∈ Playersγ(v),

{
phγu = phγv
b
γ
u ̸= b

γ
v

∨
{

phγu ̸= phγv
Bitu(ph

γ
v) ̸= b

γ
v

} (40)

If bγv = ⊥ then v is waiting for all of its children u ∈ Playersγ(v) to announce Bitu(ph
γ
v).

Therefore, no children u ∈ Playersγ(v) can execute RLose before an action of v. We define the
set Losers(v) that depends on the value of bv.

Losersγ(v) =

{
Losers

γ
¬⊥(v) if bγv ̸= ⊥

∅ if bγv = ⊥ (41)

We are now tempted to say that W
γ
Circ(v) = 7 if and only if Losersγ(v) = Playersγ(v).

Yet, one subtlety must be treated before. Indeed, when all the children u of v have received
the token, then u will not execute RGive but ROfferUp, and thus we do not have to reason based

on the constraint of W⇊Circ. Moreover, in that situation, we must not attribute a weight of 7
to v since it would be an increase when v executes RReNego, and updates tokv from ◦ to •.
This situation cannot happen as long as there remains players, because after the execution of
StartNego(v), we have Losers(v) = ∅. The only case to consider is therefore when no node
children of v is susceptible to receive the token, and in that situation we force W•Circ(v, γ) to be
2.

In order to make the proof easier to approach, we first define the set Candidates(v) that
contains all the nodes that still have to negotiate and win the token before the circulation from
v is over. This set reminds one of the different cases depicted in Figure 23.

Candidatesγ(v) = {u ∈ Cneqγ(v) : tokγu = ⊥ ∧ playγu ∈ {P, L}} (42)

We can now define the main predicate if that section, FullRound, which decides whether v
has to execute one full cycle before any of its children receives the token.

FullRoundγ(v) ≡ (Losersγ(v) = Playersγ(v)) ∧ (Candidatesγ(v) ̸= ∅) (43)

We deduce function W•Circ that allows us to define WCirc.

W•Circ(v, γ) =

{
7 if FullRoundγ(v)
2 otherwise

(44)
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WCirc(v, γ) =



0 if tokγv = ⊥
8 if tokγv = ⋆
W•Circ(v, γ) if tokγv = •
W
⇊
Circ(v, γ) if tokγv =⇊

5 if tokγv =⟲
4 if tokγv =↓
3 if tokγv = ◦
1 if tokγv =↑

(45)

Proofs Lemma 20 establishes that actions that make the negotiation progress are non simul-
taneous on the parent and on its children.

Lemma 20

Let γ be a configuration and let v ∈ V be a node such that Synchγ(v)∧ (PhCompleteγ(v)∨
NextPlayγ(v)).

Then ∀u ∈ Playersγ(v),¬LoseParγ(u, v) ∧ ¬AnswerParγ(u, v)

Proof : Since we are only interested in properties at γ, no confusion can be made, and thus we do
not precise the configuration in which the predicates and sets are evaluated in that proof.

By definition of Synch(v), we have phu = phv. Consequently, we have:

LosePar(u, v) ≡ bv ̸= bu ∧ bv ̸= ⊥, and

AnswerPar(u, v) ≡ phv = 1 ∧ bv = ⊥ ∧ bu = ⊥.

Let us first suppose that PhComplete(v). Then by definition, bu = bv, and thus ¬LosePar(u, v).
Furthermore, we also have phv ̸= 1 ∨ bv ̸= ⊥, which can be rewritten ¬(phv = 1 ∧ bv = ⊥) and
thus ¬AnswerPar(u, v).

Let us now suppose that NextPlay(v). We deduce that bv = ⊥, and thus ¬LosePar(u, v).
Furthermore, we have AnswerPar(u, v) only if phv = 1∧bu = ⊥. But if phv = 1 then NextPlay(v)
requires that bu ̸= ⊥, which is contradictory. Thus, ¬AnswerPar(u, v).

Lemmas 21 and 22 prove that the definition of predicate Losers is adapted to the algorithm.
We prove that all the nodes that execute RLose were actually counted in the set Losers, and
that execution of RNewBit does not bring any new node in the set Losers.

Lemma 21

Let cs = γ → γ′ be a computing step, and let v ∈ V be a node such that tokγv = •.
∀u ∈ Playersγ(v), if u executes RLose during cs, then u ∈ Losersγ(v)

Proof : Let u be one such node. Since u executes RLose during cs, OkNegγ(u) = true which means
that v is the only parent of u such that tokv = •.

Thus, we have phγv = phγu ∧ bγv ̸= bγu ∧ bγv ̸= ⊥. Then u ∈ Losers
γ
¬⊥(v) = Losersγ(v).

Lemma 22

Let cs = γ → γ′ be a computing step, and let v ∈ V be a node such that tokγv = • and
such that v is not activated during cs.

Let u ∈ Playersγ(v) be a node that executes RNewBit during cs. If u ∈ Losersγ
′
(v) then

u ∈ Losersγ(v).
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Proof : Since u executes RNewBit during cs, OkNegγ(v) = true so v is the only parent of u such that
tokpv

γ = •. Thus, the execution of Announce produces phγ
′

u = phγv = phγ
′

v (because v is not

activated during cs). Since u ∈ Losersγ
′
(v), we necessarily have bγ

′

v ̸= ⊥ and bγ
′

u ̸= bγ
′

v .

Since v is not activated during cs, this means that bγv ̸= ⊥ and that bγ
′

u ̸= bγv . But by
definition of Announce, we have bγ

′

u = Bitu(ph
γ
v), and then we conclude that Bitu(ph

γ
v) ̸=

bγv ∧ phγu ̸= phγv ∧ bγv ̸= ⊥ which means that u ∈ Losersγ(v).

Lemma 23 proves that the definition of FullRound is adapted to our algorithm. Indeed, we
establish that one node v such that tokv = • both before and after a computing step does not
see its weight by WCirc increase, unless it makes decrease one higher component of W at the same
time.

Lemma 23

Let cs = γ → γ′ be a computing step, and let v ∈ V be a node such that tokγv = tok
γ′
v = •.

Suppose that ¬FullRoundγ(v). Then ¬FullRoundγ′
(v) or there exists one child u of v that

executes RWin, RFakeWin, RReplayUp, or ETrustChild during cs.

Proof : Let us first remark that by hypothesis, v does not execute ETrustChild, RGive, or ROfferUp,
since it would update tokv.

Suppose first that Losersγ(v) ̸= Playersγ(v), and let us consider the different cases depend-
ing on which rule v executes during cs.

• If v is not activated during cs, then let us consider one node u ∈ Playersγ(v)\Losersγ(v).
If u executes RWin or RFakeWin or ETrustChild, then we obtain the theorem. Lemma 21 states
that u does not execute RLose during cs. Lemma 22 states that if u execute RNewBit during cs,
then u ∈ Playersγ

′
(v) \ Losersγ′

(v), and the same happens if u is not activated during cs.
Thus, either u executes RWin or RFakeWin or ETrustChild, either Losers

γ′
(v) ̸= Playersγ

′
(v),

and then ¬FullRoundγ′
(v).

• If v executes RmaxPos or RNewPh during cs then according to Lemma 20, nodes u ∈ Playersγ(v)
do not execute RLose nor RNewBit. If one such node executes RWin or RFakeWin or ETrustChild,
then we obtain the theorem. Thus, we can now suppose that ∀u ∈ Playersγ(v), u is not
activated during cs. As a corollary, we have Playersγ

′
(v) = Playersγ(v).

• If v executes RmaxPos during cs then MaxPos(v) updates bv to the maximal value of bu where
u ∈ Playersγ(v). Let u be one node with maximal value of b among Playersγ(v). Since
u ∈ Playersγ

′
(v) and phγ

′

u = phγ
′

v ∧bγ
′

u = bγ
′

v , we have u ∈ Playersγ
′
(v) \Losersγ′

(v) and

thus ¬FullRoundγ′
(v).

• If v executes RNewPh during cs then PhasePlus(v) updates bv to ⊥, which means that
Losersγ

′
(v) = ∅. Since v executes RNewPh during cs then Playersγ(v) ̸= ∅, and by what

precedes, Playersγ
′
(v) ̸= ∅, which implies that Playersγ

′
(v) ̸= Losersγ

′
(v) and thus

¬FullRoundγ′
(v).

Let us now suppose that Losersγ(v) = Playersγ(v), which implies Candidatesγ(v) = ∅.
Since Playersγ(v) ⊆ Candidatesγ(v), we have Playersγ(v) = ∅, so v cannot execute RmaxPos

or RNewPh. Thus, v is not activated during cs (recall that by hypothesis, tokγ
′

v = •). Let us
consider one node u ∈ C(v). Since Candidatesγ(v) = ∅, either cγu = cγv , either tok

γ
u ̸= ⊥, either

playγu ∈ {W, F}.

• If cγu = cγv , then either u executes RWin or RFakeWin, and then the theorem is established,
either not, and then cγ

′

u = cγ
′

v so u /∈ Candidatesγ
′
(v).

• If cγu ̸= cγv ∧ tokγu ̸= ⊥, then u does not execute RReturn during cs since v is a parent of u
and tokγv /∈ {⊥, ↓, ↑, ◦}. Thus, tokγ′

u ̸= ⊥, and so u /∈ Candidatesγ
′
(v).

• If cγu ̸= cγv ∧ tokγu = ⊥ ∧ playγu ∈ {W, F} then either u executes RReplayUp and then the

theorem is established, either it does not and then playγ
′

u ∈ {W, F} so u /∈ Candidatesγ
′
(v).
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Thus, either one child u of v executes RWin, RFakeWin, or RReplayUp, either not but then ∀u ∈
C(v), u /∈ Candidatesγ

′
(v) so Candidatesγ

′
(v) = ∅ and thus ¬FullRoundγ′

(v).

Lemma 24 establishes under which conditions we can have an increase of WCirc on one
node v. It proves that if this happens, then we fall into the conditions of Theorem 4 or of
Theorem 6. This lemma, which largely uses Lemma 23, is the main argument to establish that
(WCh, WEr, WCirc) is pre-admissible.

Lemma 24

Let cs = γ → γ′ be a computing step, let a be an anchor at γ′, and let v ∈ Dγ
a be a node.

If WCirc(v, γ
′) > WCirc(v, γ) then WCh(v, γ

′) < WCh(v, γ), or v executes RWin, ETrustChild, or
Rr
NewDFS during cs, or tokγv /∈ {⊥, ↑, ↓} and one child u of v executes RWin, RFakeWin, RReplayUp

or ETrustChild during cs.

Proof : Let us consider different cases depending on the value of tokγv :

• If tokγv = ⊥, then WCirc(v, γ
′) > WCirc(v, γ) if and only if v executes RWin during cs.

• If tokγv = ⋆, then WCirc(v, γ
′) ≤ WCirc(v, γ).

• If tokγv = • ∧ FullRoundγ(v) then WCirc(v, γ
′) ≤ WCirc(v, γ).

• If tokγv = •∧¬FullRoundγ(v)∧tokγ′

v = • then according to Lemma 23 either ¬FullRoundγ′
(v)

and thus WCirc(v, γ
′) = WCirc(v, γ), either there exists one child u of v that executes RWin,

RFakeWin, RReplayUp, or ETrustChild during cs.

• If tokγv = • ∧ ¬FullRoundγ(v) ∧ tokγ
′

v ̸= • then either v executes ETrustChild, either v
executes ROfferUp and then WCirc(v, γ

′) = 1 < WCirc(v, γ), either v executes RGive. Let us
consider that last case.

Remark first that if Candidatesγ(v) = ∅ then ¬Giveγ(v), and thus v cannot execute RGive

during cs. As a consequence, we have Candidatesγ(v) ̸= ∅. Then, since ¬FullRoundγ(v)
we must have Losersγ(v) ̸= Playersγ(v), which is possible only if Playersγ(v) ̸= ∅ (recall
that Losersγ(v) ⊆ Playersγ(v)).

Thus, we necessarily have Playersγ(v) ̸= ∅, and actually since v executes RGive during cs,
there

∣∣Playersγ(v)∣∣ = 1. Let u be that node in Playersγ(v). If u executes RWin or RFakeWin,
we have our result, let us now consider that it does not. Since Losersγ(v) ̸= Playersγ(v),
u /∈ Losersγ(v) and thus, according to Lemma 21, u does not execute RLose during cs. As
a consequence, u either executes RNewBit, either is not activated during cs. In both cases,
variables tok, c, and play are not updated on u during cs, and thus u ∈ Playersγ

′
(v), so

WCirc(v, γ
′) = 1 < WCirc(v, γ).

• If tokγv =⇊ ∧Playersγ(v) = ∅ then WCirc(v, γ
′) ≤ WCirc(v, γ).

• If tokγv =⇊ ∧Playersγ(v) ̸= ∅ then let us consider u ∈ Playersγ(v). By definition,
u ∈ Cneqγ(v) ∧ (playγu = P ∧ tokγu ̸= ⋆). As a consequence, v does not execute RNewPlay

during cs. If v executes ETrustChild during cs, then the desired property holds.

Let us now suppose that v does not execute any rule during cs. Since tokγv =⇊, u cannot
execute RLose or RNewBit during cs, since it requires that one other parent p of u is such
that tokγp = •, and then ¬OkNegγ(u). Thus, either u executes RWin or RFakeWin during
cs and then our property holds, either it does not, but then it is not activated and thus

u ∈ Playersγ
′
(v) which means that Wγ

′

Circ = 1 = WCirc(v, γ).

• If tokγv =⟲, then tokγ
′

v ∈ {⟲, ↓} and thus WCirc(v, γ
′) ≤ WCirc(v, γ).

• If tokγv =↓ then tokγ
′

v ∈ {↓, ◦} and thus WCirc(v, γ
′) ≤ WCirc(v, γ).

• If tokγv = ◦, then WCirc(v, γ
′) > WCirc(v, γ) only if v executes ETrustChild or RReNego during

cs. If v executes ETrustChild, then our property holds, let us now suppose that v executes
RReNego during cs.
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We have ∀u ∈ Cneqγ(v), playγu ̸= L. Let us first prove that ∀u ∈ Cneqγ
′
(v), playγ

′

u ̸= L, and
let us consider u ∈ Cγ(v). Since v executes RReNego during cs, we have tokγu = ⊥. If cγu = cγv
then u switches its color only if it executes RWin or RFakeWin, and thus the property holds.
Otherwise if cγu = cγv then playγu ̸= L and since tokγv = ◦ u cannot execute RLose during cs,

and thus playγ
′

u ̸= L.

Since bγ
′

v = ⊥, we have Losersγ
′
(v) = ∅. Thus, either ∃u ∈ Playersγ

′
(v) and thus

Losersγ
′ ̸= Playersγ

′
(v) so ¬FullRoundγ′

(v), either Playersγ
′
(v) = ∅ but then accord-

ing to what we established just above, we have Candidatesγ
′
(v) = ∅ and once again

¬FullRoundγ′
(v). In both cases, Wγ

′

Circ(v) = 2 < W
γ
Circ(v).

• If tokγv =↑ then either v ̸= r and thus tokγv ∈ {↑,⊥} so WCirc(v, γ
′) ≤ WCirc(v, γ), either

v = r and thus, if activated, v executes Rr
NewDFS and the property holds.

Theorem 7 establishes that (WCh, WEr, WCirc) is pre-admissible.

Theorem 7

Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that a
does not execute Rr

NewDFS during cs.

We have (WCh, WEr, WCirc)(D
γ′
a , γ′) ⪯3 (WCh, WEr, WCirc)(D

γ
a , γ).

Proof : According to Theorem 5, we already have (WCh, WEr)(D
γ′

a , γ′) ⪯ (WCh, WEr)(D
γ
t , γ). Conse-

quently, we only have to prove that if WCirc(D
γ′

a , γ′) > WCirc(D
γ
a , γ), then we have (WCh, WEr)(D

γ′

a , γ′) ≺2

(WCh, WEr)(D
γ
a , γ).

In the same way as we did in the proof of Theorem 5, we can suppose that for any branch
B of Ga, D

γ′

a (B) is not longer than Dγ
a(B). In such circumstances, we have WCirc(D

γ′

a , γ′) >
WCirc(D

γ
a , γ) only if there exists a branch B of Ga such that ∃v ∈ Dγ

a(B) : WCirc(v, γ′) > WCirc(v, γ).
Let us now apply Lemma 24. If v executes RWin or ETrustChild (it cannot execute Rr

NewDFS by hy-
pothesis), then Theorem 3 or Theorem 5 guarantees that (WCh, WEr)(D

γ′

a , γ′) ≺2 (WCh, WEr)(D
γ
a , γ).

Otherwise, tokγv /∈ {⊥, ↑, ↓} and ∃u ∈ C(v) that executes RWin or RFakeWin or RReplayUp

or ETrustChild, and once again Theorem 3 or Theorem 5 guarantees that (WCh, WEr)(D
γ′

a , γ′) ≺2

(WCh, WEr)(D
γ
a , γ).

Theorem 8 proves that under certain circumstances, we are certain that the weight of one
CDo decreases. It will be useful to prove that W is an admissible function, but also to prove that
the other, longer, prefixes of W are pre-admissible. Indeed, if in any computing step one node
updates its variable tok then we do not need to look beyond the third component to be assured
that the weight does not increase, since ⪯k is a lexicographic order.

Theorem 8

Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that a
does not execute Rr

NewDFS during cs.
If ∃v ∈ Dγ

a such that v executes one rule among RGive, RNewPlay, RDrop, RNego, ROfferUp,

RReceive, RReturn, RReNego during cs, then (WCh, WEr, WCirc)(D
γ′
a , γ′) ≺3 (WCh, WEr, WCirc)(D

γ
a , γ).

Proof : Let us consider one such node v ∈ Dγ
a , and one branch B of Ga such that v ∈ Dγ

a(B). If v /∈
Dγ′

a (B) then according to Lemma 18 we have (WCh, WEr, WCirc)(D
γ′

a , γ′) ≺3 (WCh, WEr, WCirc)(D
γ
a , γ).

Else, since any of these rules guarantee that WCirc(v, γ
′) ̸= WCirc(v, γ) and since we established

in Theorem 7 that (WCh, WEr, WCirc)(D
γ′

a , γ′) ⪯3 (WCh, WEr, WCirc)(D
γ
a , γ), we have (WCh, WEr, WCirc)(D

γ′

a , γ′) ≺3

(WCh, WEr, WCirc)(D
γ
a , γ).

68



C.2.7 Fourth component of W: WPlay, circulation of variable play on children

Explanations The three weight functions that we previously defined, WCh, WEr, and WCirc
totally embrace the rules that affect tokv and cv. Thus, we can now consider that both these
variable are constant on nodes, and focus on the two other variables that are play and id. In
this section, we only treat variable play. Remark that the rules RWin, RFakeWin, and RReturn

have an impact on variable play, but were already treated in Sections C.2.4 and C.2.6. Thus,
although we discussed rule RReplayUp in Section C.2.4, we did not treat all the cases where this
rule might be executed, and thus we must consider it in this section. Consequently, the rules
that interest us in this section are RLose, RReplayD, RReplayUp, RFake, and RReWin.

Depending on its variable tokv, it happens that one node v is waiting for some of its children
to update their variable play, before it executes a rule that updates tokv to the next state.
For example, if tokv =⇊, then v does not execute RNewPlay until all of its children u such that
toku = P updates playu to L, W, or F. In order to prove that our algorithm progresses, and
that circulation might terminate, we need to prove that the number of children u of v such that
playu = P never increases, at least as long as tokv =⇊. Indeed, as soon as tokv is updated,
then we already know that (WCh, WEr, WCirc) decreases. Actually, when tokv =⇊, children u of
v such that playu = P will update playu with rule RWin or RFakeWin, both cases have already
been treated in Section C.2.4, so we do not need to elaborate any further on this case.

There exists other situations where one node v waits until its children u have some specific
values for their variable playu before v itself updates tokv. For each of those situations, we
want to define WPlay such that any time one child u of v updates its variable playu in a sense
that allows v to update tokv, WPlay decreases on v. Thus, we define WPlay such that each node v
counts the number of children it has that prevent it from updating its variable tokv. In order
to have a function that is pre-admissible, we also require that WPlay never increases, and thus
that no action taken by one node u might add u to the set of children that prevent one of its
parents v to update tokv.

The situations where one node v waits for its children u to update playu occurs when
tokv ∈ {•,⟲, ◦, ↑}. Let us give some details:

• If tokv = • and bv ̸= ⊥, then v waits for some of its children u to execute RLose and
update playu from P to L.

Although rule RLose could be treated in the following section that focuses on negotiation,
we treat it here for two reasons. First, it concerns variable play as well, and thus it
remains consistent here. Second, having already treated executions of rule RLose will help
us greatly in the section on negotiation.

• If tokv = ◦ or tokv =⟲, then v does not execute RDrop until all of its children u such that
toku = L execute RReplayD and update playu to P.

• If tokv =↑, then before executing RReturn, v waits for all of its children u such that
playu = W execute RReplayUp or RFake, and update playu from W to P or F, depending on
whether u still has parents in any CDo.

From what precedes, if one node u executes RLose, RReplayD, RReplayUp, or RFake, it will make
decrease the weight of the CDo’s that contain the parents v of u that have the corresponding
value of tokv. Indeed, all of these four rules are conditioned by the existence of at least one
parent v with the adapted value of tokv.

Remark that we did not mentioned rule RReWin. It is not difficult to define a weight function
that decreases on v each time one child u of v execute RReWin. The difficulty comes from proving
that the weight function we defined that way is pre-admissible. Indeed, RReWin might be executed
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in very various situations: as soon as u has one no parent v such that tokv =↑. Unfortunately,
there exists situations in which we can give no guarantee that there won’t be executions of RFake

that cancels executions of RReWin, and thus we cannot treat both RFake and RReWin at the same
layer of W.

However, the design of the algorithm allows us design WPlay that is pre-admissible and such
that it decreases any time one node u executes RLose, RReplayD, RReplayUp, or RFake. This is
stated in Theorems 9 and 10.

Figure 27 summarizes the different transitions that might be taken by variable playu on one
node u.

L

P W

F

{P, L, W, F}RLose RReplayD

RWin,RFakeWin

R
FakeWin

RReplayUp

RReWinRFake

RReturn

RReturn

Figure 27: Diagram of variable playu.

We represented in blue the rules that have already been treated in the previous sections,
and in red the rule RReWin that is not treated in that section.

Definitions Let us first define the different sets that contain the children u of v that we are
going to count in the different cases described above.

If tokγv = •, then we want to count children u ∈ Cneqγ(v) that might execute RLose. One
node u can execute RLose only if playγu = P, so nodes u ∈ Cneqγ(v) : playγu = P must obviously
be counted. Yet, we cannot count only those children of v. Indeed, it might happen that one
node u ∈ Cneqγ(v) : playγu = W execute RReplayUp, which produces playγ

′
u = P, and would make

WPlay increase on v. Although it would at the same time make WPlay decrease on one other
node w such that playw =↑, since we require that W decrease on each branch of each CDo, we
must prevent this from happening. Thus, we must include nodes u ∈ Cneqγ(v) : playγu = W in
our count for tokv = •. For the same reason, due to rule RReWin, we must also include nodes
u ∈ Cneqγ(v) : playγu = F in that set. This leads to the following predicate:

ChLoseγ(v) = {u ∈ Cneqγ(v) | tokγu = ⊥ ∧ playγu ̸= L} (46)

If tokγv =⟲ or tokγv = ◦, then we want to count children u ∈ Cneqγ(v) that might execute
RReplayD. One node u can execute RReplayD only if playγu = L. Furthermore, due to predicate
OkNeg, no node u that has a parent v with tok

γ
v ∈ {⟲, ◦} can execute RLose. This leads to the

following predicate:

ChReplayγ(v) = {u ∈ Cneqγ(v) | tokγu = ⊥ ∧ playγu = L} (47)

If tokγv =↑ then we want to count children u ∈ Ceqγ(v) that might execute RReplayUp or
RFake. One node might execute RReplayUp or RFake only if playγu = W. One node u might updates
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its variable playu from P to W only if it executes RWin or RFakeWin, cases that have been treated
previously. Furthermore, due to predicate StopFaking, no node u that has a parent v ∈ Peq(u)
such that tokv =↑ can execute RReWin, and thus update its variable playu from F to W. This
leads to the following predicate:

ChEndγ(v) = {u ∈ Ceqγ(v) | tokγu = ⊥ ∧ playγu = W} (48)

We can now define WPlay(v, γ) depending on the value of tokγv .

WPlay(v, γ) =


|ChLoseγ(v)| if tokγv = •
|ChReplayγ(v)| if tokγv ∈ {◦,⟲}
|ChEndγ(v)| if tokγv =↑
0 if tokv ∈ {⊥,⇊, ↓,⋆}

(49)

Proofs Lemmas 25, 26 and 27 prove that the definitions of ChLose, ChReplay, and ChEnd

are consistent with our algorithm. For ChLose(v) and ChReplay(v) we prove in Lemmas 25
and 26 that both these sets do not increase unless it is by one node u ∈ C(v) that executes
RWin or RFakeWin, which makes decrease one more important quantity. We cannot use the same
reasoning for ChEnd(v). Indeed, since we consider one node v such that tokv =↑, WCh(v) is not
affected by any action taken by one child u ∈ C(v). Thus, we prove in Lemmas 27 that ChEnd(v)
never increases, as long as tokv =↑.

We also establish in these lemmas some particular cases which necessarily decrease WPlay.

Lemma 25

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •.

If ∀u ∈ C(v), u does not execute RWin or RFakeWin, then ChLoseγ
′
(v) ⊆ ChLoseγ(v).

Furthermore, if ∃u ∈ Cneqγ(v) that executes RLose during cs, then WPlay(v, γ
′) < WPlay(v, γ).

Proof : For the first part, we prove the equivalent statement, under the same conditions:

C(v) \ ChLoseγ(v) ⊆ C(v) \ ChLoseγ
′
(v)

Let us consider u ∈ C(v) \ ChLoseγ(v). If tokγu ̸= ⊥ then since tokγv = •, u does not execute
RReturn and thus tokγ

′

u ̸= ⊥ so u /∈ ChLoseγ
′
(v). Otherwise, tokγu = ⊥. If u ∈ Ceqγ(v), then

since u does not execute RWin or RFakeWin, u ∈ Ceqγ
′
(v) and thus u /∈ ChLoseγ

′
(v). Otherwise,

u ∈ Cneqγ(v), and thus playγu = L. Since v ∈ Pneq
γ(v) and tokv = •, ¬ReplayLγ(u) so u does

not execute RReplayD so playγ
′

u = L and thus u /∈ ChLoseγ
′
(v).

Let us now prove the second part. By definition of RLose we have playγu = P ∧ tokγv =

⊥, and thus, u ∈ ChLoseγ(v). But since u executes RLose during cs, playγ
′

u ̸= P and thus

u /∈ ChLoseγ
′
(v). Then, what precedes implies that ChLoseγ

′
(v) ⊊ ChLoseγ(v), which leads to

WPlay(v, γ
′) < WPlay(v, γ).

Lemma 26

Let cs = γ → γ′ be a computing step and let v be a node such that tok
γ
v ∈ {⟲, ◦} and

tok
γ′
v ∈ {⟲, ◦}.
If ∀u ∈ C(v), u does not execute RWin or RFakeWin, then ChReplayγ

′
(v) ⊆ ChReplayγ(v).

Furthermore, if ∃u ∈ Cneqγ(v) that executes RReplayD during cs, then WPlay(v, γ
′) < WPlay(v, γ).

Proof : For the first part, we prove the equivalent statement, under the same conditions:

C(v) \ ChReplayγ(v) ⊆ C(v) \ ChReplayγ
′
(v)
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Let us consider u ∈ C(v) \ ChReplayγ(v). If tokγu ̸= ⊥ then since tokγv = •, u does not execute
RReturn and thus tokγ

′

u ̸= ⊥ so u /∈ ChReplayγ
′
(v). Otherwise, tokγu = ⊥. If u ∈ Ceqγ(v),

then since u does not execute RWin or RFakeWin, then u ∈ Ceqγ
′
(v) and thus u /∈ ChReplayγ

′
(v).

Otherwise, u ∈ Cneqγ(v), and thus playγu ∈ {P, W, F}. If playγu ∈ {W, F} no rule can induce

playγ
′

u = L. If playγu = P, then since v ∈ ParNegγ(u) ∧ tokγv ̸= •, then due to OkNeg u cannot

execute RLose during cs, and thus u /∈ ChReplayγ
′
(v).

Let us now prove the second part. By definition of RReplayD we have playγu = L ∧ tokγv = ⊥,

and thus, u ∈ ChReplayγ(v). But since u executes RReplayD during cs, playγ
′

u ̸= L and thus

u /∈ ChReplayγ
′
(v). Then, what precedes implies that ChReplayγ

′
(v) ⊊ ChReplayγ(v), which

leads to WPlay(v, γ
′) < WPlay(v, γ).

Lemma 27

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv =↑ and tok
γ′
v =↑.

We have ChEndγ
′
(v) ⊆ ChEndγ(v). Furthermore, if ∃u ∈ Ceqγ(v) that executes RFake or

RReplayUp during cs, then WPlay(v, γ
′) < WPlay(v, γ).

Proof : For the first part, we prove the equivalent statement:

C(v) \ ChEndγ(v) ⊆ C(v) \ ChEndγ
′
(v)

Let us consider u ∈ C(v) \ ChEndγ(v). If u ∈ Cneqγ(v) we have u ∈ ChEndγ
′
(v) only if u executes

RWin or RFakeWin to switch its color. If u executes RWin then tokγ
′

u = ⋆ so u /∈ ChEndγ
′
(v). If

u executes RFakeWin then since v ∈ Pneq
γ(v) ∧ tokγv =↑, the execution of FakeWin(v) induces

playγ
′

u = F, and then u /∈ ChEndγ
′
(v).

Suppose now u ∈ Ceqγ(v). If tokγu ̸= ⊥ then u ∈ ChEndγ
′
(v) only if u executes RReturn during

cs, but if it does since v ∈ Peq
γ(v) ∧ tokγv =↑, the execution of Drop(v) induces playγ

′

u = F, and

then u /∈ ChEndγ
′
(v).

Suppose now tokγu = ⊥. Then we have playγu ̸= W. Remark first that u cannot execute

RReturn during cs since tokγu = ⊥. If playγu = L then we cannot have playγ
′

u = W, necessary

condition to have u ∈ ChEndγ
′
(v). If playγu = P, then we have playγ

′

u = W only if u executes
RWin or RFakeWin during cs, but if it does, then it switches its colorcu, so u ∈ Cneqγ(v) and then

u /∈ ChEndγ
′
(v). Finally, if playγu = F then u cannot execute RReWin since v ∈ Peq

γ(v)∧ tokγv =↑,
we have ¬FakeWinγ(u), and thus u /∈ ChEndγ

′
(v).

Let us now prove the second part. By definition of RFake and RReplayUp we have playγu =
W ∧ tokγv = ⊥, and thus, u ∈ ChEndγ(v). But since u executes RFake or RReplayUp during cs,

playγ
′

u ̸= W and thus u /∈ ChEndγ
′
(v). Then, what precedes implies that ChEndγ

′
(v) ⊊ ChEndγ(v),

which leads to WPlay(v, γ
′) < WPlay(v, γ).

Lemma 28 combines the results of Lemmas 25, 26 and 27 and proves that WPlay can decrease
on one node only if the previous components of W decrease on the CDo’s that include that node.

Lemma 28

Let cs = γ → γ′ be a computing step, let a be an anchor at γ′ that does not execute Rr
NewDFS

during cs, and let v ∈ Dγ
a be a node.

If WPlay(v, γ
′) > WPlay(v, γ) then (WCh, WEr, WCirc)(D

γ′
a , γ′) ≺3 (WCh, WEr, WCirc)(D

γ
a , γ).

Proof : Let us first eliminate the cases in which the decrease of (WCh, WEr, WCirc) is immediate. Ac-
cording to Theorem 4 we can assume that, if tokγv ̸=↑, then ∀u ∈ C(v), u does not execute RWin

or RFakeWin. Furthermore, according to Theorems 6 and 8, we can assume that v does not execute
any rule among ETrustChild, RGive, RNewPlay, RDrop, RNego, ROfferUp, RReceive, RReturn, and RReNego

during cs.
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Furthermore since v ∈ Dγ
a , it is obvious that tok

γ
v ̸= ⊥ and thus that v cannot execute RWin

or RFakeWin.

As a direct consequence, we have tokγ
′

v = tokγv and cγ
′

v = cγv . Since tokγ
′

v = tokγv we
can have WPlay(v, γ

′) > WPlay(v, γ) only if tokγv ∈ {◦,⟲, ↑, •}. Since tokγv = tokγ
′

v and for the
cases where tokγv ∈ {•,⟲, ◦}, we have no children u ∈ C(v) executes RWin or RFakeWin during cs,
then we fall in the preconditions of Lemmas 25, 26, and 27. Whatever the value of tokγv , the
corresponding lemma guarantees that WPlay(v, γ

′) ≤ WPlay(v, γ).

Theorem 9 establishes that (WCh, WEr, WCirc, WPlay) is pre-admissible.

Theorem 9

Let cs = γ → γ′ be a computing step, and let a be an anchor at γ′, and suppose that a
does not execute Rr

NewDFS during cs.

We have (WCh, WEr, WCirc, WPlay)(D
γ′
a , γ′) ⪯4 (WCh, WEr, WCirc, WPlay)(D

γ
a , γ).

Proof : Theorem 7 establishes (WCh, WEr, WCirc)(D
γ′

a , γ′) ⪯3 (WCh, WEr, WCirc)(D
γ
a , γ). Suppose now

WPlay(D
γ′

a , γ′) > WPlay(D
γ
a , γ), and prove (WCh, WEr, WCirc)(D

γ′

a , γ′) ≺3 (WCh, WEr, WCirc)(D
γ
a , γ).

In the same way as we did in the proof of Theorem 5, we can suppose that for any branch B
of Ga, D

γ′

a (B) is not longer than Dγ
a(B).

In such circumstances, we have WPlay(D
γ′

a , γ′) > WPlay(D
γ
a , γ) only if there exists a branch B

of Ga such that ∃v ∈ Dγ
a(B) : WPlay(v, γ′) > WPlay(v, γ). But then, according to Lemma 28, we

have (WCh, WEr, WCirc)(D
γ′

a , γ′) ≺3 (WCh, WEr, WCirc)(D
γ
a , γ).

Theorem 10 proves that under certain circumstances, we are certain that the weight of
one CDo decreases. It will be useful to prove that W is admissible, but also to prove that it is
pre-admissible.

Theorem 10

Let cs = γ → γ′ be a computing step, let a be an anchor at γ′ that does not execute Rr
NewDFS

during cs.
If ∃v ∈ Dγ

a and u ∈ CGa(v) such that:

• tok
γ
v = • and c

γ
u ̸= c

γ
v and u executes RLose during cs, or

• tok
γ
v ∈ {⟲, ◦} and c

γ
u ̸= c

γ
v and u executes RReplayD during cs, or

• tok
γ
v =↑ and c

γ
u = c

γ
v and u executes RFake or RReplayUp during cs,

we have (WCh, WEr, WCirc, WPlay)(D
γ′
a , γ′) ≺4 (WCh, WEr, WCirc, WPlay)(D

γ
a , γ).

Proof : Let us consider such nodes v and u, and one branch B of Ga such that v ∈ Dγ
a(B). If

v /∈ Dγ′

a (B), or if tokγ
′

v ̸= tokγv , or if tokγv ∈ {•,⟲, ◦} and one child u of v executes RWin or
RFakeWin, then we according to Lemma 18, or Theorems 6 and 8, or Theorem 4, we have

(WCh, WEr, WCirc, WPlay)(D
γ′

a , γ′) ≺4 (WCh, WEr, WCirc, WPlay)(D
γ
a , γ)

We can now suppose that v ∈ Dγ′

a (B) and tokγ
′

v = tokγv and if tokγv ∈ {•,⟲, ◦} then no child
of v executes RWin or RFakeWin. Depending on which of the three situations has to be considered,
Lemma 25, Lemma 26, or Lemma 27 applies and guarantees that WPlay(v, γ

′) < WPlay(v, γ). From
Theorem 9 we conclude

(WCh, WEr, WCirc, WPlay)(D
γ′

a , γ′) ≺4 (WCh, WEr, WCirc, WPlay)(D
γ
a , γ).
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C.2.8 Fifth component of W: WNego negotiation between one parent and its children

Explanations Only one aspect of the algorithm has not been treated yet: the negotiation
between one node v that has the token tokv = • and its children u ∈ Players(v). This
negotiation occurs only if there are several nodes in Players(v), otherwise v decides that the
negotiation is terminated, and executes RGive or ROfferUp depending on whether there exist some
candidates for the token or not. Furthermore, let us remark that if Players(v) evolves during
an execution, whether by an addition (with RReplayUp) or a deletion (with RLose for example),
then according to Theorems 4 and 10 the weight of the CDo which contains v decreases. Thus,
we can suppose in the following that we work under the following hypothesis: Players(v) is
constant, and there are at least two nodes in it.

Due to the impact of PhasePlus(v) on variable phv, we cannot guarantee at first sight that
the negotiation does not cycle. Indeed, if all the children u of v declare that they cannot give
an answer for phv, then v decides to restart from phv = 1 so it does not eliminate all of its
children. But as soon as v can restart, we must prove that it does not restart indefinitely, what
would create a livelock in the negotiation phase.

To overcome this problem, we statically determine the first value phv which, when taken by
v, will push one child u ∈ Players(v) to execute RLose. Such values exist since we supposed
that there are at least two nodes in Players(v) and that the identifiers are globally unique. If
we prove that ultimately, some node u can only execute RLose and thus makes WPlay decrease,
we prove that the negotiation is livelock-free. Unfortunately, it is not trivial to determine the
value of the first incoming value of phv which will induce an execution of RLose. Basically, we
are looking for the lowest value greater or equal to phv which induces different answers on two
children u ∈ Players(v).

One first subtlety comes with the fact that, since we work in the framework of self-stabilization,
there might not be such greater value. Indeed, if the initial value of phv is different from 1,
and if all the values of phv which might differentiate two children u ∈ Players(v) are less than
this initial value, then the differentiation will not happen before a reset of phv. Under such
circumstances, v executes a full round of all the possible value for ph, increasing as long as its
children u produce answers different from bu = ⊥, and when they all, at the same moment by
hypothesis, cannot, v restart from phv = 1. Then, v will increase phv until it reaches one value
which differentiates two of its children u ∈ Players(v).

One other, trickier, subtlety coming from the self-stabilizing framework, is that the registers
of the children might be incorrectly initialized. If, due to an incorrect initialization, we miss
an occasion to differentiate two children in Players(v), a similar scheme will happen. In such
situation, v increases phv until it reaches the next value which differentiates two of its children
of Players(v). It might even happen that the initial value of phv is the only value which
can differentiate any two children of Players(v). In this situation, node v will execute a full
round of all the possible value for phv, increasing as long as all of its children produce answers
different from bu = ⊥, then restarting from phv = 1 until it reaches again the initial value
which differentiates its children. On the contrary, an incorrect initialization of the values of bu
on some node u ∈ Players(v) might implies that u executes RLose while it is not supposed to,
according to its actual id. That last case will be said to be a false positive.

Incorrect initializations of variable bu might only happen at the very beginning of the ex-
ecution, and might be taken into account only if u does not update it before any action if its
parent, i.e. if ¬AnswerPar(u, v). Then, as soon as u takes a step, either it executes RLose, either
it updates bu according to its identifier, and then we will not face any incorrect initialization
anymore. Thus, we have to consider the possibilities of wrong initializations only in few cases,
basically only for the current value of phv and only if ¬AnswerPar(u, v). For any other situation,
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Bitu(ph) is the adapted value, which describes the value of bu taken into account during the
negotiation.

To summarize, we can distinguish three situations.

• The first, simplest, situation, is when the current value of phv actually differentiates at
least two children of Players(v). This situation includes false positive, when phv is not
meant to play this role regarding to identifiers, and excludes situations where an incorrect
initialization of the bu prevents the expected differentiation to actually happen.

• The second situation is when the current value of phv does not differentiate two children
of Players(v), but there exists a value greater than phv which does. In such a situation,
we only have to wait for phv to increase until it reaches the first such value, and we fall
in the previous situation.

• The third and last situation is when neither the current value of phv, neither any value
greater than it, can differentiate two children of Players(v). This situation includes, as
an extreme case, the situation where the current value of phv is the only one which might
differentiate two children of Players(v), but an incorrect initialization of some bu prevents
the differentiation from being effective. In this third situation, we wait for phv to increase
until the value for which all children of Players(v), at the same moment, answer ⊥. At
this moment, phv is set to 1 and then we fall in one of the previous situations.

We want to design a function dealing with as many aspects, or as many rules, of the algorithm
as possible. Thus, we intend to define WNego such that any action involving RmaxPos, RNewPh, or
RNewBit, makes WNego decrease. It is pretty natural to treat RNewPh since it increases (or reduces
down to 1) the value of phv, and thus bring closer to the expected value. Since any two execution
of RNewPh are separated by an execution of RmaxPos, which updates bv from ⊥ to a value different
from ⊥, we will not have much trouble to use those properties in the design of WNego. Finally,
we want WNego to decrease any time one child u ∈ Players(v) executes RNewBit. In other words,
we must, in a certain way, count the number of children of v which can execute RNewBit. But
any execution of RNewPh recreates the conditions under which all the nodes u ∈ Players(v) can
execute RNewBit, and thus if we simply decrease WNego by one for the execution of RNewPh, but it
increases by |Players(v)| at the same time, we fail. Two options are left to us. First, we can
define WNego as a 2-tuple, the first component focuses on the progress of phv, and the second one
focuses on the decreasing of the number of nodes which can execute RNewBit. The other option
is to deal this in one single function, and to give some coefficients to the different components
involved. In a certain sense, it boils down to the same as the previous option, but instead of
using the lexicographic order, we define manually high coefficients on the first component so
that it all works the same with one integer value. To avoid making this proof even more tedious,
we chose the second option.

Definitions Before properly defining WNego, let us first formally determine the three different
situations which were described above, whether we reached the expected value for phv, or
whether not but there we will reach this value with only increasing phv, or whether we will have
to reset phv to 1 before we reach it.

Recall that to decide if the current value of phv will differentiate two children u ∈ Players(v),
we cannot simply rely on the values of Bitu(phv). Indeed, we must take into account that the
register of bv and/or bu might be incorrectly initialized. If this happens, and if the current state
of one node u can be interpreted as an answer by its parent, then it does not update it, and
thus bu is the value used to decide what the future of the negotiation is. Otherwise, u has to
first execute RNewBit before anything else, and then erase its previous state and only Bitu(phv)
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is relevant. Thus, we first formally define what actual value will be taken as the answer by the
parent v of u for the current step of the negotiation, which depends for each node u on whether
it will produce a new answer to its parent, or not.

Answerγ(u, v) =

{
Bitu(ph

γ
v) if AnswerParγ(u, v)

b
γ
u otherwise

(50)

Let us now detail the situations in which the current value of phv differentiates two children
u ∈ Playersγ(v). The first, most natural, situation is when two different nodes will produce
different values for b in response to phγv . If this happens, then after v executes RmaxPos (or
before, if we already have b

γ
v ̸= ⊥, at least one of them will be in a situation where it must

execute RLose.

TwoDifferγ(v) ≡ ∃u1, u2 ∈ Playersγ(v) : Answerγ(u1, v) ̸= Answerγ(u2, v) (51)

The previous captures almost all the situations where one node is close to execute RLose.
There exists one other, unusual, situation, which is not described here, which is when all the
nodes u ∈ Playersγ(v) will produce the same value for phv, but due to an incorrect initialization
of variables, v has already picked a value, which is different from the common value proposed
by its children. In this situation, all the children will actually execute RLose at very short term.

OneDiffersγ(v) ≡ bγv ̸= ⊥ ∧ ∃u ∈ Playersγ(v) : Answerγ(u, v) ̸= bγv (52)

We can now define the first of our three cases, which corresponds to the situation where one
node u ∈ Playersγ will execute RLose before any update of phv.

Finishedγ(v) ≡ TwoDifferγ(v) ∨ OneDiffersγ(v) (53)

Let us now discuss the two other situations, in which the current value phγv does not dif-
ferentiate any two children of Playersγ(v). We need to determine whether v will reset phv to
1 before we reach a value which differentiates two of its children of Playersγ(v), or whether
not. We could think, at first, that it is sufficient to determine whether there exists one value
greater than phγv which differentiates two nodes of Playersγ(v) or not. If there is not such
greater value, phv will indeed be reset to 1 before we terminate the negotiation phase. Yet,
it might happen that, although there exists such a greater value, we are nevertheless forced
to reset phv to 1 before we reach this greater value. Indeed, it could happen that, due to an
incorrect initialization of variables bu, all the children u ∈ Playersγ(v) produce ⊥ as an an-
swer for phγv while there exists a greater value which would differentiate two of them. If this
happens, then the execution of PhasePlus(v) will reset phv = 1. Hopefully, this is can happen
only due to incorrect initialization of variables, and thus can only happen for the initial value
of phv. Remark that if only few of the nodes produce ⊥ as an answer for phγv then we have
Finishedγ(v). Let us define the predicate ForcedReset(v) which corresponds to configurations
where an execution of RNewPh by v will set phv to 1.

ForcedResetγ(v) ≡ ∀u ∈ Playersγ(v), Answerγ(u, v) = ⊥ (54)

If ForcedResetγ(v), then we are sure that v will first reset phv = 1. But if not, we must
determine whether there exists one value greater than phγv which differentiates two nodes of
Playersγ(v) or not. Let us first define Separatorsγ(v) the set of all the values for phv which
can differentiate two children u ∈ Playersγ(v). Remark that this set is defined statically: it does
not depend at all on the values of phv, bv, phu, bu, and only relies on the values of the different
identifiers of children of v in Playersγ(v). Yet, we consider this set only if ¬Finishedγ(v), that
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is to say if we must execute RNewPh at least once before reaching the value that differentiates
children of v. By definition, after v executes RNewPh, we necessarily have AnswerPar(u, v) for
all children u ∈ Playersγ(v). Thus, in such situations, Bitu is the relevant tool to decide
whether some value for phv will differentiate children of v. Remark also that Separatorsγ(v)
only depends on Playersγ(v), which will be supposed constant in the following. Consequently,
we will suppose Separatorsγ(v) constant too. Finally, since we are interested in considering
the negotiation phase, v has at least two children, and then Separatorsγ(v) contains at least
one value.

Separatorsγ(v) = {ph ∈ [0, ⌈log n⌉] | ∃u1, u2 ∈ Playersγ(v) : Bitu1(ph) ̸= Bitu2(ph)} (55)

Let us now define the two other predicates, which correspond to situations where node v
will not reset phv to 1 before it reaches a value which differentiates two of its children, and to
the situation where it will.

WontResetγ(v) ≡ ¬Finishedγ(v) ∧


∃i > phγv : i ∈ Separatorsγ(v)
∧
¬ForcedResetγ(v)

(56)

WillResetγ(v) ≡ ¬Finishedγ(v) ∧


∀i > phγv , i /∈ Separatorsγ(v)
∨
ForcedResetγ(v)

(57)

Remark that the three predicates Finished, WontReset, and WillReset are mutually ex-
clusive, and that ∀γ ∈ Γ, ∀v ∈ V, Finishedγ(v)∨WontResetγ(v)∨WillResetγ(v). This justifies
the use of these three predicates to distinguish cases in any situation.

Let us now define, for each of these three cases, the value of ph which, when reach by phv,
will provoke one execution of RLose on one child u ∈ Playersγ(v).

SepValγ(v) =


phγv if Finishedγ(v)
min{i | i ∈ Separatorsγ(v) ∧ i > phγv} if WontResetγ(v)
min{i | i ∈ Separatorsγ(v)} if WillResetγ(v)

(58)

Finally, we are able to define one first aspect of WNego, which is the distance between phγv
and SepValγ(v), which corresponds to the number of executions of RNewPh required for v. This
definition is very simple in both situations Finishedγ(v) and WontResetγ(v). It is slightly more
difficult when WillResetγ(v) since we must determine how high phv will reach before it is reset
to 1. Two situations might occur.

If, due to an incorrect initialization of variables, all the children u of Playersγ(v) produce
⊥ as an answer for phγv , then the next execution of RNewPh by v will set phv to 1 and then phγv
is the maximal value which will be reached before phv is reset to 1.

Otherwise, there will be at least one execution of RNewPh by v before we reach the maximal
value, and thus only the functions Bitu are relevant. In this last case, the maximal value
reached before phv is reset to 1 is the lowest value such that, when reached, all the children u
of Playersγ(v) produce ⊥ as an answer.

MaxPhγ(v) =

{
phγv if ForcedResetγ(v)
min{i > phγv | ∀u ∈ Playersγ(v) : Bitu(i) = ⊥} if ¬ForcedResetγ(v) (59)

Finally, the definition of SepDist(v) which is the number of executions of RNewPh v has to
make before we have phv = SepValγ(v).

SepDistγ(v) =


0 if Finishedγ(v)
SepValγ(v)− phγv if WontResetγ(v)
SepValγ(v) + (MaxPhγ(v)− phγv) if WillResetγ(v)

(60)
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We now formally define the weight of one node v. The goal is to count the number of actions
each node, among v and its children in Playersγ(v), can take before the execution of RLose is
necessary.

Node v will execute two actions for each increase of phv, since it must execute both RNewPh,
and RmaxPos for each step. A node u ∈ Playersγ(v) executes RLose when bv ̸= ⊥, which means
immediately after one execution of RmaxPos, and not of RNewPh. Thus, v executes a sequence of
RNewPh;RmaxPos in this order, which might be preceded by one execution of RmaxPos if necessary.

ParStepsγ(v) = 2× SepDistγ(v) +

{
1 if bγv = ⊥
0 otherwise

(61)

One children u ∈ Playersγ(v) only executes RNewBit, by hypothesis. Every time it executes
RNewBit, u sets phu at the current value of phv, which will be updated exactly SepDistγ(v) times.
Thus, u executes RNewBit once for each updated value of phv, and execute one more action if, in
the initial configuration, u has to produce an answer for phv.

ChStepsγ(u, v) = SepDistγ(v) +

{
1 if AnswerParγ(u, v)
0 otherwise

(62)

We finally define WNego.

WNego(v, γ) =

{
ParStepsγ(v) +

∑
u∈Playersγ(v) ChSteps

γ(u, v) if tokγv = •
0 otherwise

(63)

Preliminaries Our overall goal is to prove that WNego behaves as expected, which is proving
that associated with the four previous components, it is pre-admissible, and that in some specific
cases, it is a decreasing function. Before we formally establish this, we need to establish some
basic, yet numerous, properties which describe how the different predicates and sets we defined
above behave during an execution. Indeed, since the definition of WNego strongly depends on
Finished, WontReset, and WillReset, among other things. In this preliminary, we focus on
establishing properties of stability for those three predicates, depending on the activation of node
v. To achieve this, we first prove some stability properties on other, more basic, predicates,
namely AnswerPar, Answer, ForcedReset. Some of those preliminary lemmas will be reused as
well in the demonstrations of the next section.

Our goal is to prove that (WCh, WEr, WCirc, WPlay, WNego) is pre-admissible. Thus, according to
Theorem 9, most of the proof will be done under the hypothesis that (WCh, WEr, WCirc, WPlay)
is constant. Actually, this is hypothesis is explicitly used only in the proof of Lemma 29,
which states that Players(v) and Separators(v) are constant. In all the other lemmas, this
hypothesis on (WCh, WEr, WCirc, WPlay) is actually used through Lemma 29: we suppose Players(v)
and Separators(v) are constant.

Lemma 29

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

Then Playersγ
′
(v) = Playersγ(v) ∧ Separatorsγ

′
(v) = Separatorsγ(v).

Proof : Let us first remark that cγ
′

v = cγv according to the rules. Let us first consider one node
u ∈ Playersγ(v), i.e. tokγu = ⊥ ∧ cγu ̸= cγv ∧ playγu = P. If u executes RLose then according to
Lemma 25, we have WPlay(v, γ

′) < WPlay(v, γ) which cannot happen by hypothesis. If u executes
RWin or RFakeWin then according to Lemma 16, we have WCh(v, γ

′) < WCh(v, γ) which cannot happen
by hypothesis. Thus, u can only execute RNewBit, and whatever happens, u ∈ Playersγ

′
(v).
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Let us now consider one node u /∈ Playersγ(v). If cγu = cγv then we can have u ∈ Playersγ
′
(v)

only if cγ
′

u ̸= cγ
′

v which is possible only if u executes RWin or RFakeWin but then according to
Lemma 16, we have WCh(v, γ

′) < WCh(v, γ) which cannot happen by hypothesis. Otherwise, if
tokγu ̸= ⊥ then we can have u ∈ Playersγ

′
(v) only if tokγ

′

u = ⊥, which is possible only if
u executes RReturn, but then the execution of Drop(u) implies that playγ

′

u = F and thus u /∈
Playersγ

′
(v). Finally, if cγu ̸= cγv and tokγu = ⊥, then playγu ̸= P. We can have u ∈ Playersγ

′
(v)

only if playγ
′

u = P, which is possible only if u executes RReplayD or RReplayUp. Due to its parent
v, u cannot execute RReplayD, and if it executes RReplayD, then according to Lemma 16, we have
WCh(v, γ

′) < WCh(v, γ) which cannot happen by hypothesis. As a consequence, in any case, u /∈
Playersγ

′
(v).

We just established that u ∈ Playersγ
′
(v) ⇐⇒ u ∈ Playersγ(v), which means that

Playersγ
′
(v) = Playersγ(v). Since Separatorsγ(v) only depends on Playersγ(v), we can

conclude that Separatorsγ
′
(v) = Separatorsγ(v) as well.

From now on, since all the following lemmas of this section are under, at least, the hypoth-
esis of Lemma 29, we allow ourselves to simply write Players(v) and Separators(v) without
referring to the configuration in which the set is evaluated.

Lemma 30 proves that, unless node v asks for one new information, which concerns one
new value for ph, then the value which will be taken as an answer for the negotiation does not
evolve. It partly justifies the definition of Answer.

Lemma 30

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

If v does not execute RNewPh during cs then ∀u ∈ Players(v), Answerγ
′
(u, v) = Answerγ(u, v).

Proof : Let us consider u ∈ Players(v). If u is activated, then according to Theorems 4 and 10,
u executes RNewBit. Therefore, OkNegγ(u) so v is the only parent of u with tokv /∈ {⊥, ↑, ↓},
and, on the other hand, AnswerParγ(u, v). Therefore, by definition of the action Announce(u),
Answerγ

′
(u, v) = bγ

′

u = Bitu(ph
γ
v) = Answerγ(u, v). Suppose now that u is not activated during

cs. If v is not activated either, then we obviously have Answerγ
′
(u, v) = Answerγ(u, v). Let us

rather suppose that v executes RmaxPos during cs.

According to Lemma 20, we have ¬AnswerParγ(u, v), so Answerγ(u, v) = bγu, and since
u is not activated during cs we even have bγ

′

u = bγu. By definition, we have Synchγ(v) so
phγu = phγv , which implies, according to NextPlay(v), that phγ

′

u = phγ
′

v . Since bγ
′

v ̸= ⊥, we have

¬AnswerParγ′
(u, v), so Answerγ

′
(u, v) = bγ

′

u = bγu = Answerγ(u, v).

Lemma 32 proves that once the predicate Finished evaluates to true, then it does in all
the following configurations too. In order to prove it, we first establish Lemma 31 which proves
that when we have Finishedγ(v), node v cannot execute RNewPh, which justifies the name of this
predicate. Lemma 32 is the first fundamental lemma which will be helpful in the next section.

Lemma 31

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

Then Finishedγ(v) ⇒ ¬(Synchγ(v) ∧ PhCompleteγ(v)).

Proof : Suppose that Finishedγ(v) ∧ Synchγ(v) and prove that ¬PhCompleteγ(v). Whether we
have TwoDifferγ(v) or OneDiffersγ(v), there exists u ∈ Players(v) : Answerγ(u, v) ̸= bγv . If
AnswerParγ(u, v) then according to Lemma 20, ¬PhCompleteγ(v). Otherwise, ¬AnswerParγ(u, v)
and then bγu ̸= bγv and once again, ¬PhCompleteγ(v).
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Lemma 32

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

Then (TwoDifferγ(v) ⇒ TwoDifferγ
′
(v)) ∧ (OneDiffersγ(v) ⇒ OneDiffersγ

′
(v)), and

thus Finishedγ(v) ⇒ Finishedγ
′
(v).

Proof : If TwoDifferγ(v) then Finishedγ(v) so according to Lemma 31, v does not execute RNewPh

during cs, and thus according to Lemma 30, ∀u ∈ Players(v), Answerγ
′
(u, v) = Answerγ(u, v).

Thus, let us consider u1, u2 ∈ Players(v) such that Answerγ(u1, v) ̸= Answerγ(u2, v). Immedi-
ately, we have Answerγ(u1, v) ̸= Answerγ(u2, v) and thus TwoDifferγ

′
(v).

Similarly, if OneDiffersγ(v), then Finishedγ(v) so according to Lemma 31, u does not
execute RNewPh during cs, and thus ∀u ∈ Players(v), Answerγ

′
(u, v) = Answerγ(u, v). By def-

inition of OneDiffersγ(v), we have bγv ̸= ⊥, so v does not execute RmaxPos during cs, which
implies that v is not activated during cs. Consequently, bγ

′

v = bγv ̸= ⊥, and since ∀u ∈
Players(v), Answerγ

′
(u, v) = Answerγ(u, v), then OneDiffersγ

′
(v).

Since Finished = TwoDiffer ∨ OneDiffers, we deduce Finishedγ(v) ⇒ Finishedγ
′
(v).

The two following lemmas prove that, when v does not execute RNewPh, then the predicates
ForcedReset and Finished remain constant.

Lemma 33 proves that, as long as v does not update phv, then whether the next execution
of RNewPh will reset phv = 1 or not, ForcedReset(v) keeps the same boolean value. It, partly,
justifies the definition of ForcedReset.

Lemma 33

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

If v does not execute RNewPh during cs then ForcedResetγ
′
(v) ⇐⇒ ForcedResetγ(v).

Proof : Since ForcedReset only depends on Answer, this is a direct consequence of Lemma 30

Lemma 34 establishes that, as long as v does not update phv, then whether we have reached
the final value for phv or not, Finished(v) keeps the same boolean value. In a certain sense, it
specifies Lemma 32.

Lemma 34

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

If v does not execute RNewPh during cs then Finishedγ
′
(v) ⇐⇒ Finishedγ(v).

Proof : Since v does not execute RNewPh during cs, phγ
′

v = phγv . According to Lemma 30, we have

∀u ∈ Players(v), Answerγ
′
(u, v) = Answerγ(u, v).

If v is not activated during cs, then bγ
′

v = bγv and thus we have Finishedγ
′
(v) ⇐⇒

Finishedγ(v). Now suppose that v executes RmaxPos during cs, which means bγv = ⊥ and bγ
′

v ̸= ⊥.

Since bγ
′

v ̸= ⊥, OneDiffersγ
′
(v) ≡ ∃u ∈ Players(v) : Answerγ

′
(u, v) ̸= bγ

′

v . But since
∃u ∈ Players(v) : Answerγ

′
(v) = bγ

′

v due to MaxPos(v), we have OneDiffersγ
′
(v) ≡ ∃u1, u2 ∈

Players(v) : Answerγ
′
(u1, v) ̸= Answerγ

′
(u2, v). Thus, OneDiffersγ

′
(v) ⇐⇒ TwoDifferγ

′
(v).

Furthermore, since ∀u ∈ Players(v), Answerγ
′
(u, v) = Answerγ(u, v) we have TwoDifferγ(v) ⇐⇒

TwoDifferγ
′
(v).
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Finally, since bγv = ⊥ we have ¬OneDiffersγ(v), so

Finishedγ(v) ⇐⇒ TwoDifferγ(v)

⇐⇒ TwoDifferγ
′
(v)

⇐⇒ OneDiffersγ
′
(v) ∨ TwoDifferγ

′
(v)

⇐⇒ Finishedγ
′
(v).

The four following lemmas give information on how an execution of RNewPh might alter some
of the predicates we consider here, or establish relations between them. Lemma 35 proves that
one node v which executes RNewPh resets phv = 1 if and only if it was actually detected by
ForcedReset before its action.

Lemma 35

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

If v executes RNewPh during cs then phγ
′

v = 1 ⇐⇒ ForcedResetγ(v).

Proof : According to Lemma 20, ∀u ∈ Players(v),¬AnswerParγ(u, v). Consequently, ∀u ∈ Players(v), Answerγ(u, v) =
bγu. Thus, ForcedResetγ(v) ≡ ∀u ∈ Players(v), bγu = ⊥, which is exactly the condition which
decides whether phv is set to 1 by PhasePlus(v).

Lemma 36 states that if node v verifies WontReset, then it will not reset phv = 1, as we
expect.

Lemma 36

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

If WontResetγ(v) then v does not reset phv = 1 during cs.

Proof : If v does not execute RNewPh during cs, then this result is immediate. If v executes RNewPh dur-
ing cs, then since WontResetγ(v), we have ¬ForcedResetγ(v), and thus according to Lemma 35,
v does not reset phv = 1 during cs.

Lemma 37 states that if v executes RNewPh, i.e. if it asks for one new information to its
children, then all of them will have to produce a new answer, so after this we can trust the
values of Bitu in the negotiation process. Associated to Lemma 30 it fully justifies the definition
of Answer.

Lemma 37

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

If v executes RNewPh during cs then ∀u ∈ Players(v), AnswerParγ
′
(u, v).

Proof : Let us consider one node u ∈ Players(v). According to Lemma 20, u is not activated during
cs. Furthermore, since v executes RNewPh, we deduce phγ

′

u = phγu = phγv and bγ
′

u = bγu = bγv . Two
cases must be considered.

If bγu ̸= ⊥ then PhasePlus(v) updates phγ
′

v = phγv + 1 ̸= phγv = phγ
′

u , which reduces to

phγ
′

u ̸= phγ
′

v and consequently AnswerParγ
′
(u, v).

Otherwise, if bγu = ⊥, since ∀u′ ∈ Players(v), bγu′ = bv, we have ∀u′ ∈ Players(v), bγu′ =

⊥, so PhasePlus(v) sets phγ
′

v = 1 and bγ
′

v = ⊥. Since we also have bγ
′

u = ⊥, we conclude

AnswerParγ
′
(u, v).
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Lemma 38 states that if one node v executes RNewPh, then we have reached the value on
which the negotiation is finished if and only if this value belongs to the set Separators(v).
Associated with Lemmas 31 and 34 it fully specifies the situations where a computing step
leads to a configuration which satisfies Finished.

Lemma 38

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

If v executes RNewPh during cs then Finishedγ
′
(v) ⇐⇒ phγ

′
v ∈ Separators(v).

Proof : Remark first that bγ
′

v = ⊥, and thus ¬OneDiffersγ′
(v).

By definition ∀u ∈ Players(v), phγu = phγv ∧bγu = bγv . According to Lemma 20, children u of v

are not activated during cs, so ∀u ∈ Players(v), phγ
′

u = phγv∧bγ
′

u = bγv . Furthermore, according to

Lemma 37, ∀u ∈ Players(v), AnswerParγ
′
(v). Consequently, ∀u ∈ Players(v), Answerγ

′
(u, v) =

Bitu(ph
γ′

v ). Since ¬OneDiffersγ′
(v), we obtain:

Finishedγ
′
(v) ⇐⇒ TwoDifferγ

′
(v)

⇐⇒ ∃u1, u2 : Bitu1
(phγ

′

v ) ̸= Bitu1
(phγ

′

v )

⇐⇒ phγ
′

v ∈ Separators(v).

The two following lemmas, the last of this section, and establish how situations where
¬Finished(v) can evolve.

Lemma 39 states that if we are in a configuration such that we will reach the terminal
value for phv without resetting phv = 1, then it remains true. Associated with Lemmas 34
and 38, it fully describes what configuration is reached after a computing step which starts with
WontReset(v).

Lemma 39

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

Then WontResetγ(v) ⇒ WontResetγ
′
(v) ∨ Finishedγ

′
(v).

Proof : Recall that WontResetγ(v) implies ∃i > phγv : i ∈ Separators(v) and ¬ForcedResetγ(v).
Suppose first that v does not execute RNewPh during cs. According to Lemma 33, we have

¬ForcedResetγ′
(v). Since phγ

′

v = phγv , we also have ∃i > phγ
′

v : i ∈ Separators(v). Conse-

quently, WontResetγ
′
(v) ∨ Finishedγ

′
(v).

Now suppose that v executes RNewPh during cs. According to Lemma 36, phγ
′

v = phγv +1, and,

by definition, bγ
′

v = ⊥.

If phγ
′

v ∈ Separators(v) then according to Lemma 38 Finishedγ
′
(v) and thus we obtain the

desired result.

Let us now suppose that phγ
′

v /∈ Separators(v). By definition of WontResetγ(v), we have

∃i > phγv : i ∈ Separators(v). Since phγ
′

v = phγv + 1 /∈ Separators(v), we deduce ∃i > phγ
′

v : i ∈
Separators(v). We now finish the proof by establishing ¬ForcedResetγ′

(v).

Since ∃i > phγ
′

v : i ∈ Separators(v), we deduce ∃u1, u2 ∈ Players(v) : Bitu1
(i) ̸= Bitu2

(i).

At least one of them, let us say u, is such that Bitu(i) ̸= ⊥. By definition of Bitu, since ph
γ′

v < i,

Bitu(ph
γ′

v ) ̸= ⊥, and by Lemma 37, we deduce Answerγ
′
(u, v) ̸= ⊥. Thus, ¬ForcedResetγ′

(v),

and finally WontResetγ
′
(v) ∨ Finishedγ

′
(v).

Lemma 40 states that if we are in a configuration such that we need to reset phv = 1 before
reaching the terminal value for phv, then this remains true after a computing step, unless we do
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reset phv = 1 during this computing step. Associated with Lemmas 35 and 38, it fully describes
what configuration is reached after a computing step which starts with WillReset(v).

Lemma 40

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

If WillResetγ(v), we have:
¬WillResetγ′

(v) ⇐⇒ v executes RNewPh during cs and phγ
′

v = 1.

Proof : Suppose that WillResetγ(v), i.e. ¬Finishedγ(v)∧(∀i > phγv , i /∈ Separators(v)∨ForcedResetγ(v)).
If v does not execute RNewPh during cs then according to Lemma 34, ¬Finishedγ′

(v), and
according to Lemma 33, ForcedResetγ

′
(v) ⇐⇒ ForcedResetγ(v). Finally, since phγ

′

v = phγv ,

we have ∀i > phγ
′

v , i /∈ Separators(v) ⇐⇒ ∀i > phγv , i /∈ Separators(v). Consequently, we

have WillResetγ
′
(v).

Suppose now that v executes RNewPh during cs. According to Lemma 37 ∀u ∈ Players(v), AnswerParγ
′
(u, v)

which implies ∀u ∈ Players(u, v), Answerγ
′
(u, v) = Bitu(ph

γ′

v ).

Let us first prove that if phγ
′

v ̸= 1 then WillResetγ
′
(v). Remark that ¬ForcedResetγ(v).

Indeed, according to Lemma 20 we have ∀u ∈ Players(v),¬AnswerParγ(u, v), and thus if
ForcedResetγ(v) then ∀u ∈ Players(v), bγu = ⊥ and thus the execution of PhasePlus(v) set
phv to 1. But now, WillResetγ(v) ⇐⇒ ¬Finishedγ′

(v) ∧ ∀i > phγv , i /∈ Separators(v).

Thus, phγ
′

v /∈ Separators(v), so according to Lemma 38, ¬Finishedγ′
(v). Furthermore, we have

∀i > phγ
′

v , i /∈ Separators(v), and thus WillResetγ
′
(v).

Let us now prove that if phγ
′

v = 1 then ¬WillResetγ′
(v). If 1 ∈ Separators(v) then accord-

ing to Lemma 38, Finishedγ
′
(v) and thus ¬WillResetγ′

(v). Otherwise, 1 /∈ Separators(v), and
since Separators(v) ̸= ∅,∃i > phγ

′

v : i ∈ Separators(v). Let us now prove that ¬ForcedResetγ′
(v)

to finish the proof. Since v executes RNewPh during cs, ForcedReset
γ′
(v) ⇐⇒ ∀u ∈ Players(v), Bitu(1) =

⊥, which cannot be by hypothesis on the identifiers. Thus, ∃i > phγ
′

v : i ∈ Separators(v) ∧
¬ForcedResetγ′

(v) so Finishedγ
′
(v) ∨ WontResetγ

′
(v).

Proofs In this section, we finally address the function WNego, the lemmas established in the
previous section are going to be extremely useful.

One first step is to establish that what we defined as the last value for phv during the
negotiation phase, SepVal(v), is consistent through an execution. We prove in Lemma 42 that
this value remains constant. Let us first prove Lemma 41 which states that unless we reset
phv = 1, then the maximum value for phv which we will reach before the reset remains constant
as well.

Lemma 41

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

If v does not reset phv = 1 during cs, we have MaxPhγ
′
(v) = MaxPhγ(v).

Proof : If v does not execute RNewPh during cs then phγ
′

v = phγv , and according to Lemma 33

ForcedResetγ
′
(v) ⇐⇒ ForcedResetγ(v), and thus MaxPhγ

′
(v) = MaxPhγ(v).

Suppose now that v executes RNewPh during cs. By hypothesis, phv is not reset to 1 during

cs, so phγ
′

v = phγv + 1, and according to Lemma 35 we also have ¬ForcedResetγ(v). Thus, we
deduce MaxPhγ(v) = min{i ≥ phγv | ∀u ∈ Players(v), Bitu(i) = ⊥}. On the other hand, since

v executes RNewPh during cs, we know by Lemma 37 that ∀u ∈ Players(v), AnswerParγ
′
(u, v),

which implies ∀u ∈ Players(v), Answerγ
′
(u, v) = Bitu(ph

γ′

v ). Thus, ForcedResetγ
′
(v) ≡ ∀u ∈

Players(v), Bitu(ph
γ′

v ) = ⊥, which is equivalent to MaxPhγ(v) = phγ
′

v .
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If ForcedResetγ
′
(v) then immediately, we conclude MaxPhγ

′
(v) = MaxPhγ(v). Let us suppose

¬ForcedResetγ′
(v), which implies MaxPhγ

′
(v) = min{i ≥ phγ

′

v | ∀u ∈ Players(v), Bitu(i) = ⊥}.
But we also know ¬(∀u ∈ Players(v), Bitu(ph

γ′

v ) = ⊥), so we deduce MaxPhγ
′
(v) = min{i ≥

phγ
′

v − 1 | ∀u ∈ Players(v), Bitu(i) = ⊥}, and as a consequence, MaxPhγ
′
(v) = MaxPhγ(v).

Lemma 42

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

Then SepValγ
′
(v) = SepValγ(v).

Proof : Let us distinguish three cases:

• If Finishedγ(v), then according to Lemma 31, v does not execute RNewPh during cs, and
thus phγ

′

v = phγv . Furthermore, according to Corollary 32, Finishedγ
′
(v). Thus, we have

SepValγ
′
(v) = phγ

′

v = phγv = SepValγ(v).

• If WontResetγ(v), two cases must be considered.

If v does not execute RNewPh during cs, then phγ
′

v = phγv , and according to Lemma 34,

¬Finishedγ′
(v), and according to Lemma 30, ∀u ∈ Players(v), Answerγ

′
(u, v) = Answerγ(u, v).

Thus, we have WontResetγ
′
(v), and thus SepValγ

′
(v) = SepValγ(v).

If v executes RNewPh during cs, then by definition of WontResetγ(v) the execution of PhasePlus(v)
sets phγ

′

v = phγv+1 and bγ
′

v = ⊥. According to Lemma 37, ∀u ∈ Players(v), AnswerParγ
′
(u, v),

which implies ∀u ∈ Players(v), Answerγ
′
(u, v) = Bitu(ph

γ′

v ).

– If phγ
′

v ∈ Separators(v), then, by definition, SepValγ(v) = phγ
′

v . Furthermore,

according to Lemma 38, Finishedγ
′
(v), and thus SepValγ

′
(v) = phγ

′

v . This prove

SepValγ
′
(v) = SepValγ(v).

– If phγ
′

v /∈ Separators(v) then according to Lemmas 39 and 38 WontResetγ
′
(v). Fur-

thermore, since phγ
′

v = phγv+1 /∈ Separators(v), we deduce min{i | i ∈ Separators(v)∧
i > phγv} = min{i | i ∈ Separators(v) ∧ i > phγ

′

v }. In other words, SepValγ
′
(v) =

SepValγ(v)

• If WillResetγ(v), let us consider two cases.

If v executes RNewPh and sets phγ
′

v = 1, then according to Lemma 40, Finishedγ
′
(v) ∨

WontResetγ
′
(v), and according to Lemma 38, Finishedγ

′
(v) ⇐⇒ 1 ∈ Separators(v).

Thus, if 1 ∈ Separators(v) then SepValγ(v) = 1 and SepValγ
′
(v) = phγ

′

v = 1, and thus

SepValγ
′
(v) = SepValγ(v). Otherwise, if 1 /∈ Separators(v), then ¬Finishedγ′

(v), so
WontResetγ

′
(v). We have

SepValγ(v) = min{i | i ∈ Separators(v)}
= min{i | i ∈ (Separators(v) \ {1})}
= min{i | i ∈ Separators(v) ∧ i > phγ

′

v }
= SepValγ

′
(v)

and thus SepValγ
′
(v) = SepValγ(v)

Let us now suppose that v does not execute RNewPh, or that, if it does, then it does not
set phv = 1. According to Lemma 40, WillResetγ

′
(v), and we deduce SepValγ

′
(v) =

min{i | i ∈ Separators(v)} = SepValγ(v).

From now on, for all the lemmas of this section which are stated under, at least, the hy-
potheses of Lemma 42, which by the way are the same as the hypothesis of Lemma 29, we
allow ourselves to simply write SepVal(v) without referring to the configuration in which this
function is evaluated.
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This being established, we are going to follow the different components of WNego introduced
for its definition: SepDist, ParSteps, ChSteps, and finished WNego itself. For each of those four
functions, we prove that it corresponds to a non-increasing function, and for each of them we
present the cases where we can guarantee its decrease.

Lemma 43

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

Then SepDistγ
′
(v) ≤ SepDistγ(v).

Proof : Let us consider three cases.

• If Finishedγ(v) then according to Corollary 32, Finishedγ
′
(v) and thus SepDistγ

′
(v) =

SepDistγ(v) = 0.

• If WontResetγ(v), then SepDistγ(v) = SepVal(v)−phγv . If Finishedγ
′
(v) then SepDistγ

′
(v) =

0 ≤ SepDistγ(v). Otherwise, according to Lemma 39 WontResetγ
′
(v). Furthermore, ac-

cording to Lemma 36, phγ
′

v ≥ phγv , so SepVal(v)− phγ
′

v ≤ SepVal(v)− phγv . Consequently,

we have SepDistγ
′
(v) ≤ SepDistγ(v).

• If WillResetγ(v), then SepDistγ(v) = SepVal(v) + (MaxPhγ(v)− phγv).

If v does not reset phγ
′

v = 1 during cs, then according to Lemma 40 WillResetγ
′
(v), and

according to Lemma 41 MaxPhγ
′
(v) = MaxPhγ(v). Furthermore, by hypothesis phγ

′

v ≥ phγv ,

so SepVal(v) + (MaxPhγ
′
(v) − phγ

′

v ) ≤ SepVal(v) + (MaxPhγ(v) − phγv . Thus, we deduce

SepDistγ
′
(v) ≤ SepDistγ(v).

Otherwise, if v executes RNewPh during cs, and sets phγ
′

v = phγv + 1, then according to

Lemma 40 ¬WillResetγ′
(v), and thus we deduce SepDistγ(v) ≤ SepVal(v). Since by

definition MaxPhγ(v) − phγv ≥ 0, we have SepDistγ(v) ≥ SepVal(v). By transitivity,

SepDistγ
′
(v) ≤ SepDistγ(v).

Lemma 44

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

If v executes RNewPh during cs we have SepDistγ
′
(v) < SepDistγ(v).

Proof : Let us consider three cases.

• If Finishedγ(v) then according to Lemma 31, v does not execute RNewPh during cs.

• If WontResetγ(v) then if Finishedγ
′
(v), we have SepDistγ

′
(v) = 0 < SepDistγ(v). Indeed,

since WontResetγ(v), we have SepVal(v) > phγv , and so SepDistγ(v) > 0.

Let us now suppose that ¬Finishedγ′
(v). According to Lemma 39 WontResetγ

′
(v). Fur-

thermore, according to Lemma 36, phγ
′

v > phγv , and thus SepVal(v)− phγ
′

v < SepVal(v)−
phγv . Consequently, SepDist

γ′
(v) < SepDistγ(v).

• If WillResetγ(v) then let us consider two options.

If phγ
′

v = phγv +1 then according to Lemma 40 WillResetγ
′
(v), and according to Lemma 41

MaxPhγ
′
(v) = MaxPhγ(v). Thus, we deduce SepVal(v)+ (MaxPhγ

′
(v)− phγ

′

v ) < SepVal(v)+

(MaxPhγ(v)− phγv , which means SepDistγ
′
(v) < SepDistγ(v).

If phγ
′

v = 1 then according to Lemma 40 ¬WillResetγ′
(v). By definition of MaxPhγ(v),

we have MaxPhγ(v) ≥ phv, so SepDistγ(v) ≥ SepVal(v). On the other hand, whether

Finishedγ
′
(v) or WontResetγ

′
(v), we have SepDistγ(v) < SepVal(v). As a consequence,

we obtain SepDistγ
′
(v) < SepDistγ(v).
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Lemma 45

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

Then ParStepsγ
′
(v) ≤ ParStepsγ(v), and if v executes RmaxPos or RNewPh during cs, then

ParStepsγ
′
(v) < ParStepsγ(v).

Proof : Remark first that if v is not activated during cs, then according to Lemma 43 SepDistγ
′
(v) ≤

SepDistγ(v). On the other hand, bγ
′

v = bγv , so ParStepsγ
′
(v) ≤ ParStepsγ(v).

If v executes RNewPh during cs then according to Lemma 44,

SepDistγ
′
(v) + 1 ≤ SepDistγ(v)

⇒ 2× SepDistγ
′
(v) + 2 ≤ 2× SepDistγ(v)

⇒ 2× SepDistγ
′
(v) + 1 < 2× SepDistγ(v).

Furthermore, ParStepsγ
′
(v) ≤ 2× SepDistγ

′
(v) + 1 and ParStepsγ(v) ≥ 2× SepDistγ(v). By

transitivity, we deduce ParStepsγ
′
(v) < ParStepsγ(v).

Finally, if v executes RmaxPos during cs, then according to Lemma 43 SepDistγ
′
(v) ≤ SepDistγ(v).

Furthermore, we have bγv = ⊥ and bγ
′

v ̸= ⊥, so ParStepsγ
′
(v) = 2 × SepDistγ

′
(v) ≤ 2 ×

SepDistγ(v) < 2 × SepDistγ(v) + 1 = ParStepsγ(v), which reduces to ParStepsγ
′
(v) <

ParStepsγ(v).

Lemma 46

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

Let us consider u ∈ Players(v). Then ChStepsγ
′
(v) ≤ ChStepsγ(v), and if u executes

RNewBit during cs, then ChStepsγ
′
(v) < ChStepsγ(v).

Proof : Suppose first that u does not execute RNewBit.

If v is not activated, then ChStepsγ
′
(v) = ChStepsγ(v).

If v executes RNewPh during cs then according to Lemma 44, SepDistγ
′
(v) < SepDistγ(v),

and thus ChStepsγ
′
(u, v) ≤ ChStepsγ(u, v).

If v executes RmaxPos during cs then no children of v is activated during cs according to
Lemma 20, and thus, Synchγ(v). Consequently, phγ

′

u = phγu = phγv = phγ
′

v . Furthermore, since

bγ
′

v ̸= ⊥, we obtain ¬AnswerParγ′
(u, v). According to Lemma 43, SepDistγ

′
(v) ≤ SepDistγ(v)

so we deduce ChStepsγ
′
(u, v) ≤ ChStepsγ(u, v).

Now suppose that u executes RNewBit during cs. According to Lemma 20, v is not acti-
vated during cs. Furthermore, we have, by definition, AnswerParγ(u, v). The execution of
Announce(u) sets phγ

′

u = phγu = phγ
′

u and bγ
′

u = Bitu(ph
γ
v). If phγv = 1 then Bitu(ph

γ
v) ̸= ⊥,

so ¬AnswerParγ′
(v), and if phγv ̸= 1 then phγ

′

v ̸= 1 and thus ¬AnswerParγ′
(v). Thus, we con-

clude ChStepsγ
′
(u, v) = SepDistγ

′
(v) ≤ SepDistγ(v) < SepDistγ(v) + 1 = ChStepsγ(u, v). By

transitivity, ChStepsγ
′
(u, v) < ChStepsγ(u, v).

Lemma 47

Let cs = γ → γ′ be a computing step and let v be a node such that tokγv = • and tok
γ′
v = •,

and suppose that (WCh, WEr, WCirc, WPlay)(v, γ
′) = (WCh, WEr, WCirc, WPlay)(v, γ).

Then WNego(v, γ
′) ≤ WNego(v, γ), and if v executes RNewPh or RmaxPos during cs, or if ∃u ∈

Players(v) such that u executes RNewBit during cs, then WNego(v, γ
′) < WNego(v, γ).

Proof : This is a direct consequence of Lemmas 45 and 46.
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Theorem 11 establishes that (WCh, WEr, WCirc, WPlay, WNego) is pre-admissible.

Theorem 11

Let cs = γ → γ′ be a computing step and let a be an anchor at γ′ such that a does not
execute Rr

NewDFS during cs.

(WCh, WEr, WCirc, WPlay, WNego)(D
γ′
a , γ′) ⪯5 (WCh, WEr, WCirc, WPlay, WNego)(D

γ
a , γ).

Proof : According to Theorem 9,

(WCh, WEr, WCirc, WPlay)(D
γ′

a , γ′) ⪯4 (WCh, WEr, WCirc, WPlay)(D
γ
a , γ).

If (WCh, WEr, WCirc, WPlay)(D
γ′

a , γ′) ≺4 (WCh, WEr, WCirc, WPlay)(D
γ
a , γ), then the result is trivial. Let us

now suppose that (WCh, WEr, WCirc, WPlay)(D
γ′

a , γ′) = (WCh, WEr, WCirc, WPlay)(D
γ
a , γ), and prove that

WNego(D
γ′

a , γ′) ⪯ WNego(D
γ
a , γ).

In the same way we did in the proof of Theorem 5, we can suppose that for any branch B ofGa,
Dγ′

a (B) is not longer than Dγ
a(B). In such circumstances, we have WNego(D

γ′

a , γ′) ≻ WNego(D
γ
a , γ)

only if there exists a branch B of Ga such that ∃v ∈ Dγ′

a (B) such that WNego(v, γ
′) > WNego(v, γ).

Let us consider one such node v ∈ Dγ′

a (B). According to Theorems 6 and 8, we have
tokγ

′

v = tokγv . If tokγv ̸= •, then WNego(v, γ
′) = 0 = WNego(v, γ). If tokγv = • and tokγ

′

v = •, then
we fall under the hypothesis of Lemma 47 and thus WNego(v, γ

′) ≤ WNego(v, γ).

Thus, for any branch B of Ga, for any node v ∈ Dγ′

a (B), WNego(v, γ′) ≤ WNego(v, γ), and thus

WNego(D
γ′

a , γ′) ⪯ WNego(D
γ
a , γ).

Theorem 12 establishes that under certain circumstances, we are certain that the weight of
one CDo decreases. It will we useful to prove the admissibility of W.

Theorem 12

Let cs = γ → γ′ be a computing step and let a be an anchor at γ′ such that a does not
execute Rr

NewDFS during cs.
If ∃v ∈ Dγ

a such that tokγv = • and either v executes RNewPh or RmaxPos during cs, either
∃u ∈ Playersγ(v) such that u executes RNewBit during cs, then

(WCh, WEr, WCirc, WPlay, WNego)(D
γ′
a , γ′) ≺5 (WCh, WEr, WCirc, WPlay, WNego)(D

γ
a , γ)

Proof : According to Theorem 11,

(WCh, WEr, WCirc, WPlay, WNego)(D
γ′

a , γ′) ⪯5 (WCh, WEr, WCirc, WPlay, WNego)(D
γ
a , γ).

If (WCh, WEr, WCirc, WPlay)(D
γ′

a , γ′) ≺4 (WCh, WEr, WCirc, WPlay)(D
γ
a , γ), then the result is trivial. Let us

now suppose that (WCh, WEr, WCirc, WPlay)(D
γ′

a , γ′) = (WCh, WEr, WCirc, WPlay)(D
γ
a , γ), and prove that

WNego(D
γ′

a , γ′) ≺ WNego(D
γ
a , γ).

Let us consider v ∈ Dγ
a such that tokγv = • and either v executes RNewPh or RmaxPos during

cs, either ∃u ∈ Playersγ(v) such that u executes RNewBit during cs. According to Theorems 6
and 8, we have tokγ

′

v = •. Thus, we fall under the hypothesis of Lemma 47 and we have
WNego(v, γ

′) ≺ WNego(v, γ). Thus, WNego(D
γ′

a , γ′) ̸= WNego(D
γ
a , γ) so according to Theorem 11, we

conclude that

(WCh, WEr, WCirc, WPlay, WNego)(D
γ′

a , γ′) ≺5 (WCh, WEr, WCirc, WPlay, WNego)(D
γ
a , γ).
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C.2.9 Conclusions

In this section we combine the results of Sections C.2.4 to C.2.8 to provide a suitable definition
of admissible potential function. More precisely, we provide a definition of admissibility which is
wide enough to include our weight function W, and tight enough to be convenient in the following
proofs.

The final theorem of this section states that our algorithm satisfies Condition 2 of Specifi-
cation 1, but other intermediate theorems will be used in the following section.

From now on, to ease the reading, when we use comparison operations on 5-tuple induced
by W, we simply use the symbol ≺ rather than ≺5 to denote the lexicographic order on 5-tuples
of WDo’s.

Theorem 13 states that W is pre-admissible.

Theorem 13

Let ϵ = γ0 → γ1 → · · · → γm be an execution. If a is an anchor at γm, and if a does not
execute Rr

NewDFS during ϵ, then W(Dγm
a ) ⪯ W(Dγ0

a ).

Proof : By definition, ∀t ∈ [0,m− 1], a does not execute Rr
NewDFS during γt → γt+1, so according to

Theorem 11, ∀t ∈ [0,m− 1], W(D
γt+1
a ) ⪯ W(Dγt

a ). By transitivity, we conclude W(Dγm
a ) ⪯ W(Dγ0

a ).

As hinted above, to define admissibility we must first interest to what an activation of a CDo

is.

Definition 25 (Activation of a CDo)

Let cs = γ → γ′ be a computing step, let a be an anchor at γ′, and let u ∈ V be a node.
We say that u activates Dγ

a during cs if:

• u = a and u executes Rr
NewDFS during cs, or

• u ∈ B(Dγ
a) and u executes RWin or RFakeWin during cs, or

• u ∈ Dγ
a and u executes ETrustChild or RGive or RNewPlay or RDrop or RNego or ROfferUp

or RReceive or RReturn or RReNego or RNewPh or RmaxPos during cs, or

• ∃v ∈ Dγ
a , v ∈ P(u), tokγv = • and u executes RLose or RNewBit during cs, or

• ∃v ∈ Dγ
a , v ∈ Pneq(u), tok

γ
v ∈ {⟲, ◦} and u executes RReplayD during cs, or

• ∃v ∈ Dγ
a , v ∈ Peq(u), tok

γ
v =↑ and u executes RFake or RReplayUp during cs.

We say that Dγ
a is activated during cs if there exists one node u ∈ V which activates Dγ

a

during cs.

We now prove that the definition of activation matches the evolution of CDo’s. Namely, if
one CDo is not activated during one computing step, either it is unchanged, either it disappears,
its anchor becoming an intern node of one other CDo.

Lemma 48

Let cs = γ → γ′ be a computing step, and let a ∈ A(γ) be an anchor at γ. If Dγ
a is not

activated during cs then either Dγ′
a = Dγ

a , either a /∈ A(γ′).

Proof : Let us suppose that Dγ
a is not activated during cs and that a ∈ A(γ′), and let us prove

Dγ′

a = Dγ
a . To achieve this, let us prove that for all branch B = v1 · · · vk of Ga, D

γ′

a (B) = Dγ
a(B).
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Remark first that ∀i ∈ [1, k], tokγ
′

vi = tokγvi , which implies Dγ
a(B) ⊂ Dγ′

a (B). We have already

seen in the proof of Lemma 18 that if Dγ′

a (B) is longer than Dγ
a(B) then there exists v ∈ B(Dγ

a)
which executes RWin during cs, which would activate Dγ

a . Consequently, D
γ′

a (B) = Dγ
a(B).

This, being true for all branch B of Ga, proves D
γ′

a = Dγ
a .

We now prove that the definition of activation captures almost all computing steps of our
algorithm. The only situation in which no CDo is activated is when all activated nodes execute
RReWin, rule which is not considered by W, but which cannot be responsible of livelock only by
itself.

Lemma 49

Let cs = γ → γ′ be a computing step. There exists an anchor a ∈ A(γ) such that Dγ
a is

activated during cs, or all nodes activated during cs execute RReWin.

Proof : Let us suppose that there exists at least one node u ∈ V such that u executes one rule
different from RReWin during cs.

• If u executes Rr
NewDFS during cs then u is the root, and u activates Dγ

r .

• If u executes RWin or RFakeWin during cs then ∃u ∈ P(v) : tokγp /∈ {⊥, ↑, ↓}, so according to
Lemma 8, ∃a ∈ A(γ) such that v ∈ Dγ

a and thus u ∈ B(Dγ
a), and u activates Dγ

a .

• If u executes ETrustChild or RGive or RNewPlay or RDrop or RNego or ROfferUp or RReceive or
RReturn or RReNego or RNewPh or RmaxPos during cs then tokγu ̸= ⊥ so according to Lemma 8,
there exists a ∈ A(γ) such that u ∈ Dγ

a and thus u activates Dγ
a .

• If u executes RLose or RNewBit during cs then LoseNegγ(u)∨ AnswerNegγ(u). In both cases,
∃p ∈ P(u) : tokγp = •, so according to Lemma 8, there exists a ∈ A(γ) such that v ∈ Dγ

a

and thus u activates Dγ
a .

• If u executes RReplayD during cs then ReplayLγ(u) and thus ∃p ∈ Pneq(u) : tok
γ
p ∈ {⟲, ◦}.

According to Lemma 8, there exists a ∈ A(γ) such that v ∈ Dγ
a and thus u activates Dγ

a .

• If u executes RFake or RReplayUp during cs then ∃v ∈ Pneq
γ(u) : tokγv =↑. According to

Lemma 8, there exists a ∈ A(γ) such that v ∈ Dγ
a and thus u activates Dγ

a .

We can finally provide a definition of admissibility, which corresponds to our weight function
W according to Theorem 14.

Definition 26 (Admissible weight function)

Let W1, . . . , Wk : V × Γ → M be k weight functions on nodes such that (W1, . . . , Wk) is pre-
admissible. We say that (W1, . . . , Wk) is admissible if for all computing step cs = γ → γ′, for

all CDo Dγ′
a , if Dγ

a is activated during cs and if a does not execute Rr
NewDFS during cs, then

(W1, . . . , Wk)(D
γ′
a , γ′) ≺k (W1, . . . , Wk)(D

γ
a , γ)

Theorem 14

W is admissible.

Proof : We established in Theorem 13 that W is pre-admissible. Let us now consider one computing
step γ → γ′, one CDo Dγ′

a which is activated during cs, and suppose that a does not execute
Rr
NewDFS during cs.

Let us consider one node u which activates Dγ
a during cs.

• If u ∈ B(Dγ
a) and u executes RWin or RFakeWin during cs, then according to Theorem 4,

W(Dγ′

a , γ′) ≺ W(Dγ
a , γ).

89



• If u ∈ Dγ
a and u executes ETrustChild or RGive or RNewPlay or RDrop or RNego or ROfferUp or

RReceive or RReturn or RReNego or RNewPh or RmaxPos during cs, then according to Theorems 6, 8,

and 12, W(Dγ′

a , γ′) ≺ W(Dγ
a , γ).

• ∃v ∈ Dγ
a , v ∈ P(u), tokγv = • and u executes RLose or RNewBit during cs, then since

OkNegγ(u), we deduce v ∈ Pneq
γ(v), and thus according to Theorems 10 and 12 W(Dγ′

a , γ′) ≺
W(Dγ

a , γ).

• ∃v ∈ Dγ
a , v ∈ Pneq(u), tok

γ
v ∈ {⟲, ◦} and u executes RReplayD during cs, then according to

Theorem 12 W(Dγ′

a , γ′) ≺ W(Dγ
a , γ).

• ∃v ∈ Dγ
a , v ∈ Peq(u), tok

γ
v =↑ and u executes RFake or RReplayUp during cs, then according

to Theorem 12 W(Dγ′

a , γ′) ≺ W(Dγ
a , γ).

We now prove that if the anchor of a CDo does not execute Rr
NewDFS, then the CDo can only

be activated a finite number of time.

Theorem 15

Let ϵ = γ0 → γ1 → · · · be an infinite execution, and let a ∈ V such that ∀t ≥ 0, a ∈ A(γt),
and such that a does not execute Rr

NewDFS during ϵ.
There only exists a finite number of computing steps cst = γt → γt+1 such that Dγt

a is
activated during cst.

Proof : According to Theorem 14, W is admissible, so if Dγt
a is activated during cst, we have

W(D
γt+1
a , γt+1) ≺ W(Dγt

a , γt).

Let us now reason by contradiction and suppose that there exists an infinity of such computing
steps, cst0 , cst1 , . . . . We have ∀i ≥ 0, W(D

γti+1
a , γti+1) ≺ W(D

γti
a , γti). Furthermore, according to

Theorem 13, we also have ∀i ≥ 0, W(D
γti+1
a , γti+1) ⪯ W(D

γti+1
a , γti+1). Thus, we deduce ∀i ≥

0, W(D
γti+1
a , γti+1) ≺ W(D

γti
a , γti).

Since ≺ is a well-founded order on WDo’s, such infinite decreasing sequence does not exist,
and thus we raised a contradiction. Consequently, there only exists a finite number of computing
steps cst = γt → γt+1 such that Dγt

a is activated during cst.

The following theorem is crucial, since it states that at some point, the CDo which are not
anchored at the root cease being activated, and cease disappearing too. It is a key theorem
to prove the last result of this section, but will also be determining in the following section to
prove the fairness of our algorithm.

Theorem 16

Let ϵ = γ0 → γ1 → · · · be an infinite execution. There exists t0 ≥ 0 such that for all t ≥ t0,
A∗(γt) = A∗(γt0) and ∀a ∈ A∗(γt), D

γt
a is not activated during γt → γt+1.

Proof : Let us first define t0, and let us consider a ∈ A∗(γ0).

If ∃t ≥ 0 : a /∈ A∗(γt) then let us set ta = t. According to Lemma 9, ∀t ≥ ta, a /∈ A(γt).
Otherwise, we have ∀t ≥ 0, a ∈ A∗(γt). According to Theorem 15, there exists only a finite

number of computing steps cst = γt → γt+1 such that Dγt
a is activated during cst (since a ̸= r,

it cannot execute Rr
NewDFS). Let us consider t′ the highest value of t such that Dγt

a is activated
during cst, and let us set ta = t′ + 1.

Let us now set t0 = maxa∈A∗(γ0) ta. Let us consider one anchor a ∈ A∗(γt0). We have
∀t ≥ t0, a ∈ A∗(γt), since if not, we would have ta > t0 which is contradictory with the definition
of t0. Therefore we have ∀t ≥ t0,A∗(γt0) ⊆ A∗(γt), and according to Lemma 9 we conclude
∀t ≥ t0,A∗(γt0) = A∗(γt).

Furthermore, since ∀t ≥ t0, a ∈ A∗(γt), ta has been defined as one more than the highest
value such that Dγt

a is activated during cst. Therefore, ∀t ≥ t0, D
γt
a is not activated during cst.
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We now formally prove that our algorithm satisfies Condition 2 of Specification 1.

Theorem 17

Let ϵ = γ0 → γ1 → · · · be a maximal execution, and let r be the root of G.
ϵ is infinite, and can be divided into an infinite number of circulation rounds.

Proof : According to Theorem 1, we only have to prove that there exists an infinite number of
computing steps csi = γi → γi+1 such that r executes Rr

NewDFS during csi.

According to Theorem 16, there exists t0 ≥ 0 such that ∀a ∈ A(γt) \ {r},∀t′ ≥ t0, a ∈ A(γt′)
and D

γt′
a is not activated during γt′ → γt′+1.

Let us reason by contradiction and suppose that there only exists a finite number of computing
steps csi = γi → γi+1 such that r executes Rr

NewDFS during csi. Then, there exists t1 ≥ 0 such
that ∀t ≥ t1, r does not execute Rr

NewDFS during cst. Thus, according to Theorem 15, there exists
t2 ≥ t1 such that ∀t ≥ t2, D

γt
r is not activated during cst.

Let us consider t3 = max(t0, t2), and the infinite execution ϵ3 = γt3 → γt3+1 → · · · . By
definition, no CDo is activated during ϵ3. Thus, during ϵ3, nodes only execute RReWin. But once
a node v executes RReWin, it cannot execute it again before the execution of one other rule sets
playv = F. Thus, there does not exist such execution, so we reached a contradiction.

Consequently, there exists an infinite number of computing steps csi = γi → γi+1 such that
r executes Rr

NewDFS during csi.

C.3 Convergence

In this section, we establish that our algorithm behaves correctly, by largely using results es-
tablished in Section C.2, and especially in Section C.2.9. We use in particular Theorems 16
and 17, that allow us to start the reasoning at a moment where the algorithm has already partly
converged. Namely, we consider executions in which the set of all the anchors remain constant,
and such that all the CDo’s which are not anchored at the root of the Do are not activated.

Once this is considered, the proof is organized according to the following scheme. We first
establish some additional stability properties on the CDo anchored at the root of the Do. Then,
we give a formal definition of the notion of having the token, for one node. The formal notion
we use to describe the part of an execution where one node is involved in the token circulation
is circulation round, introduced in Theorem 1 and Definition 28. After that, we prove that
if one node executes a circulation round, then all of its children which might take the token
(depending on their variables play and c) actually do it too, and execute a circulation round
as well. We can thus reason by induction an prove that, starting at the root, the token browses
a part of the Do. Finally we prove that the alternation of the color of the root, which occurs
each time it executes Rr

NewDFS, associated to properties of the algorithm, especially its effect on
the variables play of the children of a node, guarantee that the part of the Do which is being
browsed by the token grows each time the root executes Rr

NewDFS, and eventually become the
entire Do.

As we said before, we consider executions which start after the value of t0 guaranteed
by Theorem 16. In particular, the set of anchors does not evolve during the executions we
consider, and according to Lemma 48, no CDo other than the one anchored at r will be updated.
Consequently, to enhance readability, we allow ourselves to simply write A (resp. A∗) without
referring to the configuration in which this set is evaluated, and to simply write Da when a ∈ A∗

without referring to the configuration in which we consider the CDo anchored at a.

Lemma 50

Let ϵ be a maximal execution. We have ∀t ≥ 0, ∀a ∈ A∗, Dγt
r ∩Da = ∅.
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Proof : Let us reason by contradiction and suppose that ∃v ∈ Dγt
r ∩ Da. Remark first that since

v ∈ Da and a ̸= r, we have v ̸= r.

Since v ∈ Dγt
r , there exists B = v1 · · · vk a branch of Dγt

r such that v1 = r and vk = v.
According to Theorem 17, there exists t′ ≥ t such that r executes Rr

NewDFS during γt′ → γt′+1. By
definition, at γt′ , only r is a branch of D

γt′
r , and in particular, B is not. Let us consider t0 the

smallest value greater than t such that B is a branch of D
γt0
r and B is not a branch of D

γt0+1
r .

According to Lemma 10, we deduce that v executes RReturn during γt0 → γt0+1.

By definition, we deduce that v activates Da during γt0 → γt0+1, which is contradictory.

Definition 27 (branch-CDo)

Let Dγ
a be a CDo. We say that Dγ

a is a branch-CDo if the vertices of Dγ
a are {v1, v2, . . . , vk}

with v1 = a and ∀i ∈ [2, k], vi ∈ CDγ
a
(vi−1) and ∀i ∈ [2, k], cvi = ca.

We say that a branch-CDo is clean if ∀i ∈ [1, k],¬Erγ(vi), and if tok
γ
vi =⇊, then

|Playersγ(vi)|+ |{u ∈ Cγ(vi) : tok
γ
u = ⋆}| ≤ 1.

Lemma 51

Let Dγ
a be a clean branch-CDo, and let us label its vertices v1, v2 . . . vk such that ∀i ∈

[2, k], vi ∈ CDγ
a
(vi−1).

∀i ∈ [1, k− 2], tokvi =↓, and if tokvk−1
̸=↓ then (tokvk−1

, tokvk) ∈ {(⇊,⋆), (⟲,⋆), (◦, ↑
)}.

Proof : This is a direct consequence of the definition of predicate Er, since nodes are not in error
and form a branch in G.

Lemma 52

Let ϵ = γ0 → γ1 → · · · be an execution such that r execute Rr
NewDFS during γ0 → γ1. Then

∀t, Dγt
r is a clean branch-CDo.

Proof : We reason by induction. The base case is true since r executes Rr
NewDFS in γ0 → γ1, thus

tokγ0
r =↑ and thus Dγ0

r = {r}, which is a clean branch-CDo. Let us also prove that Dγ1
r is a clean

branch-CDo. We have tokγ1
r = ⋆. Let us prove by contradiction that Dγ1

r = {r}, and suppose
r has one child u with tokγ1

u ̸= ⊥. Since u /∈ Dγ0
r , u is not activated during γ0 → γ1, and thus

tokγ0
u ̸= ⊥. According to Lemma 8, ∃a ∈ A∗ : u ∈ Da. As a consequence, u ∈ Da ∩Dγ1

r which
cannot be according to Lemma 50, and therefore Dγ1

r is a clean branch-CDo.

Let us now suppose that the property holds at γt, and prove it at γt+1. Remark first that if
no node u joins Dr by executing RWin, then the guards of the rules that update tok guarantee
that no error can be generated.

Furthermore, following the same idea as what was presented for Dγ1
r , a node u can join Dr

only if it has a parent v in Dr such that tokv =⇊, otherwise u would be in the intersection of
Dr and one other CDo.

Therefore, we only consider the different cases which imply ⇊, the others being trivial. Let
us consider vk the last node of the clean branch-CDo Dγt

r .

• If tokγvk =⇊ then ∀i ∈ [1, k−1], tokvi =↓ and are not enabled. If the player of v, u, executes
RWin, then c

γt+1
u = cγt

v = c
γt+1
r and therefore D

γt+1
r is a branch-CDo.

Furthermore, no node reaches Playersγ(vk) since RReplayUp implies an activation of another
CDo, and RReplayD is not enabled due to ¬ReplayL. Therefore,
Playersγt+1 ∪{u ∈ C(vk) : tokγt+1

u = ⋆} ⊆ Playersγt ∪{u ∈ C(vk) : tokγt
u = ⋆}, and thus

the branch-CDo is clean.
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• If tokγvk = ⋆ ∧ tokγvk−1
=⇊ then ∀i ∈ [1, k − 2], tokvi =↓, and are not enabled, neither is

vk. Furthermore, Playersγ(vk−1) = ∅ and no node reaches Playersγ(vk−1) for the same
reason as previously. Therefore, D

γt+1
r is a clean branch-CDo.

• If tokγv = • then ∀i ∈ [1, k−1], tokvi =↓ and are not enabled. Children u of vk can only ex-
ecute rules that update playu from P to {L, W, F} and thus Playersγ

′
(v) ⊆ Playersγ(v). If

v executes ROfferUp then nothing has to be proven. If v executes RGive then |Playersγt(v)|+
|{u ∈ Cγ(v) : tokγu = ⋆}| ≤ 1, and thus D

γt+1
r is a clean branch-CDo.

Corollary 2

Let ϵ = γ0 → γ1 → · · · be an execution such that r execute Rr
NewDFS during γ0 → γ1. Then

no node executes RFakeWin during ϵ.

Proof : Let us consider cs = γ → γ′ one computing step of ϵ, and let us consider one node v such
that tokγv = ⊥ and playγv = P.

Suppose first that ∀p ∈ P(v) such that tokγp /∈ {⊥, ↑} we have p ∈ Dγ
r . According to

Lemmas 52 and 51, there exists at most 2 parents of v such that tokγp ̸=↓, and if there are 2 then
we have tokp1

=⟲ and tokp2
= ⋆. In any case, we have OkNegγ(v) and thus v does not execute

RFakeWin during cs.

Let us now suppose that ∃p ∈ P(v) such that tokγp /∈ {⊥, ↑} and p /∈ Dγ
r . Since tokp ̸= ⊥,

according to Lemma 8 there exists a ∈ A∗ such that p ∈ Da. But then, since v ∈ B(Da), v does
not execute RFakeWin since it would activate Da.

From now on, we suppose that the executions start after at least one Rr
NewDFS and thus we

suppose that no node executes RFakeWin during the executions.
We presented in Definition 14 and in Theorem 1 the notion of circulation rounds for the

root. Hence, for the sake of the proof, we also introduce the notion of circulation round on
nodes that are not the root. This will allow us to consider circulation round on any node v ∈ V ,
root or not. Namely, this corresponds to the part of a circulation round in which one particular
node holds the token, or in which the token is in one of its descendants.

Definition 28 (Circulation Round for v ̸= r)

Let ϵ = γ0 → · · · → γk be a finite execution.
We say that v ̸= r executes a circulation round during ϵ if v executes RWin and RReturn,

exactly once during ϵ, in that order.
We call circulation round of v during ϵ, and denote ϵrt(v, ϵ) the subexecution of ϵ :

γi+1 → · · · → γj where γi → γi+1 (resp. γj → γj+1) is the computing step of ϵ where r
executes RWin (resp. RReturn).

Lemma 53

Let ϵ = γ0 → γ1 → · · · → γk be a circulation round of v. Then

1. ∀i ∈ [0, k], cγiv = c
γ0
v

2. ∀u ∈ C(v), tokγ0u = ⊥

3. tokγkv =↑ and MayDropUpγk(v).

Proof : Let us prove the three items separately.

1. If v = r then v updates cv only with the action of Rr
NewDFS, and it does not execute Rr

NewDFS

during ϵ by definition.
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If v ̸= r then v updates cv only with the action of RFakeWin, which is not executed according
to Corollary 2, or with the action of RWin, which is not executed by v during ϵ by definition.

2. Since v executes a circulation round, it is activated and thus belongs to Dr. According
to Lemma 52, ¬Erγ0(v). Furthermore, by definition of circulation round, we have tokγ0

v ∈
{•,⋆}. Thus, ∀u ∈ C(v), tokγ0

u = ⊥.

3. By definition of a circulation round, v executes Rr
NewDFS or RReturn during γk → γk+1 and

thus tokγk
v =↑ and MayDropUpγk(v).

In the following lemma, we establish that if one node v executes a circulation round, then
its playing children also execute a circulation round. This will allow us in the latter to reason
by induction.

Lemma 54

Let us consider one node v ∈ V , and let ϵ = γ0 → γ1 → · · · → γk be a circulation round of
v. Then ∀u ∈ Candidatesγ0(v), u executes a circulation round during ϵ.

Proof : Let us consider u ∈ Candidatesγ0(v). According to Lemma 53, ∀i ∈ [0, k], cγi
v = cγ0

v Since
cγ0
u ̸= cγ0

v , we deduce that ∀i ∈ [0, k], cγi
v ̸= cγ0

u . Lemma 53 also assures that tokγ0
u = ⊥ which

implies that, during ϵ, u cannot execute RReturn before it executes RWin. Let us first prove that
u executes RWin during ϵ.

Whether v = r or v ̸= r has no incidence on the fact that, necessarily, v executes ROfferUp

during ϵ. Otherwise, we would have tokγk
v /∈ {⊥, ↑} which is inconsistent. Let us name css =

γs → γs+1 the computing step during which v executes ROfferUp. We deduce that cγs
u = cγs

v (̸=
cγ0
u ) ∨ playγs

u ∈ {W, F}. Since we consider executions where nodes do not execute RFakeWin, RWin

is the only rule whereby u can update cu, and also the only rule whereby u can update playu
from {P, L} to {W, F}. We conclude that u executes RWin during γ0 → · · · → γs, let us say during
cst = γt → γt+1.

Let us now prove that u executes RWin only once during ϵ. Let us reason by contradiction
and suppose there exists a second computing step cs = γ → γ′ where u executes RWin. Since Dγ

r

is a branch-CDo, then ∀w ∈ Dγ
r , c

γ
w = cγv = cγu. Indeed, u does not change its color between the

first and the second execution of RWin by definition. But because u executes RWin, ∃p ∈ Pneq
γ(u) :

tokγp =⇊. This parent is necessarily in one other CDo, which is activated by u during cs, which
is contradictory.

Since v executes ROfferUp during css, we have tokγs
v = • ∧ ¬Erγs(v) which implies that

tokγs
u = ⊥, and because u executes RWin during γ0 → · · · → γa, it means that u executes RReturn

after having executed RWin and before γs.

Consequently, u executes one circulation round during ϵ.

We now introduce the notion of Free DODAG. This notion is defined only on reset points,
i.e. configuration immediately subsequent to an execution of Rr

NewDFS (see Definition 14). A
Free DODAG corresponds to all the nodes which can reach the root by a path in G, such that
no node of this path has any parent in one other CDo. It corresponds to nodes which have
the possibility to receive the token sent from the root by executing RWin (we do not take into
account the color of the nodes on this path in this definition).

Definition 29 (Free DODAG)

Let γ be a reset point of an execution ϵ. We call free DODAG in γ, and denote FDo(γ), the
smallest set that contains r and such that ∀w ̸= r:

w ∈ FDo(γ) ⇐⇒ tokw = ⊥ ∧ ∃p ∈ P(w) : p ∈ FDo(γ) ∧ ∀p ∈ P(w), (p = r ∨ tokp = ⊥)
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Remark 9

FDo(γ) is a sub-Do of G anchored at r: ∀u, v ∈ FDo(γ), u ∈ CFDo(γ)(v) ⇐⇒ u ∈ CG(v)

Lemma 55

Let γ1 and γ2 be two reset points of an execution. We have FDo(γ1) = FDo(γ2).

Proof : The set of nodes v such that tokγ
1

v ̸= ⊥ is the union of Dγ1

r = {r} and of all CDo’s Dγ1

a , a ∈
A(γ1). By hypothesis, the CDo’s anchored to a node of A are not activated during the execution,
and thus the set of nodes v such that tokv ̸= ⊥ is the same in γ1 as in γ2. As a consequence,
FDo(γ1) = FDo(γ2).

FDo corresponds to all the nodes that may receive the token from the root, without consid-
ering variables c and play. In order to gain in precision, we define the set of all nodes which
will actually receive the token during the starting circulation round.

Definition 30 (Reachable area from r)

Let γ be a reset point. We define the reachable area from r at γ, and denote Reachr(γ):

Reachr(γ) = {vk | ∃v1 · · · vk ∈ FDo(γ) :

{
v1 = r ∧ ∀i ≥ 2, vi ∈ C(vi−1)
∀i ≥ 2, (playγvi ∈ {P, L} ∧ c

γ
vi ̸= c

γ
r )

}

We prove in the following Lemma that nodes in the Reachable area actually receive the
token, and execute exactly one circulation round during the circulation round of the root.

Lemma 56

Let ϵ = γ0 → γ1 → · · · → γk be a circulation round of r. Then ∀u ∈ Reachr(γ), u executes
exactly one circulation round during ϵ.

Proof : Let us prove that lemma by induction on the depth of node u in Reachr(γ). The base
case comes immediately, since r is the only node with depth 0 and by definition, r executes a
circulation round during ϵ.

Let us now establish the induction step and suppose that for any node u with depth less that
d of Reachr(γ), u executes a circulation round during ϵ. Let us consider one node v ∈ Reachr(γ)
with depth d+1, and one of its ancestors u ∈ Reachr(γ) with depth d. By hypothesis, u executes
a circulation round during ϵ. Let us consider ϵrt(u, ϵ) = γi → · · · → γj the circulation round
of u during the circulation round of r. If v ∈ Candidatesγi(u) then we can apply Lemma 54
and thus v executes a circulation round during ϵrt(u, ϵ). If v /∈ Candidatesγi(u) then playγi

v /∈
{P, L} ∨ cγi

v ̸= cγi
u . This is possible only if, before γi v executes RWin. According to Lemma 53,

tokγi
v = ⊥. Thus v executes at least one circulation round during ϵ.

Furthermore, v cannot execute several circulation round during ϵ, since v cannot activate
any other CDo than Dγ

r , and after its first circulation round it has the same color as the root,
and thus the same color as any node of the branch-CDo.

The token does not only circulate through the reachable area of r indefinitely, it also makes
its reachable area increase at each circulation round. Indeed, suppose one node v has the token,
and has one child u with the same color as v. Then u is already seen as visited, which means
that it won’t receive the token, as being out of the reachable area. Yet, when sending the token
upwards to its parent, v forces u to reset playu to P, which means that in the next circulation
round, when the color of the token has switched, u will be able to receive the token. Note that
this only works if u ∈ FDo(γ), otherwise u has other parents, and therefore updates playu to F.
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Also note that if one child u does not receive the token for its variable play is already set to W

or F, but had the appropriate color to receive it, then u will have to wait two circulation rounds
before it actually receives the token. To embrace this behavior, we define the expansion areas
of r, which constitutes all nodes in FDo(γ) which have a parent in Reachr(γ) without being in
Reachr(γ) themselves.

Definition 31 (Expansion areas of r)

Let γ be a reset point. We define the expansion area of order 1 and of order 2 of r at γ, and
denote Exp1r(γ) and Exp2r(γ):

Exp1r(γ) = {u ∈ FDo(γ) | ∃p ∈ P(u) : p ∈ Reachr(γ) ∧ cγu = cγr}

Exp2r(γ) = {u ∈ FDo(γ) | ∃p ∈ P(u) : p ∈ Reachr(γ) ∧
{

playγu ∈ {W, F}
c
γ
u ̸= c

γ
r

}

The following Lemma proves that the three sets defined above are jointly increasing, as
intended. This will allow us to prove that at some point, the reachable area contains the entire
FDo.

Lemma 57

Let γ1 and γ2 be two consecutive reset points of an execution, and let ϵ = γ0 → · · · → γk
be the circulation round of r between γ1 and γ2.

1. Reachr(γ
1) ⊂ Reachr(γ

2)

2. Exp1r(γ
1) ⊂ Reachr(γ

2)

3. Exp2r(γ
1) ⊂ Exp1r(γ

2)

Proof : 1. Remark that r ∈ Reachr(γ
2) by definition. Let us consider one node u ∈ Reachr(γ

1), u ̸=
r, and prove that playγ

2

u ∈ {P, L} ∧ cγ
2

u ̸= cγ
2

r .

According to Lemma 56, u executes one circulation round during ϵ. After ϵ, u cannot
execute RWin after, at least, tokr =⇊ which occurs after γ2. Thus, in γ2, u still has the
color it took when reaching Dr during ϵ Thus, cγ

2

u = cγ
1

r ̸= cγ
2

r

By definition of Reachr, ∃v ∈ P(u) such that v ∈ Reachr(γ
1). According to Lemma 56,

v executes a circulation round during ϵ, and thus v executes ROfferUp during ϵ. Let us
consider csi = γi → γi+1 the last computing step of ϵ such that one parent v of u executes
ROfferUp. At γi, u terminated its circulation round. Indeed, if at γi, u has not begun its
circulation round, then cγi

u ̸= cγi
v and playγi

u ∈ {P, L} which would prevent v to execute
ROfferUp. Furthermore, since ¬Erγ(v), we have tokγi

u = ⊥ so u terminated its circulation
round at γi.

Consequently, we have cγi
u = cγi

r and since ¬WaitSibγi(v), we also have playγi
u ̸= F.

Furthermore, according to Lemma 50, we know that u has no parent such that tokγi
p /∈

{⊥, ↑} apart from Dγi
r , which implies that u has only one parent such that tokγi

p /∈ {⊥, ↑},
which is v. Consequently, since v is the last parent of u that executes a circulation round,
then from γi+1 to the end of ϵ, all the parents of u are such that tokγp ∈ {⊥, ↑}. Thus,
during that part of the execution, we have constantly ¬FakeReplay(u), and thus for that
entire part of the execution, playu ̸= F.

Let us now consider γj the last configuration that is part of the circulation round of v.
According to Lemma 53 we have MayDropUpγj (v), so play

γj
u ̸= W and thus play

γj
u ∈ {P, L}.

Since v does not execute RWin nor RFakeWin after its first circulation round of ϵ, we deduce
playγ

2

u ∈ {P, L}
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Since this is true for all the nodes of Reachr(γ
1), we can conclude Reachr(γ

1) ⊆ Reachr(γ
2)

2. Let us consider one node u ∈ Exp1r(γ
1). By definition of Exp1r, there exists p ∈ P(v) : p ∈

Reachr(γ
1). According to what we established above, p ∈ Reachr(γ

2), so we only have to

prove that cγ
2

u ̸= cγ
2

r ∧ playγ
2

u ∈ {P, L} to establish that u ∈ Reachr(γ
2).

By definition, we have cγ0
u = cγ0

r . Since r does not update cr during ϵ, and since Dr is a
branch-CDo along ϵ, then until u executes RWin, it has the same color as all the nodes of
Dγ

r during ϵ. Since, on the other hand, u cannot activate any other CDo, we deduce that
u actually does not execute RWin during ϵ, neither during γk → γ2 for the same reason.
Consequently, we have cγ

2

u ̸= cγ
2

r .

Now, the proof we made for the previous case totally applies: we can select the last com-
puting step such that one parent p of u executes ROfferUp, at that moment we have cu = cp,
thus we can infer from WaitSib(v) that playu ̸= F and from the non-activation of other
CDo’s that this remains true until at least γ2. FInally, we can reason about MayDropUp as

well to establish that playγ
2

u ∈ {P, L} which terminates the proof.

3. Let us consider one node u ∈ Exp2r(γ
1). By definition of Exp2r, there exists p ∈ P(v) : p ∈

Reachr(γ
1). According to what we established above, p ∈ Reachr(γ

2), so we only have to

prove that cγ
2

u = cγ
2

r to establish that u ∈ Reachr(γ
2).

By definition, we have cγ0
u ̸= cγ0

r ∧ playγ0
u ∈ {W, F}. Thus, u cannot execute RWin before it

executes RReplayUp. Since u does not activate any other CDo than Dr, u executes RReplayUp

only if it has one parent p ∈ Dr such that tokp =↑ and cp = cv. But this cannot happen
in ϵ before u executes RWin, since according to Lemma 52, all the nodes of Dr have the
same color cγ0

r , which is the opposite that cu until it executes RWin. We just found a loop
of dependencies.

We prove that u cannot update cu before at least γ2, and thus u ∈ Exp1(γ2).

The two following lemmas prove that the sets of reachable and expansion areas of r allow a
permanent growth of Reach, which stops only when Reach includes all the nodes of FDo.

Lemma 58

Let γ be a reset point of an execution.(
Reachr(γ) = FDo(γ)

)
∨
(
Exp1r(γ) ∪ Exp2r(γ) ̸= ∅

)
Proof : By contradiction, suppose Reachr(γ) ̸= FDo(γ), and let us consider one node u ∈ FDo(γ) \

Reachr(γ) with minimal depth.

This node has a parent in FDo(γ)∩ Reachr(γ) (otherwise it would not be minimal in depth).
Thus, u belongs to Exp1r(γ) ∪ Exp2r(γ).

Lemma 59

There exists a reset point γf such that Reachr(γf ) = FDo(γf ).

Proof : Let us consider γ1, γ2, · · · an infinite sequence of reset points. According to Lemma 58,
we know that if Reachr(γi) ̸= FDo(γi) then Exp1r(γi) ∪ Exp2r(γi) ̸= ∅. But then, according to
Lemma 57, we deduce that Reachr(γi) ⊊ Reachr(γi+1) or Exp

1
r(γi) ⊊ Exp1r(γi+1).

If we now suppose that ∀i, Reachr(γi) ̸= FDo(γi), then we build an infinite sequence of growing
sets of nodes, which cannot happen. By contradiction, we conclude.

Since we can now apply the properties of Reach, and especially Lemma 56 to FDo, we can
conclude that at some point, FDo = G.

Theorem 18

FDo(γf ) = G
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Proof : Let us reason by contradiction and suppose there exists one node u /∈ FDo(γf ). Let us
consider one such node u with maximal height, i.e. such that ∀p ∈ P(u), p ∈ FDo(γf ). By
definition this implies that ∀p ∈ P(u), tokγp = ⊥ ∨ p = r. Thus, u /∈ FDo(γf ) is possible only by

tok
γf
v ̸= ⊥. Since γf is a reset point, it means that ∃a ∈ A∗ : v ∈ Da, and thus v is not activated

at all.

Let us now consider one parent p of v. According to Lemma 59, we have p ∈ Reach
γf
r ,

and according to Lemma 56, p executes a circulation round after γf . But thus, according to
Lemma 53 when p starts its circulation round we have tokv = ⊥ which is contradictory.

Corollary 3

Reachr(γf ) = G.

Theorem 19

Our algorithm is a fair self-stabilizing token circulation algorithm.

Proof : We already proved in Theorem 17 that our algorithm satisfies Condition 2 of Specification 1.

Let us consider one execution ϵ = γ0 → · · · , and more precisely the subexecution ϵf = γf →
· · ·

Remark that having FDo(γf ) = G implies that all nodes v but the root are such that tok
γf
v =

⊥. Therefore, A∗(γf ) = ∅, and by Lemma 9, this is true in all configurations of ϵf . In particular,
in any configuration of ϵf , the set of nodes with tokv ̸= ⊥ corresponds to the clean branch-CDo

Dγ
r , and by construction, we have UT C(γ). This proves that our algorithm satisfies Condition 1

of Specification 1.

Furthermore, let us consider one circulation round of ϵf which starts at γ1, and let us denote
γ2 the reset point consecutive to γ1. According to Lemma 56, all nodes of Reachr(γ

1) = G

execute exactly one circulation round during that circulation round. Since ∀v ∈ G \ {r}, tokγ1

v =

tokγ
2

v = ⊥, this means that there is exactly one computing step in which v executes RWin, and
thus there exists a finite, continuous, subexecution of this round in which R(v). Therefore, this
circulation round is fair.

C.4 Space Optimality of our Algorithm

In this section, we prove that our algorithm is asymptotically optimal in terms of memory for
the token circulation problem. Our algorithm has a space complexity S(A) ∼ log logn bits per
node.

Thus, we are going to prove that there does not exist any deterministic algorithm solving
T C in S using o(log log n) bits per node. We prove this lower bound under less challenging hy-
potheses than those under which our algorithm works. Namely, our algorithm is self-stabilizing,
it works under the unfair distributed scheduler and in any DODAG. Our lower bound is estab-
lished for general distributed algorithms (without any stabilization requirements), under simpler
schedulers (the synchronous scheduler and the central strongly fair scheduler), and in a very
simple class of Do: the bi-branch Do.

We basically use Theorem 3 established in [3] which introduces the equivalence between
executions of small-memory algorithms in identified networks, and in anonymous networks.
Specification 1 of T C relies on two local predicates, T and R. We can consider the function
(A, T,R), which has asymptotically the same space complexity as A, and to apply Theorem 3
to this new function.

Let us first define the topology used to prove our lower bound. A bi-branch Do is a Do

in which the root has two children, and all the other nodes have one child, and one parent.
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Although we call it Do, it actually a tree, with bounded degree. For simplicity, we provide the
set of edges of the bi-branch as a set of oriented edges, which matches the relation →.

Definition 32 (bi-branch Do Bk)

For any k ≥ 1, we define Bk the k-th bi-branch Do by Bk = (Vk, Ek) where:

• Vk = {r, u1, u2, · · · , uk, v1, v2, · · · , vk},

• Ek = {(u1, r), (u2, u1), · · · , (uk, uk−1), (v1, r), (v2, v1), · · · , (vk, vk−1)}.

r

u1 u2 uk

v1 v2 vk

Figure 28: Bi-branch Do Bk

We define the symmetric configurations on bi-branch Do.

Definition 33 (Symmetric configurations on Bk)

Let us consider k ≥ 1. A configuration of Bk, γ, is said symmetric if
∀i ∈ [1, k], stateγui = state

γ
vi .

Theorem 20 (Lower Bound for T C in S)

Let c > 1. Every deterministic algorithm solving T C in S under a central strongly fair
scheduler or under the synchronous scheduler requires registers of size Ω(log logn) bits per
node in bi-branch Do’s with unique identifiers in [1, nc].

Proof : We first prove the theorem under the hypothesis of the central strongly fair scheduler, and
will show later how to treat the case of the synchronous scheduler.

Let us suppose that there exists an algorithm A solving T C in S under a central strongly fair
scheduler, using o(log log n) bits per nodes in bi-branch Do’s with unique identifiers in [1, nc]. By
definition, there exist two local predicates T and R which specifies how A solves T C.

The class G = (Bi)i≥1 contains graphs of arbitrary large size, and is ∆-limited by log n since
all the graphs it contains have degree 2. Therefore, we can apply Theorem 3. Rather than
simply applying it to A, we consider the tuple (A, T,R). Theorem 3 guarantees that, for any
n large-enough, there exist n distinct identifiers ID1, . . . , IDn in [1, nc] which the tuple (A, T,R)
does not distinguish.

Let us now consider one such large-enough network Bn, such that the identifiers of the
nodes are ID1, . . . , IDn. We consider the framework of distributed algorithms, where the initial
configuration is not corrupted. Therefore, we suppose a configuration γ0 such that the root holds
the token (i.e. T γ0(r) = true), and that all the other nodes are in one unique state. By definition,
γ0 is symmetric. Let us build step by step an infinite execution such that ∀i ∈ N, T γi(r). This is
clearly contradictory with the fairness of the token circulation.

We reason by induction, building step by step an execution in such that each one or two
configuration is symmetric, and such that the root permanently holds the token. The base case
is immediate: γ0 respects both properties.

Let us suppose that γk is symmetric, and T γk(r) = true. By symmetry, we have ∀i ∈ [1, k],
for all rules R of RA, R is enabled on ui if and only if it is enabled on vi. In particular, ui
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is enabled if and only of vi is enabled. Since by hypothesis A solves T C, there is at least one
enabled node.

If the central strongly fair scheduler activates r in γk, then the resulting configuration γk+1

is symmetric. Predicate T only relies on the states of the nodes, since it cannot distinguish the
identifiers by construction, and therefore T γk+1(ui) ⇐⇒ T γk+1(vi) by symmetry. By unicity of
the token, we have T γk+1(r), and the induction step is established.

Suppose now that the central strongly fair scheduler activates ui in γk. In this case, the
scheduler can activate vi in γk+1. Since there is no edge between ui and vi, the action of ui does
not have any incidence on vi, which means that vi takes the exact same step as ui. As a result,
γk+2 is symmetric, and consequently r holds the token in γk+2. Finally, we prove that r also holds
the token in γk+1. Since predicate T is local, and since only ui is activated in γk, only neighbors
of ui or ui itself may have their value on T updated between γk and γk+1. Let w be the node such
that T γk+1(w) = true, and suppose that w ̸= r, i.e. w = uj with j ∈ {i− 1, i, i+ 1}. Therefore,
by symmetry and since vi takes the exact same step as ui, and is the only activated node in γk+1,
T γk+2(vj) = T γk+2(uj) = true, which breaks the unicity of the token. As a consequence, r holds
the token in γk+1, and the induction step is established.

Let us now consider the synchronous scheduler. All the enabled nodes are activated at each
step, which preserves symmetry at each step, and thus the root permanently holds the token too.
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