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Abstract

Anticipating human motion based on given sequences is a
challenging and crucial task in computer vision and ma-
chine learning, enabling machines to understand human be-
haviors effectively. Precise prediction of human pose and
motion trajectory holds great significance for various ap-
plications, including autonomous driving, robotics, and vir-
tual reality. This paper presents a novel approach to ad-
dress the interconnected tasks of estimating human motion,
represented as 3D poses or 2D trajectories, and predicting
future motions using 2D images and human pose/position
sequences jointly. We propose an encoder-decoder archi-
tecture that leverages Transformer networks with a self-
attention mechanism, utilizing visual context features, com-
bined with an LSTM to model human motion kinematics.
Our approach demonstrates consistent and remarkable im-
provements over existing methods, both quantitatively and
qualitatively. Extensive experiments conducted on diverse
public datasets, such as GTA-IM and PROX for 3D human
pose estimation, and ETH and UCY combined datasets for
2D trajectory prediction, showcase that our method sub-
stantially reduces prediction errors compared to the current
state-of-the-art methods.

1. Introduction
Predicting human motion accurately plays a pivotal role in
various fields, such as computer vision, autonomous driv-
ing [13, 9], intelligent robots [19], human-robot collabora-
tion [32, 28], virtual reality [38], and can occur in different
environments, such as streets, airports and sports arenas.
The task involves two main aspects: 3D poses estimation
and 2D trajectories prediction. These tasks are interrelated
and essential for understanding human movements and en-
abling machines to interact intelligently with humans. In
the context of 3D poses estimation, the goal is to focus on
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reconstructing the three-dimensional positions and orienta-
tions of human joints from a given sequence of data, such as
images or videos. On the other hand, 2D trajectories predic-
tion aims to forecast future paths or movements of humans
in a two-dimensional space based on their past behaviors.

Human motion can be interpreted and represented in vari-
ous ways, including kinematics, joints graph, video frames,
and moving from one point to another as a mass point,
each reflecting distinct understandings of human motion
and leading to diverse predictions of it. Three primary
types of motion trajectory prediction are discussed in the
literature: 2D motion trajectory prediction [2, 14, 41],
video prediction [55, 45], and 3D poses sequence predic-
tion [10, 33, 31, 56, 5, 34, 11].

To accurately predict human behavior, it is crucial to con-
sider not only the movements of individuals but also the
physical surroundings, including obstacles, trees, buildings,
and any other scene elements. The combination of these
factors makes forecasting human behavior in crowded set-
tings a formidable undertaking. For instance, the complex
nature of human intentions which act as internal stimuli that
can influence behavior. Additionally, external factors in the
physical world can also actively or passively impact human
motion. Previous approaches have explored various meth-
ods for integrating scene information, including static scene
information extraction [22, 41, 43] and dynamic spatial and
temporal context utilization [44, 7]. However, these models
often suffer from limitations concerning memory and com-
putational complexity.

Remarkable progress has been made in predicting human
pose sequences with the emergence of deep learning. While
predicting human motion, many methods tend to overlook
the fact that humans move around in three-dimensional
spaces, which leads to ignoring the crucial interactions be-
tween humans and their surroundings. Zhang et al. [56],
detect human bounding boxes across various time frames
and use the changing appearance of the human form to gen-
erate their predictive signal, but they do not incorporate the
background image. Mao et al. [31] use the skeleton’s spa-



tial configuration explicitly in the deep architecture itself,
which provides valuable information that leads to more ac-
curate predictions. The joints of the skeleton are related to
each other in terms of their angles and distances, and in-
troducing this information to the deep model constrains its
output from producing random points far from the ground
truth. More other methods for estimating 3D human mo-
tion such as TR [47], VP [36], and LTD [31] have also been
evaluated for this task. Although significant advancements
have been achieved, these approaches have certain limita-
tions since they exclusively rely on kinematic data and ne-
glect to consider information from alternative sources. Nev-
ertheless, incorporating the scene context by including an
embedding of a 2D scene image, a 3D scene, or a specific
object as an additional input to the model, is considered to
be an advantageous approach. This issue has recently ad-
dressed by introducing a novel long-term trajectory predic-
tion problem that focuses on deriving 3D poses from 2D
poses [5] . To accomplish their task, they proposed a three-
stage deep framework named GPP-Net, which utilizes a
single scene image and 2D pose histories, the framework
sequentially predicts 3D human pose sequences along each
path. Meanwhile, Zhe et al. [5] utilize the visual signal of
the observed sequence to incorporate information about the
environment’s objects and geometry, which helps to elimi-
nate ambiguity in some prediction scenarios. Recently, Mo-
hamed et al. [34] formulate the problem as an end-to-end
spatio-temporal graph while learning a suitable graph adja-
cency kernel to capture the interaction among the joints of
the skeleton by exploiting their spatial configuration. Ad-
ditionally, the authors fuse the vision signal into the model.
While previous methods have shown remarkable progress
in predicting human pose sequences using deep learning,
they often overlook the fact that humans move in three-
dimensional spaces, leading to limited consideration of in-
teractions with their surroundings.

In this article, we propose a new approach which: first, ad-
dresses the two tasks: 3D poses estimation and 2D trajec-
tories prediction. Second, it leverages the scene context to
enhance both 2D trajectory and 3D human pose predictions.
We argue that the necessary information for human motion
and interaction, along with environmental constraints, can
be effectively extracted from the video itself, rather than in-
dividual frames. This is because kinematic trajectories are
derived from videos and cannot contain more information
than the video. As a result, we adopt a self-attention mech-
anism to capture relevant features from the video context
and investigate its interaction with human motion kinemat-
ics in spatial and temporal dimensions. The dynamic scene
context is introduced in many existing trajectory predic-
tion methods. However, complex architectures like 3DCNN
[44, 59] are often used to describe the context. Having a
simple architecture using a 2D CNN combined with a trans-

former, it allows to: (1) capture the dynamic context of the
scene by taking into account the observed poses / trajec-
tories and the video streams, (2) better understanding of
the scene taking advantage of static elements and moving
objects, (3) demonstrate improved performance in scenar-
ios with rapid motion changes, predicting sharp turns and
avoiding moving obstacles.

2. Related Work
This section provides an overview of the existing research in
the field of estimating human motion, which encompasses
two primary aspects: 3D poses estimation and 2D trajecto-
ries prediction.

2D trajectory prediction. Early methods for trajectory
prediction [16, 1, 51, 40] used physical forces and Hid-
den Markov models to model social-scene interactions.
However, data-driven approaches using neural networks
that capture multi-modal interactions between the scene
and agents have become dominant. Recent works focus
on RNN-based architectures [23, 3, 58, 22] to encode
interactions between humans, but RNNs struggle with
spatio-temporal interactions. Graph representations
[29, 53, 20, 35] capture social interactions, but some
methods lack environmental context understanding. Other
approaches incorporate human-environment interaction
models [42, 18, 43] with visual features [50, 8] and
dynamic 3D scene information [44]. Transformer-based
methods [53, 53, 46] are seen as potentially more suit-
able for trajectory forecasting, but solely relying on past
trajectories may fail to detect unpredictable sharp turns,
suggesting the need to incorporate additional information,
such as environmental configuration. Our work focuses on
predicting individual pedestrian motion, achieving the best
performance on challenging benchmarks. Context-aware
trajectory prediction models aim to incorporate physical
scene information, such as crosswalks and roads. Previous
methods have proposed extracting and integrating static
scene information [22, 42, 43], while recent models have
explored dynamic spatial and temporal context [7, 44].
However, these models suffer from limitations related
to memory and computational complexity. For instance,
employing 3D-CNNs can be computationally expensive
and require large amounts of memory due to processing
volumetric data [44].

3D pose estimation. The challenge of predicting 3D human
motion involves estimating both the pose and skeleton of
the target subject, which is more complex than 2D pose es-
timation due to a larger 3D pose space and increased ambi-
guities. Various approaches have been proposed to address
this challenge. Some methods directly infer 3D coordinates
from 2D RGB images through joint points regression and



point detection tasks [26], while others explore intermedi-
ate 2D pose approximations [6] instead of directly inferring
the 3D pose from an image. However, these approaches
may not fully consider the image context, leading to incon-
sistencies in predicted human motion with the scene. To
address this limitation, some works utilize the static 3D lay-
out of the scene to improve pose estimation from monocu-
lar images by considering environmental constraints [15].
Additionally, recent studies define tasks for predicting 3D
human motion over extended periods while accounting for
the surrounding environment and employ scene context for
achieving goal-oriented motion prediction [5]. CNN graphs
and deep graph networks have also been effective in clas-
sifying human skeleton actions and predicting 3D human
motion based on past movements [52, 17, 25, 60].

State-of-the-art works address these two applications of hu-
man motion analysis and estimation separately. We propose
in this work an approach which, on the one hand tackles the
two problems, and on the other hand addresses the limita-
tions of existing methods, in particular those relating to the
modality of motion and context description.

3. Approach
3.1. Problem Formulation

The problem addressed in this study is the prediction of hu-
man motion using two main inputs: data and video context.
Our model’s estimation of movement depends on the spe-
cific target representation, which can be either 3D pose pre-
diction or 2D trajectory prediction. The data can be in the
form of 2D skeleton sequences or coordinate position se-
quences, based on the target representation. The challenge
lies in effectively integrating the 2D pose information and
video context to achieve accurate predictions for each task.
The first input, denoted as u

(p)
t , defines the 2D position

of human p at frame t following this formula: u
(p)
t =

[(x
(p)
t , y

(p)
t ), ..., (x

(p)
t , y

(p)
t )] Given that we observe trajec-

tories and scenes from frame 1 to tobs, the goal is to predict
the paths of movements in frames ranging from the next
frame (tobs+1) to the final frame (tf ). For a pedestrian p, the
sequence of observed and future positions are respectively
denoted by τ

(p)
obs = (u(p)

1 , ... , u(p)
tobs

) and τ
(p)
f = (u(p)

tobs+1, ... ,

u
(p)
tf

). The sequence of observed frames is denoted by νo =
(I1, ..., Itobs

), which consists of video frames of the scene.
Building such a model presents challenges due to the com-
plexity and diversity of human motions and the scarcity
of accurate data. To address these issues, we employ an
LSTM-based 2D pose / position encoder, a transformer-
based visual encoder, and a decoder for predicting either
the 2D trajectory or the 3D human poses.

3.2. Architecture

Our architecture is expressed an encoder-decoder model
for both 2D trajectory prediction and 3D pose prediction
(Figure 1). The encoder part is composed of a landmark
encoder-based LSTM responsible of encoding the motion
from 2D skeleton joints matrices, and a context encoder
which analyse the image through a block of ResNet fol-
lowed by a Transformer encoder. Finally, a decoder take as
input the concatenation of the two previous encoders, and
predicts both 2D trajectory and/or 3D skeleton joints repre-
sentation of human motion.

2D pose/position Encoder

Context Encoder

Feature
Extractor
(ResNet)

Transformer Encoder

Multi-Head
Attention

     Fully
Connected

Norm Layer

AvgPool

Positional Encoding
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LSTM LSTM LSTM LSTM LSTM
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Figure 1: Our proposed approach.

2D pose/position encoder. This encoder uses the ob-
served trajectory of the target human as input, which in-
cludes the starting position and the relative displacements
between consecutive frames. This format was chosen to
better capture the similarities between similar trajectories
that start at different points. The input vectors are trans-
formed using a fully-connected network, which power one-
layer LSTM, to model the dependencies between different
coordinates of the observed trajectory. The outputs from
the LSTM units capture the latent kinematic trajectory (2D
human coordinates) or landmarks (2D human poses).

Context encoder. This encoder is used to extract the vi-
sual information of each human. In fact, the observed
video contains information about the physical constraints
of all humans present in the scene. This encoder is com-
posed of a ResNet followed by a transformer network [47].
The ResNet encodes spatial information from the video
frames while the Transformer encode the temporal rela-
tionship while focusing on regions relevant to each hu-
man using the multi-head attention mechanism. It is com-
posed of a Multi-Head attention mechanism, a fully con-
nected layer and a normalization layer. MultiAtt(x) =

(Att(x)⊕ ...⊕Att(x))WO, where Att(x) = σ(
QiKi

dk
)Vi

where Qi = xWQ
i , Ki = xWK

i , Vi = xWV
i are indepen-

dent linear projections of x into a d-feature space, d is a
scaling factor.



Some missing information present here as no recurrence
neither convolution in the encoder attention mechanism. To
overcome that, a Positional Encoding information is added
with the same shape as encoder input to inject information
on the relative or absolute position of the frame in the set of
videos. Thus, T (x) =AvgPool(ET (x+PE)), where ET
is the encoder transformer mechanism function which can
be defined as: ET (x) = Norm(x + FC(MultiAtt(x))),
PE is the aforementioned Positional Encoding, FC is a
fully connected layer, and Norm is a normalization layer.

Decoder. The decoder takes as input the combination of
the two resulted previous vectors. After, it is passed to a
maxpool layer followed by a linear layer to understand the
relation between these. Then, the result will be feed to the
LSTM as hidden vector, followed by a MLP. We aim to pre-
dict human motion using two main inputs: 2D human poses
/ position and video context. The desired output depends
on the specific target problem. In the case of 3D pose pre-
diction, our goal is to forecast the 3D poses of the human
subjects. Conversely, for 2D trajectory prediction, the ob-
jective is to predict the trajectory of the target person in the
2D space. The challenge lies in effectively leveraging the
2D pose / position information and video context to achieve
accurate and reliable predictions for the respective tasks.

Loss function. The loss function is defined depending on
the form of data to be predicted. For 3D pose estimation,
a sub-sequence of 2D body pose (21 2D joints) is observed
in order to predict a sub-sequence of 3D body poses (21 3D
joints). As in [34], the idea is to use the loss functions to
fix the distance and the angle between two joints, in addi-
tion to the typical mean square error. For the angle, we
use the cosine similarity between the joints. For the length
between two joints, we use the l2-norm. In other words,
the loss function have 3 components: MSE between the
joints and the prediction, a consistency loss that make sure
the intra-distance between joints are consistent and that the
angles between the joints are consistent. Also known as,
we don’t want to end up with weird angles and/or weird
skeleton bone lengths. The loss function can be defined as:
Lmodel = λ1Lcos+λ2Lnorm+Lmse, where λ1 and λ2 are
parameters to tune, so we set them to 0.01.

For the 2D trajectory prediction, our loss function consists
of two components - the mean-squared loss and a regular-
ization term called Lreg, which regulates the smoothness
of future trajectories, as prior work [44]. In training our
network, we use the following loss function: Lmodel =
Lmse+ λLreg, where λ is a regularization parameter. We
kept the value of λ fixed at 0.5 in our experiments to avoid
restricting the model’s ability to capture sudden changes in
the target pedestrians’ trajectory. Lmse is calculated as the

average of the squared differences between predicted and
observed values, while Lreg is calculated as the sum of Eu-
clidean distances between each step of the predicted trajec-
tory and a line fitted to the observed trajectory. In our exper-
iments, we sample 20 future trajectories and select the top 5
trajectories that are closest to the ground-truth to calculate
Lmse. Through empirical observation, we have found that
this approach enables our network to converge more quickly
while producing more accurate predictions.

4. Experiments
4.1. Datasets

Two datasets are used to evaluate our approach for 3D pose
prediction: GTA Indoor Motion (GTA-IM) [5] and Proxi-
mal Relationships with Object eXclusion (PROX) [15].

GTA-IM. GTA-IM is collected in an indoor environments
emphasizing human-scene interactions. It contains HD
RGB-D image sequences of 3D human pose and camera
pose annotations, and large diversity in human appearances,
indoor environments, camera views, and human activities.
Following the experimental protocol proposed by [5, 34],
we spit the data into two subsets, with 80% (8 scenes) for
training and 20% (2 scenes) for evaluation purposes.

PROX. PROX is collected with the Kinect-One sensor, and
contains 12 different 3D scenes, including 3d human body
skeleton, and RGB sequences of 20 subjects moving in and
interacting with the scenes. Following [5, 34], we split this
dataset into 52 training sequences for training and 8 se-
quences for test.

Regarding 2D trajectory prediction, our approach was eval-
uated on well-established public human-trajectory datasets,
namely ETH [37] and UCY [23] datasets, which are widely-
used benchmarks for pedestrian motion prediction.

ETH and UCY combined. These datasets were ac-
quired from surveillance videos of pedestrians walking
on sidewalks and annotated with location coordinates.
The datasets contain real-world pedestrian trajectories
in top-view coordinates expressed in meters, with rich
human-human and human-object interaction scenarios. The
acquisition was done using a fixed camera on 5 different
scenarios captured at 2.5 Hz, and an image is annotated
with pedestrian positions every 0.4 seconds. ETH/UCY
consists of five different scenes. The ETH dataset consists
of two scenes (ETH and Hotel) taken from a bird’s eye
view, with hundreds of pedestrian trajectories engaged in
walking activities. The UCY dataset provides three scenes
(Zara1, Zara2, and Univ) taken from a bird’s eye view with
standing/walking activities.



4.2. Metrics

For evaluation, we choose several appropriate metrics to
measure the error of the 3D path and pose human motion
prediction. The main metric employed is Mean Per Joint
Position Error (MPJPE) or 3D pose error. It is calculated
for a frame t and a skeleton consisting of J joints by the
following formula (1), where P the prediction, and Y the
ground truth.

MPJPE(t) =
1

J

J∑
j=1

||P t
j − Y t

j ||2 (1)

For the 3D path error, we use the same formula but only
for a fixed joint that is the center of the skeleton joints. In
fact, these two metrics are used to compute the evaluation
of the error with the time step, i.e. after the quarter, half,
one half, and full 3D joint estimation. Similar to existing
works, other metrics are also used for comparison, Aver-
age Displacement Error (ADE), Final Displacement Error
(FDE), and Stability Error (STB). ADE is used to measure
the overall performance of the pose and the path on the en-
tire predicted sequence. On the other hand, FDE is an in-
dicator of the final time step prediction for path and pose
error. Finally, STB is used to detect the variation of the path
and pose MPJPE error over different time steps. This metric
is mainly used to check the divergence over the prediction
time steps, not the accuracy of the model.

For the 2D trajectory prediction, similar to existing works
[3, 14, 4, 42, 43, 53, 22, 18, 20, 59, 24], our method is eval-
uated using two widely used metrics in the field, namely
the (ADE) and the (FDE). ADE is defined as the aver-
age L2 distance (in meters) between the actual trajectory
and the predicted trajectory at each time step of the trajec-
tory from Tobs+1 to Tpred on average over all pedestrians.
FDE is defined as the Euclidean distance (in meters) be-
tween the ground truth (actual position) and the prediction
(predicted position) at the last time step of the prediction
Tpred, averaged over all pedestrians. Formally, ADE =∑n

i=1

∑Tpred
t=Tobs+1

||Ŷ i
t −Y i

t ||
n∗T , and FDE =

∑n
i=1 ||Ŷ i

Tpred
−Y i

Tpred
||

n

Where n represents the number of pedestrians, Ŷ i
t are the

predicted coordinates for pedestrian i at time t, Y i
t are the

real future positions, and || is the Euclidean distance. Tpred
is the final predicted timestep. T is the prediction horizon.

4.3. Implementation details

In GTA-IM, the initial learning rate is set at 0.01, while in
the PROX dataset, it is 0.03. The model is trained for 400
epochs, with the learning rate decreasing by 0.2 every 200
epochs. A batch size of 128 is utilized. We use 1 second
of observation (5 frames) and 2 seconds for predictions (10
frames) following the settings of prior works for compari-
son. Table 1 shows the different model parameters chosen

in the experiments. The model is trained for 400 epochs, a
batch size of 128 and a learning rate of 0.01. Table 1 shows
the different model parameters chosen in the experiments.

Table 1: Model details.

Input Image size Output Hidden size Embed Size Visual out Landmark out

42 90*160 63 256 64 256 256

For the 2D trajectory prediction, we trained the entire net-
work with a batch size of 40 for 400 epochs, using stochas-
tic gradient descent (SGD) optimizer with a learning rate
scheduler and two mean squared error (MSE) loss func-
tions. The learning rate is adjusted every 40 steps with an
initial learning rate of 0.01 and the maximum gradient value
is clipped to 1 to prevent gradient explosion. We adopted
the teacher force strategy and used our proposed loss func-
tion with a value of λ = 0.5 to achieve faster convergence
as prior work [44]. During training, we generated 20 output
trajectory samples and used the 5 samples with the lowest
loss value to train the model. We use 3.2 second of ob-
servation (8 frames) and 4.8 seconds for predictions (12
frames) following the settings of prior works for compar-
ison. Our model is implemented in Pytorch on Ubuntu with
an NVIDIA TITAN RTX GPU and 24 GB RAM memory.

4.4. Results on 3D pose prediction

Baseline. There exists very few prior works that predicts
3D human pose with global movement using 2D pose se-
quence as input. Thus, as a reference, we use the results
from methods reported in [5]. (1) TR [47]: utilizes trans-
former architecture to predict the 3D human pose directly
from 2D input data, treating the entire problem as a single-
stage sequence to sequence task. (2) TR [47]+VP [36]:
a combination of the transformer and a 2D-to-3D human
pose estimation method. It is constructed by first predict-
ing the future 2D human pose using [47] from inputs and
then lifting the predicted pose into 3D using [36]. (3) VP
[36]+LTD[31]: a combination between a 2D-to-3D human
pose estimation method [36], and a 3D human pose esti-
mation based on graph [31]. None of these three baselines
take into account the context of the scene. (4) GPP-Net
[5]: is composed of three stages and incorporates various
concepts, including VAEs, as well as customized stages for
predicting both paths and poses. (5) SG [34]: concerns the
prediction of the 3D human pose prediction based on Skele-
ton Graph, using graph CNNs with self learning adjacency
matrix and formulating the problem as a spatio-temporal
graph. Note that there are two variants of SG : with/without
the context (designed as +/-C), in order to observe the im-
pact of context, especially on the PROX dataset.

Quantitative Analysis. Tables 2-5 show the result ob-
tained from both GTA-IM and PROX datasets, employing



the provided metrics. Specifically, Table 2 and 3 display
the assessment outcomes for the forecasted path and 3D
pose on the GTA-IM and PROX datasets respectively. Ta-
ble 4 and 5 illustrate the FDE, ADE, and STB outcomes
obtained through various techniques on the GTA-IM and
PROX datasets respectively.

Table 2: Evaluation results in GTA-IM dataset (errors are in
mm).

3D path error 3D pose error
Time step (s) 0.5 1 1.5 2 0.5 1 1.5 2
TR[47] 277 352 457 603 291 374 489 641
TR[47]+VP[36] 157 240 358 494 174 267 388 526
VP[36]+LTD[31] 124 194 276 367 121 180 249 330
Ours (-C) 222 221 222 226 299 291 291 295
GPP-Net (+C) [5] 104 163 219 297 91 158 237 328
SG (+C) [34] 154 163 172 186 198 209 217 230
Ours (+C) 167 168 169 167 208 211 212 213

Our approach demonstrates better performance than previ-
ous methods across several metrics. At first sight, the STB
metric of 1 and 4 for GTA-IM and PROX dataset respec-
tively shows that our model is stable for long term predic-
tion. This result could be due to the trick of predicting dis-
placement instead of just the coordinates, in order to better
capture the similarities between close trajectories starting at
different positions. For the 3D path error and the 3D pose
error in GTA-IM, only for long term, our approach starts
to outperform the other methods. FDE is very closed to
ADE in our case, which is due to the stability of the predic-
tion over time. If we want to choose short-term prediction,
GPP-Net [5] is the best choice, and for a long term predic-
tion, our model is the best. In the other hand, PROX dataset
was primarily recorded in a vacant laboratory setting, re-
sulting in limited diversity in terms of visual characteris-
tics. As a result, it lacks the same level of richness as the
GTA-IM dataset, which has implications for the diversity of
backgrounds and camera angles. Due to these limitations,
the visual signal is inherently less informative, which can
result in increased ambiguity in predictions. These limita-
tions of the PROX dataset will impact our results as seen it
in the table 3 and 5 (without context, our results are better
than those with context). A similar discussion was raised
in [5, 34]. For the PROX dataset using the vision signal re-
sulted in a divergence of the results. As seen in table 4, the
errors in short-term prediction are even larger than in long-
term prediction. Further investigation is needed to under-
stand the reasons behind this behavior. Despite this, we are
mostly better than the other methods and these results on the
PROX dataset demonstrate the resilience of our approach in
scenarios involving imprecise 2D pose estimations. Also,
we can note that the 3D pose error was the lowest compared

Table 3: Evaluation results in PROX dataset. Error are in
mm. C: to indicate, using context or not.

3D path error 3D pose error
Time step (s) 0.5 1 1.5 2 0.5 1 1.5 2
TR[47] 487 583 682 783 512 603 698 801
TR[47]+VP[36] 262 358 461 548 297 398 502 590
VP[36]+LTD[31] 194 263 332 394 216 274 335 394
Ours (-C) 306 303 302 302 291 286 285 286
GPP-Net (+C)[5] 189 245 317 389 190 264 335 406
SG (+C) [34] 353 353 355 360 358 362 365 370
Ours (+C) 350 346 342 343 362 351 350 352

Table 4: Results of FDE, ADE and STB in GTA-IM dataset
are reported in mm. C: to indicate, using context or not.

Time step (s) FDE ADE STB
TR[47] 622 436 147

TR[47]+VP[36] 510 326 150
VP[36]+LTD [31] 349 230 98

Ours (-C) 260 258 2
GPP-Net (+C) [5] 313 200 93

SG (+C) [34] 208 192 11
Ours (+C) 190 189 1

Table 5: Results of FDE, ADE and STB in PROX dataset
are reported in mm. C: to indicate, using context or not.

Time step (s) FDE ADE STB
TR[47] 792 644 126

TR[47]+VP[36] 569 427 126
VP[36]+LTD[31] 394 300 82

Ours(-C) 294 295 2
GPP-Net (+C) [5] 398 292 90

SG (+C) [34] 365 359 3
Ours(+C) 347 349 4

to prior works, suggesting our model (-C) effectiveness in
predicting 3D poses, even without the context. However,
it had the highest error for the 3D path indicating a trade-
off between the objectives of path and poses, which may
be influenced by the lack of visual signal. Additionally,
as seen in table 2 and 4, when the vision signal was used
on the GTA-IM dataset, there was a significant improve-
ment in both path and pose prediction performance mainly
in long term. However, when the same signal was used on
the PROX dataset, the results diverged. Additionally, even
without context, the results for GTA were superior, empha-
sizing the importance of context in the prediction as we ex-
plained in the introduction.

Qualitative Analysis. Figure 2 visualizes the predicted 3D



human poses, presenting predictions for 10 human poses in
two motion scenarios: walking and sitting. The joint es-
timation for walking sequence Figure 2-(top) seems very
close to the ground truth and even the model becomes bet-
ter with time steps, which is a concretization of the result
obtaining in the Table 2, when the error decreases with time
steps. In general, this prediction seems to be good, with
the exception of the two last predicted joints, where the
feet cross each other. For the sitting sequence in Figure 2-
(down), we can observe a total lack of prediction, especially
for the feet. This error may be due to the lack of training
data on the sitting motion. This result is obtained despite
that during training we use the consistency loss, which tunes
the angle between two consecutive joints. Here for instance
between two successive feet joint, the angle is tuned, but
the problem comes from the angle between the feet and the
back joint. For the evaluation, even if the prediction is not
the best, the metric used will only compute the distance be-
tween the prediction and the target joins, so no loss related
to angle is evaluated.

Figure 2: Predicted 3D human pose compared to the ground
truth. The arrow indicates the time direction. (top) Example
of walking motion prediction. (down) Example of sitting
motion prediction.

4.5. Results on 2D trajectory prediction

To address the problem of pedestrian trajectory forecasting
(2D), we used the same encoder-decoder architecture. It
is bimodal in the way that it is composed of two parallels
encoder branches, see figure 1.

Baseline. We compare the effectiveness of our proposed
approach with state-of-the-art models by conducting a com-
parative analysis. We evaluate our approach against six de-
terministic baselines, which are linear regression, LSTM,
Social-LSTM [3], Social ATTN [48], TrafficPredict [29],
and SR-LSTM [58]. For evaluation, we generate 20 pre-
dictions for each observed trajectory and select the pre-
diction closest to the ground truth. This evaluation tech-
nique enables us to examine the multi-modality and di-
versity of the predictions. We also compare our approach
against various generative baselines, including Social-

GAN [14], DESIRE [22], FSGAN [21], SoPhie [42], Tra-
jectron [18], MATF [59], NEXT [27], Social-BiGAT [20],
Social-STGCNN [35], Social ways [4], and PECNet [30],
M2P3 [39], SGN LSTM [57], Trajectron++ [43], Intro-
vert [44], GroupNet [49], Transformer-TF [12], STAR [53],
and AgentFormer [54]. These models use various ap-
proaches such as LSTM, GAN, spatio-temporal graph con-
volutional neural networks, and transformers to predict hu-
man trajectories.

Evaluation method. For benchmarking purposes, we fol-
low a similar evaluation method as previous studies (See Ta-
ble 6). When evaluating trajectory forecasting models, the
chosen time horizon is crucial due to varying object speeds.
The choice of time horizon should depend on the class of
objects being considered. To ensure fairness in compar-
isons, we observe each training trajectory for 8 times-steps
(3.2 seconds) and then evaluate performance oven the next
12 time-steps (4.8 seconds). To fully utilize the datasets
during training, we adopt a leave-one-out evaluation strat-
egy, common in prior research. We train our model on four
sets of data and evaluate it on the remaining set. We repeat
this process for all the 5 sets.

Quantitative Analysis. The main results, shown in Table 6,
highlight the superior performance of ours* over state-of-
the-art (SOTA) deterministic models in terms of overall per-
formance, with ADE/FDE scores of 0.23/0.37. Moreover,
our stochastic model exhibits a significant performance im-
provement over all SOTA models by a large margin. Our
primary focus lies in the comparison of these stochastic
models. The results are presented against state-of-the-art
approaches as mentioned above, using the best-of-20 proto-
col, which involves sampling 20 possible future trajectories
and selecting the one with the best test performance.
Our proposed method achieves outstanding performance,
ranking the first among state-of-the-art methods. In par-
ticular, on the FDE metric, our method significantly outper-
forms existing algorithms on 4 out of 5 datasets, achieving
the best average error of 0.33. On the ADE metric, the pro-
posed method outperforms existing algorithms on 3 out of 5
datasets and achieves an average ADE error of 0.19 across
all 5 datasets. The University dataset has higher displace-
ment errors compared to other datasets, making it challeng-
ing to predict future trajectories accurately. Our method re-
mains comparable to other existing approaches but outper-
forms all the dense interaction-based methods like S-GAN,
Sophie, S-BiGAT, S-STGCNN, and Social Ways. The Ho-
tel dataset has many pedestrians waiting for trains, result-
ing in limited motion. Therefore, most methods, including
ours, achieve relatively small displacement errors by pre-
dicting small motions accurately. Our proposed method
achieves the lowest FDE (0.10) and ADE (0.15) errors on
this dataset. The ETH dataset often produces larger dis-



Performance ADE/FDE ↓ (m)
Method Univ Zara1 Zara2 Hotel ETH Avg
Linear* 0.82/1.59 0.62/1.21 0.77/1.48 0.39/0.72 1.33/2.94 0.79/1.59
LSTM* 0.61/1.31 0.41/0.88 0.52/1.11 0.86/1.91 1.09/2.41 0.70/1.52
Social-LSTM* [3] 0.67/1.40 0.47/1.00 0.56/1.17 0.79/1.76 1.09/2.35 0.72/1.54
Social-ATTN* [48] 0.33/3.92 0.20/0.52 0.30/2.13 0.29/2.64 0.39/3.74 0.30/2.59
TrafficPredict* [29] 3.31/6.37 4.32/8.00 3.76/7.20 2.55/3.57 5.46/9.73 3.88/6.97
SR-LSTM* [58] 0.51/1.10 0.41/0.90 0.32/0.70 0.37/0.74 0.63/1.25 0.45/0.94
Ours* 0.25/0.41 0.16/0.27 0.17/0.26 0.10/0.14 0.47/0.76 0.23/0.37
DESIRE [22] 0.59/1.27 0.41/0.86 0.33/0.72 0.52/1.03 0.93/1.94 0.53/1.11
Social-GAN [14] 0.60/1.26 0.34/0.69 0.42/0.84 0.72/1.61 0.81/1.52 0.58/1.18
FSGAN [21] 0.54/1.14 0.35/0.71 0.32/0.67 0.43/0.89 0.68/1.16 0.46/0.91
SoPhie [42] 0.54/1.24 0.30/0.63 0.38/0.78 0.76/1.67 0.70/1.43 0.54/1.15
Trajectron [18] 0.54/1.13 0.43/0.83 0.43/0.85 0.35/0.66 0.59/1.14 0.47/0.92
MATF [59] 0.44/0.91 0.26/0.45 0.26/0.57 0.43/0.80 1.01/1.75 0.48/0.90
Next [27] 0.60/1.27 0.38/0.81 0.31/0.60 0.30/0.59 0.73/1.65 0.46/1.00
Social-BiGAT [20] 0.55/1.32 0.30/0.62 0.36/0.75 0.49/1.01 0.69/1.29 0.48/1.00
Social-STGCNN [35] 0.44/0.79 0.34/0.53 0.30/0.48 0.49/0.85 0.64/1.11 0.44 / 0.75
Social Ways [4] 0.55/1.31 0.44/0.64 0.51/0.92 0.39/0.66 0.39/0.64 0.46/0.83
PECNet [30] 0.35/0.60 0.22/0.39 0.17/0.30 0.18/0.24 0.54/0.87 0.29/0.48
M2P3 [39] 0.64/1.34 0.45/0.95 0.37/0.79 0.54/1.13 1.04/2.16 0.60/1.27
Transformer-TF [12] 0.35/0.65 0.22/0.38 0.17/0.32 0.18/0.30 0.61/1.12 0.31/0.55
STAR [53] 0.31/0.62 0.26/0.55 0.22/0.46 0.17/0.36 0.36/0.65 0.26/0.53
AgentFormer [54] 0.25/0.45 0.18/0.30 0.14/0.24 0.14/0.22 0.45/0.75 0.23/0.39
Trajectron++ [43] 0.30/0.54 0.25/0.41 0.18/0.32 0.18/0.28 0.67/1.18 0.32/0.55
SGN LSTM [57] 0.48/1.08 0.30/0.65 0.26/0.57 0.63/1.01 0.75/1.63 0.48/0.99
Introvert [44] 0.20/0.32 0.16/0.27 0.16/0.25 0.11/0.17 0.42/0.70 0.21/0.34
GroupNet [49] 0.26/0.49 0.21/0.39 0.17/0.33 0.15/0.25 0.46/0.73 0.25/0.44
Ours 0.23/0.40 0.15/0.26 0.14/0.23 0.10/0.15 0.35/0.62 0.19/0.33

Table 6: The average/final displacement error (ADE/FDE)
metrics for several methods compared to our model are
shown. Lower is better. The models with * have determin-
istic outputs. All the stochastic models sample 20 possible
trajectories and report the best result using a best-of-20 pro-
tocol. All models observe 8 frames and forecast the subse-
quent 12 frames.

placement errors, which is a common occurrence among
many models, due to lower frequency of video frames and
kinematic data. However, our method achieves the low-
est ADE/FDE errors on the ETH dataset, showing the ef-
fectiveness of our approach in capturing and incorporating
information about the movements and behaviors of neigh-
boring pedestrians. Our proposed method outperforms
transformer-based methods on the Zara1 dataset, which is
the least structured dataset in the benchmark. The dataset
mainly consists of straight lines. The proposed method
achieves an ADE similar to the best method [54] (0.14)
and also achieves the lowest FDE among all the methods
compared (0.23). As seen, our approach outperforms pre-
vious Transformer-based methods such as Transformer-TF,
STAR, and AgentFormer on the ETH and UCY datasets.
Overall, our model offers a competitive alternative to graph-
based methods [20, 35] and has the potential to improve tra-
jectory prediction accuracy.

Qualitative Analysis. The qualitative outcomes, depicted
in Figure 3, display the accuracy of our trajectory predic-
tion on multiple videos from the ETH and UCY datasets,
providing visual evidence of its effectiveness in accurately
predicting pedestrian trajectories. The examples presented
illustrate various scenarios, including human-human inter-
action, human-space interaction, and avoiding obstacles.

For instance, in the top left example, our model successfully
predicts the target pedestrian’s trajectory through the store’s
left-side door. Additionally, in the bottom left example,
our method accurately predicts the target person’s avoid-
ance of a tree and continues straight towards the train. In
the top right example, our model captures a human-human
interaction, wherein the target pedestrian slows down be-
fore a group of standing people, bypasses them from the left
side. These instances demonstrate our method’s ability to
effectively predict future pedestrian positions, particularly
in crowded scenes with complex interactions.

Figure 3: Illustration of the prediction trajectories. Yellow
dots represents the past observed while violet & green dots
represent our prediction and the ground truth.

5. Conclusion
In this paper, we presented a novel approach for predicting
future human motion, encompassing both 3D pose estima-
tion and 2D trajectory prediction, depending on the specific
target representation. Our general encoder-decoder archi-
tecture combined transformer networks with self-attention
mechanisms and LSTM to jointly capture contextual in-
formation and motion sequences. By incorporating image
video scene context and a sequence of 2D positions/body
poses, our model demonstrated remarkable performance
across diverse benchmark datasets, including GTA, PROX,
and the combined ETH and UCY datasets. The extensive
benchmarking underscored the superiority of our approach
over existing state-of-the-art methods, particularly excelling
in long-term prediction tasks essential for real-world appli-
cations. For future work, we propose exploring multi-modal
data fusion, integrating additional modalities such as depth
information or semantic segmentation maps, along with at-
tention mechanisms and transfer learning.
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