Cross-Modal Attention for Accurate Pedestrian Trajectory Prediction

Accurately predicting human behavior is essential for a variety of applications, including self-driving cars, surveillance systems, and social robots. However, predicting human movement is challenging due to the complexity of physical environments and social interactions. Most studies focus on static environmental information, while ignoring the dynamic visual information available in the scene. To address this issue, we propose a novel approach called Cross-Modal Attention Trajectory Prediction (CMATP) able to predict human paths based on observed trajectory and dynamic scene context. Our approach uses a bimodal transformer network to capture complex spatio-temporal interactions and incorporates both pedestrian trajectory data and contextual information. Our approach achieves state-of-the-art performance on five real-world pedestrian prediction datasets, making it a promising solution for improving the safety and reliability of pedestrian detection and tracking systems.

Introduction

Accurately predicting human movement has significant applications in various domains, including autonomous driving, surveillance systems, and wheelchair automation. It helps detect potential threats in security, ensures safe navigation in autonomous driving, and provides valuable insights into human-environment interactions for social and behavioral sciences. However, predicting human movement is a challenging task due to dynamic interactions between agents, complex environments, and long-term dependencies. The multimodality of human motion also presents a significant challenge.

Recent research has focused on leveraging the power of deep learning models to improve the accuracy of predicting human movement. Early models, such as Social Forces, had limitations in complex crowded environments. Researchers have since developed sequence prediction methods based on Recurrent Neural Networks (RNNs) [START_REF] Alahi | Social LSTM: Human Trajectory Prediction in Crowded Spaces[END_REF], which performed well for modeling nearby trajectories but could not capture the impact of further pedestrian motion. More recent works have combined temporal encoding of kinematics data using LSTM and spatial feature extraction through convolution networks on image inputs [START_REF] Shafiee | Introvert: Human Trajectory Prediction via Conditional 3D Attention[END_REF], improving state-of-the-art results. However, these models have limitations in predicting unexpected scenarios, such as sudden changes in motion direction or avoidance of moving obstacles.

To overcome these limitations, we propose a novel approach that utilizes Transformer Networks, which we believe prioritize attentive focus as a crucial aspect in predicting trajectories. While most current methods treat trajectory prediction as time sequence generation using LSTMs or Transformers, our approach fully leverages both the set of coordinates and videos through multimodal transformers. However, despite increasing research in this area, most studies still overlook the dynamic visual information available in the scene, instead focusing on static environmental data. To address this gap, we introduce the Cross-Modal Attention Trajectory Prediction (CMATP) framework, which predicts human paths based on both the observed trajectory and dynamic scene context, leveraging a ResNet and attention mechanism on video input. By doing so, CMATP captures both environmental constraints and social interactions in dynamic scenes, without requiring communication with other humans.

Our approach includes a cross-attention module that integrates trajectory data with contextual information, allowing the network to capture the general temporal consistency of pedestrian movement. By using a convolutional model for feature extraction and a bimodal transformer, CMATP captures intricate spatio-temporal interactions, improving accuracy while maintaining the same computational complexity as using a single data type. The main contribution lies in the ability to leverage the benefits of tow input modalities while avoiding the computational overhead of incorporating additional data types.

Related Work

This paper discusses research trends in human trajectory forecasting, a topic that has garnered interest for over two decades. We identify three major research directions: improving sequence modeling, studying the impact of people's actions on each other, and modeling interactions between people and their environment.

Sequence modeling using RNNs. RNNs are often used to generate sequences, including kinematic trajectory information [START_REF] Alahi | Social LSTM: Human Trajectory Prediction in Crowded Spaces[END_REF][START_REF] Mangalam | It Is Not the Journey but the Destination: Endpoint Conditioned Trajectory Prediction[END_REF][START_REF] Zhang | SR-LSTM: State Refinement for LSTM Towards Pedestrian Trajectory Prediction[END_REF]. However, they struggle to capture spatiotemporal interactions among humans in a scene [START_REF] Gupta | Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks[END_REF][START_REF] Amir Sadeghian | SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints[END_REF]. To address this, researchers have proposed augmenting RNNs with pooling [START_REF] Alahi | Social LSTM: Human Trajectory Prediction in Crowded Spaces[END_REF][START_REF] Gupta | Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks[END_REF] or attention [START_REF] Amirian | Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories with GANs[END_REF][START_REF] Vemula | Social Attention: Modeling Attention in Human Crowds[END_REF] modules. Recent work [START_REF] Shafiee | Introvert: Human Trajectory Prediction via Conditional 3D Attention[END_REF] leverages dynamic scene features via a conditional 3D visual encoder based on attention which captures complex interactions. However, RNNs and CNNs have limitations in modeling long-term dependencies and extracting local sequence patterns [START_REF] Wang | Disconnected recurrent neural networks for text categorization[END_REF]. Transformers are argued to be more suitable for sequence modeling and trajectory forecasting, especially with large amounts of data, due to their better capability of learning non-linear patterns.

Social aware models. Pedestrian trajectory prediction can be approached either by modeling pedestrians as a crowd or as individuals. Traditional crowd models [START_REF] Alahi | Socially-aware large-scale crowd forecasting[END_REF][START_REF] Helbing | Social Force Model for Pedestrian Dynamics[END_REF][START_REF] Robicquet | Learning Social Etiquette: Human Trajectory Understanding In Crowded Scenes[END_REF][START_REF] Yamaguchi | Who are you with and where are you going?[END_REF] rely on handcrafted kinetic forces and energy potentials to help pedestrians reach their goals while avoiding collisions. But, these methods cannot capture complex interactions in crowded environments. Recent works focus on RNN-based architectures to encode interactions between humans [START_REF] Alahi | Social LSTM: Human Trajectory Prediction in Crowded Spaces[END_REF][START_REF] Lee | DESIRE: Distant Future Prediction in Dynamic Scenes with Interacting Agents[END_REF][START_REF] Lerner | Crowds by Example[END_REF][START_REF] Zhang | SR-LSTM: State Refinement for LSTM Towards Pedestrian Trajectory Prediction[END_REF]. However, RNNs struggle to capture spatio-temporal interactions among pedestrians. Graph representations have been used to capture social interactions [START_REF] Kosaraju | Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks[END_REF][START_REF] Ma | Trafficpredict: Trajectory prediction for heterogeneous traffic-agents[END_REF][START_REF] Mohamed | Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction[END_REF][START_REF] Yu | Spatio-Temporal Graph Transformer Networks for Pedestrian Trajectory Prediction[END_REF], but some suffer from limited understanding of the environmental context. Other approaches incorporate models of human interaction with the environment [START_REF] Ivanovic | The Trajectron: Probabilistic Multi-Agent Trajectory Modeling With Dynamic Spatiotemporal Graphs[END_REF][START_REF] Amir Sadeghian | SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints[END_REF][START_REF] Salzmann | Tra-jectron++: Dynamically-Feasible Trajectory Forecasting With Heterogeneous Data[END_REF], such as visual features [START_REF] Choi | Looking to relations for future trajectory forecast[END_REF][START_REF] Hao Xue | SS-LSTM: A Hierarchical LSTM Model for Pedestrian Trajectory Prediction[END_REF] and dynamic 3D scene information [START_REF] Shafiee | Introvert: Human Trajectory Prediction via Conditional 3D Attention[END_REF]. There is criticism of RNNs' ability to model human-human interaction [START_REF] Becker | Red: A simple but effective baseline predictor for the trajnet benchmark[END_REF][START_REF] Schöller | What the constant velocity model can teach us about pedestrian motion prediction[END_REF], with suggestions that it limits the model's generalization capability [START_REF] Schöller | What the constant velocity model can teach us about pedestrian motion prediction[END_REF]. Transformer-based methods [START_REF] Su | Pedestrian Trajectory Prediction via Spatial Interaction Transformer Network[END_REF][START_REF] Yu | Spatio-Temporal Graph Transformer Networks for Pedestrian Trajectory Prediction[END_REF][START_REF] Yu | Spatio-Temporal Graph Transformer Networks for Pedestrian Trajectory Prediction[END_REF] are seen as potentially more suitable for trajectory forecasting, but these methods make predictions based solely on past trajectories, which may fail to detect unpredictable sharp turns, suggesting that additional information, such as environmental configuration, should be incor-porated. Our work focuses on predicting individual pedestrian motion, sidestepping social and environmental interactions. Fascinatingly, our approach achieves the best performance on the toughest benchmark.

Context aware models. Context-aware trajectory prediction models aim to incorporate physical scene information, such as crosswalks and roads. Previous methods have been proposed to extract and integrate static scene information [START_REF] Lee | DESIRE: Distant Future Prediction in Dynamic Scenes with Interacting Agents[END_REF][START_REF] Amir Sadeghian | SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints[END_REF][START_REF] Salzmann | Tra-jectron++: Dynamically-Feasible Trajectory Forecasting With Heterogeneous Data[END_REF]. Recent models used dynamic spatial and temporal context [START_REF] Cheng | Exploring Dynamic Context for Multi-path Trajectory Prediction[END_REF][START_REF] Shafiee | Introvert: Human Trajectory Prediction via Conditional 3D Attention[END_REF]. However, all these models suffer from limitations related to memory and computational complexity. For example, [START_REF] Shafiee | Introvert: Human Trajectory Prediction via Conditional 3D Attention[END_REF] employs 3D-CNNs, but these models can be computationally expensive and require large amounts of memory because they process volumetric data, which can be larger than the 2D images used in traditional CNNs. Incorporating additional visual modalities can significantly improve performance compared to those only trajectory-based methods [START_REF] Alahi | Social LSTM: Human Trajectory Prediction in Crowded Spaces[END_REF]. However, existing networks often merge features from different modalities through a simple concatenation in the fusion mechanism. However, this approach lacks the ability to capture the interaction between various granular motion features and does not effectively mine the characteristics and relations of distinct modalities.

After reviewing existing research, we found that pedestrian behavior prediction can greatly benefit from the use of Transformer models and attention mechanisms, as well as the inclusion of contextual information and observed trajectory. To address these challenges, we propose a novel model that incorporates all of these features and utilizes a co-attentional mechanism for capturing dynamic motion information. Our model provides a solution to the limitations of existing methods and has the potential to significantly improve pedestrian behavior prediction.

Approach

Problem Formulation

The aim of this work is to predict the future positions of individuals in a scene using a transformer-based framework. During training, the method requires preprocessed videos with human detection and tracking algorithms, but during testing, it relies on the target human's trajectory.

At any time-instant t, the i th person in the scene is represented by his/her xy-coordinates (x

(i) t , y (i) t ).
We observe the positions of all individuals from time 1 to T obs , and predict their positions for time instants t obs + 1 to t pred . In formal terms, we denote the 2D position of human i at frame t by: u

(i) obs = (x (i) t , y (i) t ) ∈ R 2 .
Assume we observe trajectories and the scene from frame 1 to t obs . We represent the observed sequence for a person, denoted as i, using

T (i) obs = (u (i) 1 , ..., u (i)
t obs ), and future positions by T (p) pred = (u (i) t obs+1 , ..., u (i) t pred ).

Overview

In order to enhance the precision of pedestrian trajectory forecasting, the proposed model (CMATP) employs a bimodal encoder-decoder architecture with a cross-modal attention mechanism, which handles two modalities: kinematic and visual information. The (CMATP) model has two parallel encoder branches (Figure 1). The first branch utilizes self-encoding to transform the pedestrian trajectory τ into a latent vector X kin , while the second branch extracts visual information through a feature extraction process using a pre-trained convolutional neural network, specifically a ResNet50. The resulting feature vector ν is then passed through a fully connected layer and self-attention block to generate a latent vector X vis that encodes both visual and temporal information. A cross-attention block is introduced to capture the relationship between the kinematic X kin and visual latent X vis vectors outputted by the top and bottom self-attention modules, respectively. This cross-attention mechanism effectively improves the accuracy of future trajectory prediction. The proposed method introduces a novel approach to spatio-temporal attention modeling by decomposing it into two parts: kinematic modeling and contextual modeling. Kinematic modeling employs a temporal Transformer network, which is more effective than RNNs in capturing temporal dependencies from individual trajectory data. Contextual modeling, on the other hand, introduces a Transformer-based encoder module that encodes contextual information from video data to enhance the attention mechanism. To predict human trajectory, the method employs two encoder modules joined by a cross-modal attention mechanism, which is then used with a decoder transformer. The method argues that attention is a crucial component for effective and efficient trajectory prediction.

Positional encoding. The transformer architecture uses multi-head self-attention instead of the recurrence mechanism, resulting in faster training and the ability to capture longer dependencies. Positional encoding is a vital component of the transformer, which incorporates sequence order information by adding positional embeddings to input embeddings.

Attention module. The use of self-attention mechanisms improves the model's ability to capture long-term dependencies, model complex interactions. In particular, attention modules capture the context and the effect of past data on the current one by dividing the sequence entries into Query (Q), Keys (K), and Values (V). The Query is compared to all other Keys using a scaled dot product, and the output determines the weights assigned to the Values. Attention is therefore given by the equation:

Attention(Q, K,V ) = So f tmax( QK T √ d k ),
where d k is the embedding dimension which is equal for both the Q and K.

Cross-attention mechanism. Cross-attention mechanism allows the model to be more contextually aware, as it takes into account the effect of visual context on pedestrian trajec-tories. This is particularly important in crowded scenes where the visual environment plays a significant role in predicting pedestrian movements. Figure 1 illustrates the operation of cross-attention.

Training method/ Loss function. As prior work [START_REF] Shafiee | Introvert: Human Trajectory Prediction via Conditional 3D Attention[END_REF], our loss function consists of two components -the mean-squared loss and a regularization term called Lreg, which regulates the smoothness of future trajectories. In training our network, we use the following loss function: Lmodel = Lmse + λ Lreg, where λ is a regularization parameter. We kept the value of λ fixed at 0.5 in our experiments to avoid restricting the model's ability to capture sudden changes in the target pedestrians' trajectory. Lmse is calculated as the average of the squared differences between predicted and observed values, while Lreg is calculated as the sum of Euclidean distances between each step of the predicted trajectory and a line fitted to the observed trajectory. In our experiments, we sample 20 future trajectories and select the top 5 trajectories that are closest to the ground-truth to calculate L mse . Through empirical observation, we have found that this approach enables our network to converge more quickly while producing more accurate predictions.

Experiments

Experimental Setup

Datasets. Our approach was evaluated on well-established public human-trajectory datasets, namely ETH [START_REF] Pellegrini | You'll never walk alone: Modeling social behavior for multi-target tracking[END_REF] and UCY [START_REF] Lerner | Crowds by Example[END_REF] datasets, which are widely-used benchmarks for pedestrian motion prediction. These datasets were acquired from surveillance videos of pedestrians walking on sidewalks and annotated with location coordinates. The datasets contain realworld pedestrian trajectories in top-view coordinates expressed in meters, with rich humanhuman and human-object interaction scenarios. The acquisition was done using a fixed camera on 5 different scenarios captured at 2.5 Hz, and an image is annotated with pedestrian positions every 0.4 seconds. ETH/UCY consists of five different scenes. The ETH dataset consists of two scenes (ETH and Hotel) taken from a bird's eye view, with hundreds of pedestrian trajectories engaged in walking activities. The UCY dataset provides three scenes (Zara1, Zara2, and Univ) taken from a bird's eye view with standing/walking activities.

Evaluation Metrics. Similar to existing works [START_REF] Alahi | Social LSTM: Human Trajectory Prediction in Crowded Spaces[END_REF][START_REF] Amirian | Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories with GANs[END_REF][START_REF] Gupta | Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks[END_REF][START_REF] Ivanovic | The Trajectron: Probabilistic Multi-Agent Trajectory Modeling With Dynamic Spatiotemporal Graphs[END_REF][START_REF] Kosaraju | Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks[END_REF][START_REF] Lee | DESIRE: Distant Future Prediction in Dynamic Scenes with Interacting Agents[END_REF][START_REF] Li | Conditional Generative Neural System for Probabilistic Trajectory Prediction[END_REF][START_REF] Amir Sadeghian | SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints[END_REF][START_REF] Salzmann | Tra-jectron++: Dynamically-Feasible Trajectory Forecasting With Heterogeneous Data[END_REF][START_REF] Yu | Spatio-Temporal Graph Transformer Networks for Pedestrian Trajectory Prediction[END_REF][START_REF] Zhao | Multi-Agent Tensor Fusion for Contextual Trajectory Prediction[END_REF], our method is evaluated using two widely used metrics in the field, namely the Average Displacement Error (ADE) and the Final Displacement Error (FDE). ADE is defined as the average L2 distance (in meters) between the actual trajectory and the predicted trajectory at each time step of the trajectory from T obs+1 to T pred on average over all pedestrians. FDE is defined as the Euclidean distance (in meters) between the ground truth (actual position) and the prediction (predicted position) at the last time step of the prediction T pred , averaged over all pedestrians. Formally:

ADE = ∑ n i=1 ∑ T pred t=T obs+1 || Ŷ i t -Y i t || n * T ; FDE = ∑ n i=1 || Ŷ i T pred -Y i T pred || n
Where n represents the number of pedestrians, Ŷ i t are the predicted coordinates for pedestrian i at time t, Y i t are the real future positions, and || is the Euclidean distance. T pred is the final pedicted timestep. T is the prediction horizon.

Evaluation mehod. For benchmarking purposes, we follow a similar evaluation method as in prior works (See Table 1) When evaluating trajectory forecasting models, the time horizon of the forecast is crucial, as different objects move at different speeds. The choice of time horizon should depend on the class of objects being considered. To have a fair comparison with all the existing works, we observe each training trajectory for 8 times-steps (3.2 seconds) and evaluate the model's performance by measuring prediction errors for the next 12 time-steps (4.8 seconds). To fully utilize the datasets during model training, we adopt a leave-one-out approach for evaluation that has been commonly used in previous studies. We train our model on four sets of data and evaluate it on the remaining set. We repeat this process for all the 5 sets.

Implementation details. Our model is based on the original Transformer Networks architecture [START_REF] Vaswani | Attention is All you Need[END_REF] with a dimension of model of 512 and 6 layers with 8 heads. We trained the entire network end-to-end with a batch size of 40 for 400 epochs, using stochastic gradient descent (SGD) optimizer with a learning rate scheduler and two mean squared error (MSE) loss functions. The learning rate is adjusted every 40 steps with an initial learning rate of 0.01 and the maximum gradient value is clipped to 1 to prevent gradient explosion. We adopted the teacher force strategy and used our proposed loss function with a value of λ = 0.5 to achieve faster convergence as prior work [START_REF] Shafiee | Introvert: Human Trajectory Prediction via Conditional 3D Attention[END_REF]. The model was implemented using PyTorch on an Ubuntu server equipped with an NVIDIA TITAN RTX GPU and 24 GB RAM.

Results

Baseline. For evaluation purposes, we generate 20 predictions for each observed trajectory and select the prediction closest to the ground truth. This evaluation technique enables us to examine the multi-modality and diversity of the predictions. We evaluate our approach against six deterministic baselines, which are linear regression, LSTM, Social-LSTM [START_REF] Alahi | Social LSTM: Human Trajectory Prediction in Crowded Spaces[END_REF], Social ATTN [START_REF] Vemula | Social Attention: Modeling Attention in Human Crowds[END_REF], TrafficPredict [START_REF] Ma | Trafficpredict: Trajectory prediction for heterogeneous traffic-agents[END_REF], and SR-LSTM [START_REF] Zhang | SR-LSTM: State Refinement for LSTM Towards Pedestrian Trajectory Prediction[END_REF]. We also compare our approach against various generative baselines [START_REF] Amirian | Social Ways: Learning Multi-Modal Distributions of Pedestrian Trajectories with GANs[END_REF][START_REF] Giuliari | Transformer Networks for Trajectory Forecasting[END_REF][START_REF] Gupta | Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks[END_REF][START_REF] Ivanovic | The Trajectron: Probabilistic Multi-Agent Trajectory Modeling With Dynamic Spatiotemporal Graphs[END_REF][START_REF] Kosaraju | Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks[END_REF][START_REF] Kothari | Human trajectory prediction using adversarial loss[END_REF][START_REF] Lee | DESIRE: Distant Future Prediction in Dynamic Scenes with Interacting Agents[END_REF][START_REF] Liang | Peeking into the future: Predicting future person activities and locations in videos[END_REF][START_REF] Mangalam | It Is Not the Journey but the Destination: Endpoint Conditioned Trajectory Prediction[END_REF][START_REF] Mohamed | Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction[END_REF][START_REF] Amir Sadeghian | SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints[END_REF][START_REF] Salzmann | Tra-jectron++: Dynamically-Feasible Trajectory Forecasting With Heterogeneous Data[END_REF][START_REF] Shafiee | Introvert: Human Trajectory Prediction via Conditional 3D Attention[END_REF][START_REF] Xu | GroupNet: Multiscale Hypergraph Neural Networks for Trajectory Prediction with Relational Reasoning[END_REF][START_REF] Yu | Spatio-Temporal Graph Transformer Networks for Pedestrian Trajectory Prediction[END_REF][START_REF] Yuan | AgentFormer: Agent-Aware Transformers for Socio-Temporal[END_REF][START_REF] Zhao | Multi-Agent Tensor Fusion for Contextual Trajectory Prediction[END_REF] using various approaches such as LSTM, GAN, spatio-temporal GCNs, and transformers to predict human trajectories.

Quantitative Analysis. In Table 1, we reporte obtained results against state-of-the-art approaches as mentioned above, using the best-of-20 protocol, which involves sampling 20 possible future trajectories and selecting the one with the best test performance. Our proposed method achieves outstanding performance, ranking either first or second among state-of-the-art methods. In particular, on the FDE metric, our method significantly outperforms existing algorithms on 4 out of 5 datasets, achieving the best average error of 0.33. On the ADE metric, the proposed method outperforms existing algorithms on 3 out of 5 datasets and achieves an average ADE error of 0.22 across all 5 datasets. The University dataset has higher displacement errors compared to other datasets, making it challenging to predict future trajectories accurately. Our method remains comparable to other existing approaches but outperforms all the dense interaction-based methods like S-GAN, Sophie, S-BiGAT, S-STGCNN, and Social Ways. The Hotel dataset has many pedestrians waiting for trains, resulting in limited motion. Therefore, most methods, including ours, achieve relatively small displacement errors by predicting small motions accurately. Our proposed method achieves the lowest FDE (0.16) and ADE (0.11) errors on this dataset. The ETH dataset often produces larger displacement errors, which is a common occurrence among many models, due to lower frequency of video frames and kinematic data. However, our All the stochastic models sample 20 possible trajectories and report the best result using a best-of-20 protocol. All models observe 8 frames and forecast the subsequent 12 frames. method achieves the lowest ADE/FDE errors on the ETH dataset, showing the effectiveness of our approach, especially the cross-attention module, in capturing and incorporating information about the movements and behaviors of neighboring pedestrians. The inferior performance of our model without cross-attention in table 2 confirms this.

When comparing individual approaches, the transformer predictor outperforms any individual LSTM-based approach. Specifically, Transformer-TF performs better than Social-LSTM and has a significant advantage over Social-ATTN in terms of FDE. However, on the Zara1 dataset, which is the least structured dataset in the benchmark and mostly consists of straight lines, LSTM-based methods like Introvert perform better than transformer based methods, achieving the lowest ADE (0.16) compared to 0.19 achieved by our proposed TFbased method. Our approach shares similarities with Transformer-TF, which utilizes an encoder-decoder transformer architecture. However, we have enhanced our model by incorporating contextual information in addition to the pedestrian positions. As seen, our approach outperforms previous Transformer-based methods such as Transformer-TF, STAR, and AgentFormer on the ETH and UCY datasets. Our cross-attention + Transformer encoder/decoder structure explores better dynamic context between agents than Transformer encoder/decoder in terms of trajectory prediction. Overall, our model offers a competitive alternative to graph-based methods [START_REF] Kosaraju | Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks[END_REF][START_REF] Mohamed | Social-STGCNN: A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction[END_REF] and has the potential to improve trajectory prediction accuracy.

Qualitative Analysis. We conducted a qualitative analysis of our approach's predictions to gain a more comprehensive understanding of its performance. Figure 2 showcases the qualitative outcomes of our trajectory prediction on multiple videos from the ETH and UCY datasets, providing visual evidence of its effectiveness in accurately predicting pedestrian trajectories. Each column contains two plots showcasing two different pedestrians from the same dataset. In most cases, our method is able to accurately predict the future positions of pedestrians in the scene. The examples in Figure 2 show different scenarios, such as human-human interaction, human-space interaction, and avoiding obstacles. For example, the bottom example in Zara1 demonstrates our model's success in predicting that the target pedestrian will go through the door of the store on the left side of the scene. In the top example in Zara2, our method correctly predicts that the target human entering the scene will avoid a car and turn left. Also, for the bottom example in Hotel, our method correctly predicts that the target person entering the scene will avoid a pole and will continue straight towards the train. In the two cases from ETH, our method correctly predicts that the target human entering the scene will avoid an obstacle and turn right/left. Finally, in the top example from the Univ, we see an instance of human-human interaction, where the target pedestrian slows down before reaching a group of standing people, bypasses them from the left side, and then speeds up. In such crowded scenes, our method is able to capture interactions and predict future positions effectively.

While our model's predictions closely matched the ground-truth data in most cases, there were scenarios where our predictions were not as precise as we had hoped, such as in the bottom example from the University. However, our approach still captured some of the essential features of the pedestrian's behavior, demonstrating its effectiveness in capturing the underlying dynamics of the scene. Ablation Study. Here, we investigate the effect of the Cross Attention module in the design of trajectory prediction models. We performed w/o cross attention, a variant test where we removed the cross attention and concatenated the encoder stream outputs. Results in Table 2 provide insight into the model design for trajectory prediction tasks. Based on analysis of 5 datasets, Cross Attention improved our approach's performance in predicting accurate trajectories in real-world traffic scenes, outperforming alternatives like concatenation. Results showed our approach with Cross Attention significantly reduced errors to 0.22/0.33 compared to 0.26/0.40 without Cross Attention across 4 out of 5 datasets. However, the Univ dataset presented a unique challenge due to higher crowd density and increased uncertainty of future predictions, resulting in comparable error rates between the two models. Further investigation is required to identify reasons behind this discrepancy. Overall, our transformer architecture with Cross Attention enabled smoother temporal predictions and learning of complex sequential patterns, outperforming the baseline model.

Discussion. According to our comparison, CMATP demonstrates the following key points. First, it predicts accurate trajectories in real-world traffic scenes, surpassing the state-of-the-art methods on 4 out of 5 datasets while achieving comparable performance on the remaining dataset. Second, it incorporates a transformer architecture with cross attention to learn interaction, which enables a smoother temporal prediction and outperforms other attention mechanisms, such as additive or multiplicative attention, allowing the model to selectively focus on the most relevant parts of the input sequence. Third, the transformer architecture allows for capturing long-term dependencies and modeling complex interactions between agents in the scene. Fourth, it takes advantage of the transformer's architecture and considers context, which is crucial for accurate trajectory prediction in real-world traffic scenes. Finally, CMATP demonstrates the effectiveness of incorporating a transformer architecture with cross attention in learning interaction and improving model performance.

Conclusion

In this paper, we have proposed a novel approach called CMATP, which utilizes an attentionbased Transformer Network for pedestrian trajectory prediction. Our framework employs attention mechanisms on dynamic scene context and a cross-attention mechanism to capture complex relationships between the inputs (positions and context), resulting in improved overall performance. The model can produce future-conditional predictions that respect dynamic constraints and full probability distributions, making it suitable for robotic tasks. Our study demonstrates the effectiveness of the Cross Attention mechanism in enhancing the model's performance. Despite discrepancies between predicted and ground-truth trajectories that may be attributed to the multi-modal nature of pedestrian paths in diverse environments, CMATP has significant potential to advance the field of pedestrian trajectory prediction and contribute to the development of safer and more efficient transportation systems. Future work will focus on exploring more sophisticated attention mechanisms, larger training datasets, multi-class settings, and additional contextual information (such as weather and time of day) to enhance our model's prediction capabilities. We also plan to leverage hierarchical modeling techniques to improve the model's accuracy further.
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 1 Figure 1: Overview of CMATP approach.
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 2 Figure 2: Illustration of the prediction trajectories. yellow dots represents the past observed while red & green dots represent our prediction and the ground truth.
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 1 The average/final displacement error (ADE/FDE) metrics for several methods compared to our model are shown. Lower is better. The models with * have deterministic outputs.

				Performance ADE/FDE ↓ (m)		
	Method	Univ	Zara1	Zara2	Hotel	ETH	Avg
	Linear*	0.82/1.59 0.62/1.21 0.77/1.48 0.39/0.72 1.33/2.94 0.79/1.59
	LSTM*	0.61/1.31 0.41/0.88 0.52/1.11 0.86/1.91 1.09/2.41 0.70/1.52
	Social-LSTM* [2]	0.67/1.40 0.47/1.00 0.56/1.17 0.79/1.76 1.09/2.35 0.72/1.54
	Social-ATTN* [29]	0.33/3.92 0.20/0.52 0.30/2.13 0.29/2.64 0.39/3.74 0.30/2.59
	TrafficPredict* [17]	3.31/6.37 4.32/8.00 3.76/7.20 2.55/3.57 5.46/9.73 3.88/6.97
	SR-LSTM* [37]	0.51/1.10 0.41/0.90 0.32/0.70 0.37/0.74 0.63/1.25 0.45/0.94
	DESIRE [13]	0.59/1.27 0.41/0.86 0.33/0.72 0.52/1.03 0.93/1.94 0.53/1.11
	Social-GAN [8]	0.60/1.26 0.34/0.69 0.42/0.84 0.72/1.61 0.81/1.52 0.58/1.18
	FSGAN [12]	0.54/1.14 0.35/0.71 0.32/0.67 0.43/0.89 0.68/1.16 0.46/0.91
	SoPhie [23]	0.54/1.24 0.30/0.63 0.38/0.78 0.76/1.67 0.70/1.43 0.54/1.15
	Trajectron [10]	0.54/1.13 0.43/0.83 0.43/0.85 0.35/0.66 0.59/1.14 0.47/0.92
	MATF [38]	0.44/0.91 0.26/0.45 0.26/0.57 0.43/0.80 1.01/1.75 0.48/0.90
	Next [16]	0.60/1.27 0.38/0.81 0.31/0.60 0.30/0.59 0.73/1.65 0.46/1.00
	Social-BiGAT [11]	0.55/1.32 0.30/0.62 0.36/0.75 0.49/1.01 0.69/1.29 0.48/1.00
	Social-STGCNN [19]	0.44/0.79 0.34/0.53 0.30/0.48 0.49/0.85 0.64/1.11 0.44 / 0.75
	Social Ways [3]	0.55/1.31 0.44/0.64 0.51/0.92 0.39/0.66 0.39/0.64 0.46/0.83
	PECNet [18]	0.35/0.60 0.22/0.39 0.17/0.30 0.18/0.24 0.54/0.87 0.29/0.48
	M2P3 [21]	0.64/1.34 0.45/0.95 0.37/0.79 0.54/1.13 1.04/2.16 0.60/1.27
	Transformer-TF [7]	0.35/0.65 0.22/0.38 0.17/0.32 0.18/0.30 0.61/1.12 0.31/0.55
	STAR [34]	0.31/0.62 0.26/0.55 0.22/0.46 0.17/0.36 0.36/0.65 0.26/0.53
	AgentFormer [35]	0.25/0.45 0.18/0.30 0.14/0.24 0.14/0.22 0.45/0.75 0.23/0.39
	Trajectron++ [24]	0.30/0.54 0.25/0.41 0.18/0.32 0.18/0.28 0.67/1.18 0.32/0.55
	SGN LSTM [36]	0.48/1.08 0.30/0.65 0.26/0.57 0.63/1.01 0.75/1.63 0.48/0.99
	Introvert [26]	0.20/0.32 0.16/0.27 0.16/0.25 0.11/0.17 0.42/0.70 0.21/0.34
	GroupNet [31]	0.26/0.49 0.21/0.39 0.17/0.33 0.15/0.25 0.46/0.73 0.25/0.44
	Our model (CMATP) 0.37/0.52 0.19/0.27 0.14/0.21 0.11/0.16 0.32/0.51 0.22/0.33

Table 2 :

 2 Ablation study on the ETH/UCY datasets. CA denotes Cross Attention.

				Performance ADE/FDE ↓ (m)		
	Method	Univ	Zara1	Zara2	Hotel	ETH	Avg
	Ours w/o CA (BTT) 0.36/0.52 0.19/0.29 0.15/0.23 0.12/0.17 0.48/0.81 0.26/0.40
	Ours (CMATP)	0.37/0.52 0.19/0.27 0.14/0.21 0.11/0.16 0.33/0.53 0.22/0.33