
HAL Id: hal-04448801
https://hal.science/hal-04448801v1

Submitted on 15 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Public Domain Mark 4.0 International License

State of the Art on Microservice Performance Metrics
Joaquim Soares, Vania Marangozova

To cite this version:
Joaquim Soares, Vania Marangozova. State of the Art on Microservice Performance Metrics. UGA
(Université Grenoble Alpes); Orange Direction EOLAS; Orange Innovation. 2024. �hal-04448801�

https://hal.science/hal-04448801v1
http://creativecommons.org/choose/mark/
http://creativecommons.org/choose/mark/
https://hal.archives-ouvertes.fr

ANR SCALER

2023-2026

D 1.1

State of the Art on
Microservice Performance Metrics

Chef de file pour le D 1.1 : Joaquim SOARES
Co-rédacteurs : Vania MARANGOZOVA

January 15, 2024

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

Contents

1 Introduction 2

2 Microservice Performance Metrics 2
2.1 Observation Goals . 2
2.2 Performance Metrics . 3
2.3 K8S Monitoring Architecture . 4

3 Capturing Performance Metrics 6
3.1 Instrumentation . 6
3.2 Logging . 7
3.3 Real-Time Monitoring . 7
3.4 Distributed Tracing . 8

4 Performance Metrics Analysis for Higher-Level KPI 9
4.1 Event-Driven Observability . 9
4.2 Metric Correlation . 10
4.3 Continuous Optimization . 10
4.4 Financial Operations . 11
4.5 Concluding Remarks . 12

5 Landscape of Existing Tools 12
5.1 CNCF Landscape . 12
5.2 Monitoring Tools . 14
5.3 Logging Tools . 15
5.4 Tracing Tools . 15
5.5 Continous Optimization and FinOps Tools . 16

6 Concluding Remarks 16

A Load Generators for Microservice Benchmarking 17

List of Figures

1 K8S Monitoring Architecture. Source [15]. 5
2 CNCF Observability and Analysis Landscape. 13

List of Tables

1 Monitoring Products . 14
2 Logging Products . 15
3 Distributed Tracing Products . 15
4 Continous Optimization and FinOps Products . 16

1

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

1 Introduction

In the dynamic landscape of modern software architecture, the advent of microservices has rev-
olutionized the way applications are designed, developed, and deployed. The decomposition of
monolithic structures into smaller, independently deployable units also known as microservices of-
fers unprecedented agility and scalability. However, this architectural shift introduces a new set of
challenges, foremost among them being the imperative to assess and optimize the performance of
these distributed components.

Microservice applications are encapsulated into containers, a lightweight, portable, and efficient
way to package, distribute, and run applications and their dependencies. Container orchestration
platforms like are widely used to automate the deployment, scaling, and management of container-
ized applications. Kubernetes (K8S) [1] is widely used and has become a de facto standard in this
landscape.

To ensure seamless functionality and user satisfaction, the role of performance metrics in mi-
croservices becomes paramount. These metrics serve as critical instruments, enabling users to sys-
tematically measure, analyze, and enhance the efficiency, reliability, and scalability of microservices
within the Kubernetes ecosystem.

This report delves into the multifaceted objectives of performance metrics within the context
of microservices, highlighting the intricate interplay between system behavior and the pursuit of
optimal, responsive, and resilient distributed systems.

The report is organized as follows. Section 2 presents first-level performance metrics along
with their goals. It also presents the default performance metrics management in K8S. Section 3
provides an overview of the approaches to collecting different performance metrics. The report
continues with Section 4 which tackles the question of higher level performance indicators. The
rich landscape of existing performance observation tools is presented in Section 5. Last, Section 6
concludes on the current state of art on performance metrics for microservices and points out the
major challenges for efficient performance management.?

2 Microservice Performance Metrics

In the following we start with a description of the principal goals towards which microservice
performance metrics are targeted (Section 2.1). We continue with an enumeration of the most used
metrics according to the current state of the art (Section 2.2) and finish with a presentation of the
monitoring architecture of Kubernetes (Section 2.3) which is the working context of the SCALER
project.

2.1 Observation Goals

System observation involves an exploration of the system’s behavior, interactions, and perfor-
mance characteristics that contribute to a deeper understanding of the system dynamics. The met-
rics used to observe the behavior of a microservice-based system depend on the goal of observation.
The main use cases include performance profiling, user experience, resources profiling, availability
and scalability.

Performance Profiling. Profiling is a detailed analysis of individual service components to un-
derstand their computational, memory, storage and network resource utilization. It aims at identi-
fying bottlenecks by providing insights into the runtime behavior of microservices. By leveraging
metrics such as response times, throughput, and resource consumption, performance profiling fa-
cilitates targeted enhancements, ensuring that each microservice operates optimally within a larger
system.

2

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

User Experience. Observation in this case focuses on the impact of service performance on end-
users. It involves tracking metrics related to reliability and overall system responsiveness. By
aligning observed data with user expectations, the goal is to ensure that the architecture delivers a
satisfying and consistent experience. User experience metrics play a crucial role in assessing and
enhancing the system, as they provide a direct link between the technical aspects of microservices
and the value perceived by end-users.

Resource Usage Optimization. One of the major goals of observation is to check on the adequacy
between resource allocation and demands and resource requirements, as well as on the resource
usage and costs. It is to drive the efficiency of resource usage, minimizing contention, and im-
proving overall system profitability. Resource allocation is a critical step that involves distributing
compute resources among various service instances. Optimization in this context consists in fine-
tuning these resources to enhance overall system efficiency. The aim is to minimize contention,
identify unused resources, and ensure that each microservice receives the necessary resources for
optimal performance. Moreover, the concept extends to financial considerations, emphasizing the
cost-effectiveness of resource utilization. This entails assessing the balance between performance
gains and infrastructure expenses. The main objective is to find an optimal trade-off where mi-
croservices operate efficiently without incurring unnecessary financial overheads.

Availability, Reliability and Fault Detection are paramount in a distributed context. Availability
reflects the continuous operability of microservices, emphasizing minimal downtime and uninter-
rupted service delivery. Reliability extends this concept by focusing on correct functioning with
consistent performance and the ability to meet user expectations over time. Fault detection is an
integral part of maintaining availability and reliability, involving the proactive identification of
anomalies and issues within microservices. This includes monitoring errors, exceptions, and devi-
ations from expected behavior.

Scalability and Dynamic Adaptation are essential concepts, addressing the evolving nature of
system demands. Scalability corresponds to an architecture’s ability to efficiently manage and
seamlessly adapt to variable workloads. Built on scalability, dynamic adaptation focuses on real-
time adjustments to maintain optimal performance in a changing environment. This involves au-
tomated mechanisms that respond to fluctuations in workloads, resource availability, and other
dynamic factors.

2.2 Performance Metrics

There are several recent review papers on microservice auto-scaling [2–5] which naturally tackle
the question of observation and the underlying metrics. The metrics identified as the most widely
used are the following:

• CPU and Memory. These are the main metrics used for characterizing the resource usage of
microservices. They reflect the CPU usage and memory consumption. In the K8S ecosystem,
the CPU usage is measured in millicores where 1core “ 1000 millicores. Memory consump-
tion is measured in the standard unit of bytes and its multiples (KB, MB,GB).

• Request Rate. This metric is usually used to quantify the load a microservice can absorb with-
out degrading performance. The metric gives the number of requests served per second req/s.

• Response Time. Response time characterizes the time needed by a microservice to serve a
request. The point of view is that of the client (user or another microservice) that has sent a

3

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

request. This metric is used to characterize the reactivity of a system (measured in seconds or
its derivatives).

• Message Queue Length. Several works put forward the fact that the simple metrics of CPU
and memory are not sufficient to detect system bottlenecks. They show that a more efficient
metric comes from monitoring the lengths of message queues that come into play within
microservice communications (interactions) [6–8] .

• Reaction time, Repair time, Recovery time, and Total Outage time are metrics that evaluate
the availability of microservices after a scaling or a fault recovery has taken place.

Other important metrics are custom, higher-level, metrics and relate to the correct execution of
microservices or to their execution cost. We identify the following:

• QoS Metrics. Quality-of-Service metrics may be considered from the application (semantics)
point of view or from the system-side perspective. Concerning the latter, the standard per-
formance evaluation corporation (SPEC) has investigated the question in the larger context
of the cloud and not only for microservices [9]. They identify metrics related to the system’s
capacity for handling elasticity, availability, performance isolation, and operational risk. Re-
lated issues are reliability and System Level Objectives (SLO) [10], as well as Service Level
Agreements (SLA) [11] .

• Infrastructure Cost (FinOps). As defined by the FinOps Foundation [12] "FinOps is a pub-
lic cloud management discipline that enables organizations to get maximum business value
from cloud by helping technology, finance, and business teams to collaborate on data-driven
spending decisions.”. Metrics including resource consumption, resources per server, energy
consumption, cost per transaction, efficiency ratios, maintenance costs, etc. play a pivotal role
for the good functioning of the cloud in general and microservices in particular.

• Accuracy Metrics. These are typically used in machine-learning-based systems wher ML
models are to predict microservice performance or to take scaling decisions.

2.3 K8S Monitoring Architecture

According to K8S’ documentation [13], it is possible to use either resource metrics, or full metrics
pipelines to collect monitoring statistics.

Resource Metrics Pipeline The resource metrics pipeline provides a limited set of metrics col-
lected by the lightweight, short-term, in-memory metrics-server [14]. These metrics are exposed
via the metrics.k8s.io API. The standard monitoring K8S architecture that produces these
metrics is shown in Figure 1.

The figure shows the controller node and two worker nodes in a K8S cluster. The API server
which gives access to the collected metrics runs on the controller node.

On a worker node there is a special process, kubelet which is the primary node agent
responsible of collecting end exposing pod and container metrics. The latter are made
available either directly by cAdvisor which is intergated within kubelet, or via the the Con-
tainer Runtime Interface (CRI) [16] based on gRPC [17]. Kubelet metrics include, among
others, the number of running containers (kubelet_running_container_count)and
the number of running pods (kubelet_running_pod_count). cAdvisor provides
kubelet with information on the CPU (e.g container_cpu_usage_seconds_total),
memory (e.g. container_memory_working_set_bytes), file
system (e.g. container_fs_usage_bytes) and network (e.g.
container_network_receive_bytes_total) usage.

4

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

Figure 1: K8S Monitoring Architecture. Source [15].

Full Metrics Pipeline The definition of a full metrics pipeline is outside the scope of Kubernetes
because of the very wide scope of possible solutions.

A widely-used monitoring tool in the K8S landscape is Prometheus [18] which is also a CNCF1

open-source project. Prometheus accesses metrics via the node exporter2. The node exporter uses
pluggable metric collectors among which the following are enabled by default:

cpu Exposes CPU statistics
filesystem Exposes filesystem statistics, such as disk space used.
meminfo Exposes memory statistics.
netdev Exposes network interface statistics such as bytes transferred.
rapl Exposes various statistics from /sys/class/powercap
pressure Exposes pressure stall statistics from /proc/pressure/

More information on the possible tools that may be plugged in a full pipeline is given in Sec-
tion 5.

1 Cloud Native Computing Foundation [<empty citation>]
2 https://github.com/prometheus/node_exporter

5

https://github.com/prometheus/node_exporter

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

3 Capturing Performance Metrics

In this section we lay the background on collecting performance metrics. We present four major as-
pects, namely instrumentation (Section 3.1), logging (Section 3.2), real-time monitoring (Section 3.3)
and distributed tracing (Section 3.4).

3.1 Instrumentation

Definititon Embedding observation capabilities in the microservice execution environment.

Instrumentation is a fundamental concept in observation, representing the strategic embedding
of observation capabilities (probes) directly into the codebase of individual microservices. The pur-
pose is to collect detailed data on the internal workings of each service. This data often includes
information about resource usage, execution times, and other performance-related metrics. By in-
strumenting code, developers and operators can strategically place probes to gain real-time insights
into the behavior of microservices. major challenge is to prevent performance overhead.

The force of instrumentation lies in its ability to provide a fine-grained understanding of how
microservices operate. It allows for the identification of performance bottlenecks and areas for
optimization, facilitating data-driven decision-making in the pursuit of system efficiency.

Examples of instrumentation metrics :

• Response Times measure the time taken for microservices to respond to requests, helping
identify potential performance bottlenecks or deviations from expected behavior.

• Throughput assesses the volume of requests or transactions processed by microservices per
unit of time, indicating the system’s capacity and workload handling capabilities.

• Error Rates tracks the occurrence of errors and exceptions, offering insights into the robust-
ness and fault tolerance of microservices.

• Resource Utilization look at the use of computing resources such as CPU, memory, and net-
work bandwidth, aiding in the identification of potential resource contention or inefficiencies

• Latency Metrics analyze various latency metrics, including network latency and database
query latency, to pinpoint areas where delays may impact overall system responsiveness.

• Dependency Tracking exhibits the flow of requests by expliciting dependencies and interac-
tions with external services.

• Custom Business Metrics creates instrumentation for specific business logic metrics relevant
to the microservice’s function.

In the CNCF landscape and common design patterns (cf. Section ??), instrumentation metrics
are usually exposed through a HTTP endpoint (commonly /metrics). This endpoint serves as the
resource from which Prometheus [18], an open-source systems monitoring and alerting toolkit,
scrapes metrics. The CNCF [19] releases an open standard called OpenMetrics [20] that extends and
evolves the Prometheus format. OpenMetrics specifies today’s de-facto standard for transmitting
cloud-native metrics at scale and brings it into an IETF standard (RFC2119 [21], RFC5234 [22],
RFC8174 [23]).

6

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

3.2 Logging

Definition: the act of keeping a record (log) of events that occur in microservices.

In the microservices architecture, where multiple services operate independently, logs from di-
verse sources need to be consolidated to provide a cohesive and comprehensive view of the sys-
tem’s operational activities, including error messages, informational events, and performance-
related details.

By aggregating logs, developers and operators gain a unified perspective on the entire microser-
vices ecosystem, enabling efficient and effective root cause analysis in the event of issues or errors.
This centralized approach enhances the overall observability, facilitating proactive monitoring and
response to events that impact system functionality.

Examples of metrics obtained through log analysis and aggregation :

• Error Rates tracks the number of error messages or log messages with error levels (like WARN,
ERROR, FATAL) compared to the total number of messages. High error rates can indicate
problems within the system that need immediate attention.

• Log Volume measures the amount of log data generated over a specific period. This metric
can indicate the overall activity level of the system and help in identifying unusual spikes or
drops in the system activity, which could signify issues or changes to be taken care of.

• Top N Errors identifies the most frequent error messages or types of errors. This helps in
pinpointing recurring issues or common failures in the system.

• Latency Metrics for systems where log generation and transmission are time-sensitive, mea-
suring the latency between log generation, transmission, and aggregation is vital.

• Message Sources are metrics related to the sources of log messages, like the number of events
logged by each service, application, or server. This helps in understanding which parts of the
system generate most issues.

3.3 Real-Time Monitoring

Definition: Continuously tracking and collecting data on the runtime behavior of microservices.

Real-time monitoring involves the continuous and immediate tracking of the operational param-
eters and performance metrics of the system during runtime. It serves as a proactive mechanism
for swiftly detecting anomalies, performance bottlenecks, and other potential issues. By capturing
and analyzing data on resource utilization, response times, and other critical metrics in real-time,
monitoring enables rapid identification and resolution of issues before they escalate. It empowers
system administrators, developers, and automated processes to make informed decisions and take
timely actions to maintain the overall health and efficiency of the microservice architecture.

7

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

As described in Section 2.3, K8S natively embeds a collection of monitoring statistics. Among the
most significant are:

• CPU and memory usage measure the amount of CPU and memory resources consumed at
the node, pod and container levels.

• Network I/O monitors the network bandwidth used by pod. This includes data on the
amount of network traffic sent and received, which is critical for understanding the com-
munication and bandwidth usage.

• Network packet drops and errors at the pod level indicate potential network issues affecting
communication.

• API Server Metrics monitors the performance and health of the Kubernetes API server, in-
cluding request rates, latencies, and error rates.

• Scheduler Metrics tracks the efficiency and effectiveness of the Kubernetes scheduler, includ-
ing metrics related to scheduling decisions, delays, and errors.

• Cluster Component Status monitors the health of essential Kubernetes components like etcd,
controller manager, and scheduler.

3.4 Distributed Tracing

Definition: Capture and correlation of traces of requests as they traverse multiple microservices running
on distributed nodes.

Distributed tracing provides a holistic view of the route a request takes across various service
boundaries. This involves assigning a unique identifier to each request and collecting data as it
propagates through different microservices. The resulting trace offers insights into the end-to-end
flow of requests, including information about latency, dependencies, and potential bottlenecks.

The significance of distributed tracing lies in its ability to connect unitary events to the higher
level application logic and thus facilitate performance analysis and optimization. By visualizing the
interactions between microservices, developers and system operators can identify areas of latency,
pinpoint dependencies, and streamline the overall request flow. This level of visibility is crucial
for maintaining and enhancing the reliability and responsiveness of microservices architectures,
especially in complex, distributed environments.

In practice, distributed tracing generates a detailed timeline or "trace" of individual requests
including the following metrics :

• Request Duration measures the total time taken for a request to traverse the microservice
system.

• Service Response Time captures the time each microservice takes to process a request, aiding
in pinpointing performance issues at the service level.

• Span Duration examines the time spent within each microservice (span), enabling the iden-
tification of specific components causing delays.

8

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

• Error Rates tracks the occurrence of errors or exceptions within traced requests, providing
insights into the reliability of microservices.

• Dependency Maps illustrates the relationships and dependencies between microservices,
aiding in understanding the overall architecture’s complexity.

4 Performance Metrics Analysis for Higher-Level KPI

The authors of [24] put forward the fact that low-level metrics, such as CPU and memory usage,
are the most used but do not suffice for effective auto-scaling. There is a need of a higher-level
metrics reflecting the application to provide a reliable auto-scaling system. Possible approaches
to the identification of relevant higher-level application indicators are numerous. In the follow-
ing we discuss event-driven observability (Section 4.1), metric correlation (Section 4.2), continuous
optimization (Section 4.3) and FinOps (Section 4.4).

4.1 Event-Driven Observability

Definition: Leveraging runtime microservices’ events to gain insights into their operational states.

In the microservices paradigm, where services often operate independently and asynchronously,
event-driven observability leverages the generation and propagation of events to provide a dy-
namic view of the system behavior. These events may include changes in service state, the de-
tection of specific activities, or responses to external stimuli. By capturing and analyzing these
events, developers and operators gain valuable insights into the real-time operational dynamics of
microservices. Instead of relying solely on polling or periodic checks, this approach allows for im-
mediate responses to changes in the environment or the internal states of microservices. It enables
a more dynamic and responsive form of observability, where the system can adapt in real-time to
evolving conditions, ensuring timely and informed decision-making.

This method is particularly valuable in dynamic distributed architectures within the ability to
gather the following metrics:

• Event Rates signals the frequency at which specific events occur. Examples are the number of
successful database queries per second, the count of HTTP 500 error responses or unhandled
exceptions.

• Latency Events indicates the time taken for specific operations to complete. For instance the
distribution of response times for critical API calls.

• Resource Utilization Events reflects the utilization of compute resources such as network
bandwidth during high-loads period.

• Dependency Events tracks interactions and dependencies between microservices such as
database connectivity, API health checks or number of requests sent or received from de-
pendent services.

• Custom Business Events reflects events tailored to specific business logic or functionality
(e.g., number of items added to a shopping cart in an e-commerce service, number of accounts
created over a period).

9

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

4.2 Metric Correlation

Definition: Identifying and establishing relationships between different metrics to derive meaningful
insights.

Metric correlation involves the identification and establishment of relationships between differ-
ent metrics to derive meaningful insights. It provides a snapshot of the system’s health and perfor-
mance and seeks to uncover the interconnected nature of these metrics. By analyzing how different
performance indicators coalesce and influence one another, developers and operators gain a holis-
tic understanding of the system behavior. For instance, correlating response times with resource
utilization can unveil potential bottlenecks, while examining correlations between error rates and
specific operations may pinpoint areas requiring attention. This technique enables a more informed
and strategic perspective to system optimization, as it considers the interdependencies that shape
the overall performance landscape.

Here are some examples of metrics aggregations :

• Latency and Error Rates. High latency may correlate with increased error rates and indicate
that longer response times contribute to errors or disruptions in service.

• Request Rate, Throughput and Resource Utilization. Higher request rates may correlate
with increased throughput and higher CPU utilization, indicating that a workload may ne-
cessitate scaling measures for optimal performance.

• Response Time and User Satisfaction. Longer response times may correlate with lower user
satisfaction scores highlighting the impact of performance on the end-user experience.

4.3 Continuous Optimization

Definition: Using autonomic optimization loop to feed observed data back into the system for automated
decision-making or adjustment.

Continuous optimization emphasizes the need for an ongoing and adaptive approach to system
improvement. This involves leveraging observed data, metrics, and feedback loops to make in-
formed adjustments to the microservices architecture. Continuous optimization is not a one-time
event but rather a cyclical and evolving practice aimed at maintaining and improving the overall
efficiency, reliability, and scalability of the system.

The essence of continuous optimization lies in its alignment with the principles of adaptability
and responsiveness. By incorporating real-time observations into decision-making processes, the
microservices architecture can autonomously adapt to changing conditions. This ensures that the
system is consistently tuned for optimal performance, considering factors such as resource utiliza-
tion, response times, and overall user experience.

10

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

This approach involves the systematic adjustment of various parameters to ensure that the
ecosystem operates at its peak. Performance indicators such as resource utilization, scalability
metrics or throughput allow to identify underutilized or overburdened microservices in order to
optimize resource allocation and scaling strategies. Response time coupled with latency profiles
pinpoint performance bottlenecks to improve user experience and overall system responsiveness.
Continuous optimization relies on the iterative analysis of these and other metrics to adapt and
refine the microservices architecture, ensuring it remains responsive, reliable, and cost-effective in
dynamic operational environments.

In addition, compliance metrics like SLOs and SLAs are integral to the continuous optimiza-
tion process. They provide a framework for setting performance goals, prioritizing improvements,
aligning service performance with business objectives, and ensuring customer satisfaction.

• SLAs3 are formal agreements between service providers and their clients that define the ex-
pected level of service. They often specify the consequences of not meeting these levels. SLAs
establish clear expectations for customers, which in turn drive the internal objectives and tar-
gets for optimization. They ensure that the optimizations are not just technically focused but
also aligned with business objectives and customer needs.

• SLOs4 are specific measurable characteristics of the SLA such as availability, throughput,
frequency, response time, or quality. SLOs help in prioritizing optimization tasks based on
which areas are not meeting the desired objectives. They provide continuous feedback, al-
lowing teams to iteratively improve the service.

4.4 Financial Operations

Definition: Aligning cloud costs with actual usage and optimizing system costs to ensure financial
accountability and efficiency of the service.

Financial Operations (FinOps in short) introduce financial accountability by integrating cost con-
siderations into the observation and optimization processes. This entails monitoring and managing
the financial aspects of workloads, including resource consumption, infrastructure expenses, and
overall operational costs. FinOps principles advocate for collaboration among teams, including de-
velopers, operations, and finance, to ensure that cloud resources are utilized efficiently, and costs
are optimized. By incorporating financial considerations into the observation framework, organiza-
tions can make informed decisions about resource allocation, scaling strategies, and infrastructure
choices. FinOps ensures that the pursuit of performance and reliability is harmonized with fiscal
responsibility, contributing to the sustainability and efficiency objectives.

Example of FinOps metrics are:

• Resource Efficiency assesses how well microservices utilize computational, memory, and
storage resources in relation to the cost incurred.

• Data Transfer Costs monitor the expenses associated with data transfers between microser-
vices, especially in distributed environments, to optimize data flow and reduce unnecessary
costs.

3 Service Level Agreements
4 Service Level Objectives

11

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

• Downtime Costs quantify the financial impact of downtime or disruptions, encouraging
practices that minimize service interruptions and associated costs.

4.5 Concluding Remarks

The intense development of the above mentioned activities support the fact that the efficient man-
agement of microservice architectures needs mechanisms for efficient and holistic observation, as
well as for autonomous decision making. These activities need to respond to multiple objectives
with multiple SLOs including end user satisfaction, performance optimization, efficient resource
allocation and cost- efficient development, deployment and maintenance processes.

5 Landscape of Existing Tools

The SCALER project needs to select the most appropriate tools available for Kubernetes and the
cloud native ecosystem. A lot of research points out that the Cloud Native Computing Foundation
(CNCF) has a wide toolbox that could correspond to the project needs. But why is it important to
use or limit the choice of CNCF tools ?

Choosing CNCF projects when working on a Kubernetes project isn’t strictly mandatory, but is
considered a good practice for several reasons. The CNCF is an organization that fosters the growth
and development of cloud-native technology ecosystems, including Kubernetes. It ensures that
the projects are designed to be interoperable and compatible within the cloud-native ecosystem.
It promotes standards ensuring that the components of the Kubernetes-based system work well
together. The CNCF governance model usually maintains a level of vendor neutrality, reducing the
risk of lock-in and benefits from a large and active support community that increases the guarantee
that a project is maintained over the long term. Last but not least, the CNCF is at the forefront
of cloud-native technologies. By choosing CNCF projects, it’s likely to be working with the latest
innovations in the field.

It’s important to note that while there are many advantages to using CNCF projects, this doesn’t
mean non-CNCF projects are inferior or incompatible with Kubernetes. Many non-CNCF projects
work excellently with Kubernetes and may sometimes be a better fit depending on specific project
requirements and contexts. However, in order to guarantee optimal compatibility with the Kuber-
netes ecosystem we decide to limit our research to the CNCF landscape.

5.1 CNCF Landscape

The CNCF proposes an interactive landscape [25] that lists all cloud native open source projects
and proprietary products. Figure 2 gives a capture of its observability tools. A category is dedicated
to observability and analysis where we can find proprietary products (i.e. Datadog, Dynatrace,
Splunk or Graylog), open source projects (i.e. Centreon, Nagios, Zabbix or Grafana) or CNCF-
hosted open source projects (i.e. Prometheus, Fluentd, Jaeger or OpenTelemetry).

The CNCF classifies products into the following six sub-categories :

• Monitoring is the ability to continuously track and collect data about the runtime behavior
of applications and systems.

• Logging is the process of capturing log messages that describe failed or successful action
events that occur in the system.

• Chaos Engineering refers to the practice of intentionally introducing faults into a system in
order to test its resilience and ensure applications and engineering teams are able to withstand
turbulent and unexpected events.

12

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

Figure 2: CNCF Observability and Analysis Landscape.

• Tracing allows to track the path of a request as it moves through a distributed system.

• Continuous Optimization establish mechanisms to feed observed data back into the system
for automated decision making or adjustment.

• Feature Flagging lists software development tools whose purpose is to turn functionalities
on or off in order to safely test in production by separating code deployment from feature
release.

Two of them, Chaos Engineering and Feature Flagging are not considered as observability tools
and will be put aside from our concerns. The other four categories are inventories of tools that cover

13

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

one or more of the previously disclosed approaches. Our selection is based on free open source
software that is available for on-premise deployment regardless of the cloud provider. Products
available as SaaS are not included for now.

5.2 Monitoring Tools

Product µservice
Specific

Open
Source Features Usage

Centreon [26] no yes monitoring, analytics Real-time monitoring
Datadog [27] no no monitoring, analytics Real-time monitoring

Dynatrace [27] no no monitoring, analytics Real-time monitoring

Grafana [28] no yes dashboard, visualization

Real-time monitoring,
Instrumentation,
Log Aggregation,
Metric Correlation

Graphite [29] no yes
visualization,

long term storage
Real-time monitoring,

Metric Correlation

Hubble [30] yes yes
monitoring, analytics,
security observability

Real-time monitoring,
Metric Correlation,

Event-Driven observability

InfluxDB [31] no yes
monitoring,

timseseries DB
Real-time monitoring,

Metric Correlation
Mimir [32] no yes long term storage Real-time monitoring

Netdata [33] no yes monitoring, analytics Real-time monitoring

Nightingale [34] no yes
dashboard, visualization,
monitoring, timeseries DB

Real-time monitoring,
Instrumentation,
Log Aggregation,
Metric Correlation

OpenMetrics [35] no yes

specifies the de-facto standard
for transmitting

cloud-native metrics
at scale

Real-time monitoring

OpenTSDB [36] no yes timseseries DB Real-time monitoring

Prometheus [18] no yes monitoring, timseseries DB
Real-time monitoring,

Metric Correlation
Thanos [37] no yes long term storage Real-time monitoring

Vector [38] no yes observability pipelines builder
Instrumentation,
Log Aggregation,
Metric Correlation

VictoriaMetrics [39] no yes monitoring, timseseries DB
Real-time monitoring,

Metric Correlation

VMware Aria [40] no no
dashboard, visualization,

traces, monitoring,
timeseries DB

Real-time monitoring,
Instrumentation,
Log Aggregation,
Metric Correlation

Zabbix [41] no yes monitoring, analytics Real-time monitoring

Table 1: Monitoring Products

14

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

5.3 Logging Tools

Product µservices
Specific

Open
Source Feature Usage

Grafana Loki [42] no yes log analytics Log Aggregation
Elasticsearch [43] no yes log analytics, visualization Instrumentation, Log Aggregation

Fluentd [44] no yes log collector Instrumentation
Graylog [45] no yes log analytics, visualization Log Aggregation

Splunk [46] no no
log analytics, monitoring,
dashboard, visualization

Real-time monitoring,
Log Aggregation,
Metric Correlation

Table 2: Logging Products

5.4 Tracing Tools

Product µservices
Specific

Open
Source Feature Usage

Grafana Tempo [47] no yes
trace collector,

easy to use,
high scale tracing backend

Distributed Tracing

Jaeger [48] yes yes
SPM,

topology graphs,
opentelemetry compatible

Distributed Tracing

OpenTelemetry [49] yes yes
vendor neutral,

developpers toolbox (API, SDK)
Instrumentation,

Distributed Tracing

skywalking [50] yes yes
log analytics, APM,

dashboard, visualization

Real-time monitoring,
Instrumentation

Log Aggregation,
Distributed Tracing

tracetest [51] no yes
easy creation of E2E

tests for OpenTelemetry
devlopments

Instrumentation

Zipkin [52] no yes dependency diagram Distributed Tracing

Table 3: Distributed Tracing Products

15

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

5.5 Continous Optimization and FinOps Tools

Product µservices
Specific

Open
Source Feature Usage

Crane [53] yes yes
visualization,

analytics,
optimization

Continuous Optimization
Financial Operations

Opencost [54] yes yes
visualization,

analytics
Financial Operations

Table 4: Continous Optimization and FinOps Products

6 Concluding Remarks

This report has presented an overview of the rich landscape of observation tools applicable to
the microservice context. They allow for a holistic approach to observation and provide a founda-
tion for deriving actionable insights and metrics. Available observation data becomes the key to
unlocking the understanding needed for the automatic scalability of microservices in dynamic and
evolving environments.

It is important to note that most cited tools are well suited for web applications. However, most
do not take into account the specific requirements of other applications, such as the 5G use case
(see deliverable Scaler D4.1). New difficulties can be observed, requiring the development of new
knowledge/methodologies for the near-real-time requirements of 5G and, more generally, telecom
applications.

The work in this report is to serve as a foundation for the work on the analysis of the behaviour
of groups of micro-services, with a view to moving towards a holistic approach over time. In
addition to the application, this approach should provide a view of the underlying infrastructure
[55] with possible interferences caused by the shared use of cloud infrastructures [56].

16

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

A Load Generators for Microservice Benchmarking

• Fortio (https://fortio.org/) started as, and is, Istio’s load testing tool and later (2018)
graduated to be its own open-source project.

• Locust (https://locust.io/) is an open source performance/load testing tool for HTTP
and other protocols.

17

https://fortio.org/
https://locust.io/

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

References

[1] Kubernetes (K8s): An Open-Source System for Automating Deployment, Scaling, and Management of Con-
tainerized Applications. https://kubernetes.io/.

[2] João Nunes, Thiago Bianchi, Anderson Iwasaki, and Elisa Nakagawa. “State of the Art on Microser-
vices Autoscaling: An Overview”. In: Anais do XLVIII Seminário Integrado de Software e Hardware. Evento
Online: SBC, 2021, pp. 30–38. DOI: 10.5753/semish.2021.15804. URL: https://sol.sbc.org.
br/index.php/semish/article/view/15804.

[3] Shamsuddeen Rabiu, Chan Huah Yong, and Sharifah Mashita Syed Mohamad. “A Cloud-based Con-
tainer Microservices: A Review on Load-balancing and Auto-scaling Issues”. In: International Journal
of Data Science 3.2 (2022), pp. 80–92. DOI: 10.18517/ijods.3.2.80-92.2022.

[4] Zhiheng Zhong, Minxian Xu, Maria Alejandra Rodriguez, Chengzhong Xu, and Rajkumar Buyya.
“Machine Learning-Based Orchestration of Containers: A Taxonomy and Future Directions”. In: ACM
Comput. Surv. 54.10s (Sept. 2022). ISSN: 0360-0300. DOI: 10.1145/3510415. URL: https://doi.
org/10.1145/3510415.

[5] Siti Nuraishah Agos Jawaddi, Muhammad Hamizan Johari, and Azlan Ismail. “A review of microser-
vices autoscaling with formal verification perspective”. In: Software: Practice and Experience 52.11 (2022),
pp. 2476–2495. DOI: https://doi.org/10.1002/spe.3135. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/spe.3135. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1002/spe.3135.

[6] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and Christina Delim-
itrou. “Seer: Leveraging Big Data to Navigate the Complexity of Performance Debugging in Cloud
Microservices”. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’19. Providence, RI, USA: Association for Com-
puting Machinery, 2019, pp. 19–33. ISBN: 9781450362405. DOI: 10.1145/3297858.3304004. URL:
https://doi.org/10.1145/3297858.3304004.

[7] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. “Sage: Practical and Scal-
able ML-Driven Performance Debugging in Microservices”. In: Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems. ASPLOS
’21. Virtual, USA: Association for Computing Machinery, 2021, pp. 135–151. ISBN: 9781450383172. DOI:
10.1145/3445814.3446700. URL: https://doi.org/10.1145/3445814.3446700.

[8] Manuel Gotin, Felix Loesch, Robert Heinrich, and Ralf Reussner. “Investigating Performance Met-
rics for Scaling Microservices in CloudIoT-Environments”. In: Mar. 2018. DOI: 10.1145/3184407.
3184430.

[9] Nikolas Herbst, Rouven Krebs, Giorgos Oikonomou, George Kousiouris, Athanasia Evangelinou,
Alexandru Iosup, and Samuel Kounev. Ready for Rain? A View from SPEC Research on the Future of
Cloud Metrics. Apr. 2016.

[10] Betsy Beyer, Niall Richard Murphy, David K Rensin, Kent Kawahara, and Stephen Thorne. The site
reliability workbook: practical ways to implement SRE. 2018.

[11] Eman Aljoumah, Fajer Al-Mousawi, Imtiaz Ahmad, Maha Al-Shammri, and Zahraa Al-Jady. “SLA
in cloud computing architectures: A comprehensive study”. In: Int. J. Grid Distrib. Comput 8.5 (2015),
pp. 7–32.

[12] October FinOps Summit 2021: A 9-year story, Adopting FinOps, Reducing Waste, and Multi-Cloud updates.
https://www.youtube.com/watch?v=zFFuuZpN1Hc.

[13] Kubernetes Tools for Monitoring Resources. https://kubernetes.io/docs/tasks/debug/debug-
cluster/resource-usage-monitoring/.

[14] Kubernetes Metrics Server. https://github.com/kubernetes-sigs/metrics-server.

[15] K8S Kubelet. https://itknowledgeexchange.techtarget.com/coffee- talk/files/
2021/03/.

[16] Container Runtime Interface (CRI). https://kubernetes.io/docs/concepts/architecture/
cri/.

18

https://kubernetes.io/
https://doi.org/10.5753/semish.2021.15804
https://sol.sbc.org.br/index.php/semish/article/view/15804
https://sol.sbc.org.br/index.php/semish/article/view/15804
https://doi.org/10.18517/ijods.3.2.80-92.2022
https://doi.org/10.1145/3510415
https://doi.org/10.1145/3510415
https://doi.org/10.1145/3510415
https://doi.org/https://doi.org/10.1002/spe.3135
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3135
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3135
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3135
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3135
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1145/3445814.3446700
https://doi.org/10.1145/3445814.3446700
https://doi.org/10.1145/3184407.3184430
https://doi.org/10.1145/3184407.3184430
https://www.youtube.com/watch?v=zFFuuZpN1Hc
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-usage-monitoring/
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-usage-monitoring/
https://github.com/kubernetes-sigs/metrics-server
https://itknowledgeexchange.techtarget.com/coffee-talk/files/2021/03/
https://itknowledgeexchange.techtarget.com/coffee-talk/files/2021/03/
https://kubernetes.io/docs/concepts/architecture/cri/
https://kubernetes.io/docs/concepts/architecture/cri/

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

[17] gRPC: A high performance, open source universal RPC framework. https://grpc.io/.

[18] Prometheus. https://prometheus.io/.

[19] Cloud Native Comûting Foundation. https://www.cncf.io/.

[20] The OpenMetrics project. https://openmetrics.io/.

[21] RFC21119. https://www.rfc-editor.org/info/rfc2119.

[22] RFC5234. https://www.rfc-editor.org/info/rfc5234.

[23] RFC8174. https://www.rfc-editor.org/info/rfc8174.

[24] Abeer Abdel Khaleq and Ilkyeun Ra. “Intelligent Autoscaling of Microservices in the Cloud for Real-
Time Applications”. In: IEEE Access 9 (2021), pp. 35464–35476. ISSN: 2169-3536. DOI: 10 . 1109 /
ACCESS.2021.3061890. URL: https://ieeexplore.ieee.org/document/9361549/ (visited
on 10/24/2023).

[25] CNCF Cloud Native Interactive Landscape. https://landscape.cncf.io/.

[26] SaaS IT Monitoring Platform for Digital Performance. https://www.centreon.com.

[27] Datalog. https://www.datadoghq.com/.

[28] Grafana. https://grafana.com/.

[29] Graphite. https://grafana.com/oss/graphite/.

[30] Hubble: Network, Service Security Observability for Kubernetes. https://github.com/cilium/
hubble.

[31] InfluxDB. https://www.influxdata.com/.

[32] InfluxDB. https://www.influxdata.com/.

[33] Netdata. https://www.netdata.cloud/.

[34] Nightingale. https://n9e.github.io/.

[35] OpenMetrics. https://openmetrics.io/.

[36] OpenTSDB. http://opentsdb.net/.

[37] Thanos. https://thanos.io/.

[38] Vector. https://vector.dev/.

[39] VictoriaMetrics. https://victoriametrics.com/.

[40] VMWare Aria Network and Application Monitoring Tool. https://www.vmware.com/products/
aria-operations-for-networks.html.

[41] Zabbix. https://www.zabbix.com/.

[42] Grafana Loki. https://grafana.com/oss/loki/.

[43] Elastic: Comprehensive and modern infrastructure monitoring. https : / / www . elastic . co /
observability/infrastructure-monitoring.

[44] Fluentd. https://www.fluentd.org/.

[45] Graylog. https://graylog.org.

[46] Splunk. https://www.splunk.com.

[47] Grafana Tempo. https://grafana.com/oss/tempo/.

[48] Jaeger. https://www.jaegertracing.io/.

[49] OpenTelemetry. https://opentelemetry.io/.

[50] Apache SkyWalking. https://skywalking.apache.org/.

[51] tracetest. https://tracetest.io/.

[52] Zipkin. https://zipkin.io/.

[53] Crane. https://gocrane.io/.

19

https://grpc.io/
https://prometheus.io/
https://www.cncf.io/
https://openmetrics.io/
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc8174
https://doi.org/10.1109/ACCESS.2021.3061890
https://doi.org/10.1109/ACCESS.2021.3061890
https://ieeexplore.ieee.org/document/9361549/
https://landscape.cncf.io/
https://www.centreon.com
https://www.datadoghq.com/
https://grafana.com/
https://grafana.com/oss/graphite/
https://github.com/cilium/hubble
https://github.com/cilium/hubble
https://www.influxdata.com/
https://www.influxdata.com/
https://www.netdata.cloud/
https://n9e.github.io/
https://openmetrics.io/
http://opentsdb.net/
https://thanos.io/
https://vector.dev/
https://victoriametrics.com/
https://www.vmware.com/products/aria-operations-for-networks.html
https://www.vmware.com/products/aria-operations-for-networks.html
https://www.zabbix.com/
https://grafana.com/oss/loki/
https://www.elastic.co/observability/infrastructure-monitoring
https://www.elastic.co/observability/infrastructure-monitoring
https://www.fluentd.org/
https://graylog.org
https://www.splunk.com
https://grafana.com/oss/tempo/
https://www.jaegertracing.io/
https://opentelemetry.io/
https://skywalking.apache.org/
https://tracetest.io/
https://zipkin.io/
https://gocrane.io/

WP 1 T0+12

D 1.1 : State of the Art on Microservice Performance Metrics

[54] OpenCost. https://www.opencost.io/.

[55] Alireza Goli, Nima Mahmoudi, Hamzeh Khazaei, and Omid Ardakanian. “A Holistic Machine
Learning-based Autoscaling Approach for Microservice Applications.” In: CLOSER. 2021, pp. 190–
198.

[56] Joy Rahman and Palden Lama. “Predicting the end-to-end tail latency of containerized microservices
in the cloud”. In: 2019 IEEE International Conference on Cloud Engineering (IC2E). IEEE. 2019, pp. 200–
210.

20

https://www.opencost.io/

	Introduction
	Microservice Performance Metrics
	Observation Goals
	Performance Metrics
	K8S Monitoring Architecture

	Capturing Performance Metrics
	Instrumentation
	Logging
	Real-Time Monitoring
	Distributed Tracing

	Performance Metrics Analysis for Higher-Level KPI
	Event-Driven Observability
	Metric Correlation
	Continuous Optimization
	Financial Operations
	Concluding Remarks

	Landscape of Existing Tools
	CNCF Landscape
	Monitoring Tools
	Logging Tools
	Tracing Tools
	Continous Optimization and FinOps Tools

	Concluding Remarks
	Load Generators for Microservice Benchmarking

