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We develop and apply an extension of the randomized compiling (RC) protocol that includes a special
treatment of neighboring qubits and dramatically reduces crosstalk effects caused by the application of faulty
gates on superconducting qubits in IBMQ quantum computers (ibm_lagos and ibmq_ehningen). Crosstalk
errors, stemming from controlled-NOT (CNOT) two-qubit gates, are a crucial source of errors on numerous
quantum computing platforms. For the IBMQ machines, their effect on the performance of a given quantum
computation is often overlooked. Our RC protocol turns coherent noise due to crosstalk into a depolarizing noise
channel that can then be treated using established error mitigation schemes, such as noise estimation circuits. We
apply our approach to the quantum simulation of the nonequilibrium dynamics of the Bardeen-Cooper-Schrieffer
(BCS) Hamiltonian for superconductivity, a particularly challenging model to simulate on quantum hardware
because of the long-range interaction of Cooper pairs. With 135 CNOT gates, we work in a regime where crosstalk,
as opposed to either Trotterization or qubit decoherence, dominates the error. Our twirling of neighboring qubits
is shown to dramatically improve the noise estimation protocol without the need to add new qubits or circuits
and allows for a quantitative simulation of the BCS model.
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I. INTRODUCTION

Despite the long-lasting quest for a noiseless and scal-
able quantum computer (QC) that could achieve quantum
advantage [1], currently available platforms require the devel-
opment and improvement of the so-called noisy intermediate-
scale quantum (NISQ) computer [2]. In these devices, qubit
operations are subject to noise, which produces errors at a
level that remains beyond the scope of fault-tolerant quantum
error correction codes [3–5]. Nevertheless, several implemen-
tations of digital quantum computers are now accessible,
like the IBMQ digital quantum computers [6], which can
implement a universal set of quantum operations on arrays
of superconducting transmon qubits (available devices con-
taining up to 128 qubits). In order to make the most of
these already existing machines, numerous error mitigation
solutions have been proposed over the past decade [7–12],
with the ultimate goal of pushing the efficiency and precision
limit of NISQ computers until they surpass the performance
of classical computers on a set of well-known quantum al-
gorithms: quantum simulation, quantum optimization, and
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quantum Fourier-transform-based algorithms (for detailed re-
views on quantum algorithms see Refs. [13,14]). While the
existing quantum hardware is quickly approaching the number
of qubits theoretically required to do so, noise-induced errors
remain very significant on NISQ computers [15,16], and prac-
tical solutions on how to reduce these errors to a minimum are
lacking.

On IBMQ devices, quantum gate implementations pro-
duce errors that can mainly be attributed to the two-qubit
[controlled-NOT (CNOT)] gate [17], with an announced error
rate of 1%, obtained by Clifford randomized benchmark-
ing [18,19]. However, little is known about the structure of
the quantum noise channels acting on the qubits [20–22].
The noise is known to be a mixture of random, inco-
herent noise channels, experimentally linked to imperfect
gate application and qubit decoherence, as well as coherent
noise channels [23], induced by the weak residual couplings
between a qubit and its environment (neighboring qubits,
readout resonator, and residual electromagnetic fields, for
instance). Coherent noise may be correlated, both in time
and in space, and lead to systematic deviations from the
perfect output. One of the identified origins of coherent
noise on a given qubit is linked to unwanted resonances
while applying radio-frequency (RF) pulses to implement
a quantum gate on neighboring qubits. This effect, dubbed
crosstalk [24,25], is known to be important in supercon-
ducting qubit architectures [26,27]. Crosstalk severely limits
the performance of these NISQ implementations, in spite
of considerable experimental efforts [17,28,29] and software
mitigation approaches [30–32]. Finally, we emphasize that
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previous experiments have shown that the effective noise act-
ing on the transmon qubits of IBMQ QCs is very unstable in
time, and may change drastically over the scale of a few hours
or days [33], which limits the possibilities for benchmarking
the noise channels and reusing this information.

Error mitigation schemes are, therefore, essential in order
to make NISQ a reliable platform for quantum computing.
Over the past decade, several of those techniques have been
proposed with the aim of turning noisy outputs into practical
and reliable results. They can be classified into two cate-
gories: noise-parameter-dependent and noise-parameter-free
error mitigation protocols. The former, which includes, e.g.,
probabilistic error cancellation (PEC) [11,12], relies on a pre-
cise characterization of the noise parameters, which requires
a substantial initial overhead [34–37]. Noise-parameter-free
error mitigation schemes, on the other hand, usually assume
a model of noise but do not require any characterization of
their parameters. Therefore, they are free from this initial
overhead but fail when noise model assumptions are not
met. The most prominent example is known as zero-noise
extrapolation (ZNE), which consists of performing several
experiments with increasing noise strength (which can be
achieved both with experimental or algorithmic approaches),
and extrapolating the results to the zero-noise limit [11,12,38–
40]. Another example is the so-called noise estimation circuit
(NEC) technique, introduced in Ref. [41]. A common feature
of both parameter-dependent and parameter-free methods is
an exponential scaling of the required number of circuit runs
with the number of noisy gates [42].

The NEC method was originally designed for noisy qubits
affected by a very simple one-parameter noise channel called
depolarizing noise. This assumption is unrealistic for NISQ,
and particularly for IBMQ quantum computers, as discussed
above. Fortunately, the noise structure can be simplified using
a procedure called randomized compiling (RC) [43–45]. RC
consists of averaging a given circuit output over different
randomized versions of the original circuit in a way that
effectively maps any noise channel to a simpler Pauli noise
channel [46], bringing it closer to the depolarizing channel
required to apply the NEC method.

RC is typically performed only on qubits directly affected
by CNOT gates [47–50], therefore ignoring crosstalk errors.
These are typically assumed to be insignificant, yet turn out
to be harmful to our simulation results in practice. Meth-
ods for mitigating crosstalk via RC have been previously
proposed [44] and demonstrated to be effective [45]. In this
article, we propose an extension of the twirling gate set [see
Fig. 1(a) or Fig. 5), which further maps crosstalk errors onto a
depolarizing noise channel. We then demonstrate that using
this technique drastically improves the performance of the
NEC mitigation scheme implementation on IBMQ QCs. We
expect that similar improvements can be achieved for other
error mitigation schemes that assume a depolarizing noise
model. This is relevant for all QC architectures affected by
crosstalk. In addition, our results confirm that crosstalk errors
on IBMQ devices cannot be neglected (we find that they lead
to an effective error rate per CNOT gate of up to 5%) and need
to be mitigated.

To benchmark the RC and NEC methods used in this
article, we perform a quantum simulation of the BCS

Hamiltonian, the historical model describing superconductiv-
ity through the emergence of electronic Cooper pairs [51].
Starting from an initial quenched state, we simulate the out-
of-equilibrium dynamics of the system using a simple Trotter
algorithm. The evolution is then monitored by measuring
time-dependent expectation values of Pauli string observables.
Specific features make this model very suitable to benchmark
the performance of QCs. First, due to the hard-core boson
statistics of the Cooper pairs, the model has a natural de-
scription in terms of Pauli matrices. Second, the BCS model
is integrable, so that the few-particle dynamics can be com-
pletely solved efficiently on a classical computer [52–56].
Finally, the BCS interaction term contains an all-to-all cou-
pling between spins, which makes it challenging to implement
on a low-connectivity platform like IBMQ QC (which has
a quasilinear layout of qubits). Previously, the BCS model
has been implemented on IBMQ with the purpose of finding
its ground-state energies using variational quantum algo-
rithms [57–59]. Also, an implementation of the BCS evolution
operator for a nitrogen-vacancy-center-based QC with a star-
shaped connectivity was proposed recently [60].

Our key results are summarized in Fig. 1. Specifically,
Fig. 1(b) shows that crosstalk randomized compiling dra-
matically improves the accuracy of the quantum simulation
without the need for adding new qubits or circuits (com-
pared to the standard randomized compiling). While Fig. 1(b)
presents the results averaged over multiple observables and
simulation times, Figs. 1(c) and 1(d) demonstrate how the
results of applying different techniques compare for one spe-
cific observable as a function of the simulated evolution time
(i.e., number of Trotter steps applied). It is clear that the
contribution of crosstalk is not negligible.

This article is organized as follows: In Sec. II, we Trot-
terize the BCS time evolution, and show how to map the
corresponding unitary operator to a quantum circuit. We run
naive simulations of the model on IBMQ QCs, illustrating
the dramatic effect of the noise on the results. In Sec. III,
we present our improved RC procedure, and perform a com-
parative analysis between standard RC and crosstalk RC, by
applying them to our BCS simulations. Section IV is devoted
to our implementation of the NEC mitigation scheme, and
readout error correction. Finally, we provide in Sec. V an in-
depth comparison of various levels of error mitigation—from
no mitigation to NEC assisted with crosstalk RC. We discuss
the observed discrepancies between classical simulations as-
suming a simple depolarizing noise channel and the results
from real QC.

II. QUANTUM SIMULATION OF THE BCS MODEL
ON A SUPERCONDUCTING QC

Throughout this work, we model a quench in the BCS
model with three Cooper pairs in order to gauge the effi-
ciency of both RC techniques and their combination with
the NEC technique. The dynamical evolution of various local
observables is the quantitative outcome of these simulations.
In this section, we show how the BCS quench can be sim-
ulated on a quantum computer and present the results of
a basic simulation—without any error mitigation—setting a
reference for the performance of more advanced methods. We
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FIG. 1. Illustration of the importance of crosstalk mitigation. (a) Pictorial representation of noise occurring during the application of a
CNOT gate (blue cloud). Crosstalk may extend the effect of this noise to the neighboring qubits. Gates applied before and after the CNOT

gates depict the RC protocol (white gates are used for the standard RC procedure; adding the red gates constitutes the crosstalk RC). A more
detailed description is given in Sec. III. (b) Figure of merit for the simulation accuracy when using different error mitigation techniques.
Clearly, the effect of mitigating crosstalk is not negligible. The figure of merit is defined as ε = S−1

∑
j |i j ||(nj − i j )|, where j enumerates

all simulated evolution durations and observables measured, i j is the ideal noiseless expectation value for the respective observable, nj is
the value measured on the noisy QC, and S =∑ j |i j | represents the normalization factor, as |i j | weights prioritize the contributions of
observables with expectation value away from zero. [(c), (d)] Evolution of the expectation value Y of the second qubit out of three under
the three-body BCS Hamiltonian [see Eq. (1)] with energy levels {−1, 0, +1} and coupling constant g = 0.5, respectively, on both IBMQ
devices. The red curve is the noiseless Trotterized dynamics, and the dashed orange curve represents the simulation on a real, noisy QC.
The dashed blue (green) curve shows the simulated evolution when using a number of error mitigation protocols: readout-error correction,
standard randomized compiling (crosstalk randomized compiling), and NEC. While not allowing for perfect agreement with the ideal red
curve, crosstalk randomized compiling dramatically improves the accuracy of the quantum simulation.

execute the quantum code on three linearly connected qubits
of ibmq_lagos and of ibmq_ehningen (cf. Fig. 2). Through-
out the paper, unless stated otherwise, results for ibmq_lagos
are presented. Results for ibmq_ehningen are gathered in
Appendix C.

FIG. 2. Coupling map of (a) ibm_lagos and
(b) ibmq_ehningen machines. Links represent the physical
junctions on which two-qubit gates can be realized. The green qubits
are used for the simulation and black qubits are the idle qubits.

A. Problem definition

The BCS Hamiltonian can be represented in the spin lan-
guage via

HBCS = −
L−1∑
j=0

(
ε j − g

2

)
σ z

j − g

2

l−1∑
i, j=0
i< j

(
σ x

i σ x
j + σ

y
i σ

y
j

)
(1)

(see Appendix A), where L = 3 is the number of energy levels
and σ a

j , a ∈ {x, y, z}, refers to the operator such that the Pauli
matrix σ a is applied on the energy level j and the identity
operator on the other energy levels. The eigenstates |0〉 and
|1〉 of σ z

j denote respectively the absence or presence of a
Cooper pair on the energy level j. The system is initialized
in state |ψ0〉, corresponding to the mean-field solution of the
above Hamiltonian (cf. Appendix A). The aim is to simulate
the evolution of the system up to time t , described by the
evolution operator U (t ) = e−iHBCSt , and measure expectation
values of observables 〈ψ0|O |ψ0〉, where |ψ (t )〉 = U (t ) |ψ0〉,
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FIG. 3. Transpiled quantum circuit for a single Trotter step [Eq. (3)], preceded by the initial state preparation. The on-site energy and the
interaction between the first two qubits are highlighted in red. The highlighted SWAP gate is required to ensure the interaction between the first
and last qubits on a linear layout (see main text). Quantum circuits for the evolution up to arbitrary time t = r�t are built by concatenation of
this elementary circuit r times (without the initialization), and thus contain 9r CNOT gates.

and the observables O are products of Pauli operators on the
qubits.

B. Trotter algorithm for the unitary evolution

First, we need to implement the unitary evolution operator
U (t ) = e−iHBCSt on the quantum computer, i.e., to break down
U (t ) into a quantum circuit comprising one- and two-qubit
unitary gates that can be directly applied on the QC (native
gates). This operation, dubbed transpilation, is a difficult prob-
lem that usually cannot be tackled exactly, even for simple
integrable systems. To circumvent this issue, we approximate
the exact unitary evolution operator using the Trotter algo-
rithm. We slice the full time evolution into r small time steps
of length �t = t/r:

e−iHt = (e−iH�t )r . (2)

For each time step, we use the Suzuki-Trotter formula [61] to
expand the complex exponential at first order in �t . For the
BCS Hamiltonian this yields

e−iHBCS�t �
L−1∏
j=0

ei(ε j− g
2 )σ z

j �t
∏

0�i< j�L−1

ei g
2 (σ x

i σ x
j +σ

y
i σ

y
j )�t . (3)

For each Trotter step, the error accumulated by this approx-
imation has an upper bound of order O(�t2). This error scales
as O(t�t ) for the whole dynamics (see, e.g., Refs. [62,63]). In
our particular case, however, this upper bound is not reached,
and the first-order Trotter algorithm remains a good approxi-
mation of the exact dynamics over the time range we consider.
Thus, in what follows we compare the results obtained on a
quantum computer to the result of perfect Trotter evolution,
and not to the exact result of continuous evolution.

The exponential terms in Eq. (3) can now be straightfor-
wardly transpiled into a quantum circuit comprising the native
one-qubit and two-qubit gates of the IBMQ machines. More
details about this procedure can be found in Appendix B, and
the resulting quantum circuit is displayed in Fig. 3, where the

two first exponential factors in Eq. (3) are highlighted with
red boxes as an example. The rightmost one, in particular,
implements the interactions between qubits q0 and q1. It is
then simply repeated for the interaction q1-q2. For the last
interaction, however, a SWAP gate (composed of a series of
three alternating CNOT gates) is required to account for the
linear layout of the quantum computers. This gate exchanges
the logical information contained in physical qubits q1 and
q2, thus allowing to implement the interaction q0-q2 using
physical qubit q1 as an intermediary. Finally, we obtain the
equivalent quantum circuit representation of an elementary
Trotter step from Fig. 3, which requires nine CNOT gates in
total. To simulate the dynamics up to an arbitrary time t , we
simply concatenate r = t/�t copies of this circuit [64].

C. Parameters

We choose the following model parameters: on-site ener-
gies ε j ∈ {−1, 0,+1} and a coupling constant g = 0.5. We
then perform the Trotter evolution up to time T = 3.0 with a
time step �t = 0.2. Unless stated otherwise, quantum simula-
tions shown throughout the article are performed on qubits q0,
q1, and q2 of the ibmq_lagos machine. We choose q0 as the
first qubit, with energy ε0 = −1, q1 as the second qubit, with
energy ε1 = 0, and q2 as the third qubit, with energy ε2 = +1.

D. Observables

After performing the evolution, we monitor the dynam-
ics of the system by evaluating the expectation values of
different observables, which are tensor products of Pauli ma-
trices. These observables may bear little physical interest,
but their expectation values are straightforwardly estimated
from simple measurements, and their exact evolution is eas-
ily obtained classically. We made two different experiments:
in the first one we select observables from the set S1 ≡
{Z0, Z1, Z2, Z0Z1, Z1Z2, Z0Z2, Z0Z1Z2}, and in the second
one from the set S2 ≡ {X0,Y1, Z2, X0Y1,Y1Z2, X0Z2, X0Y1Z2}
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(capital letters correspond to the direction of the Pauli observ-
able, and subscripts refer to the qubit they are measured on).
We therefore have access to a total of 7+7 different observ-
ables. All the measurement outputs are sampled over 32 000
repetitions.

E. Raw results

Despite the small number of qubits, the three-qubit BCS
circuits are challenging to simulate on a noisy QC due to their
depth. Their execution is subject to significant experimental
noise, mainly originating from imperfect (CNOT) gate appli-
cations (IBM estimates the CNOT gate’s error rate at ∼10−2

while the single-qubit gate’s error is of the order of 10−4).
We have simulated the dynamics with circuits containing

up to 15 Trotter steps with 9 CNOT gates per step, i.e., with
a maximum of 135 CNOT gates. We plot in Fig. 4 the time
evolution for 3 of the 14 available observables (the other
observables are plotted in Appendix C): the first qubit’s x
component 〈X0〉 [see Fig. 4(a)], the third qubit’s z compo-
nent 〈Z2〉 [see Fig. 4(b)] and their joint evolution 〈X0Z2〉 [see
Fig. 4(c)]. We compare their evolution with the exact BCS
dynamics (black solid line), the Trotterized dynamics obtained
on a noiseless classical computer (red solid line) and on a real,
noisy, IBM QC (ibm_lagos) (orange dotted line). We first
emphasize that the first-order Trotterized dynamics is indeed
a good approximation of the exact evolution here, so we can
expect the algorithmic Trotter error to be negligible compared
to errors stemming from the noise acting on the QC.

When the Trotter circuits are run on a real, noisy QC, we
observe that the measured expectation values of all observ-
ables decay with a priori unpredictable fluctuations. Despite
the fact that the CNOT error rate is around 1%, the effect of
noise is already dramatic after a few Trotter steps, and no
interesting features of the dynamics can be extracted from
these results. This illustrates the need for error mitigation
strategies to fight the effects of the noise, which we can expect
to be even more dramatic as the circuit depth increases. For
the sake of comparison, simulation of this system as well
as the following error mitigation protocols have also been
performed on qubits q18, q21, and q23 of the ibmq_ehningen
device measured respectively in the x, y, and z directions. The
results are qualitatively similar and are shown in Fig. 13 in
Appendix C.

Small systems like the one we consider, whose full dy-
namics is easy to simulate on a classical computer, constitute
a good platform to benchmark different noise-tailoring and
quantum error mitigation protocols. In what follows, we im-
plement a few of these protocols and assess their efficiency to
improve the results of our quantum simulation.

III. SIMPLIFYING THE NOISE STRUCTURE: CROSSTALK
RANDOMIZED COMPILING

Errors in QCs have multiple experimental origins. They
can originate, for instance, from imperfect measurement dur-
ing a qubit state readout. They can also stem from the
experimentally imperfect application of certain quantum
gates, in particular CNOT gates. In addition, qubit decoher-
ence constitutes another source of errors, which sets an upper

diagonalization

FIG. 4. Time evolution of the first qubit’s x component 〈X0〉 (top
panel), the third qubit’s z component 〈Z2〉 (middle panel), and their
joint evolution 〈X0Z2〉 (bottom panel) under the exact BCS Hamil-
tonian evolution (black), the Trotter noiseless circuits (red), and the
Trotter circuit on a real noisy QC (orange). Error bars due to shot
noise are smaller than the plot marker size σs ∼ 1/

√
Ns = 5 × 10−3,

where Ns = 32 000 is the number of shots.

bound on the size of the circuits that can be run. On super-
conducting chips of IBM, the decoherence times T1 and T2 are
typically of the order of ∼100 µs while the application of the
CNOT gates is ∼300 ns [17,65] (data taken from IBMQ back-
end properties). Because we apply no more than 135 CNOT

gates, we consider decoherence of qubits negligible compared
to the noise introduced by CNOT gates.
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To address errors arising from noisy CNOT gates, un-
derstanding and simplifying their noise structure is crucial.
Randomized compiling was introduced in Ref. [44] as a
method for converting any coherent noise channel into a
Pauli (incoherent) noise channel. The original proposal rec-
ommended applying the twirling protocol to all qubits, but
in practice this approach is often performed only on the ac-
tive qubits of the CNOT gates [47–50], thereby overlooking
spillover crosstalk effects. In the present section, we discuss
the importance of applying RC to neighboring qubits as well,
and improve the procedure to simplify crosstalk noise even
further. We start, in Sec. III A, by presenting in detail the
standard RC protocol on active qubits. Then in Sec. III B,
we propose an extension of the quantum gate twirling set on
idle qubits, which turns any coherent noise channel into a
depolarizing (incoherent and unbiased) noise channel. By im-
plementing the crosstalk RC protocol in our BCS simulation,
we demonstrate its efficiency on IBMQ devices. Unlike for the
standard RC protocol, we show that final results can be faith-
fully reproduced with classical simulations of noisy quantum
circuits assuming a simple depolarizing noise channel.

A. Standard randomized compiling protocol

Before mitigating errors introduced by the application of
CNOT gates on IBM QCs, we first need a way to model them.
The effect of external Markovian noise on the physical qubits
can be described by a superoperator called a quantum error
channel [5], which is usually applied after the noisy gate and
acts on the full density matrix of the system. A general error
channel for two qubits can be written as follows:

Egen
2 (ρ) =

3∑
i, j,k,l=0

pi jkl (σ
i ⊗ σ j )ρ(σ k ⊗ σ l ) (4)

with p∗
i jkl = pkli j , and {σ 0, σ 1, σ 2, σ 3} ≡ {I2, σ

x, σ y, σ z}.
The trace-preserving condition yields 16 equations:∑

k,l

pklkl = 1, (5)

∀i �= 0, ∀ j �= 0,
∑

k

pk jk0 =
∑

k

pik0k = pi j00 = 0, (6)

reducing the naive number of 44 = 256 independent param-
eters to 240. We do not know a priori the values for pi jkl ,
and determining them would require quantum state tomogra-
phy protocols with unrealistic overhead. Moreover, this noise
originates from many different experimental sources and is
not only different for different qubits, but can also change in
time, making it impossible to fully characterize.

Randomized compiling is a computational method which
allows for the reduction in the complexity of the noise channel
[Eq. (4)] to only 15 free parameters, at the expense of running
more circuit experiments. The resulting equivalent noise chan-
nel reads

EPauli
2 (ρ) =

3∑
i, j=0

pi j (σ
i ⊗ σ j )ρ(σ i ⊗ σ j ), (7)

where 0 � pi j � 1 and
∑

i, j pi j = 1. Such an error channel is
called a Pauli noise channel.

FIG. 5. Representation of the crosstalk RC protocol used for our
three-qubit simulations. The white gates are used in the standard RC
protocol. In order to twirl crosstalk errors, we extend this scheme
by adding the red gates. Gates P, Q, R, S, and T are either the
identity matrix or one of the three Pauli matrices. P, Q, and T
are drawn randomly from Tp, and R and S are chosen such that the
circuit is strictly equivalent to an isolated CNOT. Gates Ri(π/2) are
π/2 rotations around the axis i ∈ {x, y, z}, drawn at random. Barriers
indicate the order of application of gates and prevent annihilation
between single-qubit gates.

RC consists of inserting a random layer of single-qubit
gates (considered noiseless) before and after each CNOT gate
such that the overall action is still equivalent to a CNOT gate:

(U1 ⊗ U2)CNOT(U3 ⊗ U4) = CNOT, (8)

where Ui (i ∈ {1, 2, 3, 4}) are random single-qubit gates,
with combinations U1, . . . ,U4 deliberately chosen to satisfy
Eq. (8). The set of allowed combinations comprises 16 options
that can be constructed by choosing U1 and U2 arbitrarily from
the set Tp = {I2, σ

x, σ y, σ z}, and then choosing U3 and U4

from the same set such that Eq. (8) is satisfied. Table I of
Ref. [41] lists the different possibilities for Ui’s.

In the presence of noise, one can show [46] that averaging
over all twirling configurations {Ui} converts the general error
channel, Eq. (4), to an effective Pauli noise, Eq. (7). In other
words, the average over the expectation values measured from
all possible RC circuits coincides with the value that would be
obtained from the original circuit with a Pauli noise channel
on each CNOT gate.

The number of circuits with different twirl configurations
scales exponentially, though: 16nCNOT , where nCNOT is the
number of CNOT gates in the circuit. Performing an aver-
age over this number of circuit experiments is unrealistic in
practice. However, in the assumption of noise Markovianity
(i.e., the noise on different CNOT gates is not correlated),
one can sample very few twirl configurations. For an observ-
able ∈ [−1,+1], the deviation from the exact average scales
O(1/

√
NRC) where NRC is the number of RC circuits with

different twirl configurations—in the spirit of Monte Carlo
sampling. For NRC = 300, error bars in Fig. 6 are below the
plot marker size, underscoring the method’s accuracy.

We note in passing that the above discussion concerns
the cost of “converting” the error channel by means of RC.
Further use of error mitigation techniques (such as NEC in
Sec. V) on the measured results would require exponential
accuracy of the measured results (cf. Fig. 8) and thus impose
exponential growth on the required NRC with the number of
CNOT gates. Yet, in practice, this is not the limiting factor.
For example, in Fig. 12, the number of RC circuits has been
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depolarizingdepolarizing

FIG. 6. Time evolution of 〈X0〉 (top panels), 〈Z2〉 (middle panels), and 〈X0Z2〉 (bottom panels). The green (blue) dashed curves on the left
(right) panels correspond to the crosstalk (standard) RC protocol. The RC protocol has been averaged over 300 different circuits. The magenta
(cyan) solid curves on the left (right) panels are the result of a fit of the green (blue) curves made using classical simulations of the circuit
with the noise model of Eq. (11) (see main text). Error bars due to shot noise and finite sampling of random twirl configurations are computed
in Appendix E. They are smaller than the plot marker size. The red and orange curves correspond respectively to the noiseless and noisy
Trotterized dynamics and are plotted here for comparison.
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FIG. 7. Example of an estimation circuit for the first Trotter step. To build it, we remove the initial state initialization and single-qubit gates
from the example circuit in Fig. 3. A random initial product state is added before the circuit and undone at the end (white boxes). We also
perform RC on each CNOT gate (not shown here).

increased to 600 for t > 1.8, yet this adjustment does not
bring about significant changes in comparison with Fig. 8.

B. Randomized compiling for crosstalk

So far, by restricting ourselves to two-qubit error chan-
nel, we have supposed that the noise acting on CNOT gates
only affects the qubits on which the gate is applied. In
practice, the application of a CNOT is known to also pro-
duce errors on neighboring qubits, an effect known as
crosstalk [25,26,31,32]. Since the precise noise structure in-
duced by crosstalk is also unknown, we aim to simplify it as
well by extending RC to these neighboring qubits.

The crosstalk RC (cRC) procedure for three qubits is rep-
resented in Fig. 5. Unlike for the two active qubits on which
the CNOT is applied, no logical operation is performed on
the neighboring qubits. As a consequence, any single-qubit
gates can be part of the twirling set [imagine replacing CNOT

with identity in Eq. (8); then one could choose U3 = U −1
1 and

U4 = U −1
2 for any U1 and U2, not only those belonging to

Tp]. We can thus simplify the structure of the noise channel
on the neighboring qubits even further than for the active
qubits by using two distinct twirling sets. The first one is the
same twirling set Tp as in the previous section. The second
is composed of the gates TR = {Rx(π/2), Ry(π/2), Rz(π/2)}.
We perform two RC procedures in a row. First, we apply
the gate drawn randomly from the set Tp, then a second
gate drawn from TR, and undo their action by choosing their
corresponding inverse gate after application of the CNOT on
the neighboring qubits.

In Appendix D, we derive the effective general n-qubit
error channel (n − 2 neighbors that can experience crosstalk),
as obtained after performing cRC [see Eq. (D23)]. The restric-
tion of this channel to our three-qubit BCS simulations (with
only one neighbor) has 16 × 2n−2 − 1 = 31 free parameters:

EcRC
3 (ρ) = 1

3

3∑
i, j=0

∑
s=0,1

pi, j,s

∑
a=1,2,3

Pi, j,s,aρPi, j,s,a,

with Pi, j,s,a = σ i
1 ⊗ σ

j
2 ⊗ (σ a

3

)s
,

1

3

3∑
i, j=0

∑
s=0,1

pi, j,s = 1,

(9)

where indices 1 and 2 stand for the control and target qubits
of the CNOT, s indicates if an error has occurred on the neigh-
boring qubit (s = 1) or not (s = 0), and a encodes whether it
was an X , Y , or Z error (a = 1, 2 or 3). Note, in particular,

that taking the partial trace of the density matrix over the
neighboring qubit subspace yields the same Pauli channel as
in the standard RC protocol presented in the last section as
the effective error channel for the active qubits [see Eqs. (7)
and (D21)]. Likewise, tracing over the active qubits yields
a one-qubit depolarizing noise channel for the neighboring
qubit because pi, j,s does not depend on a:

Edep
1 (ρ) = (1 − p)ρ + p

3

3∑
i=1

σ iρσ i = (1 − λ)ρ + λ
I

2
,

(10)

where 0 � λ = 4p
3 � 4

3 , p =∑3
i, j=0 pi, j,1 is the error rate, and

λ the depolarizing parameter. The key point about cRC is that
it simplifies the error channel of neighboring qubits because
it symmetrizes the effect of noise on the Bloch sphere with
respect to the different directions. Application of Ri(π/2)
permutes the eigenstates of σ j and σk: |0〉 j → |0〉k → |1〉 j →
|1〉k → |0〉 j . Indices are such that εi jk = +1, where ε is the
the Levi-Cività tensor. As a result, the depolarizing noise
channel is obtained by equally mixing the different coeffi-
cients of the Pauli noise channel.

C. Comparing standard and crosstalk RC protocols
through BCS simulation

We apply both the standard and crosstalk RC methods from
the last sections to the BCS simulation algorithm described in
Sec. II. For the crosstalk RC protocol (standard RC protocol),
results are shown in Figs. 6(a), 6(c), and 6(e) [Figs. 6(b), 6(d),
and 6(f)]. As expected, both RC protocols do not improve
the accuracy of the results on their own, as they simplify the
CNOT noise structure, but do not eliminate the noise. However,
we observe that they tend to flatten the curve and attenuate
the unpredictable fluctuations of the expectation values due
to the complex structure of the original noise. This could
be explained by the fact that the coherent part of the noise,
typically responsible for such fluctuations, has indeed been
turned incoherent.

To further interpret these results, we try to replicate the
QC’s output with classical simulations of our Trotter quan-
tum circuits using a simple noise channel. In the following,
we assume that the noise acting on the quantum device is
close to isotropic (in the sense of the qubit basis), so that
the Pauli noise channel restricted to the active qubits can
be approximated by a two-qubit depolarizing noise channel.
This assumption is rather standard [41] for quantum error
mitigation protocols because it allows to relate noisy and
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FIG. 8. Evolution of 〈X0〉 (top panels), 〈Z2〉 (middle panels), and 〈X0Z2〉 (bottom panels) after quantum error mitigation protocols (NEC
+ cRC/RC + REC). Green (blue) dotted curves on the left (right) panels are the results of the real IBMQ device using crosstalk (standard)
RC protocols. Green (blue) solid curves are the fits obtained in Figs. 6(a), 6(c), and 6(e) (magenta curves) [Figs. 6(b), 6(d), and 6(f) (cyan
curves)] mitigated using classical simulation of NEC. Error bars correspond to the uncertainty due to the limited number of shots and the finite
sampling of twirl configurations.
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noiseless expectation values analytically. Under this assump-
tion, the (n = 3)-qubit error channel can be described by only
2n−1 − 1 = 3 free parameters {λCNOT, λneigh, λglob}):

E3(ρ) = (1 − λCNOT − λneigh − λglob)ρ

+ λCNOT
I01

4
⊗ Tr01(ρ)

+ λneighTr2(ρ) ⊗ I2

2
+ λglob

I012

8
, (11)

where 0 and 1 denote the indices of the active qubits and 2
the index of the neighboring qubit, and Tr{k} is the partial
trace over the set of qubits {k}. We call this noise channel a
quasilocal depolarizing noise.

As displayed in Figs. 6(a), 6(c), and 6(e) (magenta curves),
the QC results can be well reproduced by classical simulations
(using the density matrix method of the noise simulator QISKIT

Aer) performed with a quasilocal depolarizing noise [see
Eq. (11)] applying on every CNOT of each junction (between
qubits 0 and 1 and between qubits 1 and 2). This leaves us
with five free parameters, λ01

CNOT, λ01
neigh, λ12

CNOT, λ12
neigh, and

λglob, that we assume are the same for each Trotter step.
We find a set of parameters that minimizes the square dis-
tance between the classical simulation results and all the data
points for the seven different observables (7 × 15 = 105 data
points). The resulting fit parameters are λ01

CNOT � 0, λ12
CNOT �

0.014, λ01
neigh � 0.05, λ12

neigh � 0.01, and λglob � 0.002, with
the regression standard error χ2 = 2 × 10−4. From the fit
parameters, it is clear that the noise associated to neighboring
qubits cannot be neglected. Rather, they seem to confirm that
crosstalk plays an important role in IBM’s quantum devices
and that the scheme we are proposing is essential for the
implementation of efficient error mitigation protocols. The
noise parameters derived differ noticeably from the CNOT gate
error rate (around 0.005–0.01) announced by IBM. We believe
that this discrepancy stems from the method used to estimate
these parameters. IBM uses the randomized benchmarking
protocol [18,19], which does not take crosstalk into account
because each junction is considered separately. The resulting
error rate does not seem to relate easily to the Pauli noise
channel parameters that we obtain through the cRC method.

For comparison, we also plot in Figs. 6(b), 6(d), and 6(f)
the fit by classical simulations of the results we obtain using
the standard RC protocol (no twirling of neighboring qubits).
The resulting fit parameters are λ01

CNOT � 0.007, λ12
CNOT �

0, λ01
neigh � 0.07, λ12

neigh � 0.009, and λglob � 0.0002 and the

regression standard error is χ2 � 0.02. The quality of the fit
is not as good as in the former case, indicating that the noise
model of Eq. (11) is a rough approximation of the real noise
occurring on the QC.

The above shows that cRC is essential to accurately de-
scribe the noise on the system with Eq. (11), ensuring that the
effect of crosstalk is reduced to a depolarizing noise channel
on the neighboring qubits. In turn, the simpler noise structure
facilitates error mitigation, as we illustrate in the next section.

IV. ERROR MITIGATION TECHNIQUES

In order to illustrate the practical implications of our
cRC protocol, we implement two auxiliary error mitigation
schemes. First, to tackle errors stemming from measurements,
we apply a simple readout error correction (REC) procedure
detailed in Ref. [66]. Second, to mitigate the noise affecting
CNOT gates, we use the NEC method proposed in Ref. [41].

A. Readout error correction

Measurement is expected to introduce an error rate of
2% (data taken from IBM back-end properties). In what fol-
lows, we systematically apply the iterative Bayesian unfolding
method presented in Ref. [66] to correct readout errors (REC).
Note that we invert the whole 23 × 23 measurement ma-
trix, taking into account measurement error correlations. This
method scales poorly with the number of measured qubits.
However, we have found that performing the inversion qubit
by qubit, discarding the correlations, yields similar results.

B. Noise estimation circuits

The NEC technique aims to restore the noiseless value
of an observable by dividing the noisy expectation value of
an observable by a certain factor which estimates the circuit
fidelity. This factor is obtained by running additional circuits
derived from the original one, while preserving the same CNOT

structure, and in practice allows one to partly get rid of the
errors stemming from depolarizing noise channels.

To understand the above statement, first, one has to relate
the noisy and the noiseless expectation values of an observ-
able. In the same way as done in Ref. [41] for local and global
depolarizing noise (see also Appendix F), we expand the noisy
outcome up to the first order in the number of errors for the
quasilocal depolarizing noise channel [see Eq. (11)], which
yields

〈O〉noisy � (1 − λglob)nCNOT〈O〉0

[
1 + λCNOT

( 〈O〉1

〈O〉0
− nCNOT

)
+ λneigh

( 〈O′〉1

〈O〉0
− nCNOT

)]
+ O
(
λ2

CNOT, λ2
neigh

)
, (12)

where nCNOT is the number of CNOT gates in the circuit, and
〈O〉0 is the noiseless outcome. 〈O〉1 is the sum of expectation
values obtained from all circuits where an error occurred on a
single CNOT gate, putting the active qubits of the CNOT in the
maximally mixed state I/4. 〈O′〉1 is the sum of expectation
values obtained from all circuits where an error occurred on
a single CNOT gate, putting the neighboring qubit of the CNOT

in the maximally mixed state I/2. For exposition simplicity,
we consider here that noise parameters for different junctions
are equal, but the result can be generalized to CNOT gates with
different noise parameters for different junctions.

To mitigate these errors, it has been proposed in Ref. [41]
to run extra circuits (called noise estimation circuits) whose
outcome yields a part of the error terms appearing in Eq. (12).
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To construct these NECs, one simply removes all single-qubit
gates from the original Trotter circuits (see Fig. 7).

In our Trotter circuits, we can distinguish two types of
CNOT gates. The first type is the CNOT gates encoding the
interaction terms. After removing all the single-qubit gates,
they are now applied in a row with the same control and
target qubits. As they always come in pairs, they are now
logically equivalent to the identity operator. The second type

is the CNOT gates implementing the SWAP gate. Their action
does not change after removing single-qubit gates. The overall
unitary operation performed by the estimation circuits, for any
number of Trotter steps, is thus the identity operator up to
some SWAP operations.

Applying Eq. (12) to the NEC and dividing the noisy Trot-
ter circuits outcome by the fidelity estimated via NEC leads to
the mitigated expectation value:

〈O〉mitigated = 〈O〉noisy

〈E〉noisy
� 〈O〉0

[
1 + λCNOT

( 〈O〉1

〈O〉0
− 〈E〉1

)
+ λneigh

( 〈O′〉1

〈O〉0
− 〈E ′〉1

)]
+ O
(
λ2

CNOT, λ2
neigh

)
, (13)

where 〈E〉1 and 〈E ′〉1 are the NEC measured expectation
values, which correspond respectively to 〈O〉1 and 〈O′〉1 in the
original circuits and 〈E〉0 = 1. Equation (13) shows that the
NEC mitigates exactly the noise associated with the global
part of our quasilocal depolarizing channel. For the active
qubits and neighboring depolarizing channels, it is expected
that the coefficients in front of λCNOT and λneigh are strongly
suppressed.

To show this, we propose in Appendix G an expansion in
terms of the Trotter time step �t (the computation is done
in the case of a local depolarizing noise). This computation
takes into account any number of errors in the circuit but only
relates the noisy result to the noiseless terms at zeroth and first
order �t . Applying the equation found [see Eq. (G11)] to the
case of NEC gives an exact result as the only nonvanishing
term is of order zero in �t . Therefore, one finds that the main
term of the noisy Trotter circuit is reproduced by the fidelity
estimated using NEC. The result holds for any number of
errors. In particular, at small time (i.e., for a few Trotter steps),
we have

〈O〉1

〈O〉0
� 〈E〉1. (14)

As a consequence, NEC is an efficient method to remove
noise at small evolution times, or equivalently for small-depth
circuits. The results can be generalized also for quasilocal
depolarizing noise. At longer evolution times, we expect the
noise estimated by NEC to differ from the noise on the
Trotter circuits. To remove this remaining noise, it has been
proposed in Ref. [41] to use the zero-noise extrapolation
method [11,12], which consists in artificially increasing the
noise of sets of CNOT gates [39] in order to extrapolate the
result to the case of zero noise. In this article, we do not
apply this additional mitigation scheme because, as we will
see, at longer evolution times the QC result deviates from the
classical simulations using depolarizing noise, indicating that
the cRC noise channel can no longer be described accurately
as an effective quasilocal depolarizing noise channel.

We remind the reader that making the noise describable
in terms of Eq. (11) requires the application of RC tech-
niques. Therefore, any circuits we run involve twirling applied
in agreement with either RC or cRC protocols described in
Sec. III.

Finally, in order to stabilize the fidelity-estimation output
over different initial states, we generate random initial product
states and undo them at the end after the application of the

noise estimation circuit by inserting the corresponding inverse
gates and taking into account the action of the SWAP gates.
We produce NRC = 300 such noise estimation circuits, each
of which has a different random initial state and a different
twirling configuration for the RC (cf. Fig. 7).

V. COMBINING CROSSTALK RC AND ERROR
MITIGATION

In order to obtain the error-mitigated results and thus assess
the ultimate benefit of replacing RC with cRC, we combine
all the techniques described above: REC, cRC/RC, and NEC.
Namely, we divide the Trotter result obtained in Sec. III—
after averaging over 300 RC circuits and performing REC—
by the result of the noise estimation circuits as described in
Sec. IV, also averaged over 300 RC circuits and with REC.

The results for the observables 〈X0〉, 〈Z2〉, and 〈X0Z2〉 using
the crosstalk RC technique are plotted in Figs. 8(a), 8(c),
and 8(e). The results for the standard RC protocol are shown in
Figs. 8(b), 8(d), and 8(f). While not perfect, the results using
cRC are clearly better than the results using the standard RC.

Note the error bars that are sizable in Fig. 8, as opposed
to the negligible ones in Fig. 6. This is due to dividing by
the fidelity estimate in the NEC protocol, which amplifies the
expectation value, but also the errors. For the same reason,
the expectation values of the observables may lie outside their
range [−1, 1]. In practice, such behavior indicates that we
have reached the regime where the efficiency of NEC falls
off, as unaccounted sources of noise kick in.

Results for all the remaining observables 〈X0〉, 〈Y1〉, 〈Z2〉,
〈X0Y1〉, 〈X0Z2〉, 〈Y1Z2〉, and 〈X0Y1Z2〉 are gathered in Fig. 12 of
Appendix C. The conclusion of cRC producing better results
than RC holds for these as well. This is quantitatively demon-
strated in Fig. 1(b) by comparing the accuracy averaged over
all the observables. Below we provide a detailed analysis of
the results.

A. Global accuracy improvement

A comparison between the two columns of Fig. 8 clearly
shows that cRC, i.e., the twirling of neighboring qubits using
rotation gates, qualitatively improves the accuracy of the noise
estimation protocol, while not requiring to run more circuits,
compared to the standard RC protocol. These experiments
demonstrate that, at least in the context of superconducting
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qubit architectures like IBMQ QC, this method should sys-
tematically be preferred.

The error mitigation, however, remains imperfect, as
simulations still deviate from the noiseless result. These
deviations can be separated into two categories. The first
comprises the cases where the noiseless expectation values
that we are measuring become close to zero. In this case, we
observed that the RC result of the Trotter circuit sometimes
gets the wrong sign [see, e.g., Fig. 8(a), 1 � t � 1.8, and
Fig. 8(e), 0.8 � t � 1.4]. As a consequence, dividing by the
fidelity estimate of NEC (which is positive by definition)
only enhances this sign problem and makes the result deviate
strongly from the noiseless curve, even at intermediate times.
In spite of this, the oscillations of the exact evolution are still
well reproduced by the mitigated curve. The second category
relates to the strong deviations occurring at longer times
[see, e.g., Figs. 8(c) and 8(e), t � 2]. We identified the two
problems as having different origins. The first one stems from
the (expected) effect of a local, two-qubit depolarizing noise
[cf. Eq. (11)], while the second issue is caused by the fact that
the noise channel is not exactly depolarizing after RC, which
negatively affects the output of the estimation circuits. This
deviation becomes more important as the time increases since
the estimated fidelity becomes very small. The next two sec-
tions are devoted to our analysis of these deviations and their
origin.

B. Error mitigation enhances the wrong sign

In this section, we discuss why the mitigated result may
display a wrong sign as the expectation value approaches
zero, inducing unwanted deviations from the perfect result,
which are in turn enhanced by the NEC technique. In the case
of a pure global depolarizing noise, Eq. (12) [or Eq. (F2)]
guarantees that the noisy result stays of the same sign as the
noiseless one. However, when the noise is local (but still de-
polarizing) this may not hold anymore. The equation becomes
more involved, and the different terms in the Trotter expansion
do not experience the same multiplicative error [see Eq. (G11)
of Appendix G]. In Fig. 8, we simulate the Trotter circuit
using the local noise channel of Eq. (11) for each CNOT and
the depolarizing parameter from the fit of Fig. 6 (magenta and
cyan curves on Fig. 6). We then apply the same noise channel
to the estimation circuits and divide both results to obtain
the mitigated one (green and blue solid curves in Fig. 8). In
Fig. 8, we show classical simulations using the noise channel
of Eq. (11), which reproduce quite well the observed deviation
of the QC results. Therefore, in this case, the deviation from
the noiseless dynamics is explained by the local depolarizing
noise occurring on qubits. In this regime, the NEC protocol
only works approximately, but other error mitigation protocols
such as zero-noise extrapolation (ZNE) are more efficient to
tackle local depolarizing noise, and can be combined with
NEC to improve the results. In Figs. 8(c) and 8(e), at longer
time, we observe that mitigated fits (green solid curves) de-
viate slightly from the noiseless Trotter dynamics, but this
deviation does not correspond to the one observed on the QC

FIG. 9. Effective fidelity estimation for qubits q0 (blue points),
q2 (green points), and q0q2 (red points), obtained by averaging over
300 randomly compiled noise estimation circuits. Solid lines are the
results of the fit using the noise model of Eq. (11). Error bars due to
shot noise and finite sampling of RC configurations are smaller than
the plot marker size.

(green dotted curves), which indicates that it is not caused by
the locality of the noise.

C. Analysis of long-time deviations

In Fig. 8, the error bars quantify the statistical fluctuations
due to the finite sampling of the RC method and the finite
number of shots (see Appendix E for a detailed explanation
of the method used to estimate statistical fluctuations). The
deviation observed from the classical simulations performed
using a quasilocal depolarizing noise are not within these error
bars. In Fig. 12, we have increased NRC of NEC from 300 to
600 for t � 1.8 in order to reduce this uncertainty. If one com-
pares Figs. 8(a), 8(c), and 8(e) together with Figs. 12(a), 12(c),
and 12(e), data points have moved consistently within the
range given by the error bars, and there is no clear improve-
ment of the results. Another source of error must be the cause
of this deviation.

Since the deviations are not related to an insufficient num-
ber of RC samples, or to shot noise, they must originate from
a poor estimation of the effective noise parameters on the
Trotter circuits after cRC by the NEC. To understand this,
we compare the noise parameters of Eq. (11) estimated using
the Trotter circuits with cRC with the ones obtained from the
fidelity estimations from the estimation circuits (see Fig. 9).
We fit the seven different estimation curves and find that
resulting fit parameters obtained are λ01

CNOT � 0.007, λ12
CNOT �

0.016, λ01
neigh � 0.05, λ12

neigh � 0.009, and λglob � 0.002 and
χ2 � 4 × 10−4. These results only slightly differ from what
we obtained from the randomized compiling of Trotter circuits
(see Sec. III C). These small deviations on the noise param-
eters estimated by the two types of circuits are not relevant
at small times but become crucial at longer times. Indeed,
the uncertainty on the mitigated result becomes large as the
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denominator (estimation circuit) approaches zero. It can be
estimated as (see the Supplemental Material of Ref. [41])

σ 2
m = 〈O〉2

noisyσ
2
e + 〈E〉2

noisyσ
2
o

〈E〉4
noisy

(15)

= 〈O〉2
mitigatedσ

2
e + σ 2

o

〈E〉2
noisy

, (16)

where 〈E〉noisy is the mean value estimated from the NEC,
〈O〉noisy is the mean value estimated from the Trotter cir-

cuits, 〈O〉mitigated = 〈O〉noisy

〈E〉noisy
, and σe, σo, and σm their respective

standard deviations. Figure 9 shows that the fidelity is expo-
nentially decreasing with the number of CNOT gates. Note, in
particular, that the noise estimation method should be less
stable for multiqubit observables because one expects their
fidelity to be smaller compared to single-qubit observables (as
they are more likely to be directly affected by errors). For an
example, see Fig. 12(g) in Appendix C, where the error bars
(uncertainty due to shot noise and the finite sampling of the
RC method) become large for the observable X0Y1Z2 at long
time.

The noise parameter uncertainty stemming from the Trot-
ter and the noise estimation circuits reflects the deviation of
the effective noise from a pure quasilocal depolarizing noise
even after the application of cRC. This deviation can have
two origins. On the one hand, the assumption of a two-qubit
depolarizing noise on the CNOT’s active qubits is not exact, as
the theorem only guarantees a Pauli noise channel. To avoid
making this extra assumption, it will be either necessary to
find a way to further simplify the Pauli noise channel on active
qubits into a depolarizing noise or to use more sophisticated
error mitigation protocols (as compared to NEC) which take
into account the full effect of the Pauli noise. On the other
hand, it may be possible that a single-qubit gate’s error can-
not be neglected anymore. For the longest circuit using the
crosstalk twirling protocol, we have on average (depending on
the twirl configuration) n1 = 1187 single-qubit gates and 135
CNOT gates. The single-qubit gate’s error rate being estimated
at ε1 ∼ 10−4, their total effect on the output of a circuit should
be around

√
n1 × ε1 ∼ 0.3%. However, as we have seen with

Eqs. (15) and (16), small deviations can become important
when the denominator approaches zero.

VI. CONCLUSION

In this work, we have presented and analyzed simulations
of the BCS Hamiltonian for three energy levels on an IBM
superconducting quantum computer. To obtain reliable results
from the noisy QC, we employ a simple error mitigation
technique called NEC, whose efficiency is conditioned by the
simplicity of the noise structure. In order to achieve the best
possible results, we use the RC technique, which effectively
turns the unknown and complex noise channels acting on the
QC into a simpler channel.

We use two versions of RC: the standard RC and the
crosstalk RC. We find that the latter enables achieving much
better accuracy, by further simplifying the noise caused by
crosstalk effects, while not requiring extra circuit runs or
qubits compared to the former. This demonstrates the signifi-
cance of crosstalk on IBM quantum computers.

Our work closes a gap in the field of error mitigation on
NISQ devices: while the specific structure of the noise on real
devices is rather complex and usually not well understood,
theoretical proposals for error mitigation techniques usually
assume a simple depolarizing error channel. We explicitly
demonstrate that the use of crosstalk RC does indeed bring
unknown noise closer to depolarizing noise, allowing us to
take advantage of existing error mitigation proposals. This
is the main reason for the significant overall performance
improvements stemming from the use of our crosstalk RC
protocol, as shown in Fig. 1.

There is another appeal in our approach: crosstalk er-
rors are notoriously hard to characterize. Being a systematic,
coherent noise channel, it is difficult to predict their net ef-
fect on the output of a given quantum computation. Using
crosstalk RC and our theoretical prediction for the structure
of the effective error channel, we show that existing protocols
significantly underestimate the real error in superconducting
quantum computers. We find in particular that crosstalk error
channels map to a depolarizing error channel with error rate
per CNOT gate that can be as high as 5%, i.e., almost five times
the values obtained by randomized benchmarking for the error
rate on the active qubits of the CNOT gates. This result is in
good qualitative agreement with the recent papers [67,68], in
which crosstalk is also found to be the main source of errors
for quantum computation on IBM quantum computers.

The accuracy gain from using crosstalk RC, in comparison
to the standard RC, in the explicit simulations of the dynamics
of the BCS model on NISQ devices is significant. It allowed us
to perform intermediate-time (up to 15 Trotter steps) quantum
simulations of an all-to-all interacting model with an accu-
racy beyond what can, to our knowledge, be found in the
literature. This brings us one step closer to quantum simu-
lations on NISQ devices matching the capabilities of classical
computers.

Data and the code used to generate quantum circuits and
analyze the results are available in Ref. [69].
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APPENDIX A: BCS HAMILTONIAN IN TERMS
OF PAULI MATRICES

In this Appendix, we show how to rewrite the stan-
dard Hamiltonian for the BCS model for superconductivity
in terms of spin operators. The BCS Hamiltonian cou-
ples electron pairs known as Cooper pairs [51] through a
phonon-mediated interaction [70]. The effective Hamiltonian,
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obtained after eliminating the phonons, can be written in the
form [71]

HBCS =
L−1∑
j=0

ε j (c
†
j↑c j↑ + c†

j↓c j↓) − g
L−1∑

i, j=0

c†
i↑c†

i↓c j↓c j↑,

(A1)

where L is the number of energy levels, c(†)
j,σ is the usual

electronic annihilation (creation) operator acting on the
energy level j of energy ε j and spin σ ∈ {↑,↓}. The cou-
pling constant g describes the effective interaction between
Cooper pairs. Single electrons are trivially decoupled from
the dynamics. We therefore restrict the study to the Cooper
pairs’ subspace. The latter mimic the statistics of hard-core
bosons [72]; their action in terms of creation and annihilation
operators is easily related to the algebra of Pauli matrices:

σ z
j = 1 − c†

j↓c j↓ − c†
j↑c j↑, (A2)

σ+
j = σ x

j − iσ y
j

2
= c†

j↑c†
j↓, (A3)

σ−
j = σ x

j + iσ y
j

2
= c j↓c j↑, (A4)

where σ a
j , a ∈ {x, y, z}, refers to the operator such that the

Pauli matrix σ a is applied on the energy level j and the
identity operator on the other energy levels. The eigenstates
|0〉 , |1〉 of σ z

j denote respectively the absence or presence of a
Cooper pair on the energy level j. Using this transformation,
the BCS Hamiltonian can be recast as

HBCS = −
L−1∑
j=0

(
ε j − g

2

)
σ z

j − g

2

∑
0�i< j�L−1

(
σ x

i σ x
j + σ

y
i σ

y
j

)
,

(A5)

which is Eq. (1). This rewriting in terms of Pauli matrices is
closely related to the Anderson 1/2-pseudospin model [73].
The only difference is that the z component of the pseudospin
is defined as Sz

j = − σ z
j

2 , where j is the energy level index.
Note that the interaction term rewritten using Pauli matrices
does not suffer from long Pauli string terms scaling with
the system size as is usually the case for electrons due to
the Jordan-Wigner transformation [74,75], which ensures the
antisymmetrization of the wave function.

APPENDIX B: CIRCUIT TRANSPILATION

Each term of Eq. (3) needs to be implemented with IBM
QC’s native gates. They are three single-qubit gates, Rz(θ ),
the Pauli matrix σ x (or simply denoted X ), and

√
X , and one

two-qubit gate, the CNOT gate [76]. They form a universal set
of gate operations which allows to implement any unitary op-
erator. An additional difficulty arises when taking into account
the machine’s layout: the unitary contains interaction terms
that couple qubits which are not directly connected on the QC;
we devote Appendix B 3 to this problem.

1. Transpilation of one-body operators

The leftmost product of Eq. (3) corresponds to on-site
energies and can therefore be implemented as a product of
one-qubit gates. It is indeed a product of Rz(θ ) = e−i θ

2 σ z
gates,

FIG. 10. Quantum circuit decomposition of the unitary operator
e−i α

2 σ a
i σ a

j with a ∈ {x, y, z}. Here i and j denote qubit indices, and
the vertical lines represent the two-qubit CNOT gates, for which the
control qubit is indicated by the black dot. The other rectangles
represent one-qubit gates explicitly mentioned in Eqs. (B3).

which perform a rotation of angle θ around the Z axis on the
Bloch sphere. In our case θ j = −�t (2ε j − g), where j is the
index of the different qubits. The Rz gate is a native gate for
IBM quantum computers.

2. Transpilation of two-body operators

The rightmost product of Eq. (3) describes the interaction
between Cooper pairs. To implement them, one needs to use
two-qubit gates for entangling both qubits. The CNOT gate is
the native two-qubit gate of most IBM QCs.

Using [σ x
i σ x

j , σ
y
i σ

y
j ] = 0, we obtain

e−i α
2 (σ x

i σ x
j +σ

y
i σ

y
j ) = e−i α

2 σ x
i σ x

j e−i α
2 σ

y
i σ

y
j , (B1)

where α = −g�t in our case. To implement two-body inter-
action terms of the form

e−i α
2 σ a

i σ a
j , (B2)

where a ∈ {x, y, z}, one needs two CNOT gates, a single Rz(α)
gate, and a one-qubit gate Oa:

Oz = I, Ox = H = 1√
2

(
1 1
1 −1

)
,

and Oy = 1√
2

(
1 i
i 1

)
. (B3)

We represent in Fig. 10 the two-qubit quantum circuit equiv-
alent to exponential (B2). Therefore, implementing Eq. (B1)
as a quantum circuit requires four CNOT gates. Note, how-
ever, that after implementing such an interaction term using
QISKIT [76], we use the transpile function with the option
optimization_level=3 (i.e., the most optimized method),
which outputs an equivalent quantum circuit using only two
CNOT gates (with some single-qubit native gates).

3. Transpilation for the whole dynamics

In this section, we use the one-qubit and two-qubit
quantum circuits previously derived to build the circuit im-
plementing the fully Trotterized dynamics. Naively, we could
simply concatenate the corresponding elementary circuits on
the physical qubits i, j ∈ {0, L − 1} to reproduce the product
of Eq. (3). We see then that the number of two-qubit inter-
action circuits required grows as

(L
2

) = L(L−1)
2 , where L is

the number of energy levels, which translates into L(L − 1)
noisy CNOT gates for each Trotter step. However, an additional
difficulty stems from the architecture of the IBM quantum
computers (and superconducting quantum computers in gen-
eral). As shown in Fig. 2, the QCs used (ibm_lagos and
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FIG. 11. Top: Logical decomposition of the SWAP gate (left) into
three native CNOT gates (right). Bottom: Example of usage of the
SWAP gate (represented with crosses at each end). The numbering
refers to the position of logical qubits, while the solid horizontal
lines are the physical qubits of the QC. The leftmost circuit cannot
be realized in a layout where qubits 1, 2, and 3 are on a line, so we
have to use the rightmost circuit instead. Because of this, the number
of required CNOT gates increases by three, and the positions of the
logical qubits are modified.

ibmq_ehningen) have a certain qubit coupling map, and
CNOT gates can only be performed on neighboring physical
qubits. As a consequence, it is not straightforward to imple-
ment an interaction between two distant qubits (in the sense
of the coupling map of Fig. 2). To overcome this problem,
one has to swap around the logical information contained
in physical qubits, so that two interacting logical qubits are
brought together on neighboring physical qubits. This swap
of information is achieved using the so-called SWAP gate. A
simple example of the use of SWAP gates is given in Fig. 11.
Note that the SWAP gate is not a native gate of the IBM
machines. It requires three CNOT gates as shown in Fig. 11.

To implement an interaction between two qubits initially
separated by a distance d (in the sense of the coupling map of
Fig. 2), at least d − 1 SWAP gates are required, i.e., 3(d − 1)
CNOT gates. Consequently, the number of CNOT gates—and
thus the number of errors—grows very quickly with the size
of the system we want to simulate (i.e., the number of qubits).

4. Initial state preparation

In an effort to minimize the number of noisy CNOT gates in
the circuit, we made the choice to start with an initial product
(nonentangled) state, which can be prepared using only single-
qubit gates. A natural product state in the BCS problem is the
mean-field ground state which is the ground state of the BCS
Hamiltonian in the thermodynamic limit but has a nontrivial
dynamic for finite system. To construct it, we use the gap
equation derived from the mean-field approximation [77]:

1 = g
∑

j

1

2
√

ε2
j + |�|2

, (B4)

where � is the energy gap. The BCS mean-field ground-state
wave function can be written as

|MF〉 =
L−1∏
i=0

(ui + vic
†
i↑c†

i↓) |0〉i

=
L−1∏
i=0

(ui |0〉i + vi |1〉i ), (B5)

where

vi

ui
=
√

ε2
i + |�|2 − εi

�∗ (B6)

and we also have the normalization condition
|ui|2 + |vi|2 = 1. We rewrite ui and vi as

ui = cos
θi

2
eiϕi/2, vi = sin

θi

2
e−iϕi/2, (B7)

which yields

θi = 2 arctan

⎛
⎜⎝
√

ε2
i + |�|2 − εi

|�|

⎞
⎟⎠, (B8)

ϕi = −arg(�) ≡ ϕ. (B9)

Thus, to prepare this initial state we simply apply on each
qubit the gate Ry(θi ) followed by the gate Rz(ϕ). The first
box in Fig. 3 shows an example of this preparation with the
set of parameters specified in Sec. II C (these correspond to
� ≈ 0.46).

APPENDIX C: EVOLUTION OF ALL OBSERVABLES
MITIGATED

In this Appendix, we present the entirety of the results of
our runs on the quantum computer, without RC, with standard
RC, and with crosstalk RC. These data were used to obtain
the average absolute error plotted in Fig. 1, and only a portion
of them are presented in the main text. In Figs. 12 and 13 we
show the full time evolution for a first set of seven observables,
executed respectively on ibm_lagos and ibmq_ehningen. In
Fig. 14, we show the same evolution for a different set of seven
observables, also obtained from ibm_lagos. RC averages for
both the Trotter circuits and the NEC have been performed
over 300 samples, with the exception of the crosstalk RC
curves at times t � 1.8 where we averaged over 600 NEC
to check that the deviations do not come from a lack of RC
circuits. One can see that, over different runs, the noise may
change and the efficiency of the mitigated protocol varies.

APPENDIX D: NOISE CHANNEL AFTER RANDOMIZED
COMPILING

First, we review the detailed computation of a gen-
eral n-qubit noise channel twirled over the set T ⊗n

p =
{I2, σx, σy, σz}⊗n. Then, we argue that this method can be
applied to a two-qubit noise channel induced by the appli-
cation of a noisy CNOT gate. The main difference is that the
first twirl can only be applied before the CNOT. Finally, we
study the crosstalk RC protocol defined in Sec. III and derived
the n-qubit channel. We also show that when traced over the
neighboring qubits this channel is reduced to a two-qubit Pauli
noise channel and when traced over all the qubits except one
neighboring qubit of the CNOT it gives a one-qubit depolariz-
ing noise channel.
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diagonalization

FIG. 12. Evolution of the seven different observables derived
from the measurement of ibm_lagos’s qubits q0, q1, and q2, re-
spectively, in the directions x, y, and z after application of mitigation
protocols (NEC + RC + REC). Blue (green) curves correspond to
standard (crosstalk) RC. Dashed curves are the result obtained on
a QC and the solid line is the corresponding fit made with the noise
model of Eq. (11). Exact evolution (black lines) and noiseless (noisy)
Trotter dynamics [red lines (dashed orange curves)] are also plotted
for each quantity. Error bars are due to the limited number of shots
and the finite sampling over twirl configurations.

1. Pauli twirling of an n-qubit noise channel

Here, we follow the step of computation detailed in
Ref. [46]. A general noise channel applied on a density matrix
can be written as

Egen
n (ρ) =

∑
M

MρM† such that
∑

M

MM† = I. (D1)

M is the so-called Kraus operator and we should stress
that for a given noise channel this decomposition
in terms of Kraus operators is not unique. Each
Kraus operator can be decomposed over the Pauli

diagonalization

FIG. 13. Evolution of the seven different observables derived
from the measurement of ibm_ehningen’s qubits q18, q21, and q23,
respectively, in the directions x, y, and z after application of mitiga-
tion protocols (NEC + RC + REC). Blue (green) curves correspond
to standard (crosstalk) RC. Dashed curves are the result obtained on a
QC. The green solid line is the fit of crosstalk RC made with the noise
model of Eq. (11) (fit for the standard RC did not converge). Exact
evolution (black lines) and noiseless (noisy) Trotter dynamics [red
lines (dashed orange curves)] are also plotted for each quantity. Error
bars are due to the limited number of shots and the finite sampling
over twirl configurations.

basis,

M = 1

2n

∑
p∈P

Tr(M p)p, (D2)

where P = {I2, σx, σy, σz}⊗n. The general noise channel reads

Egen
n (ρ) = 1

4n

∑
M

∑
p1,p2∈P

Tr(M p1)Tr(M p2)∗ p1ρp2. (D3)

The twirling of the noise channel over T ⊗n
p = P consists of

applying Pauli matrices [w in Eq. (D4)] before and after
the noise channel and averaging the result over the twirling
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diagonalization

FIG. 14. Evolution of the seven different observables derived
from the measurement of ibm_lagos’s qubits q0, q1, and q2 in the
direction z after application of mitigation protocols (NEC + RC +
REC). Blue (green) curves correspond to standard (crosstalk) RC.
Dashed curves are the result obtained on a QC and the solid line is
the corresponding fit made with the noise model of Eq. (11). Exact
evolution (black lines) and noiseless (noisy) Trotter dynamics [red
lines (dashed orange curves)] are also plotted for each quantity. Error
bars correspond to the uncertainty due to shot noise and the finite
sampling over twirl configurations.

set:

T
[
Egen

n

]
(ρ) = 1

4n

∑
M

∑
p1,p2∈P

Tr(M p1)Tr(M p2)∗

× 1

4n

∑
w∈T ⊗n

p

wp1wρwp2w (D4)

= 1

42n

∑
M

∑
p1,p2,w∈P

Tr(M p1)Tr(M p2)∗

× p1ρp2ζ (w, p1)ζ (w, p2), (D5)

where ζ (w, p) is the sign of the commutation between w and
p: +1 if both commute, −1 if they anticommute. In particular,

one has the relation

ζ (w, p1 p2) = ζ (w, p1)ζ (w, p2). (D6)

One inserts Eq. (D6) in Eq. (D5), and splits the sums
over p1 and p2 in two parts: the first one when p1 = p2

and the second one when p1 �= p2. The first sum evaluates
ζ (w, p2

1) = ζ (w, In) = +1. For the second sum when p1 �=
p2, we decompose the Pauli matrices over the different qubits
w =⊗n−1

a=0 wa and p = p1 p2 =⊗n−1
a=0 pa. The sum over w is

rewritten as

∑
w∈P

ζ (w, p1 p2) =
n−1∏
a=0

∑
wa∈Tp

ζ (wa, pa). (D7)

When p1 �= p2, there exists at least one qubit a such that
pa �= I2. For that qubit, the terms wa = I2 and wa = pa eval-
uate to ζ (wa, pa) = +1 while the two other terms give −1.
As a consequence, Eq. (D7) vanishes. Only the diagonal term
(p1 = p2) is nonzero in Eq. (D5) and gives

T
[
Egen

n

]
(ρ) = 1

4n

∑
p∈P

(∑
M

|Tr(M p)|2
)

pρp. (D8)

Any noise channel is mapped, after twirling, to a Pauli
noise channel with coefficients 1

4n

∑
M |Tr(M p)|2 for each

Pauli matrix p where the M’s are the Kraus operators of the
original noise channel.

2. Randomized compiling for CNOT gates

In practice, a noise channel emerges from the application
of a noisy gate. Consequently, RC cannot be directly applied
to the noise channel; rather, it is performed on the entire noisy
gate, modeled by its noiseless counterpart U followed by the
corresponding error channel EU . Equation (D4) is rewritten as

T [EU ](ρ) = 1

4n

∑
M

∑
p1,p2∈P

Tr(M p1)Tr(M p2)∗

× 1

4n

∑
w∈P

wp1Uw′ρw′U † p2w, (D9)

where w′ ∈ P and such that wU = Uw′. In general, for any U
it is not guaranteed to find such w′. Following the main text,
here the noisy gate Unoisy will be the two-qubit CNOT gate and
for all w there exists such w′. Let us denote CNOTi j the CNOT

gate acting on qubits i and j and w = wi ⊗ w j
⊗

a �=i, j w
a. For

any (wi,w j ) ∈ T ⊗2
p , Table I of Ref. [41] gives the correspond-

ing (w′i,w′ j ). For a �= i, j, the action of the perfect CNOT is
trivial and then w′a = wa. The rest of the computation follows
the above derivation.

This twirling of noisy gates is called randomized compiling
because, as it is explained in the main text, the space of
twirling gates grows exponentially with the number of CNOT

gates in the circuit and one usually samples this space with
a finite number of different twirl configurations by choosing
randomly gates in the twirling set.

013142-17



HUGO PERRIN et al. PHYSICAL REVIEW RESEARCH 6, 013142 (2024)

3. Rotation twirling

In this section, we derive the noise channel obtained after
Pauli twirling and apply the rotation twirling on neighboring
qubits as described in Sec. III B (see Fig. 5). First, we start
with a simpler case: we consider a one-qubit noise channel
and apply this double RC procedure. The noise channel of
Eq. (D4) is modified as follows:

T ∗[Egen
1

]
(ρ) = 1

16

∑
M

∑
p1,p2,w∈Tp

Tr(M p1)Tr(M p2)∗

×1

3

∑
R∈TR

wR† p1RwρwR† p2Rw, (D10)

where TR = {Rx(π/2), Ry(π/2), Rz(π/2)} as defined in
Sec. III B. For each rotation R, the Pauli matrices p1 and p2 are
mapped to the Pauli matrices p′

1 = R† p1R and p′
2 = R† p2R

and we rewrite Eq. (D10):

T ∗[Egen
1

]
(ρ) = 1

48

∑
R∈TR

∑
M

∑
p′

1,p′
2,w∈Tp

Tr(MRp′
1R†)

×Tr(MRp′
2R†)∗wp′

1wρwp′
2w. (D11)

The same derivation as in the above section can be done for
p′

1 and p′
2 and therefore only the diagonal term p′

1 = p′
2 does

not vanish. We get

T ∗[Egen
1

]
(ρ) = 1

12

∑
p∈P

∑
M

∑
R

|Tr(MRpR†)|2 pρ ′ p. (D12)

The effect of the rotation matrices when the identity matrix
is applied (p = I2) does not change the matrix:

RpR† = p = I2 ∀R ∈ TR. (D13)

When p = σ x, σ y, or σ z, rotation matrices R ∈
{Rx(π/2), Ry(π/2), Rz(π/2)} equally mix the different
directions:

Rk (π/2)σ lRk (−π/2) =
∑

m=x,y,z

εklmσ m + δklσ
l , (D14)

where k, l = x, y, z and εklm is the Levi-Cività tensor. Equa-
tion (D12) reduces to

T ∗[Egen
1

]
(ρ) = 1

4

∑
M

|Tr(M )|2ρ

+ 1

3

⎛
⎝ ∑

i=x,y,z

1

4

∑
M

|Tr(Mσ i )|2
⎞
⎠ ∑

j=x,y,z

σ jρσ j .

(D15)

Equation (D15) is a one-qubit depolarizing channel.
Adding a rotation twirling set equally mixes the different
coefficients of the Pauli noise channel to obtain a depolarizing
channel.

Let us now consider the real case where a CNOT is applied
and the rotation twirling is performed over the neighboring

qubits. The twirled channel reads

T ∗[ECNOT](ρ) = 1

42n

∑
M

∑
p1,p2,w∈P

Tr(M p1)Tr(M p2)∗

× 1

3n−2

∑
R∈T ⊗n−2

R

wR† p1Rwρ ′wR† p2Rw,

(D16)

where ρ ′ = CNOT · ρ · CNOT. Here n denotes the number of
qubits on which the noise channel applies. When considering
crosstalk, n is equal to 2 (the qubits on which the CNOT is
applied) plus the number of direct neighbors. The same trick
can be applied as in Eq. (D11), and after a similar derivation
we end up with

T ∗[ECNOT](ρ) = 1

4n

∑
p∈P

∑
M

1

3n−2

∑
R

|Tr(MRpR†)|2 pρ ′ p.

(D17)

The probability to apply to the density matrix the Pauli gate
p is 1

4n

∑
M

1
3n−2

∑
R |Tr(MRpR†)|2.

Let us consider for the rest of the derivation that 1 and 2
denote the index of the control and target qubits of the CNOT

gate; hence, there is no rotation matrix applied on these qubits.
We decompose the whole Pauli matrix and rotation matrix
on each individual qubit: P =⊗n−1

a=0 pa and R =⊗a �=1,2 ra.
Using Eqs. (D13) and (D14), the coefficients in Eq. (D17)
only differ depending when pb = I2 or pb �= I2, where b is
the index of a neighboring qubit. Therefore, the number of
free parameters decreases thanks to this additional twirling.
It goes from 4n − 1 for a Pauli noise channel on n qubits to
16 × 2n−2 − 1 = 2n+2 − 1.

One can also trace over all the qubits except one neighbor-
ing qubit b. The probability to apply the gate pb is

1

4n × 3

∏
a �=b

∑
pa∈Tp

∑
M

∑
rb∈TR

∣∣∣∣∣∣Tr

⎛
⎝M
⊗
c �=b

pc ⊗ rb pb(rb)†

⎞
⎠
∣∣∣∣∣∣
2

.

(D18)
It reduces, when pb = I2, to

1 − qb = 1

4n

∏
a �=b

∑
pa∈Tp

∑
M

∣∣∣∣∣∣Tr

⎛
⎝M
⊗
c �=b

pc ⊗ I2

⎞
⎠
∣∣∣∣∣∣
2

. (D19)

When pb = σ x, σ y, or σ z, the probabilities are the same:

qb

3
= 1

4n × 3

∏
a �=b

∑
pa∈Tp

∑
M

∑
pb∈{σ x,σ y,σ z}

∣∣∣∣∣Tr

(
M

n−1⊗
c=0

pc

)∣∣∣∣∣
2

,

(D20)
where qb relates to the depolarizing parameter λb = 4qb

3 .
Therefore, it mimics a depolarizing channel when look-

ing at only one neighboring qubit. When tracing over all
the neighboring qubits and looking at the noise channel on
qubits 1 and 2, one has still a Pauli noise channel where the
probability to apply the gate p1 ⊗ p2 is

1

4n

∏
a �=1,2

∑
pa∈Tp

∑
M

∣∣∣∣∣Tr

(
M

n−1⊗
c=0

pc

)∣∣∣∣∣
2

. (D21)
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The general form of the noise channel obtained after the
double RC protocol is

Ecrosstalk RC
n (ρ) =

3∑
i, j=0

∑
�s

pi, j,�s
3

∑
�a

Pi, j,�s.�aρPi, j,�s,�a, (D22)

Pi, j,�s,�a = σ i
1 ⊗ σ

j
2

n⊗
k=3

(
σ

ak
k

)sk
, (D23)

with �s ∈ {0, 1}n−2, �a ∈ {1, 2, 3}n−2, (D24)

where �s = (s3, . . . , sn) is a binary vector indicating if an error
occurred (sk = 1) on the neighboring qubit of index k and �a
indicates if it was an X , Y , or Z error (ak = 1, 2, or 3).

APPENDIX E: STATISTICAL FLUCTUATIONS
DUE TO FINITE SAMPLING

In this Appendix, we estimate the uncertainty due to the
shot noise and the finite sampling of the twirl configurations.
The quantity we are interested to estimate is

Oexpt = 1

Nt

Nt∑
r=1

Oexpt
r , (E1)

where Nt is the number of twirl configurations (in the main
text Nt = 300; in Appendix C for the NEC of the crosstalk RC
and t � 1.8, Nt = 600). Oexpt

r is the experimental estimation
of the expectation value of an observable O for the twirled
configuration circuit Cr . It is estimated by running Ns times
the circuit Cr :

Oexpt
r = 1

Ns

Ns∑
m=1

Oexpt
rm , (E2)

where Ns is the number of shots (Ns = 32 000 in the main
text). Oexpt

rm is a bimodal random variable which is equal to
+1 with probability p(r) and −1 with probability 1 − p(r).
The total expression is

Oexpt = 1

Nt Ns

Nt∑
r=1

Ns∑
m=1

Oexpt
rm . (E3)

There are two different averages. The first one is used
to estimate the expectation value of an observable Or corre-
sponding to the circuit Cr , denoted as 〈· · · 〉:

〈
Oexpt

r

〉 = 1

Ns

Ns∑
m=1

〈
Oexpt

rm

〉 = 2p(r) − 1 (E4)

= lim
Ns→∞

Oexpt
r . (E5)

The second average is over the different twirl configura-
tions and is denoted · · ·. The probability that the expectation
value of an observable corresponding to a certain circuit Cr

outputs Oexpt
r = o ∈ [−1, 1] is given by the unknown proba-

bility distribution f (o):

Oexpt = 1

Nt

Nt∑
r=1

Oexpt
r =

∫ 1

−1
o × f (o)do (E6)

= lim
Nt →∞

Oexpt. (E7)

To estimate the deviation from both averages due to the
finite sampling it is useful to compute〈(

Oexpt
r

)2〉− 〈Oexpt
r

〉2 = 1

Ns
Var〈··· 〉

(
Oexpt

r

)
(E8)

= 1 − 〈Oexpt
r
〉2

Ns
, (E9)

〈Oexpt〉2 − 〈Oexpt〉2 = 1

Nt
Var···(〈Oexpt〉), (E10)

where Var〈··· 〉 denotes the variance corresponding to the av-
erage over the different shots and Var··· denotes the variance
corresponding to the average over the different twirled con-
figurations. The total deviation is the sum of both quantities
where we average the deviation due to shot noise over the
different twirl configurations:

〈(Oexpt )2〉 − 〈Oexpt〉2 = 〈(Oexpt )2〉 − 〈Oexpt〉2

+ 〈Oexpt〉2 − 〈Oexpt〉2
(E11)

= 1

NsNt
Var〈··· 〉(Oexpt ) + 1

Nt
Var···(〈Oexpt〉) (E12)

� 1

NsN2
t

Nt∑
r=1

1 − 〈Oexpt
r

〉2 + 1

Nt
Var···(〈Oexpt〉). (E13)

To obtain the last equation, we estimate the average over
the twirl configurations empirically (· · · � 1

Nt

∑Nt
r=1 · · · ).

〈Oexpt
r 〉 � Oexpt

r and Var··· are also estimated empirically from
the data. Error bars in the plots correspond to the square root
of Eq. (E13). For the mitigated results, we combine this result
with Eq. (15) to derive its uncertainty.

APPENDIX F: MITIGATION FOR GLOBAL
AND LOCAL DEPOLARIZING CHANNEL

In this Appendix, we recall the result obtained for the noise
estimation circuit in Ref. [41] in the case of a global and local
depolarizing noise channel. First, to understand how the noise
estimation circuit protocol works, it is interesting to express
the noisy expectation value in terms of the noiseless one.

1. Relation between noisy and noiseless outcome

In the simple case of a global depolarizing channel, this can
be done exactly. For a local depolarizing channel, the relation
can be expanded in terms of number of errors occurring in the
circuit and one keeps only the first-order term. After consid-
ering these two noisy channels, the result generalizes to the
case of Eq. (11) and yields Eq. (12), which includes these two
cases plus a noise on the neighboring qubit.

A global depolarizing channel on each CNOT reads

Edep
n (ρ) = (1 − λglob)ρ + λglob

I2n

2n
, (F1)

where n is the number of qubits in the circuit and
0 � λ � 4n

4n−1 . If an error occurs in the circuit, it outputs
the maximally mixed state. The noisy result of a traceless
observable is therefore expressed as [41]

〈O〉glob
noisy = (1 − λglob)nCNOT〈O〉noiseless, (F2)
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where nCNOT is the number of CNOT gates in the circuit.
In the case of a depolarizing channel acting only on the

qubits i, j where the CNOT is applied (called a local depolariz-
ing channel), the error channel is written as

Edep
2 (ρ) = (1 − λCNOT)ρ + λCNOT

I4

4
⊗ Tri j (ρ), (F3)

where Tri j is the partial trace over the active qubits i, j. An
exact expression between the noisy result and the noiseless
cannot be derived but one can expand it in terms of the number
of errors:

〈O〉local
noisy =

∞∑
i=0

(1 − λCNOT)nCNOT−iλi
CNOT〈O〉i

= (1 − λCNOT)nCNOT

∞∑
i=0

(
λCNOT

1 − λCNOT

)i

〈O〉i

� 〈O〉0

[
1 + λCNOT

( 〈O〉1

〈O〉0
− nCNOT

)]

+O(λ2
CNOT), (F4)

where 〈O〉i is the outcome such that i errors occurred in the
circuit; it is a sum of expectation values of all circuit where
i CNOT gates output the maximally mixed state on the active
qubits. In the last line we expand the expression up to one
error occurring in the circuit.

2. Noisy expectation value of the noise estimation circuit

In the case of a global depolarizing noise, applying Eq. (F2)
to the NEC leads to

〈E〉glob
noisy = (1 − λglob)nCNOT , (F5)

where 〈E〉glob
noisy is the outcome of the NEC (the noiseless

outcome being 1). In this simple case, the NEC exactly re-
produces the noise of the Trotter circuit. Dividing the Trotter
circuits by the NEC yields the noiseless result:

〈O〉glob
noisy

〈E〉glob
noisy

= 〈O〉glob
noiseless. (F6)

For the local noise, we apply Eq. (F4) in the case of NEC
and divide both results, which yields

〈O〉local
noisy

〈E〉local
noisy

� 〈O〉0

[
1 + λCNOT

( 〈O〉1

〈O〉0
− 〈E〉1

)]

+ O
(
λ2

CNOT

)
. (F7)

We show in the next Appendix that the term in front of λCNOT

is small.

APPENDIX G: FIRST-ORDER TROTTER EXPANSION
OF AN OBSERVABLE UNDER A LOCAL

DEPOLARIZING NOISE

In this Appendix, we show that, assuming a local de-
polarizing noise on each CNOT gate, the noise of the NEC
reproduces part of the noise of the Trotter circuit up to the
first Trotter order.

Every linear quantum circuit can be written as a sequence
of a two-body unitary gate [see Fig. 15(a) for an example].

We start by considering only one qubit measured (qubit
m) along the direction d = x, y, z [in Fig. 15(a), m = 2]. The
density matrix just before the measurement is denoted as ρ0.
Thus, one computes the quantity Tr(ρ0σ

d
m ). Each U k

i j unitary
gate contains an arbitrary number of CNOT gates rk

i j . Here i and
j are the qubit indices on which the unitary gate is applied and
k corresponds to the 2k − 1 layer of gates if i is odd and the 2k
layer if i is even. We suppose a local depolarizing noise after
each CNOT gate with parameter ε:

�i j (ρ) = (1 − ε)ρ + ε
Ii j

4
⊗ Tri j (ρ),

where Tri j denotes the partial trace over qubits i and j. No
matter on which CNOT gate the noise occurs inside a U k

i j

unitary gate, the noisy outcome will be Ii j

4 ⊗ Tri j (ρ). Then
the noisy channel after a U k

i j unitary gate is

Ek
i j (ρ) = (1 − ε)rk

i j ρ + (1 − (1 − ε)rk
i j )
Ii j

4
⊗ Tri j (ρ).

Suppose we have noise on the last layer of unitary gates
(in the above example on U 3

34 and U 3
12). If the noise is on a

unitary gate which is not on the measured qubit, this gate is
not in the light cone of the measured qubit and therefore its
noise cannot affect the result. If the noise is on a unitary gate
which directly acts on the measured qubit, the resulting output
vanishes because the Pauli matrix σ d

m is traceless, Tr(( Ii j

4 ⊗
Tri j (ρ))σ d

m ) = 0, with i = m or j = m. One can then write
the noisy result of the circuit with respect to the noiseless one.
For the example shown in Fig. 15(a), it gives

Tr
(
ρ0σ

d
2

) = (1 − ε)r3
12 Tr
(
ρ

p
0 σ d

2

)
, (G1)

where ρ
p
0 denotes the “perfect” result without noise; i.e., the

unitary gates of the last layer have indeed been applied per-
fectly, ρ

p
0 = U 3

12U
3
34ρ1(U 3

34)†(U 3
12)†.

Let us denote ρ1 as the density matrix just before the
application of the last layer of unitary gates. All unitary gates
which do not act on the measured qubit m = 2 commute with
the Pauli matrix σ d

2 ; then

Tr
(
ρ0σ

d
2

) = (1 − ε)r3
12 Tr
(
ρ1
(
U 3

12

)†
σ d

2 U 3
12

)
. (G2)

In the following, we will make the assumption that all
unitary gates are parametrized with a small time step �t as
in the Trotter algorithm such that

U k
i j = e−i�t

∑3
a,b=0 α

i jk
ab σ a

i ⊗σ b
j , (G3)

where σ 0
i denotes the identity matrix on qubit i and σ a

i are the
Pauli matrices where a = 1, 2, 3 are identified respectively to
the directions x, y, and z.

For computation at first order in �t the quantity
(U 3

12)†σ d
2 U 3

12 yields three terms:(
U 3

12

)†
σ d

2 U 3
12 � σ d

2 − 2�t
(
I1 ⊗ A213

2 + B213
2

)
, (G4)

where A213
2 =∑3

b,c=1 α123
0b εbdcσ

c
2 and B213

2 =∑3
a,b,c=1 α123

ab εbdcσ
a
1 ⊗ σ b

2 and εbdc is the Levi-Cività tensor.
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(a) (b)

unfolding unfolding

(c)

FIG. 15. Schematic representation of the expansion performed. We start from a general circuit (a) and expand the different terms with
respect to the last layer of gates and keep terms only up to first order in the Trotter time step �t . (a) Example of a general circuit with a
linear connection between qubits. We have five qubits and a six-layer depth. (b) Circuit representation of the terms Tr(ρ1σ

d
2 ), Tr(ρ1A213

2 ), and
Tr(ρ1B213

2 ) [see Eq. (G4)] as a circuit. For the two first terms, measurement is performed solely on qubit 2 while the last term measures both
qubits 1 and 2. (c) Circuit representation of the terms in Eq. (G10). Measurement is performed only on qubit 2 for the three first terms of this
equation. The fourth term measures qubits 1 and 2 and the last term qubits 2 and 3.

Substituting Eq. (G4) in Eq. (G2), one obtains

Tr
(
ρ0σ

d
2

) � (1 − ε)r3
12
[
Tr
(
ρ1σ

d
2

)− 2�t
(
Tr
(
ρ1A123

2

)
+Tr
(
ρ

p
1 B123

2

))]
. (G5)

The two first terms on the right-hand side of Eq. (G5), i.e.,
Tr(ρ1σ

d
2 ) and Tr(ρ1A213

2 ), correspond to the circuit when only
qubit 2 is measured. The last term of Eq. (G5) [Tr(ρ p

1 B213
2 )]

corresponds to the case where qubits 1 and 2 are measured. A
graphical representation of these terms as a quantum circuit is
given in Fig. 15(b).

Then, such as in Eq. (G1), when considering the last layer
of gates only the noise of the gates which acts directly on the
qubits measured will matter. This leads us to

Tr
(
ρ0σ

d
2

) � (1 − ε)r3
12+r3

23
[
Tr
(
ρ

p
1 σ d

2

)− 2�t
(
Tr
(
ρ

p
1 A213

2

)
+ (1 − ε)r3

01 Tr
(
ρ

p
1 B213

2

))]
. (G6)

Therefore, one can factorize the noise coming from the gate
U 3

23 because it acts on qubit 2 which is a common measured

qubit for all the terms of Eq. (G5). For the last term there is
one extra noise term coming from the CNOT acting on qubit 1
(gate U 3

01).
One continues the expansion of the expression until we

reach the first layer of gates. For the next step we get ρ
p
1 =

U 3
01U

3
23ρ2(U 3

23)†(U 3
01)†. One keeps only the first order in �t .

Therefore, the evolution of the terms A123
2 and B123

2 remains
trivial for the rest of the computation (i.e., identity operator):(

U 3
23

)†(
U 3

01

)†
A123

2 U 3
01U

3
23 � A213

2 , (G7)(
U 3

23

)†(
U 3

01

)†
B123

2 U 3
01U

3
23 � B213

2 . (G8)

Only the main term proportional to �t0 can produce a
nontrivial term. For the next layers of gate it couples to qubit
3 thanks to the gate U 3

23 [see Fig. 15(c)]. We obtain a similar
equation as in Eq. (G4):(

U 3
23

)†(
U 3

01

)†
σ d

2 U 3
01U

3
23 = σ d

2 − 2�t
(
A233

2 + B233
2

)
. (G9)

Figure 15(c) represents the different term of this expansion.
After application of the noise of the unitary U 2

12 and U 2
34 we

obtain

Tr
(
ρ0σ

d
2

) � (1 − ε)r3
12+r3

23+r2
12
[
Tr
(
ρ

p
2 σ d

2

)− 2�t
(
Tr
(
ρ

p
2 A213

2

)+ Tr
(
ρ

p
2 A233

2

)+ (1 − ε)r3
01 Tr
(
ρ

p
2 B213

2

)+ (1 − ε)r2
34 Tr
(
ρ

p
2 B233

2

))]
,

(G10)

where the general definitions of Amm±1 j
k and Bmm±1 j

k are given Eqs. (G12) and (G13).
One can then generalize the above formula for a circuit of 2L layers and measured qubit m:

Tr(ρ0σ
d
m ) =

L∏
j=1

(1 − ε)r j
m−1m (1 − ε)r j

mm+1

⎡
⎣Tr(ρiniσ

d
m ) − 2�t

L∑
j=1

Tr(ρiniA
mm−1 j
m ) + Tr(ρiniA

mm+1 j
m )

−2�t
L∑

j=1

(1 − ε)
∑ j

k=1 rk
m−2m−1 Tr(ρiniB

mm−1 j
m ) + (1 − ε)

∑ j
k=1 rk

m+1m+2 Tr(ρiniB
mm+1 j
m )

⎤
⎦+ O(�t2), (G11)

where ρini is the initial density matrix before the first layer of
unitary gates and

Amm±1 j
k =

3∑
b,c=1

α
mm±1 j
0b εbdcσ

c
k , (G12)

Bmm±1 j
k =

3∑
a,b,c=1

α
mm±1 j
ab εbdcσ

a
m±1 ⊗ σ b

k . (G13)
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To implement interaction between two non-neighboring
qubits, one needs to use SWAP gates which are a succession
of three CNOT gates. These SWAP gates need to be taken into
account at order zero because they do not depend on any
small parameter. This modifies the above formula: with SWAP

gates the measured qubit does not remain in the same physical
qubit; we need to follow it during the course of the circuit. In
the formula of Eq. (G11), the measured qubit m becomes a
function of the layers, m( j), which indicate the location of the
measured qubit at layer j.

Equation (G11) can be applied to estimate the noise mea-
sured by the noise estimation circuit. In this case, the general
U a

bc gates reduce to the identity operator up to some SWAP

operations and �t = 0. Therefore, these circuits estimate only
the noise term in factor of the whole expression

∏L
j=1(1 −

ε)r j
m−1m (1 − ε)r j

mm+1 , i.e., the noise coming from the CNOT gate
acting on the measured qubit. Then, it shows that if one
divides the noise of the Trotter circuit by the noise of the
estimation circuit, one can remove all the noise of the main
term and a part of the first-order Trotter term.

The number of higher-order terms in �t scale exponen-
tially with the total time evolution and therefore nothing
guarantees that these terms will remain small. Their noise will
deviate strongly as time goes on from the noise estimation
circuit [see Fig. 8 for a simulation of the noise estimation
method using the error channel of Eq. (11) (quasilocal de-
polarizing noise)]. Therefore, the noise estimation circuit is
a method which delays the effect of the noise and allows
simulation to longer evolution time.

Equation (G11) can be generalized to multiple measured
qubits. For each term containing the index m for the measured
qubit, one should add a product running over the differ-
ent measured qubits. The formula for the noise estimation
circuit also gets this modification and is still valid in that
case.

This result generalizes to an error channel of the form
of Eq. (11). As long as a depolarizing channel is applied
on qubits whenever an error occurs, the main term of
the Trotter expansion will be reproduced by the estimation
circuit.
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