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In this study, we consider the zero-inflated Modified Borel-Tanner (ZIMBT) model regression. This model has been widely used to study the effects of covariates in count data sets that have many zeros. Since, in practice, some of the covariates involved in regression modelling often have missing values, we propose methods for estimating the parameters of the ZIMBT regression model with missing random covariates. Assuming that the covariates can be of any nature, i.e. discrete, continuous or categorical, we estimate the unknown selection probability using a parametric method and then non-parametrically (using a kernel estimator). We propose two inverse probability weighting (IPW) methods for estimating the parameters of the ZIMBT regression model with missing random covariates. Under certain regularity conditions, the asymptotic properties of the proposed estimators are studied. Also, the performances of the proposed estimators are evaluated by Monte Carlo simulations. The practical use of the proposed methodology is illustrated with The RAND Health Insurance Experiment Data.

Introduction

In statistics, count data is a type of statistical data that takes non-negative integer values and whose values are derived from a count process. Count data are often modeled by a Poisson distribution. The Poisson regression model has been widely used as a benchmark for the analysis of discrete counting models. But one of the main drawbacks in practice is that count data often exhibit overdispersion, so the Poisson regression model is not well suited to the data. Modelling methods adapted to this type of data have been widely explored in the literature. Generalized linear models provide a powerful framework for the analysis of such data. As a result, [START_REF] Lambert | Zero-inflated Poisson regression, with an application to defects in manufacturing[END_REF] popularized the ZI Poisson (ZIP) among all ZI models.

In addition, other discrete probability distributions, which describe count phenomena, have been proposed in the literature. In this paper, we work on a regression model based on the use of the modified Borel-Tanner distribution. The Modified Borel Tanner family of distributions has probability mass function (PMF) of the form: f MBT (X; α) := P(X = x) = Γ(2x + 1) Γ(x + 2)Γ(x + 1)

α x (1 + α) 2x+1 , , x = 0, 1, • • •
where α ∈ (0, 1), and the notation used is X ∼ MBT(α). This distribution can also be re-written as

P(X = x) = C x α x (1 + α) 2x+1 , x = 0, 1, • • • (1.1)
where C x is defined by

C x = 1 x + 1 2x x
are the Catalan numbers denoted by C n (see [START_REF] Olver | NIST Handbook of Mathematical Functions Hardback and CD-ROM[END_REF]). The modified Borel Tanner distribution exhibits a number of interesting properties. For a full description of the MBT model, readers may refer to [START_REF] Gòmez-Déniz | The Modified Borel-Tanner (MBT) Regression Model[END_REF]. Obviously, the properties available to the MBT distribution give it notable scientific importance, and therefore open up a large number of new avenues of research. For example, we can mention the work of [START_REF] Ghosh | Some Structural Properties Related to the Borel-Taner Distribution and its Application[END_REF] who proposed to study certain structural properties that had not been explored before, notably the recursive relationship between successive probabilities. The bivariate Borel Tanner model developed by [START_REF] Gupta | A bivariate Borel-Tanner distribution and its approximation[END_REF] would prove as useful as a univariate distribution.

The Zero-inflated Modified Borel-Tanner (ZIMBT) regression model was proposed by Anwar [START_REF] Hassan | Zero-inflated Modified Borel-Tanner Regression Model for Count Data[END_REF] to account for excess zeros. Since then, the model has been applied in various fields, such as infected blood cells (IBCs) per mm 2 on microscope slides prepared from randomly selected individuals. In these applications, maximum likelihood estimation (MLE) is used to derive parameter estimates.

Quite often, observations are incomplete, i.e. the values of one or more variables are missing. These are known as missing data observations. For example, in the case of a survey, some people do not answer certain questions, or some answers are forgotten during data entry. Sometimes, it's simply a problem of data coding (for example, the presence of characters that cannot be interpreted by the data-reading function) that causes certain values to disappear.

When observations with missing data are part of the observations used to build a model, a simple solution is to ignore these incomplete observations. Although frequently used by default, this solution proves simplistic, as we shall see later, because its consequences can be not only a reduction in model performance, but potentially a strong modeling bias that can lead to an inoperative model. Before deciding to ignore incomplete observations, it is therefore necessary to better understand why data is missing. A solution that often proves better (from the point of view of the performance of the decision model built from the data) is to estimate (or impute) the missing data and treat the estimated values as measured values. Finally, the ideal solution would be to correct the errors responsible for the missing data, or to complete the data collection, but this solution is not always accessible. If the model has already been built, and it is the observations to which the model is to be applied that are missing data, it is necessary to examine carefully the impact on the decision of different estimation methods.

There are three commonly recognized mechanisms for missing data: missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR) [START_REF] Rubin | Inference and missing data[END_REF]. In recent years, estimation of regression models with missing covariates has been the subject of a large literature on estimation in regression models with missing covariates, see [START_REF] Chen | Model selection for zero-inflated regression with missing covariates[END_REF], [START_REF] Lukusa | Semiparametric estimation of a zero-inflated Poisson regression model with missing covariates[END_REF], [START_REF] Diallo | Estimation in zero-inflated binomial regression with missing covariates[END_REF], [START_REF] Jean | Estimation of zero-inflated bivariate Poisson regression with missing covariates[END_REF].

Although many works provide a thorough review of ZI models with missing data, to our knowledge, no previous research has studied how to estimate the parameters of a ZIMBT regression model when covariates are missing. Motivated by this work, we study estimation in ZIMBT regression when certain covariate values are missing for some of the individuals in the sample with application to a dataset from the RAND health insurance experiment.

In this work, we propose inverse probability weighting (IPW) methods to estimate the parameters of a ZIMBT regression model with MAR covariates. We establish the consistency and asymptotic normality of these estimates.

The progression of this work is organized as follows. In section 2, we describe the data, model and notations that will be used throughout the paper. In section 3, we present our estimates, regularity conditions and large sample properties. All proofs are reported in the appendix. In section 4, we conduct a simulation study to evaluate the finite-sample performance of the proposed estimates. The applicability of the proposed methods is demonstrated in Section 5. Section 6 presents the discussion.

Data and model

The pmf of the response variable is given by

P(Y = y) =      π + (1 -π) 1+λ 1+2λ if y = 0; (1 -π)C y λ y (1+λ) 1+y (1+2λ) 1+2y if y > 0.
(2.2) where P(Y = y) corresponds to the expression (1.1), λ > 0 and 0 ≤ p ≤ 1. We will say that the response variable follows a Zero inflated modified Borel-Tanner regression model and we will denote it as Y ∼ ZIMBT(λ, π). From this, it is straightforward to see that the mean and variance of Y i are given by

E(Y ) = (1 -π)λ and var(Y ) = (1 -π)λ [λ(1 + λ)(1 + 2λ) + πλ]
In ZIMBT regression, the mixing probabilities π i is usually modeled by a logistic regression : logit(π i (γ) = γ ⊤ W i and λ i is classically modeled as λ i = exp(β ⊤ X i ), where

X i = (1, X i2 , • • • , X ip ) ⊤ and W i = (1, W i2 , • • • , W iq ) ⊤ are
random vectors of predictors or covariates (both categorical and continuous covariates are allowed) and ⊤ denotes the transpose operator. Here, β and γ are respectively p and q-dimensional vectors of unknown regression parameters to be estimated. Let {(Y i , X i , W i ), i = 1, • • • , n} be a sample of independent observations and ψ = (β ⊤ , γ ⊤ ) ⊤ denote the whole unknown k-dimensional (k := p + q) parameter. The loglikelihood function ℓℓ n based on the observed sample is :

ℓℓ n (ψ) = n i=1 J i log e γ ⊤ W i + 1 + e β ⊤ X i 1 + 2e β ⊤ X i -log 1 + e γ ⊤ W i +(1 -J i ) y i βX i + (y i + 1) log(1 + e β ⊤ X i ) -(2y i + 1) log(1 + 2e β ⊤ X i ) , = n i=1 ℓ i (ψ).
(2.3)

where

J i = 1 {Y i =0} . The maximum likelihood estimator (MLE) ψ F,n = ( β ⊤ , γ ⊤ ) ⊤ of ψ is obtained by solving the score equation U F,n (ψ) = 0, where U F,n (ψ) = 1 √ n ∂ℓℓ n (ψ) ∂ψ = 1 √ n n i=1 ∂ℓ i (ψ) ∂ψ .
(2.4)

This estimating equation can be solved by using the expectation-maximization (EM) algorithm [START_REF] Hall | Zero-inflated Poisson and binomial regression with random effects: a case study[END_REF] or by a direct maximization of ℓℓ n . The next section describes the problem and the proposed estimator.

The proposed estimates

Problem formulation, notation and target parameter

Our first estimate is based on the inverse probability weighted parametric method idea. Let X obs and X mis denote the observed and missing components of X for a given subject, W obs and W mis denote the observed and missing components of W for a given subject. Let D = (Y, X (obs),⊤ , W (obs),⊤ ) ⊤ denote the vector of variables that are always observed on each individual. Let δ be the variable of observation indicators whose elements are zero or one depending on whether the corresponding element of X, W is missing or observed. We assume throughout that the data X (mis) , W (mis) are missing at random (MAR).

The IPW method was proposed by [START_REF] Horvitz | A generalization of sampling without replacement from a finite universe[END_REF] to estimate regression models with monotonic missing covariates. The IPW consists of inverse weighting of the observed data with the weight P(

δ i = 1|D i , X (mis) i , W (mis) i , W (mis) i ) = P(δ i = 1|D i ).
(3.5) Therefore, IPW estimator of ψ in model (2.3) is the solution of the weighted equation

1 √ n n i=1 δ i P(δ i = 1|D i ) Ψ i (ψ) = 0. (3.6)
Based parametric and nonparametric estimators of π(O i )'s, we propose two estimators of ψ.

In the following, two IPW approaches are proposed according to whether the selection probability π(D) is estimated by a parametric or non-parametric method.

Inverse Probability Weighted Parametric

Assuming that the selection probability π(D i ) can be specified by a parametric model a(ω, D i ), where ω is a vector of unknown regression parameters with true value ω 0 . Let ω n be the maximum likelihood estimates of ω 0 . Under some regularity conditions, which we define in the following section, ω n can be obtained as

ω n = arg max ω n i=1 a(ω, D i ) δ i 1 -a(ω, D i ) 1-δ i .
By straightforward calculations, it can be shown that

√ n(ω n -ω 0 ) = n -1/2 n i=1 δ i -a(ω 0 , D i ) a(ω 0 , D i ) 1 -a(ω 0 , D i ) Ω -1 (ω 0 ) ȧ(ω, D i ) + o P (1), where ȧ(ω, D i ) = ∂a(ω, D i ) ∂ω and Ω(ω) = E ȧ(ω, D) ȧ(ω, D) ⊤ a(ω, D)(1 -a(ω, D)) .
Having estimated ω, we can now derive the estimator ψ W,n of ψ by solving the following equation

U W,n (ψ, ωn ) = 1 √ n n i=1 δ i a(ω n , D i ) Ψ i (ψ) = 0. (3.7)
This first approach yields consistent estimates of the regression coefficients in the model, provided that π is correctly specified. However, misspecification may lead to biased estimated regression coefficients. To overcome this difficulty, we consider nonparametric kernel smoothers for the selection probabilities. Hence, we consider a nonparametric model for the selection probability.

Regularity conditions and large sample properties

The following regularity conditions are needed to establish the large sample properties of the estimators ψ W,n .

A.1 The true ψ 0 , ω 0 belongs to the interior of some known compact set respectively N , B of R d and R q .

A.2 The function a(ω, D) is strictly greater than 0 for all value in the support of D and all ω ∈ K.

A.3

The function a(ω, D) is differentiable with respect to ω. For every ω, ω ∈ B, a(ω, D) -a( ω, D) ≤ κ(D) ω -ω for some bounded function κ with E[κ(D)] = ρ.

A.4 Ψ 1 (ψ) has a finite second moment definite in a neighborhood of the true ψ. Moreover,

E Ψ ⊗2 1 (ψ)
is positive definite in a neighborhood of the true ψ. Here for any column vector a, a ⊗2 = aa ⊤ .

A.5 In a neighborhood of the true ψ, the first and second derivatives of U W,n (ψ, ω) with respect to ψ are uniformly bounded above by a function of (Y, X, W), whose expectations exist. Furthermore, -1

√ n ∂U W,n (ψ,ω) ∂ψ ⊤
converges to some a positive definite matrix Λ(ψ, ω) as n tends to infinity, in a neighborhood of the true ψ.

We first state the large sample properties of the inverse probability weighting parametric estimate Theorem 3.1. Assume that regularity assumptions (A.1)-(A.5) hold, it follows that ψ W,n is a consistent estimator of ψ, and √ n( ψW,n -ψ 0 ) is asymptotically normally distributed with mean zero and covariance matrix ∆ W , where

∆ W := Λ(ψ 0 ) -1 Φ(ψ 0 , ω 0 ) -Γ(ψ 0 , ω 0 )Ω(ω 0 ) -1 Γ(ψ 0 , ω 0 ) ⊤ [Λ(ψ 0 ) -1 ] ⊤ , with Λ(ψ) = E [Ψ(ψ)] ⊗2 , Φ(ψ, ω) = E δ a(ω, D) 2 Ψ(ψ)Ψ(ψ) ⊤ , Γ(ψ, ω) = -E δ a(ω, D) 2 Ψ(ψ) ȧ(ω, D) ⊤ .
In practice, we use a consistent estimator of the covariance matrix ∆ W . A consistent estimator of ∆ W is given by

∆ W,n := Λ n ( ψ n , ω n ) -1 Φ n ( ψ n , ω n )-Γ n ( ψ n , ω n )Ω n ( ψ n , ω n ) -1 Γ n ( ψ n , ω n ) ⊤ Λ n ( ψ n , ω n ) -1 ⊤ , where Λ n (ψ, ω) = - 1 n n i=1 δ i a(ω, D i ) ∂ 2 ℓ i (ψ) ∂ψ∂ψ ⊤ , Φ n (ψ, ω) = 1 n n i=1 δ i a(ω, D i ) 2 Ψ i (ψ) Ψ i (ψ) ⊤ , Γ n (ψ, ω) = - 1 n n i=1 δ i a(ω, D i ) 2 Ψ i (ψ) ȧ(ω, D i ) ⊤ , Ω n (ψ, ω) = 1 n n i=1 ȧ(ω, D i ) ȧ(ω, D i ) ⊤ a(ω, D i )(1 -a(ω, D i ))
.

Inverse Probability Weighted Semiparametric

Our second estimate is based on the multiple inverse probability weighting semi parametric approach. It is assumed that D is a vector containing a mix of discrete, categorical and continuous variables. Let D = D b , D c , where D c ∈ R d is a d-dimensional continuous random vector, and where D b is an b-dimensional discrete and categorical random vector. Let Z := X (mis) , W (mis) denote the covariate vector MAR. For simplicity's sake, let Z be a univariate covariate. Assume that δ is a dummy variable that is 1 when Z is observed; 0 otherwise.

Let K be a rth-order (r > d) kernel function of d variables with a finite support, and let K h (.) = K(./h), where h a bandwidth that satisfies the conditions we give in the following. A kernel estimator of π(D) is given by

π(o) = π(o b , o c ) = n k=1 δ k K h (D b k = o b , D c k -o c ) n j=1 K h (D b j = o b , D c j -o c )
.

Following [START_REF] Wang | Weighted semiparametric estimation in regression analysis with missing covariate data[END_REF], [START_REF] Lukusa | Semiparametric estimation of a zero-inflated Poisson regression model with missing covariates[END_REF]

, | π(D) -π(D)| = η n , where η n = {nh 2r + 1/(nh 2d )} 1/2 . Let f (o) denotes the probability density function of D at D = o. Also, let f (o) = 1 h d n k=1 K h (D b k = o b , D c k -o c ) an estimator of f (o).
Hence, the semiparametric IPW estimator of ψ is the solution of the weighted equation

U W s,n (ψ, π) = 1 √ n n i=1 δ i π(D i ) Ψ i (ψ) = 0.
(3.8)

Regularity conditions and large sample properties

The following regularity conditions are needed to establish the large sample properties of the estimators ψ Ws . B.2 K(u) is a kernel function of order r, that is, K(u)du = 1, u m K(u)du = 0 for m = 1, ..., (r-1), u r K(u)du ̸ = 0 and K 2 (u)du < ∞. Moreover, h satisfies nh 2r → 0 and nh 2d → ∞, as n → ∞.

B.3

The density function f (o) of D is bounded away from zero, and has r continuous and bounded partial derivatives with respect to the continuous components of (D b , D c ) almost everywhere.

B.4

In a neighborhood of the true ψ, the first and second derivatives of Ψ(ψ) with respect to ψ are uniformly bounded above by a function of (Y, X, W), whose expectations exist. 

B.5 E 1 π(D) [Ψ 1 (ψ)] ⊗2 is
Σ W s := Σ 1 (ψ) -1 Σ 2 (ψ, π) -Σ * 2 (ψ, π) -Σ * 0 (ψ, π) [Σ 1 (ψ) -1 ] ⊤ , with Σ 1 (ψ) = E [Ψ(ψ)] ⊗2 , Ψ * 1 (ψ) = E Ψ 1 (ψ)|D b 1 , D c 1 , Σ * 0 (ψ, π) = E [Ψ * 1 (ψ)] ⊗2 Σ 2 (ψ, π) = E 1 π(D b , D c ) [Ψ 1 (ψ)] ⊗2 , Σ * 2 (ψ, π) = E 1 π(D b , D c ) [Ψ * 1 (ψ)] ⊗2
A consistent estimator of the asymptotic variance Σ W s is defined by

Σ W s,n := Σ 1,n ( ψ W s , π) -1 Σ 2,n ( ψ W s , π) -Σ * 2,n ( ψ W s , π) -Σ * 0,n ( ψ W s , π) [Σ 1,n ( ψ W s , π) -1 ] ⊤ , where Σ 1,n (ψ, π) = 1 n n i=1 δ i π(D b i , D c i ) Ψ i (ψ) ⊗2 , Σ * 2,n (ψ, π) = 1 n n i=1 δ i π 2 (D b i , D c i ) Ψ * i (ψ) ⊗2 , Σ * 0,n (ψ, π) = 1 n n i=1 Ψ * i (ψ) ⊗2 , with Ψ * i (ψ) = n k=1 δ k Ψ k (ψ)K h (D b k = D b i , D c k -D c i n ℓ=1 δ ℓ K h (D b ℓ = D b i , D c ℓ -D c i .
The proofs of Theorems 3.1-3.2 are given in Appendices B.

Numerical study

In this section, we carry out a simulation experiment to assess and compare the finite sample performance of the proposed estimates. The simulation setup is as follows. The outcome Y is generated from the ZIMBT regression model (2.2) defined by :

log(µ i ) = β 1 + β 2 X i2 + β 3 X i3 + β 4 X i4 + β 5 X i5 and logit(π i ) = γ 1 + γ 2 W i2 + γ 3 W i3 + γ 4 W i4 .
Covariates X i2 to X i5 are generated from the standard normal distribution, uniform distribution on [-1, 1], exponential distribution with rate 1 , Bernoulli distribution with probability 0.3. W i3 and W i4 be independently drawn from normal distribution with mean 1 and standard deviation 1.5 and Bernoulli distribution with probability 0.8 respectively.respectively. The linear predictors in logit(π i ) and log(µ i ) are allowed to share some common terms by letting W i2 = X i2 . Here, we take β = (-0.6, 0.75, -1, 0.5, -0.25) ⊤ . We consider successively two values for γ, namely : γ = (0.2, -0.5, 0.8, -1.5) ⊤ , γ = (0.25, -0.4, 0.7, 0) ⊤ . With these values, the average proportion c of zero-inflated data in the simulated data sets is 0.20, and 0.40 respectively. Under the MAR assumption, missingness indicators δ are simulated from a logistic regression model with selection probability P(δ = 1|D) = logit -1 (ω ⊤ D).

To establish a benchmark for comparisons, we also include an estimator based on the full data (FD) and the complete cases (CC) estimate, on complete cases only. Now, we compare the finite-sample performances of the following estimators: ψ F D : ML estimator that is the solution of the estimating equations in Equation (2.4) For each experimental configuration and each estimation method, the empirical bias, standard error (ASE), standard deviation (SD) and Root mean square deviation (RMSE) were computed . All calculations are made using the statistical software R (R Core Team, 2018).

ψ CC : the CC estimator that is the solution of U CC,n (ψ) = 1 n n i=1 δ i Ψ i (ψ) = 0 ψ W,p : IPW estimator
The results are presented in Tables 1 and2 . As expected, the performance of the estimators improves with increasing sample size. Parameter bias for all four estimators, whatever the sample size, is low. But the lowest bias is generally obtained by the FD estimate (i.e. in the ideal situation where there is no missing data). It should be noted that for the parameter γ the bias is not stable whatever the proportion of zero-inflation and missing data. These observations illustrate the general fact that accurate estimation in a zero-inflation regression model requires a balance between susceptible and non-susceptible subpopulations (i.e., a sufficient number of zero-and non-zero observations must be available to accurately estimate zero-inflation probabilities and the count submodel).

The standard deviation is the smallest when there are no missing data and the largest for the CC estimate. The IPW parametric and IPW semi-parametric estimates have standard deviations of similar magnitude. The semi-parametric IPW estimate has slightly larger variability. Finally, the IPW parametric and semi-parametric IPW estimate have smaller RMSE than the CC estimate in every scenario, and its RMSE is usually close to that of the FD estimate (see Table 2).

In summary, the IPW parametric and semi-parametric IPW estimation methods had comparable performances in terms of SDs, SEs and RMSEs. Additionally, for each estimation method, except for the ML estimation method, the agreement between SDs and SEs tended to worsen as the missing rate increased. Moreover, the SDs and SEs of all these estimators were decreased as the sample size was increased.

A Practical Application

RAND Health Insurance Experiment Data

The RAND Health Insurance Experiment (HIE), the most important health insurance study ever conducted, addressed two key questions in health care financing: How much more medical care will people use if it is provided free of charge? What are the consequences for their health? For illustration we apply the proposed estimates to a data set data from the RAND Health Insurance Experiment previously used by [START_REF] Cameron | Microeconometrics: Methodsand Applications[END_REF]. They estimated a more complete set of models and carried out a deeper analysis of the data than is possible or desirable here. The experiment, conducted by the RAND Corporation from 1974 to 1982, has been the longest running and largest controlled social experiment in medical care research. The main goal of the experiment was to assess how the patient's use of health services is affected by types of randomly assigned health insurance, including both fee-for-service and health maintenance organizations (HMOs). In the experiment the data were collected from about 8,000 enrollees in 2,823 families, from six sites across the country. Each family was enrolled in one of 14 different health insurance plans for either three or five years. The plans ranged from free care to 95% coinsurance below a maximum dollar expenditure (MDE), and also included assignment in a prepaid group practice. The data file consists of utilization, expenditures, demographic characteristics and health status.The final sample consists of 20,190 observations; each observation represents data for an experimental subject in a given year.

In this illustration, the response variable analyzed is the number of contacts with a Medical Doctor (MDU). Note that the ratio of zeros in the data set is 6308/20190=0.31 (see Figure ( 1)) suggests that the response is zero-inflated. Other variables were collected for each individual in the sample, such as (i) socio-economic variables: age (in years, age), education level (number of years of education, denoted by school), family income (in ten thousand dollars, denoted by income); (ii) indicating health status, ghindx represents an index of the general state of health of the people surveyed. This index is constructed from various physical and mental health indicators, and provides a synthetic measure of participants overall health.

Among the data from the RAND experiment on health insurance, the covariates ghindx and school contain missing data. The rate of missing data for ghindx is 25.87%. This high proportion of non-responses may be due to the fact that this is the most sensitive and confidential information that respondents did not wish to declare. Furthermore, the level of education of four individuals in the sample is missing. In total, 25.89% of the individuals in our sample have at least one missing item.

Table 4 presents the results of the analysis using three different estimation methods: CC, parametric IPW and semi-parametric IPW. The model parameter estimates obtained from these methods are very similar. The reasons for this are undoubtedly the large sample size and the average proportion of missing data. It can therefore be said that the proposed methods are good alternatives to CC analysis. All methods conclude that the estimates of age, income and education are statistically significantly different from zero and positive, indicating that older respondents are more likely to consult a doctor than younger ones.

In addition, the variables of income and school were identified as the most decisive factors in the decision never to consult an outpatient doctor. The probability of never consulting an outpatient doctor decreased with the number of years of education. In particular, education can make individuals more informed consumers of medical care services, so they may tend to diversify their use of medical care services. For example, focusing on the income variable, our point estimate at indicates that spending under the 95% coinsurance plan is lower than under the free care plan. We can reject the null hypothesis that income in the positive cost-sharing plans is equal to that in the free care plan.

Finally, it should be pointed out that we can continue to reject the nullity of non-response on the ghindx variable, which provides a synthetic measure of respondents' general health status. This important and statistically significant variable is (for us) one of the most surprising results of the RAND experiment. This indicates that the response of hospitalized patients on various indicators of physical and mental health brief health status in general is not robust to plausible adjustments for non-participation bias, and so the RAND data do not necessarily reject (though neither do they confirm) the hypothesis of lack of responsiveness on inpatient health status.

Discussion

In this work, we studied a problem of zero-inflated Modified Borel Tanner regression model with some covariates MAR. We proposed a parametric weighting estimator and a semiparametric kernel weighting estimator by estimating of the selection probability via a regression binary model and the kernel estimator. Then, we derived their limit theories and study their performances by a simulation study and a real example. In both situations, the proposed methods outperformed the true weight and CC estimator. An application of the proposed methods on a dataset from the RAND experiment on health insurance confirms the robustness of the proposed methods in the presence of missing data.In article, we consider monotone missing data. However, in many situations, the missing data pattern is not monotone (i.e. covariates are arbitrarily missing between individuals). The IPWs are mainly limited to monotone missing data because estimating the missingness mechanism in the case of non-monotone missing data is difficult. The adaptation of the IPW approach to non-monotone missing data in zero-inflated regression is a non-trivial task that also deserves further research. The approach proposed by [START_REF] Sun | On Inverse Probability Weighting for nonmonotone missing at random data[END_REF]) for estimating when the absence mechanism in the case of non-monotonic missing data could be useful.

The code below determines the initial estimates of β 1 , • • • , β 5 , γ 1 , • • • , γ 4 and calculates the MLE mleFD=maxLik (logLik=loglikfunFD,start=c(rep(0,length(phi))))

Estimates, standard errors and several other summaries can be obtained using the R function summary.

Appendix B : proofs of asymptotic results

Proof of Theorem 3.1. The consistency of ψ W,n , can be proved by checking that the conditions of Foutz's inverse function theorem [START_REF] Foutz | On the unique consistent solution to the likelihood equations[END_REF] are satisfied. Firstly, let us show that

∂U W,n (ψ,ωn) ∂ψ ⊤
exists and is continuous in an open neighborhood of ψ 0 . To justify this, it can be noted that U W,n (ψ, ωn ) is twice differentiable with respect to ψ and its second derivatives are continuous.

Secondly, let us show that n -1/2 U W,n (ψ 0 , ωn ) converges in probability to 0 when n → ∞.

To justify this, we note

n -1/2 U W,n (ψ 0 , ωn ) = n -1/2 U W,n (ψ 0 , ωn ) -n -1/2 U W,n (ψ 0 , ω 0 ) + n -1/2 U W,n (ψ 0 , ω 0 ). Then n -1/2 U W,n (ψ 0 , ωn ) -n -1/2 U W,n (ψ 0 , ω 0 ) = 1 n n i=1 δ i 1 a( ω n , D i ) - 1 a(ω 0 , D i ) Ψ i (ψ 0 ) , ≤ 1 n n i=1 a(ω 0 , D i ) -a(ω n , D i ) a(ω 0 , D i )a(ω n , D i ) Ψ i (ψ 0 ) , ≤ 1 n n i=1 a(ω 0 , D i ) -a(ω n , D i ) Ψ i (ψ 0 ) × a(ω 0 , D i )a(ω n , D i ) -1
.

Conditions (A.2) and (A.4) guarantee the existence of a positive constant k 1 such that

n -1/2 U W,n (ψ 0 , ωn ) -n -1/2 U W,n (ψ 0 , ω 0 ) ≤ k 1 n n i=1 π(ω 0 , D i ) -π(ω n , D i ) .
Moreover, under (A.3), it follows that

n -1/2 U W,n (ψ 0 , ωn ) -n -1/2 U w,n (ψ 0 , ω 0 ) ≤ k 1 n n i=1 κ(O i ) ωn -ω 0 ) , ≤ k 1 ρ + o P (1) ωn -ω 0 .
Hence, consistency of ωn to ω 0 implies that n -1/2 U W,n (ψ 0 , ωn ) -n -1/2 U W,n (ψ 0 , ω 0 ) converges in probability to 0. Then, n -1/2 U W,n (ψ 0 , ω 0 ) converges in probability to 0. Finally, n -1/2 U W,n (ψ 0 , ω 0 ) converges in probability to 0 as n → ∞. Therefore, it follows that n -1/2 U W,n (ψ 0 , ωn ) converges to 0 when n tends to infinity.

Thirdly, we show that n -1/2 ∂U W,n (ψ,ωn) ∂ψ ⊤ converges in probability to a fixed function Λ(ψ, ω 0 ), uniformly in an open neighbourhood of ψ 0 when n → ∞.

To see this, let's take ψ ∈ V ψ 0 , we have

n -1/2 ∂U W,n (ψ, ωn ) ∂ψ ⊤ = n -1/2 ∂U W,n (ψ, ωn ) ∂ψ ⊤ -n -1/2 ∂U W,n (ψ, ω 0 ) ∂ψ ⊤ + n -1/2 ∂U W,n (ψ, ω 0 ) ∂ψ ⊤ . Convergence to 0 of n -1/2 ∂U W,n (ψ,ωn) ∂ψ ⊤ -n -1/2 ∂U W,n (ψ,ω 0 ) ∂ψ ⊤
is a consequence of the consistency of ω n to ω 0 , under conditions (A.2) to (A.5). This can be shown using the same arguments as in the proof of the second condition. Other details of the calculations are omitted.

Next, by (A.5), we have n -1/2 ∂U W,n (ψ,ωn) ∂ψ ⊤ converges in probability to the matrix Λ(ψ, ω 0 ) when n → ∞. Hence, it follows that n -1/2 ∂U W,n (ψ,ωn) ∂ψ ⊤ converges in probability to the matrix Λ(ψ, ω 0 ). Next, under conditions (A.2) and (A.5), n → ∞, n -1/2 ∂U W,n (ψ,ωn) ∂ψ ⊤ converges in probability to Λ(ψ, ω 0 ), uniformly on V ψ 0 . Condition 3 is therefore checked. The three conditions of [START_REF] Foutz | On the unique consistent solution to the likelihood equations[END_REF] inverse function theorem are verified. Thus, we conclude that ψW,n converges in probability to ψ 0 . Now let's prove that ψW,n is asymptotically Gaussian. First, we do a Taylor series expansion of U W,n ( ψn , ωn ) at (ψ 0 , ω 0 ). We get,

0 = U W,n ( ψn , ωn ) = U W,n (ψ 0 , ω 0 ) + ∂U W,n (ψ 0 , ω 0 ) ∂ψ ⊤ ( ψn -ψ 0 ) + ∂U W,n (ψ 0 , ω 0 ) ∂ω ⊤ (ω n -ω 0 ) + o P (1). It follows that 0 = U W,n (ψ 0 , ω 0 )+n -1/2 ∂U W,n (ψ 0 , ω 0 ) ∂ψ ⊤ √ n( ψn -ψ 0 )+n -1/2 ∂U W,n (ψ 0 , ω 0 ) ∂ω ⊤ √ n(ω n -ω 0 )+o P (1).
Furthermore, it can be shown that

n -1/2 ∂U W,n (ψ 0 ,ω 0 ) ∂ω ⊤ converges in probability to Γ(ψ 0 , ω 0 ). It follows that √ n( ψn -ψ 0 ) = - 1 √ n ∂U W,n (ψ 0 , ω 0 ) ∂ψ ⊤ -1 U W,n (ψ 0 , ω 0 ) + 1 √ n ∂U W,n (ψ 0 , ω 0 ) ∂ω ⊤ √ n(ω n -ω 0 ) + o P (1). = - 1 √ n ∂U W,n (ψ 0 , ω 0 ) ∂ψ ⊤ -1 U W,n (ψ 0 , ω 0 ) + n -1/2 n i=1 δ i -a(ω, D i ) a(ω, D i ) 1 -a(ω, D i ) Γ(ψ 0 , ω 0 )Ω -1 (ω 0 ) ȧ(ω, D i ) + o P (1).
We have already shown that -1

√ n ∂U W,n (ψ 0 ,ω 0 ) ∂ψ ⊤
converges in probability to Λ(ψ 0 ) (in the proof of condition 3).Then, we have

E δ -a(ω 0 , D) a(ω 0 , D) 1 -a(ω 0 , D) 2 ȧ(ω 0 , D) ȧ(ω 0 , D) ⊤ = Ω(ω 0 ). Therefore, we have var δ -a(ω 0 , D) a(ω, D) 1 -a(ω 0 , D) Γ(ψ 0 , ω 0 )Ω -1 (ω 0 ) ȧ(ω 0 , D) = Γ(ψ 0 , ω 0 )Ω -1 (ω 0 ) Γ(ψ 0 , ω 0 ) ⊤ . Besides, cov δ i a(ψ 0 , ω 0 ) Ψ i (ψ 0 ), δ i -a(ω 0 , D i ) a(ω 0 , D i ) 1 -a(ω 0 , D i ) Γ(ψ 0 , ω 0 )Ω -1 (ω 0 ) ȧ(ω 0 , D i ) = E δ i a(ω 0 , D i ) 2 Ψ i (ψ 0 ) ȧ(ω 0 , D i ) ⊤ δ i -a(ω 0 , D i ) 1 -a(ω, D i ) Ω -1 (ω 0 ) Γ(ψ 0 , ω 0 ) ⊤ , = E δ i a(ω 0 , D i ) 2 Ψ i (ψ 0 ) ȧ(ω 0 , D i ) ⊤ Ω -1 (ω 0 ) Γ(ψ 0 , ω 0 ) ⊤ , = -Γ(ψ 0 , ω 0 )Ω -1 (ω 0 ) Γ(ψ 0 , ω 0 ) ⊤ . Since var U W,n (ψ 0 , ω 0 ) = Φ(ψ 0 , ω 0 ). Hence var U W,n (ψ 0 , ω 0 ) + n -1/2 n i=1 δ i -a(ω, D i ) a(ω, D i ) 1 -a(ω, D i ) Γ(ψ 0 , ω 0 )Ω -1 (ω 0 ) ȧ(ω, D i ) = Φ(ψ 0 , ω 0 ) -Γ(ψ 0 , ω 0 )Ω(ω 0 ) -1 Γ(ψ 0 , ω 0 ) ⊤ .
Therefore, using Central Limit Theorem and Slutsky's Theorem, we have √ n( ψn -ψ 0 ) converges in distribution to a Gaussian vector with mean zero and covariance matrix ∆ W .

Proof of Theorem 3.2. The consistency of ψ W s can be established by verifying the conditions of inverse function theorem of [START_REF] Foutz | On the unique consistent solution to the likelihood equations[END_REF]. We first show that ψ W s is a consistent estimator of ψ. To do so, we begin by proving that U W s,n (ψ, π) -U W,n (ψ, π) converges in probability to 0 when n tends to infinity. Noting that, |π -π| = η n , where η n = {nh 2r + 1/(nh 2d )} 1/2 . Using some standard techniques,

U W s,n (ψ, π) -U W,n (ψ, π) = 1 √ n n i=1 1 π(D b i , D c i ) - 1 π(D b i , D c i ) δ i Ψ i (ψ), = - 1 √ n n i=1 π(D b i , D c i ) -π(D b i , D c i ) π 2 (D b i , D c i ) + O P π(D b i , D c i ) -π(D b i , D c i ) 2 δ i Ψ i (ψ), = - 1 √ n n i=1 π(D b i , D c i ) -π(D b i , D c i ) π 2 (D b i , D c i ) + O P (η 2 n ) δ i Ψ i (ψ), = - 1 √ n n i=1 n j=1 δ j K h (D b j = D b i , D c j -D c i )/ n j=1 K h (D b j = D b i , D c j -D c i ) -π(D b i , D c i ) π 2 (D b i , D c i ) + O P (η 2 n ) δ i Ψ i (ψ), = - 1 n 3/2 n j=1 n i=1 [δ j -π(D b i , D c i )]K h (D d j = D d i , D c j -D c i ) π 2 (D b i , D c i )h d f (D d = D d i , D c -D c i ) δ i Ψ i (ψ) + O P (η n ), = - 1 n 3/2 n j=1 n i=1 δ j -π(D b i , D c i ) δ i -π(D b i , D c i ) K h (D b j = D b i , D c j -D c i ) π 2 (D b i , D c i )h d f (D b = D b i , D c -D c i ) Ψ i (ψ) - 1 n 3/2 n j=1 n i=1 π(D b i , D c i ) δ j -π(D b i , D c i ) K h (D b j = D b i , D c j -D c i ) π 2 (D b i , D c i )h d f (D b = D b i , D c -D c i ) Ψ i (ψ) + O P (η n ), = -T 1n -T 2n + O P (η n ),
where

T 1n = 1 √ n 3 n j=1 n i=1 δ j -π(D d j , D c j ) δ i -π(D b i , D c i ) K h (D b j = D b i , D c j -D c i ) π 2 (D b i , D c i )h d f (D b = D b i , D c -D c i ) Ψ j (ψ), T 2n = 1 √ n 3 n j=1 n i=1 π(D b i , D c i ) δ j -π i (D b i , D c i ) K h (D b j = D b i , D c j -D c i ) π 2 (D b i , D c i )h d f (D b = D b i , D c -D c i ) Ψ j (ψ).
Let Ψ * i (ψ) = E Ψ(ψ|D i ) . T 2n can be expressed as follows :

T 2n = 1 √ n 3 n j=1 n i=1 π(D b i , D c i ) δ j -π(D b i , D c i ) K h (D b i = D b j , D c i -D c j ) π 2 (D b i , D c i )h d f (D b = D b i , D c -D c i ) Ψ i (ψ) = 1 √ n n j=1 δ j -π(D b j , D c j ) π(D b j , D c j ) n i=1 K h (D b i = D b j , D c i -D c j )Ψ i (ψ) h d f (D b = D b i , D c -D c i ) = 1 √ n n j=1 [δ j -π(D b j , D c j )] π(D b j , D c j ) Ψ * i (ψ) + O P (η 2 n ) T 2n = 1 √ n n j=1 δ j -π(D b j , D c j ) π(D b j , D c j ) Ψ * j (ψ) + O P (η n ).
Based on T 1n , let

τ ij = δ j -π(D b i , D c i ) δ i -π(D b i , D c i ) K h (D b j = D b i , D c j -D c i ) π 2 (D b i , D c i )h d f (D b = D b i , D c -D c i ) Ψ i (ψ).
Assessing, E(T 1n ) (see (?),and [START_REF] Lee | Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods[END_REF]), it can be shown that var

(T 1n ) = O(η n ) and E(T 1n ) = O(η n ) and var(T 1n ) = O(η n ). Finally, U W s,n (ψ, π) -U W,n (ψ, π) becomes U W s,n (ψ, π) -U W,n (ψ, π) = 1 √ n n i=1 δ i -π(D b i , D c i ) π(D b i , D c i ) Ψ * i (ψ) + O P (η n ).
(6.9)

Hence, we have

U W s,n (ψ, π) = 1 √ n n i=1 δ i Ψ i (ψ) π(D b i , D c i ) + δ i -π(D b i , D c i ) π(D b i , D c i ) Ψ * i (ψ) + O P (η n ).
By mimicking the proof of (6.9), Σ 1,n (ψ, π)

-Σ 1,n (ψ, π) = D P (η n ), where Σ 1,n (ψ, π) = -1 √ n ∂U W,n (ψ,π) ∂ψ ⊤ . Because E Σ 1,n (ψ, π) = 1 n n i=1 E E δ i π(D i ) -∂Ψ i (ψ) ∂ψ ⊤ D i = E -∂Ψ i (ψ) ∂ψ ⊤
= Σ 1 (ψ), it can be shown with the weak law of large numbers that Σ 1,n (ψ, π) converges in probability to Σ 1 (ψ). So, using Slutsky's theorem, it can be shown that Σ 1,n (ψ, π) converges in probability to Σ 1 (ψ). It can be shown by assumption (B.6) that the convergence of Σ 1,n (ψ, π) to Σ 1 (ψ) is uniform in a neighborhood of the true ψ. Therefore, by the inverse function theorem of [START_REF] Foutz | On the unique consistent solution to the likelihood equations[END_REF], there exists a unique consistent solution of the estimating equation U W s,n (ψ, π) = 0 in a neighborhood of the true ψ. Thus, it follows that ψ W s is a consistent estimator of ψ. Now, we derive the asymptotic distribution of √ n( ψ W s -ψ). By a Taylor expansion of U W s,n ( ψ W s , π) around (ψ, π), we have

0 = U W s,n ( ψ W s , π) = U W s,n (ψ, π) + 1 √ n ∂U W s,n (ψ, π) ∂ψ ⊤ √ n( ψ W s -ψ) + O P (η n ). Further √ n( ψ W s -ψ) = 1 √ n ∂U W s,n (ψ, π) ∂ψ ⊤ -1 U W s,n (ψ, π) + O P (η n ) = 1 √ n ∂U W s,n (ψ, π) ∂ψ ⊤ -1 U W,n (ψ, π) + U W s,n (ψ, π) -U W,n (ψ, π) + O P (η n ).
We have

var U W s,n (ψ, π)] = var U W,n (ψ, π) + (U W s,n (ψ, π) -U W,n (ψ, π)) = var U W,n (ψ, π) + var U W s,n (ψ, π) -U W,n (ψ, π) + 2cov U W,n (ψ, π), (U W s,n (ψ, π) -U W,n (ψ, π)) .
On the other hand, we have 

var U W,n (ψ, π) = E 1 π(D b 1 , D c 1 ) Ψ 1 (ψ) ⊗2 . Then, it follows cov U W,n (ψ, π), U W s,n (ψ, π) -U W,n (ψ, π) = -E δ 1 δ 1 -π(D b 1 , D c 1 ) π 2 (D b 1 , D c 1 ) Ψ 1 (ψ) ⊗2 + O(η n ), = -E E δ 1 δ 1 -π(D b 1 , D c 1 ) π 2 (D b 1 , D c 1 ) Ψ * 1 (ψ) ⊗2 D b 1 , D c 1 + O(η n ), = -E 1 -π(D b 1 , D c 1 ) π(D b 1 , D c 1 ) Ψ * 1 (ψ) ⊗2 + O(η n ),

B. 1

 1 Let supp(D) denote the support of D = (D b , D c ). For any o ∈ supp(D), there exists c 1 such that the selection probability π(o) > c 1 > 0. In addition, π(o) has r continuous and bounded partial derivatives with respect to the continuous components of D almost everywhere.

  that is the solution of the estimating equations in Equation(3.7) ψ W,s : semiparametric IPW estimator that is the solution of the estimating equations in Equation (3.8) Sample sizes of n = 500, and 2000 were considered. Results are based on 1000 replications.

  

  finite and positive definite in a neighborhood of the true ψ.

B.6 The first derivatives of U W s,n (ψ, π) with respect to ψ exist almost surely in a neighborhood of the true ψ. Moreover, in such a neighborhood, the first derivatives are uniformly bounded above by a function of D, whose expectations exist. Theorem 3.2. Assume that assumptions (A.1) and (B.1) -(B.6) hold. Then, ψ W s is a consistent estimator of ψ and √ n( ψ W s -ψ) is asymptotically normally distributed with mean zero and covariance matrix Σ W s , where

Table 1 :

 1 Simulation results for ψ = (-0.6, 0.75, -1, 0.5, -0.25, 0.25, -0.4, 0.7, 0) ⊤ . The case where average fraction of missing data (25%) and average zero-inflated data (40%).

					βn				γn	
			β1,n	β2,n	β3,n	β4,n	β5,n	γ1,n	γ2,n	γ3,n	γ4,n
	n = 500									
	ψ FD	bias SD	-0.0450 -0.0202 0.0225 -0.0249 -0.0201 0.2978 0.1953 0.3473 0.2106 0.3121	0.0115 0.6065	-0.0292 0.6278	0.1250 0.2748	-0.0697 0.6469
		SE	0.2956	0.1985	0.3644	0.2206	0.3711	0.6845	0.6431	0.3014	0.7323
		RMSE	0.2997	0.1954	0.3463	0.2110	0.3112	0.6036	0.6253	0.3007	0.6474
	ψ CC	bias SD	0.1356 0.3060	-0.1333 0.0494 -0.0200 -0.2227 0.2134 0.3602 0.2173 0.3213	-0.2380 -0.0136 0.7527 0.8928	0.3341 0.4478	-0.2304 0.8598
		SE	0.3273	0.2197	0.3905	0.2465	0.3920	0.9377	0.9350	0.5456	1.0066
		RMSE	0.3333	0.2507	0.3618	0.2171	0.3896	0.7858	0.8884	0.5569	0.8859
	ψ W,P	bias	-0.0435 -0.0133 0.0227 -0.0174 -0.0204	0.0150	-0.0250	0.1263	-0.0675
		SD	0.2994	0.2059	0.3695	0.2116	0.3196	0.6526	0.7303	0.3157	0.7136
		SE	0.2998	0.2036	0.3690	0.2269	0.3756	0.6918	0.6545	0.3140	0.7411
		RMSE	0.3011	0.2053	0.3684	0.2112	0.3186	0.6495	0.7270	0.3385	0.7132
	ψ W,S	bias	-0.0313 -0.1421 0.0343 -0.0019 -0.0090	0.1280	0.0148	0.0768	-0.0694
		SD	0.3060	0.2138	0.3738	0.2195	0.3168	0.5943	0.6922	0.2775	0.6563
		SE	0.3060	0.2052	0.3792	0.2348	0.3812	0.6447	0.6080	0.2830	0.6932
		RMSE	0.3061	0.2558	0.3735	0.2184	0.3153	0.6049	0.6888	0.2866	0.6567
	n = 2000									
	ψ FD	bias SD	-0.0149 -0.0269 0.0277 -0.0295 0.1452 0.0891 0.1687 0.0979	0.0048 0.1855	-0.0167 -0.0080 0.3204 0.2848	0.0295 0.1208	-0.0036 0.3383
		SE	0.1384	0.0915	0.1672	0.0959	0.1752	0.3109	0.2815	0.1212	0.3302
		RMSE	0.1459	0.0931	0.1709	0.1022	0.1855	0.3206	0.2848	0.1243	0.3382
	ψ CC	bias SD	0.1528 0.1499	-0.1201 0.0450 -0.0245 -0.1694 0.0971 0.1749 0.1028 0.1903	-0.2359 0.3960	0.0009 0.3574	0.1633 0.1586	-0.1367 0.4236
		SE	0.1518	0.0998	0.1777	0.1067	0.1827	0.3772	0.3509	0.1606	0.4083
		RMSE	0.2140	0.1544	0.1805	0.1057	0.2547	0.4607	0.3572	0.2276	0.4450
	ψ W,P	bias	-0.0168 -0.0254 0.0272 -0.0274	0.0067	-0.0137 -0.0076	0.0331	-0.0052
		SD	0.1502	0.0953	0.1771	0.1004	0.1880	0.3423	0.3060	0.1288	0.3617
		SE	0.1385	0.0917	0.1677	0.0963	0.1755	0.3121	0.2830	0.1220	0.3318
		RMSE	0.1511	0.0986	0.1791	0.1040	0.1881	0.3424	0.3060	0.1329	0.3616
	ψ W,s	bias	0.0117	-0.1330 0.0331 -0.0246	0.0137	0.0808	0.0393	-0.0066	0.0083
		SD	0.1495	0.0957	0.1774	0.0998	0.1875	0.3152	0.2886	0.1190	0.3292
		SE	0.1419	0.0930	0.1706	0.0997	0.1775	0.2962	0.2652	0.1131	0.3142
		RMSE	0.1498	0.1639	0.1804	0.1028	0.1879	0.3252	0.2911	0.1191	0.3291

Table 2 :

 2 Simulation results for ψ = (-0.6, 0.75, -1, 0.5, 0.2, -0.5, 0.8, -1.5) ⊤ . The case where average fraction of missing data (14 %) and average zero-inflated data (20%).

					βn				γn	
			β1,n	β2,n	β3,n	β4,n	β5,n	γ1,n	γ2,n	γ3,n	γ4,n
	n = 500									
	ψ FD	bias SD	-0.0280 -0.0229 0.0460 -0.0337 -0.0027 0.1976 0.1331 0.2387 0.1432 0.2506	-0.0413 -0.0177 0.0533 -0.0098 0.4714 0.4058 0.1838 0.4841
		SE	0.1981	0.1317	0.2413	0.1392	0.2512	0.4632	0.4194	0.1832	0.4897
		RMSE	0.1995	0.1349	0.2430	0.1471	0.2505	0.4730	0.4060	0.1913	0.4839
	ψ CC	bias SD	0.1391 0.2056	-0.1165 0.0593 -0.0277 -0.1807 0.1430 0.2475 0.1523 0.2557	-0.2743 -0.0191 0.2050 -0.1476 0.5958 0.5541 0.2563 0.6253
		SE	0.2180	0.1445	0.2577	0.1556	0.2626	0.5901	0.5674	0.2730	0.6318
		RMSE	0.2482	0.1844	0.2544	0.1547	0.3130	0.6557	0.5541	0.3281	0.6422
	ψ W,p	bias	-0.0296 -0.0189 0.0434 -0.0316 -0.0019	-0.0405 -0.0164 0.0604 -0.0108
		SD	0.2060	0.1432	0.2514	0.1490	0.2552	0.4945	0.4500	0.2049	0.5178
		SE	0.1986	0.1328	0.2427	0.1400	0.2517	0.4665	0.4238	0.1872	0.4942
		RMSE	0.2080	0.1444	0.2550	0.1522	0.2551	0.4959	0.4501	0.2135	0.5177
	ψ W,s	bias	-0.0063 -0.1294 0.0471 -0.0240	0.0069	0.0613	0.0304	0.0151	0.0018
		SD	0.2048	0.1411	0.2506	0.1475	0.2529	0.4560	0.4175	0.1877	0.4702
		SE	0.2036	0.1348	0.2478	0.1454	0.2551	0.4410	0.3952	0.1716	0.4656
		RMSE	0.2048	0.1914	0.2549	0.1494	0.2529	0.4598	0.4184	0.1882	0.4699
	n = 2000									
	ψ FD	bias SD	0.0001 0.1134	-0.0272 0.0445 -0.0360 -0.0064 0.0763 0.1316 0.0815 0.1483	-0.0271 -0.0282 0.0640 -0.0982 0.3422 0.4427 0.2040 0.4587
		SE	0.1156	0.0775	0.1349	0.0809	0.1484	0.3371	0.4287	0.2031	0.4670
		RMSE	0.1133	0.0809	0.1389	0.0890	0.1484	0.3431	0.4434	0.2137	0.4689
	ψ CC	bias SD	0.0639 0.1185	-0.0472 0.0325 -0.0259 -0.0631 0.0825 0.1380 0.0851 0.1537	-0.1989 -0.0278 0.1468 -0.1089 0.4089 0.5194 0.2464 0.5474
		SE	0.1234	0.0832	0.1424	0.0872	0.1548	0.4066	0.5014	0.2479	0.5593
		RMSE	0.1346	0.0950	0.1417	0.0889	0.1661	0.4546	0.5199	0.2867	0.5578
	ψ W,p	bias	-0.0007 -0.0252 0.0416 -0.0347 -0.0064	-0.0182 -0.0304 0.0705 -0.1133
		SD	0.1168	0.0812	0.1374	0.0834	0.1510	0.3701	0.4814	0.2292	0.4992
		SE	0.1159	0.0777	0.1353	0.0811	0.1486	0.3466	0.4450	0.2107	0.4770
		RMSE	0.1167	0.0850	0.1435	0.0903	0.1510	0.3704	0.4821	0.2397	0.5117
	ψ W,s	bias	-0.0043 -0.0600 0.0384 -0.0321	0.0018	0.0865	0.0008	0.0223 -0.1032
		SD	0.1177	0.0811	0.1386	0.0833	0.1512	0.3375	0.4473	0.2132	0.4611
		SE	0.1172	0.0787	0.1368	0.0824	0.1495	0.3231	0.4050	0.1936	0.4491
		RMSE	0.1177	0.1009	0.1437	0.0892	0.1511	0.3482	0.4471	0.2143	0.4723

Table 3 :

 3 Descriptive summary (RAND Health Insurance Experiment Data).

	Variable min 1st Quartile Median 3rd Quartile max Mean Std dev
	mdvis	0.00	0.00	1.00	4.00	77.00	2.86	4.50
	age	0.00	11.46 24.20	37.42	64.28 25.72	16.77
	income	0	5334	7976	10475	29238 8037 4058.37
	school 0.00	11.00 12.00	13.00	25.00 11.96	2.81
	ghindx 0.00	0.00 67.00	81.50	100.00 54.18	34.84

Appendix A. R code for fitting the ZIMBT model

The code below fits the ZIMBT model to a data set simulated as in Section 4. In this code, b, g represent β, γ respectively. Before running this code, the user needs to specify the design matrices X and W. Using the distribution equation 1.1. X ∼ MBT(α), we have: 

The following code builds the ZIMBT loglikelihood :

As a result, it follows that

Therefore, using the Central Limit Theorem, we have

Hence, using Slutsky's theorem, we have √ n( ψ W s -ψ) converges in distribution to a centered multivariate normal distribution with variance-covariance matrix Σ W s , where

Since ψ W s P → ψ and π P → π, it can be shown with the weak law of large numbers and Slutsky's theorem that Σ * 0,n ( ψ W s , π)

, where P → denotes convergence in probability. Hence, Σ W s,n is a consistent estimator of Σ W s .
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