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Abstract

A novel model for count data is proposed in this work. This new model is briefly called the

Zero-Inflated Probit Bell (ZIPBell) model. The ZIPBell model can be used to simulate and

analyze traditional count data and can be used well in the simulation and analysis of count

data with the phenomenon that the frequency for zero occupies a very high percentage. In

the scope of this study, we first provide the general formula, functions or related equations for

the ZIPBell model. The results of asymptotic inferences for the ZIPBell model are also given

in this work. Maximum likelihood estimator (MLE) is used to check its performance of the

proposed model. According to the numerical illustrations via several simulation researches

and the analysis of a practical data set, it has been seen that the MLE method has offered

correct and reliable inferences. Finally, the inferences and conclusions of this study are

mentioned.
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1 Introduction

In scientific research, the topic of regression models is always interested and noticed by sci-

entists and researchers. As we all know that, regression models can be applied in almost all

areas of life and has many interesting practical applications. It can be practically applied in

applied statistics, applied mathematics, economics, finance, medicine, education, engineer-

ing, social sciences and so on. Because the application of the regression model is so great, it

is used a lot in the researches of scientists. Therefore in this study we are also interested in

regression models.

When it comes to regression models, the first thing we are concerned in is the data for

the outcome variable. Depending on the type of data, there are suitable regression models

to choose for scientific research. Specifically, in this work we are interested in count data.

Count data can be understood simply that it will receive values that are natural numbers

for the response variable, and this data is very common and exceedingly often encountered

a lot in real data. Applications on using regression models for analysis related to count data

can be found in Truong et al. (2021).

For count data, conventional regression models comprise Poisson, Negative Binomial

(NB) and Binomial are regularly performed as the first attention in regression analyses. If

in that situation the count data occupies a very large number of zeros in the data set, it is

often referred to as zero-inflated (ZI) count data. For the ZI count data set, the regression

models as mentioned above often do not fit well enough in the analysis (see Lukusa et al.,

2017). For such data sets, the ZI count models commonly activate better than conventional

regression models. The widesread and crucial ZI count models such as: ZI Poisson (ZIP),

ZI Negative Binomial (ZINB), and ZI Binomial (ZIB). These models were first introduced

and proposed in the researches of Lambert (1992), Ridout et al. (2001), and Hall (2000),

respectively. Moreover, a list of ubiquitous ZI models can be referred in Lukusa et al. (2017).

Recently as we know a novel model that can be employed and executed to ZI count

data is ZI Bell (ZIBell) model, which was first introduced by Lemonte et al. (2019). Some

interesting studies on the ZIBell model can be seen in: Abolhassani et al. (2020) provided

other perspectives on how to construct a ZIBell model. In addition, Algamal et al. (2022)

conducted a comparison of the working performance of the Liu and Ridge estimators in this

model. Recently, Ali et al. (2022) presented the asymptotic properties of the ZIBell model.

The multivariate ZIBell model as well as its inferences and applications can be found in
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Lemonte (2022), and so on.

Indeed in some cases when doing regression analysis for real data sets, the ZIBell model

may be a better fit for the data set than the more widespread ZI counting models such as

ZIP, ZINB and ZIB. No need to say where far away, in the study of Lemonte et al. (2019)

have showed that the count of the infected blood cell (IBC) data set would fit the ZIBell

model better than some other ZI count models. Therefore we would like to study and learn

the problems related to the ZIBell model in this work.

In this paper, we are interested in proposing a new model in the family of the ZI count

models, which is shortly called the ZI Probit Bell (ZIPBell) model. This proposed model

can be executed to simulate count data or ZI count data. The ZIPBell as well as the

ZIBell model has numerous important meanings and applications in practice. Therefore, it

is interesting and makes a lot of sense to propose this new regression model in the family of

ZI count models. Everything from formulating the general formula for the proposed model,

the necessary equations for the estimation, the asymptotic properties, numerical analyzes

for the ZIPBell model are presented very fully in this work.

The layout of this job is set up as follows. Section 2 briefly presents the general form the

ZIBell model and its estimating equation (EE). The general formual and related function

of the proposed model are introduced in Section 3. The results of asymptotic inferences for

the ZIPBell model are also given in Section 4. Numerous simulation studies is executed in

Section 5. Section 6 performs the IBC data set to the ZIPBell model. Some discussions and

conclusions of this work are offerred in the last section.

2 The ZIBell Model and Estimating Equations

The probability mass function (PMF) of the ZIBell distribution is offerred by (see Ali et al.,

2022):

P (Y = y) =


π + (1− π) exp

(
1− eW (µ)

)
, y = 0

(1− π) exp
(
1− eW (µ)

) W (µ)yBy

y!
, y > 0

(1)

where µ > 0 and π ∈ (0, 1). Note also that the original for Eqn. (1) mentioned in the study

of Lemonte et al. (2019). If Y follows a ZIBell distribution with the two parameters µ and

π, then we desinagate that Y ∼ ZIBell(µ, π). In addition, we should know that W (.) is the
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Lambert function, and By are the Bell numbers with

Bn =
1

e

∞∑
k=0

kn

k!
.

We let

log(µi) = β⊤xi and logit(πi) = τ⊤si,

where β = (β1, β2, ..., βp)
T , and τ = (τ1, τ2, ..., τq)

T are parameters need to be evaluated,

xT
i = [x1, x2, ..., xn]

T , and sTi = [s1, s2, ..., sn]
T . The log-likelihood of θ = (β⊤, τ⊤)⊤ of the

ZIBell model is given by (see, Lemonte et al. (2019))

n∑
i=1

{
− log

(
1 + eτ

⊤si
)
+ Ji log

[
eτ

⊤si + exp
(
1− eW (eβ

⊤xi )
)]

+(1− Ji)
[
Yi log

(
W (eβ

⊤xi)
)
− eW (eβ

⊤xi )
]}

,

where Ji = 1{Zi=0}. We should note that the MLE technique can be used optimize ℓ(θ) to

get θ̂ where the estimate of θ = (β⊤, τ⊤)⊤.

3 The Proposed Model: ZI Probit Bell (ZIPBell) model

3.1 Research motivation

Note that the ZIBell model is created by performing two processes to generate the zeros. A

process is usually modeled using the Bell distribution to produce a count (counting zeros),

some of which may be zero. The remaining process is frequently modeled with a binary

distribution in order to generate zeros. The logit model is often viewed as the easiest of the

family of binary models because it is built through exponential functions. It is therefore not

too difficult to understand that the logit model is frequently used in processes that use the

binary model.

Besides, as we all know that the probit model is established and built on the basis of the

normal distribution and this distribution is always considered an important distribution with

many good and beautiful properties in statistics. For that reason, of the two steps mentioned

above, one uses a binary model. We aim to use the probit model (see Pho and Truong, 2023)

to create a new model, which is called for short: the ZI Probit Bell (ZIPBell) model. The

proposed and the ZIBell models have numerous important meanings and applications in
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practice. Therefore, it is interesting and makes a lot of sense to propose this new regression

model in the family of ZI count models.

Besides, the proposal of a new regression model helps researchers, readers or science

lovers have more tools and more choices to analyze data. Because data is more and more

available, both in quantity and in different forms. Hence, this proposal is very important

and makes a lot of sense in the current situation and reality. Everything from formulating

the general formula for the proposed model, the necessary equations for the estimation, the

asymptotic properties, numerical analyzes for the proposed model are fully provided in the

next subsection.

3.2 The general formula

Notice that the variables and two parameters π and µ in this section are similarly defined

as in the previous part. The general formula of the ZIPBell model has the following form:

P (Y = y|x, s) = πI(y = 0) + (1− π) exp
(
1− eW (µ)

) W (µ)yBy

y!
, (2)

for y = 0, 1, 2, . . . , W (.) is the Lambert function, and By are the Bell numbers.

3.3 The log-likelihood function

According to (1) then the ZIPBell model has the general likelihood function form:

Ln(θ) =
n∏

i=1

[
πi + (1− πi) exp(1− eW (µ))

]I(Yi=0)
[
(1− πi) exp(1− eW (µ))

W (µ)Yi .By

Yi!

]I(Yi>0)

(3)

Performing the natural logarithm L(θ) in (3), one has the associated log-likelihood function

of the ZIPBell model can then be expressed as follows:

logLn(θ) =
n∑

i=1

I(Yi = 0) log
[
π + (1− π) exp(1− eW (µ))

]
(4)

+
n∑

i=1

I(Yi > 0)
[
Yi log(W (µ)) + log (1− π)− eW (µ) + 1 + log(By)− log(Yi!)

]
For the sake of simplicity as in the study by Lemonte et al. (2019), formula (5) can be

rewritten as follows:

logLn(θ) =
n∑

i=1

I(Yi = 0) log
[
π + (1− π) exp(1− eW (µ))

]
(5)

+
n∑

i=1

I(Yi > 0)
[
Yi log(W (µ)) + log (1− π)− eW (µ)

]
5



Note that the formula (5) is the general form for the ZIPBell model. In the case of the

probability of ZI is modeled by the probit model as follows:

log(µi) = β⊤xi and probit(πi) = F (τ⊤si)

where F is the C.D.F of N (0, 1), and f is the first derivative of F . Basing on (5) the

associated log-likelihood of θ = (β⊤, τ⊤)⊤ is given by

ℓ(θ) =
n∑

i=1

{
Ji log

[
F (τ⊤si) +

(
1− F (τ⊤si)

)
exp

(
1− eW (eβ

⊤xi )
)]

+(1− Ji)
[
Yi log[W (eβ

⊤xi)] + log[1− F (τ⊤si)]− eW (eβ
⊤xi )

]}
. (6)

and

P (Y = 0|x, s) = π + (1− π) exp(1− eW (µ))

= F (τ⊤si) +
(
1− F (τ⊤si)

)
exp

(
1− eW (eβ

⊤xi )
)

3.4 Estimating Score Function (ESF)

Following to ℓ(θ) =
∑n

i=1 ℓi(θ), where ℓ(θ) is given in (6), the ESF is offered as follows:

UF,n(θ) =
1√
n

∂ℓ(θ)

∂θ
=

1√
n


∂ℓ(θ)

∂τ

∂ℓ(θ)

∂β

 =
1√
n

n∑
i=1

Si(θ). (7)

Si(θ) = ∂ℓi(θ)/∂θ =
(
ST
i1 (θ) , S

T
i2 (θ)

)T
, Si1(θ) =

∂ℓi(θ)

∂τ
, Si2(θ) =

∂ℓi(θ)

∂β
i = 1, . . . , n.

Si1(θ) =
f(τTXi)

1− F (τ⊤si)
.
I(Yi = 0)−

[
F (τ⊤si) +

(
1− F (τ⊤si)

)
exp

(
1− eW (eβ

⊤xi )
)]

[
F (τ⊤si) + (1− F (τ⊤si)) exp

(
1− eW (eβ

⊤xi )
)] , (8)

Si2(θ) = D.eW (eβ
⊤xi ).F (τ⊤si).

I(Yi = 0)−
[
F (τ⊤si) +

(
1− F (τ⊤si)

)
exp

(
1− eW (eβ

⊤xi )
)]

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
) (9)

+
D

W (eβ⊤xi)
.

{
Yi −

(
1− F (τ⊤si)

)
W (eβ

⊤xi).eW (eβ
⊤xi )

}

with D =
∂

∂β
[W (eβ

⊤xi)]. The detailed transformations of Si(θ) is offered in Appendix.

We need to know that, the way of expressing Si1(θ) in (8) and Si2(θ) in (9) can help us

in inferring the asymptotic properties of the estimator θ. Besides, we can easily see that

E[UF,n(θ)] = 0, UF,n(θ) is an unbiased ESF, and thus the MLE θ̂F of θ can be obtained by

solving UF,n(θ) = 0.
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4 Asymptotic Properties

Before proceeding to study the asymptotic properties of θ̂F , some necessary conditions are

needed to carry out this work. These conditions are similar to the study of Pho (2023), they

are briefly expressed as (K1) and (K2). Recall that:

UF,n(θ) =
1√
n

n∑
i=1

Si(θ),

Si(θ) = ∂ℓi(θ)/∂θ =
(
ST
i1 (θ) , S

T
i2 (θ)

)T
, Si1(θ) =

∂ℓi(θ)

∂τ
, Si2(θ) =

∂ℓi(θ)

∂β
i = 1, . . . , n.

where Si1(θ) and Si2(θ) are given in (8) and (9), respectively.

(K1) For the sake of simplicity, with any column vector a, we denote a⊗2 = aaT , and

E [(S1(θ))
⊗2] is positive definite in a neighborhood of the true θ.

(K2) The first derivatives of UF,n(θ) w.r.t θ exist almost surely in a neighborhood of true θ.

Besides, note that in such a neighborhood, the first derivatives are uniformly bounded

above by a function of (Y,X,Z), in the case of the expectations exist.

For the convenience of the following inferences, we call:

GF,n(θ) = − 1√
n

∂UF,n(θ)

∂θT
= − 1

n

n∑
i=1

∂Si(θ)

∂θT
.

Because every component of GF,n(θ) is a mean of i.i.d random variables, we have:

E[GF,n(θ)] =
1

n

n∑
i=1

E

{
E

[(
−∂Si(θ)

∂θT

) ∣∣∣Yi, Xi, Zi

]}
= E

{
E

[(
−∂S1(θ)

∂θT

) ∣∣∣Y1, X1, Z1

]}
= E

[
−∂S1(θ)

∂θT

]
= GF (θ).

By performing the weak law of large numbers (WLLN), it’s not too hard to see that

GF,n(θ)
p→ GF (θ).

We represent θ̂F as the root of UF,n(θ) = 0. Theorem 1 provides the asymptotic properties

of θ̂F and the proof for this theorem is discussed in detail in Appendix.

Theorem 1 Under (K1) and (K2)

(a) θ̂
p−→ θ as n−→∞.

(b)
√
n(θ̂−θ)

d−→ N (0,∆F ), where ∆F = G−1
F (θ)QF (θ)[G

−1
F (θ)]T and QF (θ) = E [(S1(θ))

⊗2].
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Because it’s a fact that the variance of the score function is the inverse of the Fisher

information matrix, thus GF (θ) = QF (θ) hence a simple formula for ∆F can be rewritten

as: ∆F = G−1
F (θ). The transformations to obtain expressions GF (θ) and QF (θ) are similar

in the study of Pho (2023). Due to the simplicity of scientific research and this research

objective focusing on simulation studies and analyzing real data sets, the transformations to

obtain GF (θ) and QF (θ) are omitted in this work.

5 Numerical study

In this section, we assess finite-sample properties of the MLE with the first case that is both

X and S are a univariate and the second case is both X and S are vectors of covariates.

Case (i) : Both X and S are a univariate. We simulate data from a ZIPBell model defined

by :

µ(X) = exp(β0 + β1X1 + β1X2) and probit(πi) = τ0 + τ1X1 + τ2S2

where X1, X2 and S2 are independently drawn from normal N (0, 1), uniform U(1, 3) and ex-

ponential E(1) distributions respectively. Parameters β and τ are chosen as β = (−0.25,−0.9, 0.3)⊤

and τ = (−0.55, 0.7, 0)⊤.

Case (ii) : Both X and S are vectors of covariates. Simulation design is essentially

similar.

µ(X) = exp(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5)

and

probit(πi) = τ0 + τ1S1 + τ2S2 + τ3S3 + τ4S4 + τ5S5.

X1, · · · , X5 are simulated independently from normal N (0, 1), uniform U [1, 3], binomial

B(1, 0.5), normal N (−2, 1), and binomial B(2, 0.5). Covariates S2, · · · , S5 are drawn in-

dependently from a normal N (0, 1), normal N (−1, 1), binomial B(1, 0.5) distributions re-

spectively. Linear predictors are allowed to share some common terms by letting S1 = X2

and S2 = X5. Parameters β and τ are taken as β = (0.5,−0.9, 0.3, 0.8, 0.1,−0.4)⊤ and

τ = (1.5,−0.9,−.2, 0.7, 0, 0)⊤. Note that the parameter τ is chosen in order to obtain the

desired zero rate which is 63%.

For the two cases, our simulation results are based on N = 1000 simulated samples. We

consider the following sample sizes: n = 200, 500, 1000 and 2000. For each estimator, we
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report the average bias, empirical standard deviation (SD), average standard error (SE),

empirical root mean square error (RMSE) and empirical coverage probability (CP) of 95%-

level confidence intervals. Simulations are conducted using the statistical software R (R

Core Team 2018), and all estimates are obtained by using the maxLik function via the

Newton-Raphson algorithm (see Pho 2022).

Results. Tables 1 and 2 present the simulation results for the two simulated cases. In

general, the biases and RMSE are closer to zero and CPs are closer to 0.95 as the sample size

increases. In most cases, the biases of β̂0,n, β̂1,n, β̂2,n are closer to zero even for small sample

sizes. Similarly, the CP of β̂0,n and β̂1,n in case (i) needs a bigger sample size (n=500) to

achieve the nominal coverage. Overall, the bias is generally slightly larger for the τ̂ than for

the β̂ . The empirical coverage probabilities are close to the nominal confidence level. In

addition, from these tables we can see that, the bias, SE SD and RMSE of all estimators

decrease as sample size increases.

We assess empirically the Gaussian approximation stated in Theorem (1) by plotting

normal Q-Q plots of the estimates. Figures (1) and (2) provide plots for case (ii) with n =

2000 and an average sample proportion of the ZI equal to 63% (plots for the other simulation

scenarios are similar and are thus omitted). From these plots, the distribution of the MLE

in the ZIPBell model is reasonable approximated by the Gaussian distribution.
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Table 1: Simulation results (case 1). Note that all results are based on N = 1000 simulated
samples.

β̂n τ̂n
β̂0,n β̂1,n β̂2,n τ̂0,n τ̂1,n τ̂2,n

200
bias -0.0182 0.0009 0.0053 -0.0558 0.0633 -0.0017
SD 0.3602 0.0938 0.1626 0.3080 0.2572 0.1994
SE 0.3557 0.0946 0.1597 0.3143 0.2518 0.1885
RMSE 0.5065 0.1332 0.2279 0.4435 0.3653 0.2743
CP 0.9530 0.9480 0.9420 0.9580 0.9550 0.9660

500
bias 0.0140 0.0028 -0.0086 -0.0105 0.0230 -0.0118
SD 0.2195 0.0576 0.0973 0.1674 0.1326 0.1099
SE 0.2209 0.0580 0.0992 0.1678 0.1332 0.1063
RMSE 0.3116 0.0818 0.1392 0.2372 0.1893 0.1533
CP 0.9500 0.9500 0.9470 0.9600 0.9550 0.9640

1000
bias 0.0053 0.0007 -0.0034 -0.0136 0.0136 -0.0002
SD 0.1485 0.0398 0.0668 0.1187 0.0941 0.0714
SE 0.1551 0.0405 0.0695 0.1161 0.0921 0.0718
RMSE 0.2148 0.0568 0.0964 0.1666 0.1324 0.1012
CP 0.9570 0.9520 0.9590 0.9480 0.9500 0.9590

2000
bias -0.0030 0.0001 0.0005 -0.0019 0.0051 -0.0025
SD 0.1105 0.0292 0.0488 0.0781 0.0639 0.0483
SE 0.1096 0.0285 0.0491 0.0806 0.0637 0.0499
RMSE 0.1556 0.0408 0.0692 0.1122 0.0904 0.0695
CP 0.9470 0.9390 0.9560 0.9560 0.9470 0.9570
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Table 2: Simulation results (case 2). Note that all results are based on N = 1000 simulated samples.

β̂n τ̂n
β̂1,n β̂2,n β̂3,n β̂4,n β̂5,n β̂6,n τ̂1,n τ̂2,n τ̂3,n τ̂4,n τ̂5,n τ̂6,n

200
bias -0.0444 -0.0094 0.0013 0.0183 0.0015 -0.0011 0.1061 -0.0548 -0.0164 0.0621 0.0047 -0.0176
SD 0.4511 0.0909 0.1564 0.2337 0.0887 0.1356 0.5041 0.3153 0.2066 0.1894 0.1497 0.3470
SE 0.4359 0.0935 0.1524 0.2288 0.0894 0.1289 0.4752 0.2935 0.2036 0.1765 0.1418 0.3431
RMSE 0.6287 0.1307 0.2183 0.3275 0.1259 0.1871 0.7006 0.4341 0.2904 0.2662 0.2062 0.4882
CP 0.9439 0.9550 0.9389 0.9389 0.9540 0.9399 0.9600 0.9409 0.9590 0.9530 0.9540 0.9580

500
bias -0.0199 -0.0007 0.0019 0.0017 -0.0019 0.0038 0.0522 -0.0322 -0.0080 0.0207 0.0048 -0.0178
SD 0.2674 0.0555 0.0915 0.1377 0.0538 0.0770 0.2908 0.1789 0.1259 0.1010 0.0838 0.2123
SE 0.2634 0.0546 0.0923 0.1366 0.0529 0.0771 0.2797 0.1737 0.1205 0.1012 0.0823 0.2036
RMSE 0.3757 0.0779 0.1300 0.1939 0.0755 0.1090 0.4068 0.2514 0.1744 0.1444 0.1175 0.2946
CP 0.9479 0.9529 0.9519 0.9519 0.9519 0.9509 0.9439 0.9459 0.9499 0.9549 0.9469 0.9379

1000
bias -0.0131 -0.0020 0.0015 0.0054 -0.0011 -0.0009 0.0129 -0.0038 -0.0036 0.0113 0.0006 0.0033
SD 0.1798 0.0390 0.0643 0.0942 0.0376 0.0543 0.1901 0.1216 0.0821 0.0684 0.0571 0.1435
SE 0.1831 0.0378 0.0642 0.0948 0.0368 0.0536 0.1937 0.1206 0.0838 0.0699 0.0572 0.1415
RMSE 0.2570 0.0544 0.0908 0.1337 0.0526 0.0763 0.2716 0.1713 0.1173 0.0984 0.0807 0.2016
CP 0.9548 0.9478 0.9578 0.9378 0.9398 0.9498 0.9568 0.9528 0.9498 0.9578 0.9578 0.9478

2000
bias 0.0015 -0.0001 -0.0016 0.0009 0.0003 -0.0003 0.0176 -0.0087 -0.0056 0.0080 -0.0021 0.0011
SD 0.1306 0.0264 0.0452 0.0657 0.0254 0.0370 0.1312 0.0877 0.0578 0.0490 0.0410 0.0936
SE 0.1281 0.0263 0.0449 0.0666 0.0258 0.0375 0.1359 0.0848 0.0589 0.0489 0.0399 0.0994
RMSE 0.1829 0.0372 0.0637 0.0935 0.0361 0.0527 0.1897 0.1222 0.0827 0.0697 0.0573 0.1365
CP 0.9520 0.9350 0.9510 0.9540 0.9530 0.9480 0.9540 0.9390 0.9470 0.9570 0.9490 0.9680

11



−3 −2 −1 0 1 2 3
0.

0
0.

4
0.

8

Normal Q−Q plot for β1,n

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

−
0.

95
−

0.
85

Normal Q−Q plot for β2,n

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

0.
20

0.
30

0.
40

Normal Q−Q plot for β3,n

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

0.
7

0.
8

0.
9

1.
0

Normal Q−Q plot for β4,n

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

0.
05

0.
15

Normal Q−Q plot for β5,n

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

−
0.

50
−

0.
40

−
0.

30
Normal Q−Q plot for β6,n

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 1: Normal Q-Q plots of β̂1,n, · · · , β̂6,n for case (ii) with n = 2000 and average sample
proportion of the ZI equal to 0.63.
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Figure 2: Normal Q-Q plots of τ̂1,n, · · · , τ̂6,n for case (ii) with n = 2000 and average sample
proportion of the ZI equal to 0.63.

6 Real Data Analysis

In this section, we describe an application of the ZIPBell model to the analysis of fish

species occurrence records (FSOR) for surveys that were collected at different times in most

of the aquatic ecosystems of Uganda. The dataset used here comes from the ”Fish Species

Occurrence Records for Uganda Mobilized Observation Archives”, from the unpublished

Mobilized Uganda Archives, available at https://www.gbif.org. The experiment is conducted

on a single species, Lates niloticus. Lates niloticus, commonly known as ”freshwater captain”

or ”Nile perch”, is a fish whose flesh quality and rapid growth make it a highly prized species.

Therefore, this species is very unique and has many practical meanings.

Indeed in recent years, fish farmers have turned their attention to this species, which also
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allows natural control of fish density. The fish is also world-famous, having been introduced

to the Ugandan part of Lake Victoria in the 1950 to stimulate a declining fishery and thus

contribute to the region economic development Lowe (1997). Stocks of Lates niloticus in-

creased rapidly during the 1970, leading to the decline and even, in some areas, the complete

disappearance of certain native species, including many endemic cichlids Witte et al. (1992).

Hence it is interesting to study or learn about this issue in this study.

Next we discuss a little about how to collect the data under investigation. Note that,

data were collected in the main river basins, in particular lakes Kwania, Kyoga, Nabugabo,

Nakuwa, Nawampasa, Victoria and the Nile. This type of species is found in many types of

freshwater, preferring warm tropical waters (27◦N - 7◦S) where they reach large sizes and are

present in high densities. They are silvery in color with a blue tinge. They have a distinctive

dark black eye with a bright yellow outer ring and generally weigh between 2 and 4 kg. Lates

niloticus average 85 to 100 cm in length, but can reach 193 cm. Furthermore, females are

generally larger than males.

Several measures were reported in this study, such as the number of Lates niloticus as

the target variable. Informations useful for developing occurrences is also reported such as

GPS coordinates (latitude and longitude) on the actual locations or sites where the fish were

captured. The fish were captured using fishing gears such as gillnets, hooks and beach seines

at specific sites of different waterbodies. A detailed description of the data can be found in

Sidumo et al. (2023). Here we address the question of the influence of environmental factors

on fish reproduction. Let Yi be the number of Lates niloticus species caught and we consider

this as the response variable in this regression analysis. However, we can observe that most

of the count data lies between 0 and 50 suggests that that a ZIPBell regression model should

be used instead.

The results are fully presented in Table 3. For this example, two models: ZIPBell and

ZIBell, were used to study the influence of environmental variables on the abundance and

distribution of the species Lates niloticus and to perform the MLE approach to estimate the

parameters of these models. Besides, AIC and BIC are introduced to compare the fitting

effects of these two models. In general, as we know the lower the AIC and BIC values, the

better the fitting effect of the model. It is also important to note that the estimation results

obtained for the ZIBell and ZIPBell models are not very different. To be more specific, then

they are only slightly superior to each other.
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Table 3: Ecological data analysis results.

Proposed ZIPBell ZIBell
Estimates S.E. p-values Estimates S.E. p-values

β
intercept 2.1487 0.0741 < 0.0001 2.182 0.0744 < 0.0001
waterBody 0.4444 0.0738 < 0.0001
Latitude -0.0087 0.0425 0.8370 0.1566 0.032 < 0.0001
Longitude 0.0265 0.0025 < 0.0001 0.0239 0.0024 < 0.0001

τ
intercept -1.4064 0.1284 < 0.0001 -2.7474 0.5583 < 0.0001
waterBody 1.0779 0.2882 0.0002 2.4628 0.7335 0.0008
Latitude -0.6281 0.1924 0.0011 -1.4462 0.4904 0.0031
Longitude 0.0096 0.0205 0.6401
AIC -5439.436 -5406.259
BIC -2485.436 -2452.259

If we focus our comments on the models under consideration, based on the AIC and BIC

results provided in the last two rows of Table 3. (Indeed, the lower the AIC and BIC values,

the better the corresponding model). The effects of spatial factors (latitude, longitude) are

used as a measure of spatial location. The environmental factors favoring fish reproduction in

Uganda are waterBody, Latitude, and Longitude. Besides, in rivers and shallow lakes, water

temperature is generally little different from air temperature. In deep lakes, its distribution

in the water mass is less homogeneous.

In addition, Latitude and longitude are the two main factors determining water tem-

perature, along with the local influence of atmospheric circulation. The latter explains the

abundant production of the species in the lakes of Uganda. The ZIPBell model identifies al-

most the same set of significant covariates (waterBody and Longitude are significant, while

Latitude is not). The magnitude and sign of significant parameters are similar in both

models, leading to similar interpretations. Among the environmental parameters studied,

temperature is one of the main parameters explaining spatial variations in Lates niloticus.

It should be noted that the ZIBell model and the proposed ZIPbell model are based on the

same specifications for the susceptibility probability πi, when it comes to interpreting the τ

parameter values in these models.
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7 Discussions and Conclusions

This study is significant in many ways, first in terms of contributing to the literary treasure,

we have proposed and introduced an additional tool for data analysis. Specifically, we

first proposed the ZIPBell model. This can be seen as a new, meaningful and interesting

regression model, which can work well for simulation and regression analysis for ZI count

data sets. In this day and age, almost any profession or field has data, and therefore the

addition of a new regression model is proposed, which means more tools to analyze the data

in the most scientific way. From there we will provide the most accurate conclusions. In

terms of practical applications, the ZIPBell model has shown great potential to be applied to

real data sets. In this study, we have also demonstrated that the proposed model: ZIPBell

is more suitable for the FSOR data set than the traditional ZIBell model.

In general, this work proposed a novel model for count data. This new model is briefly

called the ZIPBell model. The ZIPBell model can be used to simulate and analyze traditional

count data and can be used well in the simulation and analysis of count data with the

phenomenon that the frequency for zero occupies a very high percentage. We provided

the general formula, functions or related equations for the ZIPBell model. The results of

asymptotic inferences for the ZIPBell model were also given in this work. MLE was used to

check its performance of the proposed model. According to the numerical illustrations via

several simulation researches and the analysis of a practical data set, it had been seen that

the MLE method has offered correct and reliable inferences.
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Appendix

The log-likelihood

logLn(θ) =
n∑

i=1

I(Yi = 0) log
[
π + (1− π) exp(1− eW (µ))

]
+

n∑
i=1

I(Yi > 0) log

[
(1− π) exp(1− eW (µ))

W (µ)Yi .By

Yi!

]
=

n∑
i=1

I(Yi = 0) log
[
π + (1− π) exp(1− eW (µ))

]
+

n∑
i=1

I(Yi > 0) log

[
exp(1− eW (µ))

W (µ)Yi .By

Yi!

]
+

n∑
i=1

I(Yi > 0) log (1− π)

=
n∑

i=1

I(Yi = 0) log
[
π + (1− π) exp(1− eW (µ))

]
+

n∑
i=1

I(Yi > 0)
[
log exp(1− eW (µ)) + Yi log(W (µ)) + log(By)− log(Yi!)

]
+

n∑
i=1

I(Yi > 0) log (1− π)

=
n∑

i=1

I(Yi = 0) log
[
π + (1− π) exp(1− eW (µ))

]
+

n∑
i=1

I(Yi > 0)
[
Yi log(W (µ)) + 1− eW (µ) + log(By)− log(Yi!) + log (1− π)

]
=

n∑
i=1

I(Yi = 0) log
[
π + (1− π) exp(1− eW (µ))

]
+

n∑
i=1

I(Yi > 0)
[
Yi log(W (µ)) + log (1− π)− eW (µ) + 1 + log(By)− log(Yi!)

]
For the sake of simplicity and similarity in the study by Lemonte et al. (2019), the above

can be rewritten as follows:

logLn(θ) =
n∑

i=1

I(Yi = 0) log
[
π + (1− π) exp(1− eW (µ))

]
+

n∑
i=1

I(Yi > 0)
[
Yi log(W (µ)) + log (1− π)− eW (µ)

]
In the case of the probability of ZI is modeled by the probit model as follows:

log(µi) = β⊤xi and probit(πi) = F (τ⊤si)

where F is the C.D.F of N (0, 1). The log-likelihood of θ = (β⊤, τ⊤)⊤ is

19



ℓ(θ) =
n∑

i=1

{
Ji log

[
F (τ⊤si) +

(
1− F (τ⊤si)

)
exp

(
1− eW (eβ

⊤xi )
)]

+(1− Ji)
[
Yi log[W (eβ

⊤xi)] + log[1− F (τ⊤si)]− eW (eβ
⊤xi )

]}
.
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The score function of the ZIPB regression model

Note that I(Yi > 0) = 1− I(Yi = 0) and YiI(Yi = 0) = 0, i = 1, . . . , n.
We have

Si1(θ) =
∂ℓi(θ)

∂τ
=

∂

∂τ

{
I(Yi = 0) log

[
F (τ⊤si) +

(
1− F (τ⊤si)

)
exp

(
1− eW (eβ

⊤xi )

)]}
+

∂

∂τ

{
I(Yi > 0)

[
Yi log[W (eβ

⊤xi)] + log[1− F (τ⊤si)]− eW (eβ
⊤xi )

]}

= I(Yi = 0)

 f(τTXi)− f(τTXi) exp
(
1− eW (eβ

⊤xi )
)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)


+ (1− I(Yi = 0))

[
−f(τTXi)

1− F (τ⊤si)

]

= I(Yi = 0)


(
1− exp

(
1− eW (eβ

⊤xi )
))

f(τTXi)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)


− f(τTXi)

1− F (τ⊤si)
+ I(Yi = 0)

[
f(τTXi)

1− F (τ⊤si)

]

= I(Yi = 0)


(
1− exp

(
1− eW (eβ

⊤xi )
))

f(τTXi)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
) +

f(τTXi)

1− F (τ⊤si)


− f(τTXi)

1− F (τ⊤si)

= I(Yi = 0)


(
1− exp

(
1− eW (eβ

⊤xi )
))

f(τTXi)
(
1− F (τ⊤si)

)[
F (τ⊤si) + (1− F (τ⊤si)) exp

(
1− eW (eβ

⊤xi )
)]

(1− F (τ⊤si))


+ I(Yi = 0)


f(τTXi)

[
F (τ⊤si) +

(
1− F (τ⊤si)

)
exp

(
1− eW (eβ

⊤xi )
)]

[
F (τ⊤si) + (1− F (τ⊤si)) exp

(
1− eW (eβ

⊤xi )
)]

(1− F (τ⊤si))


− f(τTXi)

1− F (τ⊤si)

= I(Yi = 0)

 f(τTXi)[
F (τ⊤si) + (1− F (τ⊤si)) exp

(
1− eW (eβ

⊤xi )
)]

(1− F (τ⊤si))

− f(τTXi)

1− F (τ⊤si)

= I(Yi = 0).
1[

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)] . f(τTXi)

1− F (τ⊤si)
− f(τTXi)

1− F (τ⊤si)

=
f(τTXi)

1− F (τ⊤si)
.

I(Yi = 0)[
F (τ⊤si) + (1− F (τ⊤si)) exp

(
1− eW (eβ

⊤xi )
)] − f(τTXi)

1− F (τ⊤si)

=
f(τTXi)

1− F (τ⊤si)
.
I(Yi = 0)−

[
F (τ⊤si) +

(
1− F (τ⊤si)

)
exp

(
1− eW (eβ

⊤xi )
)]

[
F (τ⊤si) + (1− F (τ⊤si)) exp

(
1− eW (eβ

⊤xi )
)]
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and

Si2(θ) =
∂ℓi(θ)

∂β
=

∂

∂β

{
I(Yi = 0) log

[
F (τ⊤si) +

(
1− F (τ⊤si)

)
exp

(
1− eW (eβ

⊤xi )

)]}
+

∂

∂β

{
I(Yi > 0)

[
Yi log[W (eβ

⊤xi)] + log[1− F (τ⊤si)]− eW (eβ
⊤xi )

]}

= I(Yi = 0)


∂

∂β
(−eW (eβ

⊤xi )).
(
1− F (τ⊤si)

)
. exp

(
1− eW (eβ

⊤xi )
)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)



+ (1− I(Yi = 0))

Yi

∂

∂β
[W (eβ

⊤xi)]

W (eβ⊤xi)
− ∂

∂β
[W (eβ

⊤xi)].eW (eβ
⊤xi )



= I(Yi = 0)


∂

∂β
[W (eβ

⊤xi)].(−eW (eβ
⊤xi )).

(
1− F (τ⊤si)

)
. exp

(
1− eW (eβ

⊤xi )
)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)



+ (1− I(Yi = 0))

Yi

∂

∂β
[W (eβ

⊤xi)]

W (eβ⊤xi)
− ∂

∂β
[W (eβ

⊤xi)].eW (eβ
⊤xi )



= I(Yi = 0)


∂

∂β
[W (eβ

⊤xi)].(−eW (eβ
⊤xi )).

(
1− F (τ⊤si)

)
. exp

(
1− eW (eβ

⊤xi )
)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)


+ (1− I(Yi = 0)) .

∂

∂β
[W (eβ

⊤xi)].

[
Yi

W (eβ⊤xi)
− eW (eβ

⊤xi )

]

= I(Yi = 0)


∂

∂β
[W (eβ

⊤xi)].(−eW (eβ
⊤xi )).

(
1− F (τ⊤si)

)
. exp

(
1− eW (eβ

⊤xi )
)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)


+

∂

∂β
[W (eβ

⊤xi)].

[
Yi

W (eβ⊤xi)
− eW (eβ

⊤xi )

]
− I(Yi = 0).

∂

∂β
[W (eβ

⊤xi)].

[
Yi

W (eβ⊤xi)
− eW (eβ

⊤xi )

]

= I(Yi = 0)


∂

∂β
[W (eβ

⊤xi)].(−eW (eβ
⊤xi )).

(
1− F (τ⊤si)

)
. exp

(
1− eW (eβ

⊤xi )
)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)


+

∂

∂β
[W (eβ

⊤xi)].

[
Yi

W (eβ⊤xi)
− eW (eβ

⊤xi )

]

− I(Yi = 0).Yi.


∂

∂β
[W (eβ

⊤xi)]

W (eβ⊤xi)

+ I(Yi = 0).
∂

∂β
[W (eβ

⊤xi)].eW (eβ
⊤xi )

= −I(Yi = 0)
∂

∂β
[W (eβ

⊤xi)].

eW (eβ
⊤xi ).

(
1− F (τ⊤si)

)
. exp

(
1− eW (eβ

⊤xi )
)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)


+
∂

∂β
[W (eβ

⊤xi)].

[
Yi

W (eβ⊤xi)
− eW (eβ

⊤xi )

]
+ I(Yi = 0).

∂

∂β
[W (eβ

⊤xi)].eW (eβ
⊤xi )

= −I(Yi = 0)
∂

∂β
[W (eβ

⊤xi)].

eW (eβ
⊤xi ).

(
1− F (τ⊤si)

)
. exp

(
1− eW (eβ

⊤xi )
)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
) − eW (eβ

⊤xi )


+

∂

∂β
[W (eβ

⊤xi)].

[
Yi

W (eβ⊤xi)
− eW (eβ

⊤xi )

]
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Note that

eW (eβ
⊤xi ).

(
1− F (τ⊤si)

)
. exp

(
1− eW (eβ

⊤xi )
)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
) − eW (eβ

⊤xi ) =
−eW (eβ

⊤xi ).F (τ⊤si)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)

Thus

Si2(θ) =
∂ℓi(θ)

∂β

= −I(Yi = 0)
∂

∂β
[W (eβ

⊤xi)].

 −eW (eβ
⊤xi ).F (τ⊤si)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)


+
∂

∂β
[W (eβ

⊤xi)].

[
Yi

W (eβ⊤xi)
− eW (eβ

⊤xi )

]

= I(Yi = 0)
∂

∂β
[W (eβ

⊤xi)].

 eW (eβ
⊤xi ).F (τ⊤si)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)


+

∂

∂β
[W (eβ

⊤xi)]

W (eβ⊤xi)
.

[
Yi −W (eβ

⊤xi).eW (eβ
⊤xi )

]

= I(Yi = 0)
∂

∂β
[W (eβ

⊤xi)].

 eW (eβ
⊤xi ).F (τ⊤si)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)


+

∂

∂β
[W (eβ

⊤xi)]

W (eβ⊤xi)
.

{
Yi −

[
F (τ⊤si) +

(
1− F (τ⊤si)

)]
W (eβ

⊤xi).eW (eβ
⊤xi )

}

= I(Yi = 0)
∂

∂β
[W (eβ

⊤xi)].

 eW (eβ
⊤xi ).F (τ⊤si)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)


+

∂

∂β
[W (eβ

⊤xi)]

W (eβ⊤xi)
.

{
Yi −

(
1− F (τ⊤si)

)
W (eβ

⊤xi).eW (eβ
⊤xi )

}

−

∂

∂β
[W (eβ

⊤xi)]

W (eβ⊤xi)
.

{
F (τ⊤si).W (eβ

⊤xi).eW (eβ
⊤xi )

}

=
∂

∂β
[W (eβ

⊤xi)].eW (eβ
⊤xi ).F (τ⊤si).

 I(Yi = 0)

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
) − 1



+

∂

∂β
[W (eβ

⊤xi)]

W (eβ⊤xi)
.

{
Yi −

(
1− F (τ⊤si)

)
W (eβ

⊤xi).eW (eβ
⊤xi )

}

=
∂

∂β
[W (eβ

⊤xi)].eW (eβ
⊤xi ).F (τ⊤si).

I(Yi = 0)−
[
F (τ⊤si) +

(
1− F (τ⊤si)

)
exp

(
1− eW (eβ

⊤xi )
)]

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)

+

∂

∂β
[W (eβ

⊤xi)]

W (eβ⊤xi)
.

{
Yi −

(
1− F (τ⊤si)

)
W (eβ

⊤xi).eW (eβ
⊤xi )

}

Let Si(θ) = ∂ℓi(θ)/∂θ =
(
ST
i1 (θ) , S

T
i2 (θ)

)T
, (i = 1, . . . , n) be the score function of the
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ZIPBell model. Then Si1(θ) = ∂ℓi(θ)/∂τ and Si2(θ) = ∂ℓi(θ)/∂β are respectively given by

Si1(θ) =
f(τTXi)

1− F (τ⊤si)
.
I(Yi = 0)−

[
F (τ⊤si) +

(
1− F (τ⊤si)

)
exp

(
1− eW (eβ

⊤xi )
)]

[
F (τ⊤si) + (1− F (τ⊤si)) exp

(
1− eW (eβ

⊤xi )
)] ,

Si2(θ) = D.eW (eβ
⊤xi ).F (τ⊤si).

I(Yi = 0)−
[
F (τ⊤si) +

(
1− F (τ⊤si)

)
exp

(
1− eW (eβ

⊤xi )
)]

F (τ⊤si) + (1− F (τ⊤si)) exp
(
1− eW (eβ

⊤xi )
)

+
D

W (eβ⊤xi)
.

{
Yi −

(
1− F (τ⊤si)

)
W (eβ

⊤xi).eW (eβ
⊤xi )

}

with D =
∂

∂β
[W (eβ

⊤xi)].

Proof of Theorem 1

To demonstrate that θ̂F is a consistent estimator of θ, note that

UF,n(θ) =
1√
n

n∑
i=1

Si(θ),

GF,n(θ) = − 1√
n

∂UF,n(θ)

∂θT
= − 1

n

n∑
i=1

∂Si(θ)

∂θT
.

Basing on the WLLN, we have: GF,n(θ)
p→ GF (θ) and (K2), the convergence of GF,n(θ) to

GF (θ) is uniform in a neighborhood of the true θ.

Depending on the inverse function theorem of Foutz (1977), it can be inferred that a unique

consistent solution of UF,n(θ) = 0 exists in a neighborhood of the true.

Consequently, θ̂F is a consistent estimator of θ.

The asymptotic distribution of
√
n(θ̂F − θ) is inferred right here.

As we know θ̂F is the unique root of UF,n(θ) = 0, and perform the Taylor’s expansion of

UF,n(θ̂F ) at θ to have the main concern:

0 = UF,n(θ̂F ) = UF,n(θ) +

(
1√
n

∂UF,n(θ)

∂θT

)√
n(θ̂F − θ) + op(1).

This can lead to an inference:

√
n(θ̂F − θ) = G−1

F,n(θ)UF,n(θ) + op(1)

= G−1
F (θ)UF,n(θ) + [G−1

F,n(θ)−G−1
F (θ)]UF,n(θ) + op(1).

For i = 1, 2, ..., n, V ar[Si(θ)] = E [[Si(θ)]
⊗2] and E[Si(θ)] = 0.

Applying the central limit theorem and (K2), we can demonstrate that:

UF,n(θ)
d→ N(0, QF (θ)),
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with QF (θ) = V ar[UF,n(θ)]. Besides, because GF,n(θ) − GF (θ)
p→ 0 by the WLLN and

GF (θ) is nonsingular by (K2), we execute the Slutsky’s theorem to show that

[
G−1

F,n(θ)−G−1
F (θ)

]
UF,n(θ)

d→ 0,

In consequence
[
G−1

F,n(θ)−G−1
F (θ)

]
UF,n(θ)

p→ 0.

Using the Slutsky’s theorem we obtain
√
n(θ̂F − θ)

d→ N(0,∆F ),

with ∆F = G−1
F (θ)QF (θ)[G

−1
F (θ)]T = G−1

F (θ) since GF (θ) = QF (θ).
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