
HAL Id: hal-04448657
https://hal.science/hal-04448657v1

Preprint submitted on 9 Feb 2024 (v1), last revised 15 Feb 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Fortran... ok, and what’s next?
Vincent Magnin, José Alves, Antoine Arnoud, Arjen Markus, Michele

Esposito Marzino

To cite this version:
Vincent Magnin, José Alves, Antoine Arnoud, Arjen Markus, Michele Esposito Marzino. Fortran...
ok, and what’s next?. 2024. �hal-04448657v1�

https://hal.science/hal-04448657v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Fortran... ok, and what’s next?
Vincent Magnin∗, José Alves†, Antoine Arnoud‡, Arjen Markus§,

Michele Esposito Marzino¶

This is the official translation of the original French paper “Fortran... et puis quoi
encore ?” published in the Bulletin 1024 of the Société Informatique de France. This
translation was produced in two steps: first, tools based on deep learning were used,
then we reviewed the translation line by line and improved it manually. The article can
be cited as:

Magnin V., Alves J., Arnoud A., Markus A., and Esposito Marzino M., “For-
tran... et puis quoi encore ?”, Bulletin 1024, no. 22, pp.143–161, November 2023,
DOI:10.48556/SIF.1024.22.143, also available in English: “Fortran... ok, and what’s
next?”.

Modern Fortran is a standardized language that includes object-oriented and
parallel programming paradigms. The Fortran-lang community, created at the
end of 2019, is actively working to modernize its ecosystem. New compilers
are under development. And the fourth Fortran standard of the 21st century is
due to be published in autumn 2023 1.

1 Genesis and classical period
1.1 The first optimizing compiler
With his Master’s degree in mathematics, the young John Backus was hired
by IBM in 1950 to work on the company’s calculators. To lighten his machine-
language programming load, he first designed an interpreter called Speedcoding
for the IBM 701, featuring floating-point emulation. Then, in December 1953,

∗Lecturer, IEMN (UMR CNRS 8520), vincent.magnin@univ-lille.fr
†Development Team Leader on Multiphysics and Deep-Learning, Transvalor S.A., Sophia

Antipolis, jose.alves@transvalor.com
‡Economist, International Monetary Fund, antoine.arnoud@gmail.com
§Responsible for numerical models dedicated to water quality and ecology, Deltares

Research Institute, Pays-Bas, arjen.markus895@gmail.com
¶Doctoral student at the University of Liège, michele.espositomarzino@uliege.be
1Addendum: Fortran 2023 was published by ISO on November 27, 2023. The most recent

J3 Interpretation Document is https://j3-fortran.org/doc/year/24/24-007.pdf.

1

he proposed the FORTRAN2 (mathematical FORmula TRANslating system)
project. Machine language programming requires experts, and at least half the
cost of a scientific calculation is due to their salaries (programming, testing,
debugging). A high-level language would drastically reduce the amount of
work required. This economic argument enabled Backus to rapidly obtain
a team to work on a language and its compiler [18]. Everything had yet to
be invented. While the idea of a compiled language was already in the air
with Grace Hopper’s work on the A-0 language, the FORTRAN compiler3 is
considered to be the first optimizing compiler. The team was indeed aware
that, for it to be accepted, optimal code had to be generated whatever the
application. At the time, few people were prepared to believe that a machine
could generate machine code as fast as that written by a human being. And
von Neumann himself saw no need for a high-level language [28].

The target machine was the future IBM 704, and Backus insisted that it
should be the first machine to work directly with floating-point reals4. After
three years’ work, the compiler was finally deployed in April 1957. It was
a revolution. Mary Tsingou, physicist and mathematician at Los Alamos
National Laboratory, describes the situation: “When Fortran came, it was
almost like paradise” [23]. Its syntax is indeed simple and adapted to scientific
calculations, as its name implies. The programmer’s reference manual, ready
in October 1956, is 54 pages long [2], so the basics of the language can be
learned in a few hours. Frances Elizabeth Allen, hired at the age of 24 in July
1957, was in charge of teaching FORTRAN to IBM scientists, and the hardest
part was convincing them of its usefulness and efficiency. But reading the
compiler’s 20,000 lines of code would guide her career. She was awarded the
2006 Turing Award “for pioneering contributions to the theory and practice of
optimizing compiler techniques that laid the foundation for modern optimizing
compilers and automatic parallel execution.” [16]

Designed with only the IBM 704 in mind, the FORTRAN compiler quickly
proved adaptable to other machines, starting with IBM’s own, making it the
first portable programming language. The programmer could now abstract
from machine language, and the scientist could improvise as a programmer [28].
So it’s hardly surprising that, according to an article in the journal Nature
published in 2021, this compiler is one of the ten computer codes that have
most transformed science [34].

2The name was chosen at the end of 1954, the initial proposal being for an “automatic
coding system”. Note that FORTRAN is written for the period prior to Fortran 90.

3In fact, the articles of the time use the word translator, rather than compiler.
4In PCs, it wasn’t until 1989 with the Intel i486 32-bit microprocessor that the floating-

point arithmetic coprocessor (FPU) was no longer optional.

2

1.2 The first standardized language
On the downside, standardization soon became necessary to maintain the
language’s portability, with each compiler writer adding their own extensions.
It therefore became the first language to be standardized with the FORTRAN
66 standard (ANSI X3.9-1966), which includes two versions of the language: the
full language and a simplified version called Basic FORTRAN. An intermediate
version, ECMA-9, was even standardized a year earlier by the ECMA (European
Computer Manufacturers Association).

1.3 FORTRAN 77
The FORTRAN 77 standard (ANSI X3.9-1978), supplemented by the U.S.
Department of Defense’s MIL-STD-1753 extension, is a major development
that facilitates structured programming in particular.

The military extension also introduces the IMPLICIT NONE instruction,
which is now systematically used, to disable implicit variable typing. Indeed,
by default, variables whose names start with I, J, K, L, M or N are of integer
type, while all others are of real type. These are the classic loop counters i,
j, k that we still use!

The language remained dominant until the late 1970s. So much so, in
fact, that many artists used it to explore the new possibilities offered by the
computer: for example, to create algorithmic music (Iannis Xenakis and Pierre
Barbaud), graphic works (Hiroshi Kawano), poem generators and so on. And
FORTRAN 77 would remain a benchmark for a long, long time to come!

1.4 A Turing Award
Among other honors, John Backus received the 1977 Turing Award “for
profound, influential, and lasting contributions to the design of practical high-
level programming systems, notably through his work on FORTRAN, and for
seminal publication of formal procedures for the specification of programming
languages.”[19] Once the FORTRAN project was completed, he quickly moved
on to other adventures. His participation in ALGOL 58 and 60 led him to
work on what came to be known as the Backus-Naur Form (BNF), a formal
notation for describing a programming language. Appointed IBM Fellow in
1963, he went on to work on his vision of what a functional programming style
could be, his Turing reading being entitled Can programming be liberated from
the von Neumann style?: a functional style and its algebra of programs..

3

2 Modern Fortran
The expression Modern Fortran, often used in the titles of Anglo-Saxon books
over the last twenty years or so [20, 31, 32], has nothing official about it: some
will use it from Fortran 90/95 onwards, others from Fortran 2003 onwards. It
could be perceived as an oxymoron, a figure of speech common in our times,
but it’s not!

2.1 Fortran 90
The Fortran 90 standard, which arrived several years late, is a major revision,
as suggested by the change of case from FORTRAN to Fortran. This is also
its first ISO standard, managed by the international committee ISO/IEC
JTC1/SC22/WG5 and the American technical committee X3J3. Among the
many new features is the free form source code format, which at last makes
it possible to write code without worrying about the role of certain columns
inherited from punched cards (fixed form format, generally associated with
the extension .f). Note that the most commonly used extension for the free
format is .f90, which can be confusing for beginners, as the code can conform
to any subsequent standard!

Rather than defining new types, the concept of kind was introduced to
define potential variants of all basic types (real, complex, integer, logical,
character). For integer and real, intrinsic functions can be used to select
a variant, if supported by the compiler, according to the desired numerical
characteristics.

The division of source code into modules enables an embryo of object-
oriented programming, with each module embedding its own data and rou-
tines, and facilitates compiler diagnostics. The public (default) and private
attributes can be used to indicate whether or not an entity will be accessible
outside the module. In addition, the concept of derived type allows users to
define their own data structures:

type person
character (30) :: name
integer :: age
real :: weight

end type

type(person) :: him = person ("Jean", 50, 70.5)
print *, "His name is: ", him%name

Note the use of the % character instead of the classic dot to access a field in
the structure. The introduction of derived types is all the more important as
they will form the basis for the introduction of object-oriented programming
in the Fortran 2003 standard.

4

Array-oriented syntax simplifies code by avoiding numerous loops. In the
example below, three vectors with three components are defined 5, the sum
is calculated and displayed, and a vector is calculated whose components are
the square roots of the components of the first. Fortran 90 indeed introduced
so-called elemental functions and procedures, which can be applied to both
scalars and arrays.
program arrays

implicit none
real :: u(3) = [1.0, 2.0, 3.0]
real :: v(3) = [4.0, 5.0, 6.0]
real :: w(3)

w = u + v
print *, "Sum of vectors u and v: ", w
print *, " Square roots vector of u(i): ", sqrt(u)

end program arrays

In addition, arrays can now be dynamically allocated. In this case, they
are declared with the attribute allocatable and their dimensions are then
defined later using the instruction allocate(). Occupied space can be freed
with the instruction deallocate().

Pointers (attribute pointer) made their appearance in Fortran, facilitating
the use of lists, trees, graphs and so on. But whereas in the C language a
pointer is a memory address, the Fortran concept of a pointer is more akin to
an alias. Moreover, an entity can only be pointed to if it has been declared
with the attribute target or if it is itself a pointer. These properties enable
compilers to generate robust, optimized code.

Finally, two new sections appear in Fortran standards: the list of obsolescent
features and the list of deleted features. In practice, the latter are generally still
supported by compilers, so that older code can continue to function without
change.

2.2 Fortran 95
This is a minor standard that complements the previous one. Fortran 90 had
introduced the possibility of allocating memory and using pointers to arrays.
But these features had their limits, as the programmer had to manage memory
explicitly. Fortran 95 offers much greater freedom and flexibility: automatic
deallocation frees the programmer from much of the memory management,
limiting memory leakage problems and allowing them to concentrate even
more on what they want to do rather than on the technical details of getting
there.

5The strict syntax for initializing an array in Fortran 90 is (/ /), but Fortran 2003
introduced the more readable and intuitive syntax of square brackets.

5

A function can be given the attribute pure, indicating that it produces no
side effects (modification of a global variable or an argument, input/output
realization, etc.) and can therefore be used without problem in a parallel
computation. The programmer can also define their own elemental functions,
a particular form of pure function.

As a side note, one of the methods used to evolve the language is therefore
to add attributes such as elemental, pure, intent, allocatable, pointer,
target. . . They also ensure the robustness of the code, enabling the compiler
to perform the necessary checks for each.

Finally, the first attempt to introduce parallel computing into the language
itself, forall loops will eventually be declared obsolescent in the Fortran 2018
standard, their complexity having made it difficult for compilers to implement
them efficiently.

2.3 Fortran 2003
Just like Fortran 90, Fortran 2003 is a major release, as evidenced by its 585
pages, 55 % more than the previous standard. In particular, it introduces
object-oriented programming (OOP) [36], based on the modules and derived
types introduced by Fortran 90. A class is thus a derived type containing both
data and methods, called type-bound procedures, as in this simple example:
type :: vector2D

real :: x, y
contains

procedure :: add => add_vector2D
procedure :: rotation => rotation_vector2D

end type vector2D

The introduction of classes makes true OOP possible: more or less inspired
by the concept of class in languages such as C++ and Java, a Fortran class
can be abstract (attribute abstract) or not, and can be extended (attribute
extends). But one can also customize the methods of objects belonging to
the same class by using procedure pointers, the syntax being similar, and thus
achieve a prototype-oriented programming style [11].

To further facilitate the construction of abstract data types such as linked
lists, we can also use so-called unlimited polymorphic variables. These can be
described as chameleonic, as they take on the value assigned to them, while
retaining the initial type, thus maintaining safe typing [31].

Another major novelty concerns the long awaited standardization of the
interoperability with the C language. This makes it easy to call C libraries in
a portable way, for example to create graphical interfaces with GTK [29] or
manage databases with SQLite [31]. Conversely, it makes it easier to write
Fortran libraries for other languages, such as Python, enabling them to benefit

6

from its computational speed and numerical precision. In practice, the new
intrinsic module iso_c_binding contains constants for mapping between the
data types of the two languages, as well as functions for mapping between
their pointers. As the order in which multi-dimensional arrays are stored in
memory is different in the two languages, the programmer must take care to
reverse the order of indices when such an array is passed from one language to
the other.

Both the move_alloc() procedure and implicit allocation on assignment
simplify the dynamic management of allocatable objects, including reallo-
cation.

Among the many other new features are I/O improvements (asynchronous
transfers, for example), three intrinsic modules providing access to IEEE 754
standard functions (e.g. changing the microprocessor rounding mode), optional
support for Unicode characters (ISO/IEC 1064619 1:2000 UCS-4), access to
command-line arguments and environment variables.

3 Parallel Computing
Some Fortran codes are designed to run on personal computers, while others are
intended to be run on supercomputers. Parallelism must therefore be managed
at different scales and on different types of architectures [30]: multi-core
microprocessors, vectorization 6, graphics processors (GPUs), multi-processor
machines of various architectures, networked machines, etc. Setting up parallel
computing standards and implementing them efficiently is therefore a difficult
task.

The first attempts date back to the second half of the 80s, at a time when
supercomputers were evolving from a vector model to a multi-processor model,
and network computing was becoming more widespread. In 1989, PVM (Par-
allel Virtual Machine) [12] was one of the first solutions for parallel computing
in C or Fortran on a network of heterogeneous machines (Unix/Windows).

At the end of 1991, work began on standardizing High Performance Fortran
(HPF)[27]. With everything still to be invented, this version of the language
failed to convince and never reached maturity, except in Japan, which developed
its HPF/JA dialect and used it on the Earth Simulator supercomputer, the
most powerful in the world from 2002 to 2004 [1]. But HPF helped to lay the
foundations, and a number of seeds were sown. For example, the addition of
compiler directives in comments to ensure that the program remains compilable

6SIMD instructions (single instruction, multiple data) such as FMA, SSE, AVX, etc.
Modern compilers are able to vectorize certain loops automatically, and standards such as
OpenMP include SIMD directives enabling the developer to guide the compiler in complex
cases.

7

on non-parallel machines will be found in OpenMP or OpenACC, as will the
forall loops and pure attribute in Fortran 95.

The inclusion of parallel computing paradigms in the Fortran standards
themselves would require an enormous amount of time and experimentation.
This would have to wait until Fortran 2008 and 2018, with the considerable
effort this would entail in compiler development.

3.1 External Standards
Two external standards emerged in the 90s for the C, C++ and Fortran
languages [27]. Released in 1994, MPI (Message Passing Interface) enables
parallel programming by passing messages between processes. It is designed
to work with both shared-memory and distributed-memory systems. The
latter may involve computers in a network, nodes in a computing cluster, etc.
Powerful, but requiring the user to control inter-process communications, MPI
is sometimes referred to as the assembler of parallel computing. Released
in 1997, OpenMP (Open Multi-Processing) is designed for shared memory
systems. Using comment directives, it enables existing code to be parallelized
quite easily, if the algorithms are suitable.

The rise of GPU computing power in the 2000s led to the emergence of
various systems enabling calculations to be offloaded to the many cores of these
processors, including NVIDIA’s CUDA (Compute Unified Device Architecture)
in 2007, OpenCL 1.0 (Open Computing Language) in 2009, and OpenACC 2.0
(Open Accelerators) in 2012.

But these standards are external to Fortran. The next two standards would
introduce parallel computing paradigms into the language itself.

3.2 Fortran 2008
Initially developed as an extension to Fortran 95, coarrays are officially included
in the Fortran 2008 standard. Several copies of a program can be executed
in parallel, either on a multi-core processor or a supercomputer. Each copy,
called an image, holds its own data7.

The intrinsic functions num_images() and this_image() provide the num-
ber of images and the number of the current image (named co-index). The
syntax is simple and inspired by tensorial notations [33]. While Fortran array
indexes are within parentheses, the co-index is within brackets. Without
explicit brackets, reference is made to the co-array of the current image. Using
brackets, co-arrays of other images are accessed transparently. When needed, it
is possible to synchronize images using, for example, the sync all instruction.

7Single program, multiple data (SPMD).

8

Here is a simple example to compute an approximation of π using a Monte
Carlo method (an inefficient algorithm but suitable for this example!). We
declare a co-array k[*] of 64-bit integers8 which is zero initialized in each
image and incremented when a random point drawn inside a square of side
length 2 falls into the inscribed circle of unit radius. The star within the
brackets means that the number of co-dimensions will not be known until
execution. Once all the images reach the sync all instruction, image 1 is
responsible for retrieving and adding the results of all images, and finally print
the approximation of π.
program pi_monte_carlo_coarrays

use , intrinsic :: iso_fortran_env , only: wp=>real64 , int64
implicit none
real(wp) :: xy (2)
integer (int64) :: i, j, kt=0, k[*]=0
integer (int64), parameter :: n =1000000000

do i = 1, n / num_images ()
call random_number (xy)
if (sum(xy **2) < 1) k = k + 1

end do

sync all
if (this_image () == 1) then

do j = 1, num_images ()
kt = kt + k[j]

end do
print *, (4.0 _wp * kt) / n

end if
end program pi_monte_carlo_coarrays

Fortran 2008 also introduces do concurrent loops which tell the compiler
that the code inside the loop does not make use of data coming from previous
iterations, and so it can be parallelized if the compiler considers it beneficial.
For example the NVIDIA compiler nvfortran is capable of offloading execution
of such a loop on their NVIDIA GPUs. These loops will eventually replace
forall parallel loops that Fortran 95 standard tried to introduce.

Two new features allow for a better code structuring. Large modules can be
split into submodules. Also, if originally all declarations had to come before
the first executable statement, the block...end block construct allows for
local declaration of variables (or module imports) at any point of the code.
Hence, the code structure of a long procedure can be made more readable.

Among other additions in the Fortran 2008 standard, we find the intrin-
8These are scalars to simplify the example, but a co-array can also be declared from a

classic array.

9

sic module iso_fortran_env which provides standardized kind constants
clearly identifying the types of data (for example real64 and int64), the
maximum number of dimensions of an array (named rank) going from 7 to
15, the possibility of launching another program through the command line
(execute_command_line), and the contiguous attribute which tells the com-
piler that an array received as a procedure argument will occupy a contiguous
memory area9. Finally, many intrinsic functions are added, particularly for sci-
entific computation: inverse trigonometric functions with complex arguments,
inverse hyperbolic functions, Bessel functions, error and gamma functions, etc.

3.3 Fortran 2018
Fortran 2018 brings numerous improvements, for example concerning C inter-
operability, but more importantly new concepts for parallel computing. Images
can be grouped into teams working in parallel on different tasks. The concept of
events allows images to communicate easily without requiring co-arrays. And
collective subroutines allow performing, in a simple way, reduction operations
such as computing the sum of the values of a variable in each image. The
previous example on the Monte Carlo computation of π can thus be rewritten
more concisely:
program pi_monte_carlo_co_sum

use , intrinsic :: iso_fortran_env , only: wp=>real64 , int64
implicit none
real(wp) :: xy (2)
integer (int64) :: i, k=0
integer (int64), parameter :: n =1000000000

do i = 1, n / num_images ()
call random_number (xy)
if (sum(xy **2) < 1) k = k + 1

end do

call co_sum (k, result_image = 1)
if (this_image () == 1) print *, (4.0 _wp * k) / n

end program pi_monte_carlo_co_sum

Intel compilers were the first to fully implement Fortran 2018 and since
2020 they are freely available, as all the other Intel oneAPI Toolkits. With the
2023 version, the classic ifort compiler is giving way to the new ifx compiler,
based on the LLVM compiler infrastructure.

On the side of open source compilers, GFortran (GCC) is the most used.
It still does not fully implement Fortran 2018 and relies on the OpenCoarrays

9Which could potentially improve the performances.

10

library for parallel computing, yet it has the essentials and its development
progresses.

4 Fortran and its communities
4.1 From the origins
Recent programming languages often have an organized community on the
internet. But Fortran did not wait for computer networks to have its commu-
nities. In 1955, IBM created the SHARE user group for its IBM 704 machines.
Backus and his team presented and discussed through this group their work
on the language and its first compiler. The following paragraph describes the
situation after its distribution [24]:

Nonetheless, the technical basis of FORTRAN was sufficiently
sound that usage was like a snowball going downhill. Soon there
were hundreds of customers making hundreds of suggestions for
improvements. They would find bugs and send them in – not only
error reports, but in many cases the fixes would come in along
with the reports. Many suggestions applied to such matters as
improvement of diagnostics – little practical things – and it was as
if there were hundreds of people working on improving FORTRAN.
The suggestions just poured in, and we put them in as fast as we
could.

In 1970 the Fortran Specialist Group of the British Computer Society10

was founded, which continues today its missions consisting in promoting the
language, working to its evolutions and fostering exchanges and meetings
between users.

4.2 Usenet
Following the creation of the Usenet network, a discussion group
net.lang.f77 was created and later renamed comp.lang.fortran in 1986. It
would remain for a long time the main place online where Fortran is discussed.
It is still used, with typically ten new discussion topics per month. Nowadays,
Usenet servers are scarce, including in universities, but one can also access
these discussion groups via Google Groups.

10https://fortran.bcs.org/

11

4.3 Some reference websites
The Fortran Wiki11, created in 2008, has become an important source of
information on the language, by allowing everyone to enrich it.

The Fortran French Wikipedia page is kept up to date and offers a lot of
information and references on the language and its ecosystem.

A site12 created in 2012 by Ondřej Čertík will long remain a reference in
the Fortran world. Its content began to be transferred to the Fortran-lang
community site.

4.4 The Fortran-lang community
Despite all these tools, it must be recognized that the galaxy of Fortran users
remained rather scattered and poorly organized (except in standardization
committees), compared to more recent languages. For a long time, there
were many researchers or engineers publishing their libraries and programs in
isolation on their websites.

At the end of 2019, a handful of developers decided to remedy this situation.
They came together and created the Fortran-lang community using the GitHub
platform to centralize developments [26]. They thus created a central site13 to
provide all the information and resources needed by both the beginner and
the expert programmer alike. To federate the community, they also set up a
modern forum, the Fortran Discourse14, which now has over 1,100 registered
users (from students to Fortran Standards Committee members). The most
involved in the organization meet to discuss at monthly videoconferences15

4.4.1 The stdlib standard library

Having made a diagnosis of the weaknesses of the language ecosystem, the
founders of the community quickly launched two flagship projects. Unlike
many languages (C, C++ , Python. . .), Fortran did not have a standard
library. The development of a standard (de facto) library named stdlib was
therefore launched. One goal is to prevent language users from reinventing
the wheel each of them on their own, and on the other hand to serve as a
laboratory to propose new functionalities to the standardization committee.
Its version 0.2.1 already contains hundreds of utility functions (strings, files,
operating system integration, unit tests, logging. . .), various algorithms (search,
sort, fusion. . .) and mathematical functions (linear algebra, special functions,

11http://fortranwiki.org/
12https://www.fortran90.org/
13https://fortran-lang.org/
14https://fortran-lang.discourse.group/
15The community began to grow at the time of the first COVID lockdowns.

12

Fast Fourier Transform, random numbers, statistics, numerical integration,
optimization. . .).

4.4.2 The fpm package manager

Another problem in the Fortran ecosystem was the dispersion of libraries,
developed independently and using different building tools. The Fortran
Package Manager fpm solves it [6]. It is largely inspired by Cargo, the utility
of the Rust language serving both as package and build system manager.
Creating a Hello World project, compiling it and launching it becomes as
simple as typing in a terminal:
$ fpm new myproject
$ cd myproject
$ fpm run

The project options are defined in its manifest, a file in TOML format
present at its root. The fpm package manager manages dependencies, which
it downloads from GitHub. Associated with the git clone command, testing
a Fortran project available on GitHub can be done in thirty seconds. Project
tests can be started with the fpm test command. The community indeed
promotes current good practices in programming: automatic testing, usage of
a version manager, etc.

Fpm, whose version 0.9 was released in June 2023, is now a popular tool
in the community and gradually legacy libraries are modernized using the
latest language features and transformed into fpm packages. As a cherry on
top of the cake, fpm is essentially written in Fortran, showing it is also a
general purpose language. This bold choice allows in particular to attract
more contributors from the community and promotes the sustainability of the
project.

A new flagship project, the fpm registry will offer an official repository
for fpm packages. The user will be able to easily discover, install or publish
Fortran packages, as he can do in Python with PyPI.

4.4.3 The interactive LFortran compiler

One of the community founders, Ondřej Čertík16, has been developing since
2019 a new open source compiler LFortran [10], one of whose key features is
that it can be used interactively, for example with Jupyter. It also has several
backends: LLVM, C, C++, Julia, WASM and x86-64. It is not yet in beta
version but its development is advancing rapidly.

16Now engineer at GSI Technology, a manufacturer of SRAM.

13

4.4.4 Financial support

The effort to develop all these tools is carried out partly within the professional
framework of some members, as part of student members’ studies, or as a
hobby for others. But it is also possible to fund additional efforts. Thus,
since 2021, the Fortran-lang organization participates every year in the Google
Summer of Code (GSoC) where several students paid by Google were working
on its projects [5]. At the end of 2022, the German organization Sovereign
Tech Fund, under Federal Ministry for Economic Affairs and Climate Action,
gave the organization the equivalent of three full-time jobs to work six months
on the fpm package manager and the LFortran compiler [4]. It thus recognizes
the importance of the language in climate modeling.

4.5 The FortranCon international conference
There have been conferences on High-Performance Computing (HPC) but the
community lacked a conference dedicated solely to the Fortran language. A first
International Fortran Conference (FortranCon) took place at the University of
Zurich from 2 to 4 July 2020, but virtually because of the COVID pandemic.
It allowed actors and language users to meet and discuss their work and
projects. The second edition, FortranCon 2021, was held again virtually in
Zurich on 23 and 24 September 2021, with typically 70 to 80 participants
present simultaneously on the Zoom video conferencing platform. The videos
of these conferences are freely accessible online [7].

5 And what’s next?
5.1 Fortran 2023
The Fortran 2023 standard is expected to be released in fall 2023, almost 70
years after John Backus’ letter to his superior. With many compilers not
yet fully implementing Fortran 2018, the new standard does not intentionally
provide major features but simply many improvements in different parts of
the language: new functions for string handling, in particular to facilitate C
to Fortran string interoperability, trigonometric functions in degrees, longer
source lines, new format descriptors, some improvements for parallel computing,
conditional expressions (same syntax as in C), etc. The simple attribute allows
to define pure functions that do not access any external data except through
its arguments. do concurrent loops are now able to use reduction variables.
All the new features are summarized in the The New Features of Fortran 202x
document [35].

We could regret that the language does not evolve faster, and that it
is necessary to wait a long time for certain improvements to come, while

14

newer languages have generally a more rapid development. However being
a standardized language has its pros and cons, and the Fortran Standards
Committee pays particular attention to the backward compatibility when new
features are added. Thus, compilers incorporating the latest developments
are generally still capable of compiling the so-called legacy codes, that are
sometimes 40 or more years old. These legacy codes are still actively used in
large organizations or companies.

As a side note, ISO standards are paid documents. But the working
document Fortran 2023 Working Draft is still available on the J3 committee
website [3]. All committee’s working drafts are indeed in open access.

5.2 Fortran 202Y
The development of the next standard, voluntarily loosely named Fortran 202Y,
is underway. It should notably develop the concept of generic programming, in
particular with templates as in C++. This is certainly the most awaited novelty
by Fortran developers, as evidenced by the dedicated directory on the GitHub
repository [9] of the J3 standards committee, where since the end of 2019
anyone can propose and discuss new features for the language. The LFortran
compiler also serves as an experimental platform for the implementation of
this major future evolution.

As an important change at the symbolic level, we should finally see declared
obsolescent the historic default implicit typing! Among the other innovations
whose study is recommended by the J3, we can note the possibility of defining
within the code itself the types used by default for each type of data, a Fortran
preprocessor, and asynchronous task management.

6 Conclusion
As languages have been proliferating, Fortran has become a niche language.
To caricature (because it is also a general language), one could say that it only
does one thing, but it does it well: numerical computation17! That is why it
is still widely used in meteorological computations, climate modeling, fluid
dynamics, computational chemistry, materials modeling [13], nuclear energy,
aerospace, and many other areas. It is even used in economics and finance
[22, 17]. It has adapted to all generations and architectures of computer
hardware. The 2021 Turing Award was moreover awarded to the American
Jack Dongarra18 “for his pioneering contributions to numerical algorithms and

17In the 2000s, the slogan of the late g95 compiler was it’s free crunch time and GFortran’s
one was free number crunching FORALL!.

18He had worked in particular on Fortran libraries such as EISPACK (1974), LINPACK,
BLAS, LAPACK (1992) and ScaLAPACK (1993), etc. BLAS is also among the ten computer

15

Name URL Characteristics
Fortran Play-
Ground

https://play.fortran-lang.org/ From Fortran-lang community; GFor-
tran compiler; stdlib standard library
directly accessible

Compiler Ex-
plorer

https://godbolt.org/ Multi-language; possibility to compare
execution results and generated assem-
bly code generated by different compil-
ers; sharing option. . .

tutorialspoint https://www.tutorialspoint.com/ Multi-language with didactic material;
GNU compiler; possibility to publicly
share the code

LFortran https://dev.lfortran.org/ Compiler in alpha version; graphical dis-
play; internal compiler representations
and C++ generated code

Table 1: Some online Fortran compilers

libraries that enabled high performance computational software to keep pace
with exponential hardware improvements for over four decades.” [21]

In the scientific computing domain, Fortran is now competing19 with
numerous languages and softwares: C, C++, Python, Julia, MATLAB, R, etc.
Does labeling it as an old language really make sense? The 1956 textbook
was 54 pages long, the Fortran 2023 standard is 681 pages long. The language
has continuously incorporated new programming paradigms. It is thus one of
the rare standardized languages to integrate parallel computing paradigms 20.
Standardized for nearly six decades, its foundations are stable while allowing it
to evolve, which is a guarantee of durability for the engineer and the researcher
[25]. On the compiler side, not all include the latest standards, and some have
recently disappeared as Lahey and Absoft, but others appear. Intel’s engineers
worked five years to completely overhaul their compiler for LLVM. The open
source Flang compiler is also being redesigned to integrate LLVM, driven
in particular by NVIDIA. And another new open source compiler already
mentioned, LFortran, is in development.

Finally, Fortran now has a dynamic and organized community, full of
projects to improve its ecosystem and seasoned with current good practices
of software development. Ten years after coming out of the top 20 on the
TIOBE index [14] of most “popular” programming languages, Fortran has
been returning periodically since April 2021, even reaching 11th place in July
2023. Interested readers will find online some good French courses [8, 15]
to approach learning the language or learn its latest features, at least up to
Fortran 2008. For Fortran 2018, it will be necessary for the moment to refer
to the English books quoted previously [20, 32]. It is also possible to learn

codes with the greatest impact on science [34].
19While hiding in the computing libraries of some of them, for example NumPy or SciPy!
20Ada 83 was a forerunner in this regard, but Ada’s reliability and safety goals take

precedence over performance. True to its original impetus, Fortran’s approach to parallelism
focuses on numerical performance.

16

modern Fortran using one of the online compilers listed in Table 1.

7 Acknowledgements
We thank Pierre Hugonnet and Jeremie Vandenplas for their manuscript review
and their precious remarks, as well as all the members of the Fortran-lang
community for the rich and high-quality discussions we have on the Fortran
Discourse, for the vision of its founders and for the efforts made to improve
the language ecosystem.

References
[1] Earth Simulator: https://www.top500.org/resources/top-systems/

the-earth-simulator-earth-simulator-center/.

[2] Fortran - Programmer’s reference manual: http://archive.
computerhistory.org/resources/text/Fortran/102649787.05.
01.acc.pdf.

[3] Fortran 2023 standard draft: https://j3-fortran.org/doc/year/23/
23-007r1.pdf.

[4] Fortran at the Sovereign Tech Fund: https://sovereigntechfund.de/
fortran_en.

[5] Fortran-lang at the Google Summer of Code: https://summerofcode.
withgoogle.com/programs/2023/organizations/fortran-lang.

[6] Fortran Package Manager fpm: https://github.com/fortran-lang/
fpm.

[7] FortranCon videos: https://www.youtube.com/@fortrancon6189.

[8] The IDRIS (CNRS Institute for Development and Resources in Intensive
Scientific Computing) Fortran course in French: http://www.idris.fr/
formations/fortran/.

[9] J3 committee repository: https://github.com/j3-fortran.

[10] LFortran compiler: https://lfortran.org/.

[11] Prototype-based programming: https://en.wikipedia.org/wiki/
Prototype-based_programming.

[12] PVM (Parallel Virtual Machine): https://www.csm.ornl.gov/pvm/.

17

[13] Software FORGE® for simulation of hot and cold forming processes:
https://www.transvalor.com/en/forge.

[14] TIOBE index (most popular languages): https://www.tiobe.com/
tiobe-index/fortran/.

[15] Introduction au fortran 90/95/2003/2008 : polycopié de Master de
Jacques Lefrère, Université Pierre et Marie Curie Sorbonne Univer-
sité : http://wwwens.aero.jussieu.fr/lefrere/master/mni/f90+c/
polyf90.pdf, November 2019.

[16] Frances ("Fran") Elizabeth Allen. A.M. Turing Award 2006: https:
//amturing.acm.org/award_winners/allen_1012327.cfm.

[17] Antoine Arnoud, Fatih Guvenen, and Tatjana Kleineberg. Benchmark-
ing Global Optimizers. Technical Report w26340, National Bureau of
Economic Research, Cambridge, MA, October 2019.

[18] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L.
Herrick, R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A.
Hughes, and R. Nutt. The FORTRAN Automatic Coding System. In
Papers Presented at the February 26-28, 1957, Western Joint Computer
Conference: Techniques for Reliability, IRE-AIEE-ACM ’57 (Western),
page 188–198, New York, NY, USA, 1957. Association for Computing
Machinery.

[19] John Backus. A.M. Turing Award 1977: https://amturing.acm.org/
award_winners/backus_0703524.cfm.

[20] Milan Curcic. Modern Fortran: Building efficient parallel applications.
Manning Publications, first edition, November 2020.

[21] Jack Dongarra. A.M. Turing Award 2021: https://amturing.acm.org/
award_winners/dongarra_3406337.cfm.

[22] Hans Fehr and Fabian Kindermann. Introduction to Computational
Economics Using Fortran. Oxford University Press, May 2018.

[23] Virginia Grant. We thank Miss Mary Tsingou, December 2020.

[24] W. P. Heising. The Emergence of FORTRAN IV from FORTRAN II.
In Annals of the History of Computing, volume 1, pages 28–32, January
1984.

[25] K. Hinsen. Dealing With Software Collapse. Computing in Science
Engineering, 21(3):104–108, 2019.

18

[26] Laurence J. Kedward, Balint Aradi, Ondrej Certik, Milan Curcic, Sebas-
tian Ehlert, Philipp Engel, Rohit Goswami, Michael Hirsch, Asdrubal
Lozada-Blanco, Vincent Magnin, Arjen Markus, Emanuele Pagone, Ivan
Pribec, Brad Richardson, Harris Snyder, John Urban, and Jeremie Van-
denplas. The State of Fortran. Computing in Science & Engineering,
24(2):63–72, March 2022.

[27] Ken Kennedy, Charles Koelbel, and Hans Zima. The rise and fall of High
Performance Fortran: an historical object lesson. In Proceedings of the
third ACM SIGPLAN conference on History of programming languages,
San Diego California, June 2007. ACM.

[28] Mark Jones Lorenzo. Abstracting Away the Machine: The History of the
FORTRAN Programming Language (FORmula TRANslation). SE Books,
August 2019.

[29] Vincent Magnin, James Tappin, Jens Hunger, and Jerry DeLisle. gtk-
fortran: a GTK+ binding to build Graphical User Interfaces in Fortran.
The Journal of Open Source Software, February 2019.

[30] Frédéric Magoulès and François-Xavier Roux. Calcul scientifique parallèle.
October 2017.

[31] Arjen Markus. Modern Fortran in Practice. Cambridge University Press,
Cambridge, 2012.

[32] Michael Metcalf, John Ker Reid, and Malcolm Cohen. Modern For-
tran explained: incorporating Fortran 2018. Numerical mathematics and
scientific computation. Oxford University Press, 2018.

[33] Robert W. Numrich. Parallel numerical algorithms based on tensor
notation and Co-Array Fortran syntax. Parallel Computing, 31(6):588–
607, June 2005.

[34] Jeffrey M. Perkel. Ten computer codes that transformed science. Nature,
589(7842):344–348, January 2021.

[35] John Reid. The New Features of Fortran 202x. https://wg5-fortran.
org/N2151-N2200/N2194.pdf. Technical report, 2022.

[36] Damian Rouson, Jim Xia, and Xiaofeng Xu. Scientific software design:
the object-oriented way. Cambridge Univ. Press, Cambridge, 1. pbk. ed
edition, 2014.

19

