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PROBING THE TRANSITION FROM POLYNOMIAL TO EXPONENTIAL

COMPLEXITY IN SPIN GLASSES VIA N-PARTICLE BRANCHING BROWNIAN

MOTIONS

ALEXANDRE LEGRAND AND PASCAL MAILLARD

Abstract. The continuous random energy model (CREM) is a Gaussian process indexed by a binary tree
of depth T , introduced by Derrida and Spohn, then Bovier and Kurkova, as a toy model of a spin glass.

Addario-Berry and the second author have established the existence of an algorithmic hardness threshold
x∗ in the CREM: finding a state of energy lower than −xT is possible in polynomial time if x < x∗, and
takes exponential time if x > x∗, with high probability. In this article, we are interested in the nature of the

transition from polynomial to exponential complexity near the algorithmic hardness threshold. We do this by
studying in detail the performance of a certain beam-search algorithm of beam width N = N(T ) depending
on T—we believe this algorithm to be natural and asymptotically optimal. The algorithm turns out to be

essentially equivalent to the time-inhomogeneous version of the so-called N-particle branching Brownian
motion (N -BBM), which has seen a lot of interest in the last two decades. Studying the performance of the
algorithm then amounts to investigating the maximal displacement at time T of the time-inhomogeneous

N-BBM. In doing so, we are able to quantify precisely the nature of the transition from polynomial to
exponential complexity, proving that the transition happens when the log-complexity is of the order of T 1/3.
This result appears to be the first of its kind and we believe that this phenomenon should extend to other
models.
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1. Introduction and main results

A large body of literature is concerned with algorithmic hardness thresholds for combinatorial optimization
problems on random instances. This has been a very active research area in the last two decades, drawing
extensively on results and methods from the theory of spin glasses in statistical mechanics. See e.g. [32, 35]
and the references therein. A stylized model of a spin glass is the continuous random energy model (CREM),
initially introduced by Derrida and Spohn [31] and Bovier and Kurkova [21]. The CREM is a certain
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Gaussian process on the rooted binary tree of depth T , see Section 1.3 below for a definition. The algorithmic
hardness of optimizing the Hamiltonian of the CREM has been studied by Addario-Berry and Maillard [1].
We recall their main result, which states informally as follows (we denote by VT the leaves of the tree):

Theorem 1.1 (from [1]). Consider the CREM with parameters A(·) and T ∈ N, the former being a

continuously differentiable function on [0, 1]. Let σ2(·) := A′(·) and vc :=
√
2 log 2

∫ 1

0
σ(s)ds. Let ε > 0, then

the following holds:
(i) There exists an algorithm with run-time linear in T that finds a vertex u ∈ VT such that XCREM

u ≥
(vc − ε)T with high probability.

(ii) There exists γ = γ(A, ε) > 0 such that for T sufficiently large, for any algorithm, the number of
queries performed before finding a vertex u ∈ VT such that XCREM

u ≥ (vc + ε)T is stochastically bounded from
below by a geometrically distributed random variable with parameter exp(−γT ).

In other words, Theorem 1.1 proves the existence of an algorithmic hardness threshold for the CREM:
finding a vertex with a value greater than (vc + ε)T for a given ε > 0 typically requires a number of queries
exponential in T , whereas values smaller than (vc − ε)T can be obtained in linear time. An algorithm in
this context is, roughly speaking, any random sequence of vertices, such that the choice of the next vertex
only depends on the values of the previous vertices. Note that this result is not interesting from a purely
theoretical computer science perspective, since the input size of the problem is exponential in T . However,
as argued in Addario-Berry and Maillard [1] and in Section 2.1 below, this result sheds light on the efficiency
of algorithms on other spin glass models, for which the input complexity is indeed polynomial in T .

In light of Theorem 1.1, it is natural to ask about the complexity of finding vertices in the CREM
with value near the threshold vcT . The present paper aims to provide a partial answer to this question.
Indeed, we study in detail the efficiency of a particular algorithm—the N -CREM—which has complexity
(i.e. number of queries) O(TN). The interesting regime is when the complexity is stretched exponential in
T , i.e. N = N(T ) = exp(O(Tκ)) for some κ ∈ (0, 1). The most important takeaway from this article is that
the output of the N -CREM algorithm undergoes a phase transition at κ = 1/3, and we fully determine the
asymptotics at, below and above this critical point.

In order to ease the study of the algorithm, we embed the tree in continuous-time. This yields a time-
inhomogeneous version of a stochastic process called the N -particle branching Brownian motion or N -BBM,
see Figure 1. This process has generated interested in the last decades, notably due to its relation to the
study of front propagation phenomena. The results obtained here are therefore interesting for the N -BBM in
its own right. In fact, to our knowledge, this article is the first comprehensive study of the asymptotics of
time-inhomogeneous N -BBM.

The remainder of the article is built around the time-inhomogeneous N -BBM. We come back to the
CREM, spin glasses and algorithms in Sections 1.3, 2.1 and 2.2.

1.1. Branching Brownian motion and N-BBM. The branching Brownian motion (BBM) can be
described as follows. At time t = 0 we consider a (non-empty) initial configuration of particles on the real
line, which all start moving as standard Brownian motions until some exponentially distributed random
times with parameter β0. All those movements and exponential “clocks” are taken independently from one
another. When one of the exponential clocks rings, the corresponding particle splits into a random number
ξ ≥ 2 of new ones at its location. Then, those particles start evolving the same way, independently, with
their own exponential clocks. Following a generalization first introduced in [31], in this paper we will be
interested in BBM’s with time-inhomogeneous motion. More precisely, let σ : [0, 1] → (0,∞) be a smooth
function (twice continuously differentiable is enough) : then for some fixed final time T > 0, we assume that,
at time t ∈ [0, T ], the infinitesimal variance of all the Brownian motions involved in the construction is given
by σ2(t/T ).

From this process, one can construct the (time-inhomogeneous) N -particles branching Brownian motion
(N -BBM) by adding the following selection mechanism: we start from an initial configuration containing
at most N particles, N ∈ N. At any time of a splitting event, we only keep the N particles at the highest
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Figure 1. Running maximum of simulations of time-inhomogeneous N -BBM with varying N .
Parameters: T = 1000, σ(t) = 0.125+ t2. The dashed curve corresponds to the theoretical position
of the running maximum of the time-inhomogeneous BBM without selection (N = ∞), which is
attained up to random O(1) fluctuations, see [20].

positions. We denote by XN
T the particle configuration of the N -BBM at time T , seen as a (finite) counting

measure on R (full formal notation and construction of the N -BBM are presented more extensively below).
We write max(XN

T ) for the maximal displacement of the process at time T , i.e. the position of the highest
living particle from the N -BBM. Similarly, XT denotes the particle configuration of the BBM (without
selection) at time T , and max(XT ) the maximal displacement of the BBM.

The maximum displacement of the BBM has been extensively investigated in the literature, both for the
time-homogeneous and inhomogeneous cases, see [23, 24, 31, 54] or more recently [2, 51, 52] among other
works. On the other hand, studying the maximum of the homogeneous N -BBM is a more difficult matter: it
was first done in [25] with heuristic methods, and later in [48] (see also [8]). In this paper, we study the
maximum of the N -BBM in the time-inhomogeneous case. Moreover, we will be interested in the case where
N depends on T , with N = N(T ) → ∞ as T → ∞. More precisely, we define

(1.1) L(T ) := logN(T ) ,

and we shall consider the regime where 1 ≪ logN(T ) ≪ T . Note that the original BBM formally corresponds
to N = +∞.

Remark 1.1. We stick to the convention that N is chosen as a function of T , but we could also take T as a
function of N or N and T as a function of a third parameter such that N and T both go to infinity. The
results can be adapted straightforwardly.

1.2. Statement of results on the N-BBM.

Notations. Throughout this paper, C2([0, 1]) denotes the set of C2 functions from [0, 1] to (0,+∞) (in
particular they are positive). Let the infinitesimal variance of the N(T )-BBM be given by σ2(t/T ), t ∈ [0, T ],
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for some σ ∈ C2([0, 1]). Define

(1.2) v(s) =

∫ s

0

σ(s) ds , s ∈ [0, 1],

which is called the natural speed of the BBM. Recall that ξ denotes the offspring distribution of particles,
and β0 denotes the branching rate: in this paper we assume E[ξ2] < +∞, and, using the Brownian scaling
property, one can assume without loss of generality that β0 = (2(E[ξ]− 1))−1.

Let C denote the set of all finite particle configurations, i.e. all finite counting measures on R; and for
N ≥ 1, let CN := {µ ∈ C, µ(R) ≤ N}. For µ ∈ C (resp. µ ∈ CN ), the law of the BBM (resp. N -BBM)
starting from the initial configuration µ will be denoted by Pµ (we use the same notation for both, and what
branching process is considered at any given time will always be clear from context).

For any µ ∈ CN(T ), define

QT (µ) := sup
{
q ∈ R

∣∣∃κ ∈ [0, 1] : µ
(
[q − κσ(0)L(T ),+∞)

)
≥ N(T )κ

}
(1.3)

= inf
{
q ∈ R

∣∣∀κ ∈ [0, 1], µ
(
[q − κσ(0)L(T ),+∞)

)
< N(T )κ

}
.

We shall see below that this term determines how the choice of the initial configuration µ ∈ CN(T ) reverberates
on the displacement of the N(T )-BBM after a long time (see Section 3.4 for more details). For instance, one
can check for y ∈ R that QT (δy) = y and QT (N(T )δy) = y + σ(0)L(T ).

Let Ai and Bi denote respectively the Airy functions of first and second kind, and define

(1.4) Ψ(q) :=
q2/3

21/3
sup

{
λ ≤ 0

∣∣Ai(λ)Bi(λ+ (2q)1/3) = Ai(λ+ (2q)1/3)Bi(λ)
}

< 0 , q > 0 ,

and Ψ(−q) := q +Ψ(q) for −q < 0; and finally Ψ(0) := −π2

2 . It is proven in [52, Lemmata 1.7, A.4] that
q 7→ Ψ(q) is well-posed and convex (hence continuous) on R. Moreover, let a1 denotes the absolute value of

the largest root of Ai (i.e. a1 = 2.33811 . . .); then one has Ψ(q) ∼ − a1q
2/3

21/3
as q → +∞.

Let us denote the positive and negative parts of a real number with

(1.5) (x)+ := x1{x≥0} , (x)− := −x1{x≤0} , ∀x ∈ R ,

and, for a function f : R → R, let us write similarly (f)+(x) := (f(x))+ and (f)−(x) := (f(x))−, x ∈ R.
Furthermore, oP(f(T )) denotes a random quantity which, when divided by f(T ), converges to 0 in PµT

-
probability as T → +∞. Finally, we say that a function σ ∈ C2([0, 1]) changes its monotonicity finitely
many times if there exists u0 = 0 < u1 < . . . < up = 1 such that σ is monotonic (i.e. non-increasing or
non-decreasing) on each [ui−1, ui], 1 ≤ i ≤ p.

Main result: asymptotic of the maximum. We now state the main result of this paper.

Theorem 1.2. Let σ ∈ C2([0, 1]), let L(T ) = logN(T ) → +∞ as T → +∞, and denote by XN(T )
T the

empirical measure on R at time T > 0 of a N(T )-BBM with infinitesimal variance σ2(·/T ), started from

some initial configuration µT ∈ CN(T ), T ≥ 0. Let max(XN(T )
T ) denote the maximal displacement of the

process at time T . We have the following.
(i) (Sub-critical regime) Assume 1 ≪ L(T ) ≪ T 1/3. Then,

(1.6) max(XN(T )
T ) = QT (µT ) + v(1)T

(
1− π2

2L(T )2

)
+ oP

(
T

L(T )2

)
.

(ii) (Critical regime) Assume L(T ) ∼ αT 1/3 for some α ∈ (0,+∞). Then,

(1.7) max(XN(T )
T ) = QT (µT ) + v(1)T +

[∫ 1

0

σ(u)

α2
Ψ
(
− α3σ

′(u)

σ(u)

)
du

]
T 1/3 + oP

(
T 1/3

)
.
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(iii) (Super-critical regime) Assume T 1/3 ≪ L(T ) ≪ T , and that σ changes its monotonicity finitely
many times. Then,

(1.8) max(XN(T )
T ) = QT (µT ) + v(1)T +

[∫ 1

0

(σ′)+(u) du

]
L(T ) + oP

(
L(T )

)
.

In the super-critical regime (1.8), if σ is non-increasing, Theorem 1.2 gives little information. However,
we complete it with the following result.

Proposition 1.3. Let σ ∈ C2([0, 1]) be strictly decreasing, let T 1/3 ≪ L(T ) ≤ +∞, and consider the initial
particle configuration δ0 (i.e. one particle at the origin). Then as T → +∞, one has,

(1.9) max(XN(T )
T ) = v(1)T − a1

21/3

[∫ 1

0

σ(u)1/3|σ′(u)|2/3 du
]
T 1/3 + oP

(
T 1/3

)
.

Some assumptions in this proposition (namely, constraining the initial configuration to be δ0, and assuming
σ is strictly decreasing) are not as general as one would expect when compared to Theorem 1.2: we further
discuss them in the proof, see Section 8.1 below.

Remark 1.2. Let us point out that Proposition 1.3 also holds for L(T ) = +∞, that is for the maximum of
the BBM without selection when σ is decreasing: this has already been proven in [51]. However, when σ is
not decreasing, the maximum of the BBM without selection is vmaxT + o(T ) for some vmax > v(1) (this is a
well-known result, which follows e.g. from direct adaptations of [21] or [52]). This is in line with (1.8), since
one can let L(T ) be arbitrarily close to T , hence it implies that the maximum of the BBM without selection
is larger than any v(1)T + o(T ) for σ not decreasing.

Notational convention and rephrasing of the main result. In order to write Theorem 1.2 and upcoming
statements in a more condensed form, let us denote the three regimes (i.e. T 1/3 ≪ L(T ) ≪ T , L(T ) ∼ αT 1/3

and 1 ≪ L(T ) ≪ T 1/3) respectively with the superscripts “sup”, “crit” and “sub”. We will also occasionally
consider the regime L(T ) ≫ T 1/3 in the case of non-increasing σ, which we denote with the superscript
“sup-d”. In what follows, we will always assume that N depends on T according to one of the four regimes.
Furthermore, in the “sup” regime we always implicitly assume that σ changes its monotonicity finitely many
times (this technical restriction is further discussed below) and in the “sup-d” regime we assume that σ is
decreasing. Then, we define the error scaling terms for each regime with

(1.10) bsupT := L(T ) , bcritT = bsup-dT := T 1/3 , and bsubT :=
T

L(T )2
,

for T ≥ 0; and the limiting terms with,

(1.11)

msup
T := v(1)T +

[∫ 1

0

(σ′)+(u) du

]
L(T ) ,

mcrit
T := v(1)T +

[∫ 1

0

σ(u)

α2
Ψ
(
− α3σ

′(u)

σ(u)

)
du

]
T 1/3 ,

msub
T := v(1)T

(
1− π2

2L(T )2

)
,

and msup-d
T := v(1)T − a1

21/3

[∫ 1

0

σ(u)1/3|σ′(u)|2/3 du
]
T 1/3.

Theorem 1.2 and Proposition 1.3 can then be summarized as follows:

Theorem 1.4 (Rephrasing of Theorem 1.2 and Proposition 1.3). Let the assumptions of Theorem 1.2 (in
the regimes “sup”, “crit” or “sub”) or of Proposition 1.3 (in the regime “sup-d”) hold. Then, for every
∗ ∈ {sup, crit, sub, sup-d}, we have as T → +∞,

(1.12) max(XN(T )
T ) = QT (µT ) +m∗

T + oP
(
b∗T
)
.
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Complementary result: empirical measure and diameter. We complement the main result with a statement,
in the critical and super-critical regimes, about the empirical measure of the particles below the asymptotic
maximum and the diameter of the configuration at the final time. We do not expect the very same claim to
hold in general in the subcritical regime: especially for (1.13), a random centering would be required, see
Remark 8.2. We write log+(x) = log(x ∨ 1).

Proposition 1.5. Suppose the assumptions of Theorem 1.2 hold and that we are in the critical or super-
critical regime, i.e. ∗ ∈ {crit, sup}. Then, as T → ∞,

(1.13) sup
y∈[0,1]

∣∣∣∣∣ log+ XN(T )
T

(
[QT (µT ) +m∗

T − yσ(1)L(T ),+∞)
)

L(T )
− y

∣∣∣∣∣ −→ 0 , in PµT
-probability.

Additionally, if min(XN(T )
T ) denotes the position of the minimum of the N(T )-BBM at time T , then

(1.14) max(XN(T )
T )−min(XN(T )

T ) = σ(1)L(T ) + oP(L(T )).

Remark 1.3. We can rephrase the first part of Proposition 1.5 as follows: in the critical and super-critical
regimes, one has for T large,

XN(T )
T ([QT (µT ) +m∗

T − yσ(1)L(T ),+∞)) = N(T )y+oP(1),

uniformly in y ≤ 1 not too close to zero.

1.3. Results on variants of the N-BBM. In this section, we introduce two variants and one extension of
the N -BBM and state results analogous to Theorem 1.2 and Propositions 1.3 and 1.5.

N-BBM with deterministic branching times. Our results also apply to a variant of the N -BBM in which
particles branch simultaneously at deterministic times on a time grid aN, for some a > 0. Let ξ and σ be as
above. The process is then defined as follows: Given T > 0, particles diffuse independently according to time
inhomogeneous branching Brownian motions with infinitesimal variance σ2(t/T ) at time t. Furthermore, at
each time which is a multiple of a = 2 logE[ξ], each individual is replaced independently from the others by
a random number of particles with the same distribution as ξ. In the following, the BBM with deterministic
branching times will be called “BBMdb”, and its counterpart with selection will be called “N -BBMdb”.

Proposition 1.6. Let N(T ) → +∞ as T → +∞, then the results of Theorem 1.2, Propositions 1.3 and 1.5
also apply to the N(T )-BBMdb.

Remark 1.4. Note that we have chosen the value of a above for convenience, but we can handle any value
of a by a time-change and using a different function σ.

Continuous random energy model (CREM). In the same vein as Proposition 1.6, the results presented in this
paper can be applied to a class of discrete-time branching random walks with Gaussian increments. Here,
we focus on the specific case of the continuous random energy model (CREM), which we define as follows,
following Bovier and Kurkova [21].

Consider a function A from [0, 1] to [0, 1] which is non-decreasing and satisfies A(0) = 0, A(1) = 1. Let

TT := {∅} ∪⋃T
i=1{0, 1}i denote the rooted binary tree of depth T ∈ N, and for 0 ≤ i ≤ T , write Vi for the

set of vertices u ∈ TT with depth |u| = i. Let XCREM
∅ := 0. For u ∈ TT−1, and ui one of its two offspring,

i ∈ {0, 1}, let XCREM
ui −Xu be a centered Gaussian random variable with variance

T
(
A
( |u|+1

T

)
−A

( |u|
T

))
,

and assume the XCREM
ui −XCREM

u , u ∈ TT−1, i ∈ {0, 1} are independent. Then the (Hamiltonian of the) CREM
with parameters A(·) and T is given by the values of the process X on the leaves of TT , that is (X

CREM
u )u∈VT

.
One may consider the CREM as an isotropic centered Gaussian process on the rooted binary tree, since
the covariance function only depends on the distance between the vertices and their distance to the root,
analogously to isotropic Gaussian processes on Euclidean space, see e.g. Berman [14] and the references
therein.
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If A is smooth, then the CREM can also be constructed from a variant of the time-inhomogeneous BBMdb

presented above. Indeed, consider (X̃t)t∈[0,T ] a BBMdb with infinitesimal variance σ2(s) := A′(s), s ∈ [0, 1],
and where all particles branch simultaneously into ξ ≡ 2 offspring each at each time of the grid aN, where
we take a := 2 log 2. We assume T ∈ aN, but the process ends at time T before branching. Assuming X̃
starts from two particles at the origin (or that it branches instantly at time 0), one obtains the following
equality in law:

(1.15) X̃T
(d)
=
(√

2 log 2XCREM
u

)
u∈VT/(2 log 2)

.

Let N ∈ N, and let (XCREM
u )u∈TT

be the construction of the CREM on the whole tree TT as presented
above. We may construct an “N -CREM” with the following procedure: perform a breadth-first exploration
of the tree TT , noting encountered values of XCREM at depth k with Xk,1, Xk,2, . . . Then, remove from the
tree all vertices (as well as the sub-tree they support) from Vk which are not associated with one of the
N highest values from the sequence Xk,i, i ≥ 1. Repeat that procedure at depth k + 1, considering only
the offspring of vertices which were not removed. When that procedure ends, it yields a family which we
denote (XN-CREM

T,i )i≤N(T ) ⊂ (XCREM
u )u∈VT

: this can be seen as an optimization algorithm on the CREM, with

complexity —that is, the number of queries throughout the procedure— of order O(TN). In particular,
choosing a specific sequence N = N(T ) allows for any complexity in T for that algorithm. One can also
interpret (XN-CREM

T,i )i≤N as the final values of a (discrete time) branching random walk with selection.
Recall that we defined the N -BBMdb above, i.e. the BBM with selection and deterministic branching

times. Then the BBM–CREM correspondence (1.15) also applies to the N -particles variants: more precisely,
one has

(1.16) X̃ 2N
T

(d)
=
(√

2 log 2 XN-CREM
T/(2 log 2),i

)
1≤i≤N

.

Remark 1.5. The presence of a 2N in the l.h.s. of (1.16) comes from the fact that, in the N -CREM, one has
to consider 2N Gaussian increments, then select the N highest before having the particles reproduce; whereas
in the N -BBMdb, the selection happens just after the reproduction event. Notice that, if N = N(T ) → +∞
as T → +∞, one has log(2N) ∼ logN =: L(T ): so the maximal displacement of the N -BBM and (2N)-BBM
have the same asymptotics in Theorem 1.2.

Let max(XN-CREM
T ) := max{XN-CREM

T,i , 1 ≤ i ≤ N(T )}, and recall (1.10) and (1.11). We have the following

result, which is an immediate corollary of Proposition 1.6 and (1.16).

Theorem 1.7. Consider the CREM with parameters A(·) and T ∈ N. Let N = N(T ) → +∞ as T → +∞,
and consider the associated N -CREM. Let ∗ ∈ {sup, crit, sub, sup-d} denote the regime satisfied by L(T ) :=
logN(T ), and σ2(·) := A′(·) ∈ C2([0, 1]). Then as T → +∞, one has,

(1.17) max(XN-CREM
T ) = (2 log 2)−1/2 m∗

(2 log 2)T + oP
(
b∗(2 log 2)T

)
.

Moreover, assume ∗ ∈ {crit, sup}; then one has as T → +∞,
(1.18)

sup
y∈[0,1]

∣∣∣∣∣ log+ #
{
i ≤ N, XN-CREM

T,i ≥ (2 log 2)−1/2[m∗
(2 log 2)T − yσ(1)L(T )]

}
L(T )

− y

∣∣∣∣∣ −→ 0 , in PµT
-probability,

and

(1.19) max(XN-CREM
T )−min(XN-CREM

T ) = (2 log 2)−1/2σ(1)L(T ) + oP(L(T )).

Remark 1.6. Equation (1.17) from Theorem 1.7 can be stated in words as follows. Let N = exp(Tκ). When
κ < 1/3, then with high probability, the value found by the N -CREM algorithm (i.e. its output) is far below
the threshold, more precisely, at vcT −O(T 1−2κ). When transitioning into the critical regime (κ = 1/3), the
second order term of the output escapes from a singularity at the scale T 1/3 (see also Figure 2 below). On
the other hand, if κ > 1/3, then with high probability the output of the algorithm is above the threshold and
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of order vcT +O(Tκ)—unless σ is non-increasing, in which case the output of the algorithm is o(T 1/3) close
to the maximum value of the CREM, which is of order vcT −O(T 1/3) with high probability.

N -BBM with time-inhomogeneous selection. It is natural to extend the N -BBM by allowing the selection
mechanism to be time-inhomogeneous as well. That is, starting from a (time-inhomogeneous) BBM over
the time horizon T > 0, at any time s ∈ [0, T ], keep only the particles at the N(s, T ) highest of the whole
population, for some function N(·, T ) fixed beforehand. Let us call this model the N(·, T )-BBM. The results
presented above—namely Theorem 1.2 and Proposition 1.5—can be extended to a class of N(·, T )-BBM
in which the selection does not vary too much: more precisely, the selection remains in the “same regime”
throughout the time interval [0, T ].

Consider some growing function L̂(T ) → +∞ as T → +∞, and a positive function ℓ ∈ C1([0, 1]), note
that this implies that ℓ is bounded away from 0 and +∞. Define for 0 ≤ s ≤ T ,

(1.20) L(s, T ) = logN(s, T ) := ℓ(s/T ) L̂(T ) ,

the log-population size at time s ∈ [0, T ] of the N(·, T )-BBM. We say that,

— L̂(T ) is sub-critical if 1 ≪ L̂(T ) ≪ T 1/3,

— L̂(T ) is critical if L̂(T ) ∼ T 1/3,

— L̂(T ) is super-critical if T 1/3 ≪ L̂(T ) ≪ T .
Let us adapt the notation from (1.10–1.11) by defining for T ≥ 0,

(1.21) b̂supT := L̂(T ) , b̂critT := T 1/3 , and b̂subT :=
T

L̂(T )2
,

as well as,

(1.22)

m̂sup
T := v(1)T +

[∫ 1

0

ℓ(u)(σ′)+(u) du

]
L̂(T ) ,

m̂crit
T := v(1)T +

[∫ 1

0

σ(u)

ℓ(u)2
Ψ
(
− ℓ(u)3

σ′(u)

σ(u)

)
du

]
T 1/3 ,

and m̂sub
T := v(1)T − π2T

2 L̂(T )2

∫ 1

0

σ(u)

ℓ(u)2
du .

Recall also the definitions of bsup-dT , msup-d
T . Then we have the following.

Theorem 1.8. Let σ ∈ C2([0, 1]). Let L̂(T ) → +∞ as T → +∞, let ℓ ∈ C1([0, 1]) and define N(·, T ) as

in (1.20). Denote with XN(·,T )
T the empirical measure on R at time T > 0 of a N(·, T )-BBM with infinitesimal

variance σ2(·/T ), started from some initial configuration µT ∈ CN(0,T ), T ≥ 0. Let max(XN(·,T )
T ) denote the

maximal displacement of the process at time T . Let ∗ ∈ {sub, crit, sup} denote the regime satisfied by L̂(T ).
Then as T → +∞, one has

(1.23) max(XN(·,T )
T ) = QT (µT ) + m̂∗

T + oP
(
b∗T
)
.

Moreover, if σ is strictly decreasing, µT ≡ δ0 and T 1/3 ≪ L̂(T ) ≤ +∞, then

(1.24) max(XN(·,T )
T ) = msup-d

T + oP
(
bsup-dT

)
.

Finally if the regime satisfies ∗ ∈ {crit, sup}, one also has

(1.25) sup
y∈[0,1]

∣∣∣∣∣ log+ XN(·,T )
T ([QT (µT ) + m̂∗

T − yσ(1)ℓ(1)L̂(T ) , +∞))

ℓ(1)L̂(T )
− y

∣∣∣∣∣ −→ 0 , in PµT
-probability,

and

(1.26) max(XN(·,T )
T )−min(XN(·,T )

T ) = σ(1)ℓ(1)L̂(T ) + oP(L(T )).
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Remark 1.7. The result in the regime sup-d matches Proposition 1.3 for homogeneous selection: in particular,

it does not depend on ℓ(·) or the precise asymptotics of L̂(T ).

Remark 1.8. If σ is constant, i.e. in the case of time-homogeneous diffusion, the critical regime of
Theorem 1.8 is an analogue for branching Brownian motion of Theorem 4.1 of Mallein [53], who considers quite
general branching random walks with time-inhomogeneous selection (but time-homogeneous displacement).

Organization of the paper. In Section 2 we compare our results with the literature on spin glasses and
branching Brownian motion; we also present extensive numerical simulations on a related discrete-space
model in Section 2.4.

In Section 3 we detail the construction of the time-inhomogeneous BBM and N(T )-BBM, and we establish
some coupling results between these processes that are used throughout this paper. Moreover, in Section 3.4
we state two key results, Propositions 3.6 and 3.7, which provide respectively a lower bound and an upper
bound on the maximal displacement of the N(T )-BBM for some specific initial configurations. Using these
and a coupling argument, we deduce Theorem 1.2 for any initial configuration.

Sections 4 through 7 are dedicated to the proofs of Propositions 3.6 and 3.7. The core idea of the proof is
to study the BBM with certain well-chosen killing barriers, which approximates the N(T )-BBM. In Section 4
we introduce the relevant barriers depending on the regime: super-critical, sub-critical and critical; as well as
some preliminary results. Then in Section 5 we compute moment estimates on some functions of the BBM
between barriers in each of those regimes. With these moment estimates, the proofs of Propositions 3.6
and 3.7 are performed in Sections 6 and 7 respectively. This completes the proof of Theorem 1.2.

Finally, Section 8 contains the proofs of all remaining statements from Section 1, that is Proposi-
tions 1.3, 1.5, 1.6 (from which one deduces Theorem 1.7), and Theorem 1.8. All of these rely on Theorem 1.2,
or arguments from its proof presented in previous sections.

2. Motivations and comments

2.1. Algorithms on spin glasses. In this section, we discuss algorithmic optimization in general spin
glasses. In the recent years, several authors have proposed optimization algorithms for mixed p-spin models
inspired by Parisi ultrametricity and the TAP approach for spin glasses, see Subag [63] for spherical spin
glasses, as well as Montanari [55] and El Alaoui, Montanari, Sellke [32] for Ising spin glasses. See also Huang
and Sellke [38, 39] for hardness results in this setting. These algorithms can be regarded as analogs to the
algorithms considered here and in Addario-Berry and Maillard [1] for the CREM. Note that in all of these
models, it is by now understood or generally believed that a necessary and sufficient obstruction to efficient
approximation of the ground state is provoked by the so-called “overlap gap property” —this is also called
the “overlap gap conjecture”. The overlap gap property, roughly speaking, states that the support of the
Parisi measure has a “gap”, i.e. is not an interval, at sufficiently small temperature. See e.g. Gamarnik and
Jagannath [36], as well as the survey by Gamarnik [35]. The overlap gap conjecture indeed holds for the
CREM under quite general assumptions. To wit, it is known for the CREM that the algorithmic hardness
threshold is equal to the ground state exactly if the covariance function A(·) is concave [1]. Moreover, it
has long been known that the Parisi measure is supported on the extreme points of the concave hull of
A(·) [22]. This proves the overlap gap conjecture, apart from boundary cases, where the function A(·) is
concave and has affine parts. However, a more precise and more restrictive statement of the overlap gap
property requires that the probability of two replicas to have an overlap in the gap is exponentially small [36]
which, we believe, rules out such cases. For example, in the simplest case, where A(x) ≡ x, i.e. for branching
random walks, it is known that this probability decays only polynomially fast [29].

In the same spirit, we hope that the current article may serve as a starting point to the study of efficiency
of optimization algorithms close to the algorithmic hardness threshold in general spin glass models. In fact,
the results from the current article shed a light on the transition from polynomial to exponential complexity
of optimization algorithms near the algorithmic hardness threshold, particularly when this threshold is
strictly below the ground state, i.e. when the overlap gap property holds. For the CREM, we establish the
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appearance of three different asymptotic regimes and a deep relation with the Brunet–Derrida correction for
the noisy FKPP equation (see Section 2.3 below). It would be very interesting to study this transition in
other spin glass models, such as (mixed) p-spin models.

Finally, let us mention that p-spin models admit a natural dynamics which is reversible with respect to
the Gibbs measure: Langevin dynamics (spherical models) and Glauber dynamics (Ising models). These
dynamics have also been proven to be asymptotically optimal in some of these models, see Sellke [61]. Spin-flip
dynamics have also been considered for the random energy model in relation to aging and metastability,
see for example [7, 6]. However, this dynamics does not seem to be efficient for algorithmic purposes in the
case of the CREM, in fact, it is not hard to show that the natural spin-flip dynamic has exponentially large
mixing time for every positive inverse temperature β.

The efficiency of more general optimization algorithms for the CREM is an interesting open problem.
We believe that the N -CREM considered here is close to optimal within the class of algorithms of a given
complexity. Indeed, due to the particular structure of the CREM (in particular, the branching property),
it is always favorable (on average) to explore subtrees of vertices of large values as opposed to subtrees of
vertices of smaller values. The N -CREM is therefore a very natural candidate for an asymptotically optimal
algorithm for this model.

2.2. Beam-search algorithms. The N -CREM considered in this article can be viewed as a particular
greedy-type algorithm, in a similar spirit as the algorithm studied in [1]. More precisely, it may be regarded
as a beam search algorithm [18], with the parameter N being the width of the beam. Our main result
(Theorem 1.7) then precisely describes how the output of the algorithm depends on the width of the beam
N , with a phase transition happening at logN ≈ T 1/3.

A practical takeaway might be the following. For the beam search algorithm, on the one hand, increasing
the width N of the beam substantially improves the output in the subcritical regime logN ≪ T 1/3, due to
the singular second order term −T/(logN)2 in the value of the output. For example, passing from N = T to
N = T 2 makes this term four times smaller, increasing the value of the output by a term of order T/(log T )2,
asymptotically when T is large. On the other hand, in the super-critical regime logN ≫ T 1/3, increasing
the width of the beam comes with a more tenuous improvement of the output; more precisely, it only grows
logarithmically in N .

The efficiency of beam search algorithms is still an active research area, see e.g. [46] and the references
therein. The beam search algorithm considered here is quite special, due to the nature of the CREM. For
example, the output of the algorithm is a non-decreasing function of the width of the beam, which is in
general not the case [46]. Nevertheless, we hope that our results shed light on the behavior of general beam
search algorithms for hard optimization problems on random instances, as the width of the beam grows to
infinity.

2.3. N-BBM: Comparison with previous results.

The Brunet-Derrida behavior in the sub-critical regime. Results similar to (1.6) have already been obtained
for some (time-homogeneous) branching processes with selection, see e.g. [8, 48] respectively for the N -
particles branching random walk (N -BRW) and the N -BBM. In those papers, the authors prove for fixed
N ∈ N the existence of an asymptotic speed vN := limT→+∞ max(XN

T )/T , where (XN
T ) denotes either the

N -BRW or N -BBM. Then, when N → +∞, this asymptotic speed converges very slowly —like (logN)−2—
to v∞ := limT→+∞ max(XT )/T , the asymptotic speed of the corresponding (time-homogeneous) branching
process without selection. This slow convergence has been called Brunet-Derrida behavior : it was first
observed in [25] with heuristic methods and numerical simulations, and it is expected to hold for many
models that fall under the universality class of the FKPP equation (see [27]).

Our Theorem 1.2 generalizes the Brunet-Derrida behavior to time-inhomogeneous BBM with selection,
for parameters (T,N) in the range 1 ≪ logN ≪ T 1/3. We can recover from this an asymptotic valid as
T → ∞, for large but fixed N :



MAXIMAL DISPLACEMENT OF A TIME-INHOMOGENEOUS N(T)-BBM 11

Corollary 2.1. Let (XN
T )T≥0 an N-BBM (or N-BBMdb) with infinitesimal variance σ2(·/T ). For any

ε > 0 and sequence (µT )T≥0 in C, one has,

(2.1) lim sup
N→+∞

lim sup
T→+∞

PµT

(
(logN)2

T

∣∣∣∣max(XN
T )−QT (µT )− v(1)T

(
1− π2

2(logN)2

)∣∣∣∣ > ε

)
= 0 .

This corollary follows naturally from (1.6) and a diagonal argument: if (2.1) does not hold, then one can
construct a sequence (Nk, Tk)k≥1 for which the probability above remains large. However, one can freely
choose (Tk)k≥1 such that Tk ≫ (logNk)

3 for large k, and this directly contradicts the sub-critical result
from Theorem 1.2 (we leave the details of the proof to the reader). Furthermore, let us point out that in
the time homogeneous case, the Brunet-Derrida behavior is expected to hold up to a number of particles
N satisfying logN ≪ T 1/2, see e.g. the discussion after Theorem 1.1 of Mallein [53]. In contrast, in the
time-inhomogeneous setting, this is true only in the range logN ≪ T 1/3, as Theorem 1.2 shows.

1:3 space-time scaling in branching Brownian motion and branching random walks. The 1:3 space-time
scaling has appeared many times in the study of branching Brownian motion and branching random walks.
For the time-homogeneous versions of these processes, it appears in the N -particle process mentioned above
as well as in the process with absorption at a linear space-time barrier, with the earliest appearance being, to
our knowledge, in Kesten [44] and later developments by many authors [9, 10, 11, 12, 13, 30, 37, 49, 50, 57].
Pemantle [57] is motivated by algorithmic aspects, inspired by Aldous [3, 4]. The 1:3 scaling also appears
in the study of the particles in BBM or BRW without selection remaining close to the running maximum
throughout their trajectory, which is usually called a “consistent(ly) maximal displacement” [33, 34, 42, 58].
In these different references, it is observed that, generally speaking, a branching process constrained to a
region of space of size L for a time T undergoes some critical behavior at scale L ≍ T 1/3. Since a branching
process limited to N particles occupies a region of size of order logN (recall (1.14)), this matches the critical
regime observed in Theorem 1.2.

In the context of time-inhomogeneous BBM or BRW, the 1:3 scaling has been considered to our knowledge
only in the study of extremal particles, in the regimes where their trajectories stay close to the running
maximum during a macroscopic time [52, 51]. Relatedly, it appears in the time-inhomogeneous Fisher-KPP
equation [56], due to a duality relation with the time-inhomogeneous BBM.

2.4. Generic branching random walk and numerical simulations. In Theorem 1.7 we provided an
asymptotic of max(XN-CREM

T ) as T → +∞ for the N -CREM, N = N(T ), and we commented above that it
may be seen as an optimization algorithm on realizations of the CREM. We conjecture that such results
adapt to more general (i.e. non-Gaussian) branching random walks (BRW). In this section we present the
conjectured formulae that would extend Theorem 1.2 to a generic BRW, and then we present numerical
simulations in the case of a Bernoulli BRW.

Conjecture for the general BRW. We introduce some notation in the vein of [52], which we only use in this
section. Let (Ls)s∈[0,1] be a family of laws of point processes. Then, the BRW with offspring distributions
(Ls)s∈[0,1] is constructed until time T ∈ N, starting from some initial configuration µT ∈ C, by induction: at
generation t < T , an individual u ∈ Nt located in x ∈ R generates |Lu

t/T | children located respectively in

x+ Y for Y ∈ Lu
t/T , where the point processes Lu

t/T ∼ Lt/T are independent in u, t. We write ξt/T ∼ |Lu
t/T |

for the law of the number of children at generation t, and we assume E[ξ2s ] < +∞ and ms := E[ξs] ≥ 1 for
all s ∈ [0, 1]. We write,

(2.2) κs(θ) := logE

[ ∑
Y ∈Ls

eθY

]
, θ ≥ 0 , s ∈ [0, 1] ,

for the log-Laplace transform of the offspring point processes. Consider its Fenchel-Legendre transform, that
is

(2.3) κ∗
s(v) = sup

θ>0
[vθ − φs(θ)] , v ∈ R , s ∈ [0, 1] .
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Morally, if a = (as)s∈[0,1] denotes a bounded, measurable function (called the “speed profile”), the num-

ber of particles from the BRW that remain close to
∑t

s=1 as/T at all times t ∈ {0, . . . , T}, is roughly

exp(−∑T
s=1 κ

∗
s/T (as/T )), see e.g. [15, 4] or more recently [52]. In particular, letting vmax be the first order

of the speed of the maximum of the BRW (without selection), it satisfies,

vmax = sup

{∫ 1

0

asds

∣∣∣∣ (as)s∈[0,1] such that ∀s ≤ 1,

∫ s

0

κ∗
u(au)du ≤ 0

}
.

Assume that for all s ∈ [0, 1], there exists a greatest root vs of κ∗
s(v) = 0, and that κ∗

s is finite in a
neighborhood of vs; then the “natural speed” of the process is defined by

(2.4) vnat = sup

{∫ 1

0

asds

∣∣∣∣ (as)s∈[0,1] such that ∀s ≤ 1, κ∗
s(as) ≤ 0

}
=

∫ 1

0

vsds ≤ vmax .

Finally, one defines (θs)s∈[0,1], (σs)s∈[0,1] with,

(2.5) ∀ s ≤ 1 , θs := ∂vκ
∗
s(vs) = (∂θκs)

−1(vs) , and σ2
s = ∂2

θκs(θs) = 1/∂2
vκ

∗
s(vs) .

Remark 2.1. In the case of a centered Gaussian BRW (i.e. the variables Y ∈ Ls are independent with law
N (0, σ2(s))), then one has κs(θ) = logms + θ2σ2(s)/2. In particular one has vs := σ(s)

√
2 logms, s ∈ [0, 1];

and vs, σ(s) do satisfy (2.5) with θs :=
√
2 logms/σ(s). In particular for ms = m constant for all s ∈ [0, 1],

vnat = v(1)
√
2 logm matches the definition of v(1) from Section 1 (up to a scaling factor coming from our

initial choice of branching rate β0).

Conjecture 2.2. With the notation above, let N(T ) = eL(T ) and consider XN(T )
T the configuration at

generation T of an N(T )-BRW started from a single particle at the origin (i.e. µT = δ0) and with offspring
distributions (Lt/T ), t ≤ T . Assume that (vs)s∈[0,1] is well-defined. Then, if L(T ) ∼ αT 1/3 for some α ∈ R,
one has as T → +∞,

(2.6) max
(
XN(T )

T

)
= vnatT +

[∫ 1

0

θsσ
2
s

α2
Ψ

(
α3θ̇s
θ3sσ

2
s

)
ds

]
T 1/3 + oP

(
T 1/3

)
.

If 1 ≪ L(T ) ≪ T 1/3, then

(2.7) max
(
XN(T )

T

)
= vnatT −

(
π2

2

∫ 1

0

θsσ
2
s ds

)
T

L(T )2
+ oP

(
T

L(T )2

)
.

If T 1/3 ≪ L(T ) ≪ T , then

(2.8) max
(
XN(T )

T

)
= vnatT +

[∫ 1

0

(θ̇s)
−

θ2s
ds

]
L(T ) + oP

(
L(T )

)
,

where (·)− denotes the negative part; and if additionally θ̇s ≥ 0 for all s ∈ [0, 1], then

(2.9) max
(
XN(T )

T

)
= vnatT − a1

21/3

[∫ 1

0

(θ̇sσs)
2/3

θs
ds

]
T 1/3 + oP

(
T 1/3

)
.

On different matter, recall that we left the case L(T ) ≍ T (that is N(T ) = eγT for some γ > 0) completely
open. Considering the definitions above, we may write the following conjecture, which matches [1, (5.1)] in
particular.

Conjecture 2.3. For the N-BRW with N(T ) = eγT , γ > 0, one has max(XN(T )
T ) = vγmaxT + oP(T ) as

T → +∞, where

vγmax := sup

{∫ 1

0

asds

∣∣∣∣ (as)s∈[0,1] such that ∀s ≤ 1, −γ ≤
∫ s

0

κ∗
u(au)du ≤ 0

}
.
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Example: Bernoulli BRW. We now turn to the case of Bernoulli increments: for p ∈ [0, 1], we write
Y ∼ Ber(p) if P(Y = +1) = 1 − P(Y = 0) = p. In particular E[Y ] = p and Var(Y ) = p(1 − p). Let
p : [0, 1] → (0, 1) a C2 function (we write ps := p(s)), and assume that Ls, s ∈ [0, 1] is such that, for Ls ∼ Ls,
then the variables Y ∈ Ls are independent with law Ber(ps). Then the log-Laplace and Fenchel-Legendre
transforms from (2.2–2.3) can be written,

κs(θ) = logms + log(1 + ps(e
θ − 1)) ,

and

κ∗
s(v) = − logms +DKL(Ber(a)||Ber(ps)) = − logms + (1− v) log

1− v

1− ps
+ v log

v

ps
,

where DKL(·||·) denotes the Kullback–Leibler divergence. Moreover, the speed profile (vs)s∈[0,1] and the
natural speed vnat in (2.4) are well defined if msps < 1 for all s ∈ [0, 1].

In the following, we take ξs ≡ 2 = ms for all s ∈ [0, 1] (i.e. branching is binary), and ps < 1/2. Then, the
functions vs, θs and σs, s ∈ [0, 1] are well defined and can be explicitly expressed in terms of each other.
One can numerically calculate vs as the greatest root of κ∗

s(v) = 0, and express θs and σs in terms of vs as
follows:

θs = ∂vκ
∗
s(vs) = log

(
(1− ps)vs
(1− vs)ps

)
,(2.10)

σ2
s = 1/∂2

vκ
∗
s(vs) = vs(1− vs) .(2.11)

We conducted extensive numerical simulations of maximal (and minimal) displacements of this particular
Bernoulli N -BRW. These simulations were made for two different choices of ps, s ∈ [0, 1] and various values
of T and N = N(T, α), the latter being chosen such that (logN)/T 1/3 takes a predetermined value α > 0,
with α ∈ {0.5, 1, 2, 4}. For every simulation, we start with N particles in 0, and we plot

(2.12) max
N(T )
T :=

max
(
XN(T )

T

)
− vnatT

T 1/3
, min

N(T )
T :=

min
(
XN(T )

T

)
− vnatT

T 1/3

the position of the maximum and minimum, recentered by the first-order term provided by Conjecture 2.2
and rescaled by T 1/3, as a function of α. We further compare the output with the theoretical result as
T → ∞, with fixed α. The results of the simulations are presented in Figure 2.

The simulations use a trick from Brunet and Derrida [26], which consists of storing the number of particles
at each site, instead of the position of every particle individually. This allows for an algorithm with a
complexity of O(αL(T )T ) arithmetical operations, since only O(αL(T )) sites are occupied at every time,
with very high probability. The code, written in Julia, took several hours to run on a 2020 MacBook Pro
with M1 chip.

2.5. Some perspectives. Let us discuss several ways in which our work could be expanded.

Technical restrictions. There are a few technical assumptions in Theorem 1.2 which we do not expect to be
optimal. We believe that our results hold for all σ(·) ∈ C1([0, 1]), however proving this does not seem to be
straightforward. Most importantly, our results also assume that σ is bounded from above and below: this
assumption is largely needed throughout our proof, but it does rule out many functions of physical relevance
(see e.g. [45]).

Furthermore, we expect the estimates for the empirical distribution of the process from Proposition 1.5 to
hold in the sub-critical regime as well, with msub

T in (1.13) replaced with a random centering (see Remark 8.2
for more details).

Genealogy of the N-BBM. In [11], the authors study the genealogy of a sample of particles in a (time
homogeneous) BBM with drift and absorption, and prove that it converges to the genealogy of the Bolthausen-
Sznitman coalescent. More specifically, they choose a near critical drift depending on some constant L > 0,
such that the process contains roughly eL particles throughout a time interval of length L3, and they remain
in a space interval of length L; moreover the absorption only kills the bottom-most particles of the process.



14 A. LEGRAND AND P. MAILLARD

(a) ps = 0.4− 0.3s (θs decreasing in s)

(b) ps = 0.1 + 0.3s (θs increasing in s)

Figure 2. Numerical simulations of the recentered, rescaled maximum and minimum positions

max
N(T )
T and min

N(T )
T (see (2.12)) of the binary, Bernoulli N -BRW and comparison with the

theoretical values. See text for details.

Comparing these properties with those of the N(T )-BBM, we therefore expect the same convergence to
hold for the genealogy of the N(T )-BBM in the critical regime logN ≈ T 1/3, up to a time-change of the
coalescent due to the inhomogeneity in time.

General time-inhomogeneous BRW. Our current results only apply to the N -BBM and Gaussian N -BRW,
but we conjecture that they can be extended to more general BRW laws, as presented in Conjecture 2.2.
Moreover, let us stress that the largest part of Sections 6 and 7 does not rely on the Gaussian distribution



MAXIMAL DISPLACEMENT OF A TIME-INHOMOGENEOUS N(T)-BBM 15

(nor the random branching times, see Section 8.3). Therefore, most of the required work should come from
obtaining moment estimates as in Section 5, which we expect to be technically involved.

3. Construction and couplings of the N-BBM

3.1. Definition of the time-inhomogeneous BBM. Let us start this section by recalling elementary
facts on time-inhomogeneous Brownian motions, and introducing some notation. Throughout this paper,
the standard, time-homogeneous Brownian motion on R will be denoted by (Wt)t≥0. Let T > 0 and
σ ∈ C2([0, T ]): then the time-inhomogeneous Brownian motion on [0, T ], with infinitesimal variance σ2(·/T )
and started from x ∈ R, is the Gaussian process (Bt)t∈[0,T ] with continuous sample paths such that,

Ex[Bt] = x and Ex[(Bs − x)(Bt − x)] =

∫ s∧t

0

σ2(u/T ) du , ∀ s, t ∈ [0, T ] .

It satisfies

(3.1) (Bt)t∈[0,T ]
(d)
= (x+WJ(t))t∈[0,T ] , where J(t) :=

∫ t

0

σ2(s/T ) ds .

In this paper, the law and expectation of a (non-branching) Brownian motion started from x ∈ R will always
be denoted by Px and Ex respectively. Similarly, the law of the Brownian motion started from time-space
location (s, x) ∈ [0, T ]× R (i.e. shifted in time by s) will be denoted by P(s,x). It will always be clear from
context whether the process considered is the time-homogeneous (W ) or inhomogeneous (B) variant.

The branching Brownian motion (BBM). We now turn to the branching Brownian motion. We do not
expand too much on precise definitions of branching Markov processes, but the reader can refer to [40, 41]
for a very complete and general construction, or e.g. [5] for a more accessible presentation.

The (time-inhomogeneous) branching Brownian motion (BBM) on [0, T ] can be described with some
random families, (Nt)t∈[0,T ] and (Xu(t))u∈Nt,t∈[0,T ], where the (finite) set Nt denotes the labels of particles
alive at time t ∈ [0, T ], and Xu(t) denotes the position at time t ∈ [0, T ] of a particle u ∈ Nt; which satisfies
the following properties:

— each individual u ∈ Nt, t ∈ [0, T ] dies at rate β0 ≥ 0, and is immediately replaced at the same position
by a random number of descendants following the law of a given random variable ξ ≥ 2,

— for u ∈ Nt, t ∈ [0, T ], the function (Xu(s))s∈[0,t] denotes the positions of u and its ancestors throughout
[0, t]: it has the same law as a time-inhomogeneous Brownian motion (Bs)s∈[0,T ] started from Xu(0),

— the evolution of any particle (lifespan, number of descendants and displacement), once born, is
independent of the other living particles.

Remark 3.1. Throughout the remainder of this paper, unless stated otherwise, the branching processes
we consider have offspring distribution ξ ≥ 2 with E[ξ2] < +∞, and branching rate β0 = (2(E[ξ] − 1))−1;
in particular, if the process is started from a single particle at x ∈ R, a standard computation yields
Eδx [|Nt|] = et/2 for all t ∈ [0, T ] (see e.g. [5]). We do not write those assumptions again.

Recall that C denotes the set of all finite counting measures on R. Then, the family (Xt)t∈[0,T ] defined by
Xt :=

∑
u∈Nt

δXu(t) defines a Markov process on C, which completely describes the particle configurations of

the BBM —in the following, we only write the sets of labels (Nt)t∈[0,T ] explicitly if they are needed. Since

we assumed E[ξ2] < +∞, the total population of the process does not blow up on [0, T ] with probability 1
(see e.g. [59] for a proof). For µ ∈ C, the law and expectation of the (time-inhomogeneous) BBM started from
the initial configuration X0 = µ will be denoted by Pµ and Eµ respectively throughout this paper. When it
is started from a single particle at the origin (i.e. µ = δ0), we shall sometimes omit the subscript and write
P, E.

With a slight abuse of notation, any finite counting measure µ ∈ C can be written as a finite subset of
R, with possible repetition of its elements. In particular, for µ, ν ∈ C, one may write µ ⊂ ν if all atoms in
the counting measure µ are also present in ν. Regarding the BBM, one has max(Xt) = maxu∈Nt

Xu(t) with
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that notation. Finally, let us mention that one can consider a time-homogeneous BBM very similarly by
replacing (Bs)s∈[0,T ] with (Ws)s∈[0,T ] in the definition above; but unless specified otherwise, we shall only
consider time-inhomogeneous BBM’s throughout this paper.

3.2. Selection mechanisms and N-BBM. Recall that CN denotes the set of counting measures on R
with total mass at most N . The N -particles branching Brownian motion (N -BBM) started from µ ∈ CN can
be defined from the original BBM (Xt)t∈[0,T ] by only keeping its N highest particles at all time, killing (i.e.
removing from the process) the others as well as their offspring. If several particles are located at the same
height, we break ties arbitrarily (e.g. by using the lexicographic order on the set of labels U , see below).
Note that we allow the N -BBM to start with fewer than N particles. Its particle configuration and set of
(living) particles at time t ∈ [0, T ] are respectively denoted by XN

t and NN
t (the positions of particles are

still denoted by Xu(t), u ∈ NN
t , t ∈ [0, T ]).

A formal construction of the N -BBM can be achieved through the use of stopping lines, which is the
analogue of a stopping time for a branching Markov process. We briefly recall the basic definitions, referring
the reader to [16, 28, 43] or [48, Appendix 1] for more details. Consider U = {∅} ∪⋃n≥1 Nn the set of finite

words over the alphabet N, and for u, v ∈ U let us write u ≼ v if u is a prefix of v. Following Chauvin [28],
we label1 the particles of the BBM in the set U in such a way that the genealogical order matches the prefix
order on U : this means

⋃
t∈[0,T ] Nt ⊂ U and for s ≤ t, v ∈ Ns, u ∈ Nt, one has v ≼ u if and only if v is an

ancestor of u. For (v, s), (u, t) ∈ U × [0, T ], we write (v, s) ≼ (u, t) if v ≼ u and s ≤ t; and (v, s) ≺ (u, t) if
additionally (v, s) ̸= (u, t). A subset ℓ ⊂ U × [0, T ] is a line if for all (u, t) ∈ ℓ, one has (v, s) /∈ ℓ for all
(v, s) ≺ (u, t). One can extend that order relation in the following way: for (u, t) ∈ U × [0, T ] and a line ℓ,
we write ℓ ≼ (u, t) if there exists (v, s) ∈ ℓ, (v, s) ≼ (u, t); and for A ⊂ U × [0, T ], we write ℓ ≼ A if ℓ ≼ (u, t)
for all (u, t) ∈ A. In the case of the BBM and for any line ℓ, we can define the σ-algebra

Fℓ := σ ({u ∈ Nt}, Xu(t) ; (u, t) ∈ U × [0, T ], ℓ ⊀ (u, t)) ,

which, informally, contains all information from the BBM except for the descendants of particles in ℓ. Then,
an (optional) stopping line for the BBM is a random line L such that for all (u, t) ∈ L, u ∈ Nt, and such
that for every line ℓ, {L ≼ ℓ} ∈ Fℓ: in other words, this means that determining if an individual (u, t) is in
L does not depend on the descendants of (u, t).

Therefore, for any stopping line L, one can define the BBM with selection mechanism L by removing
particles as soon as they “hit” L: i.e. it is the particle process which contains all particles (u, t) from the
BBM (that is u ∈ Nt, t ∈ [0, T ]) such that L ⋠ (u, t). In particular, the N -BBM is an example of a BBM
with selection mechanism: by induction over the sequence (tn)t≥1 of (random) branching epochs of the BBM,
one can easily construct a stopping line L, such that the BBM with selection mechanism L is an N -BBM.

We further introduce the following two classes of selection mechanisms:

Definition 3.1. Let N ∈ N and consider a BBM with some selection mechanism L.
(i) We say that it is an N−-BBM if, whenever at least N particles are above another particle, the latter

gets killed (but possibly more particles get killed).
(ii) We say that it is an N+-BBM if, whenever a particle gets killed, there are at least N particles above

it (but the process may contain more than N particles).

Notice that the N -BBM is both an N−-BBM and an N+-BBM.

3.3. Monotone couplings. For µ, ν ∈ C, we write µ ≺ ν if µ([x,+∞)) ≤ ν([x,+∞)) for all x ∈ R; in
particular this implies µ(R) ≤ ν(R) and max(µ) ≤ max(ν). Moreover, for two random counting measures X ,
Y on R, we say that “X is stochastically dominated by Y” if there exists a coupling between X and Y such
that P(X ≺ Y) = 1. In this section, we are interested in couplings between BBM’s and/or N -BBM’s which
preserve the comparison ≺ through time.

1In the literature it is standard to consider the BBM started from a single particle labelled with the empty word ∅; however
one can also start with finitely many particles labelled by integers, i.e. words of length 1.
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We first present a monotone coupling result between the N−-BBM, N+-BBM and N -BBM from [48], as
well as an immediate corollary which will be used many times in the present paper.

Lemma 3.2 (Lemma 2.9 in [48]). Let µ−
0 , µ

N
0 and µ+

0 denote (possibly random) finite counting measures

on R with µN
0 (R) ≤ N and µ−

0 ≺ µN
0 ≺ µ+

0 . Let XN (resp. XN− XN+

) be a time-inhomogeneous N -BBM
(resp. N−-BBM, N+-BBM) with diffusion σ : [0, 1] → (0,+∞) and started from µN

0 (resp. µ−
0 , µ

+
0 ). Then

there exists a coupling between the three processes such that, with probability 1, XN−

t ≺ XN
t ≺ XN+

t for all
t ∈ [0, T ].

Remark 3.2. There are two minor differences between this statement and [48, Lemma 2.9]: first, the latter
only considers the time-homogeneous branching Brownian motion, and second, in the Definition 3.1 we
removed the assumption that “Only left-most particles are killed”. With a thorough reading of [48, Section 2.3],
one can check that these assumptions actually play no role in the proof of the coupling, provided that the
same diffusion function σ : [0, 1] → (0,+∞) is used in the three processes. For the sake of conciseness, we
do not reproduce the proof in this paper.

Corollary 3.3. Let N1, N2 ∈ N, N1 ≤ N2. Let µ1 ∈ CN1
and µ2 ∈ CN2

which satisfy µ1 ≺ µ2: then there

exists (XN1
t )t∈[0,T ] and (XN2

t )t∈[0,T ] respectively an N1- and an N2-BBM, such that XN1
0 = µ1, XN2

0 = µ2

and XN1
t ≺ XN2

t for all t ∈ [0, T ] with probability 1.

Proof. This follows e.g. from the fact that, for N1 ≤ N2, an N2-BBM is also an (N1)
+-BBM. □

Moreover, we provide some additional coupling statements that will be used in this paper. Recall that,
with an abuse of notation, any counting measure µ ∈ C can be seen as a finite subset of R (with possible
repetition of its elements); and notice that, for µ, ν ∈ C, the statement “µ ⊂ ν” is strictly stronger than
“µ ≺ ν”.

Proposition 3.4. (i) For N ∈ N, µ ∈ CN , there exists a coupling between a BBM (without selection) and
an N -BBM both started from µ, such that, with probability 1, one has XN

t ⊂ Xt for all t ∈ [0, T ].
(ii) Let µ1, µ2 ∈ C such that µ1 ≺ µ2. There exists a coupling between two BBM’s (X1,t)t∈[0,T ], (X2,t)t∈[0,T ]

(without selection) such that X1,0 = µ1, X2,0 = µ2 and X1,t ≺ X2,t for all t ∈ [0, T ] with probability 1.

Proof. The first statement (i) is a direct consequence of the definition of the N -BBM as a BBM with selection
mechanism, so we only need to prove (ii).

Let k1 = µ1(R), k2 = µ2(R) (so k1 ≤ k2). There exists (xi)1≤i≤k1
and (yi)1≤i≤k2

such that

µ1 =

k1∑
i=1

δxi
, x1 ≥ . . . ≥ xk1

, and µ2 =

k2∑
i=1

δyi
, y1 ≥ . . . ≥ yk2

.

Moreover, the assumption µ1 ≺ µ2 implies xi ≤ yi for all 1 ≤ i ≤ k1.
We let (M1

t ,Z1
t )t∈[0,T ], . . . , (Mk2

t Zk2
t )t∈[0,T ] be k2 i.i.d. copies of a (time-inhomogeneous) BBM, all

starting from the initial configuration δ0 ∈ C, and we write for any fixed x ∈ R, i ≤ k2 and t ∈ [0, T ],

x+ Zi
t :=

∑
u∈Mi

t

δx+Xu(t).

Therefore, letting for t ∈ [0, T ],

X1,t :=

k1∑
i=1

(xi + Zi
t) , and X2,t :=

k2∑
i=1

(yi + Zi
t) ,

one notices that (X1,t)t∈[0,T ] and (X2,t)t∈[0,T ] are two BBM’s respectively started from µ1 and µ2, and they
satisfy X1,t ≺ X2,t for all t ∈ [0, T ], finishing the proof. □



18 A. LEGRAND AND P. MAILLARD

We conclude this section with a direct consequence of Corollary 3.3 regarding the quantiles of the N -BBM
configurations. For M ∈ N, and µ ∈ CN , let us define

(3.2) qM (µ) := inf{x ∈ R;µ([x,+∞)) < M} = sup{x ∈ R;µ([x,+∞)) ≥ M} .
In other words, qM (µ) is the position of the M -th highest particle in the configuration µ, with qM (µ) = −∞
if µ(R) < M . By definition, for any µ, ν ∈ C with µ ≺ ν, one has qM (µ) ≤ qM (ν) for all M ∈ N. In particular,
we have the following direct consequence of Corollary 3.3.

Corollary 3.5. Let N ∈ N. Let µ1, µ2 ∈ CN which satisfy µ1 ≺ µ2, and (XN
1,t)t∈[0,T ], resp. (XN

2,t)t∈[0,T ], an
N-BBM started from µ1, resp. µ2. Then there exists a coupling between the two processes such that with
probability one, one has qM (XN

1,t) ≤ qM (XN
2,t) for all t ∈ [0, T ], M ∈ N.

3.4. Main propositions and proof of Theorem 1.2. Let N = N(T ) → +∞ as T → +∞, and define
L(T ) = logN(T ). Using the coupling propositions presented above, notably Corollary 3.3, we claim that it is
sufficient to prove Theorem 1.2 for some specific initial configurations, and the main result follows. In order
to condense all upcoming statements, let us recall the following notation: the three regimes (L(T ) ≪ T 1/3,
L(T ) ≫ T 1/3 and L(T ) ∼ αT 1/3) are respectively denoted by the abbreviations sub, sup and crit. Recall
the definitions of the scaling and limiting terms in all regimes from (1.10) and (1.11). In the remainder
of this paper, we shall write “let ∗ ∈ {sup, sub, crit}” instead of “let 1 ≪ L(T ) ≪ T which satisfies either
L(T ) ≪ T 1/3, L(T ) ≫ T 1/3 or L(T ) ∼ αT 1/3 for some α > 0 as T → +∞”; and the symbol ∗ shall denote
the regime corresponding to the choice of L(T ). In particular, many upcoming statements are formulated in
terms of b∗T , m

∗
T instead of bsup, bsub . . .mcrit

T , (and similarly for any upcoming notation).
Let us introduce two specific families of initial configurations. On the one hand, for κ ∈ [0, 1] we shall

consider the measure ⌊Nκ⌋δ−κσ(0)L(T ) ∈ CN . On the other hand we define for ε ∈ (0, 1),

(3.3) µε :=

⌈ε−1⌉∑
k=0

⌈
Nkε+ ε

2

⌉
δ−kεσ(0)L(T ) ∈ C .

Remark 3.3. Notice that µε contains more than N particles: when starting an N-BBM from µε, we
instantaneously kill all particles which are not in the N highest.

The measure µε can be seen as an almost-exponential distribution of (roughly) N particles over the
interval [−σ(0)L(T ), 0]. Furthermore, recall the definition of QT in (1.3): then one can show that, for
κ ∈ [0, 1] and ε ∈ (0, 1),

QT (⌊Nκ⌋δ−κσ(0)L(T )) = σ(0) log
(
⌊Nκ⌋N−κ

)
= o(1) , and 0 ≤ QT (µε) ≤ εσ(0)L(T ) .

In particular, assuming ε is arbitrarily small, these quantities are of order o(L(T )) when T is large.
It will be convenient to formulate statements which hold uniformly over some class of variance functions

σ2(·/T ). Therefore, we define for η > 0 small,

(3.4) Sη :=
{
σ ∈ C2([0, 1])

∣∣∀u ∈ [0, 1], |σ′(u)| ≤ η−1, |σ′′(u)| ≤ η−1 and η ≤ σ(u) ≤ η−1
}
,

in particular C2([0, 1]) =
⋃

η>0 Sη, and σ ∈ Sη implies

(3.5) ∀ 0 ≤ u, v ≤ 1 ,

∣∣∣∣σ(u)σ(v)
− 1

∣∣∣∣ ≤ η−2|u− v| .

For the convenience of the notation, we also define Scrit
η = Ssub

η := Sη, and

Ssup
η :=

{
σ ∈ Sη

∣∣∣∣∣∃n ≥ 1, 0 = u0 < u1 < . . . < un = 1 :
∀1 ≤ i ≤ n, σ is monotonic on [ui−1, ui];

∀1 ≤ i ≤ n, ui − ui−1 ≥ η

}
.

(3.6)

With those definitions, we have the following results.
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Proposition 3.6. Let ∗ ∈ {sup, crit, sub}, and λ, η > 0. Then,

(3.7) lim
T→+∞

sup
κ∈[0,1]

sup
σ∈S∗

η

PNκδ−κσ(0)L(T )

(
1

b∗T

(
max(XN(T )

T )−m∗
T

)
≤ −λ

)
= 0 .

Proposition 3.7. Let ∗ ∈ {sup, crit, sub}, and λ, η > 0. Then,

(3.8) lim
ε→0

lim sup
T→+∞

sup
σ∈S∗

η

Pµε

(
1

b∗T

(
max(XN(T )

T )−m∗
T

)
≥ λ

)
= 0 .

Propositions 3.6 and 3.7 may be seen as particular cases of Theorem 1.2 (with some added uniformity
in σ(·)). Their proofs are contained in Sections 6 and 7 respectively, and rely on moment estimates from
Section 5. In the remainder of this section, we deduce Theorem 1.2 from these propositions.

Proof of Theorem 1.2 subject to Propositions 3.6 and 3.7. Let µT ∈ CN(T ). Recall the definition of QT (·)
from (1.3) and notice that, for any x ∈ R,

(3.9) QT (µT (· − x)) = x+QT (µT )) .

Hence, by shifting the process and initial configuration by −QT (µT ), T ≥ 0, we may assume without loss of
generality that QT (µT ) = 0. Let λ > 0, and let us write with a union bound,

PµT

(
1

b∗T

∣∣∣max(XN(T )
T )−m∗

T

∣∣∣ ≥ λ

)
≤ PµT

(
1

b∗T

(
max(XN(T )

T )−m∗
T

)
≤ −λ

)
+ PµT

(
1

b∗T

(
max(XN(T )

T )−m∗
T

)
≥ λ

)
.(3.10)

Then we treat both terms separately.
Let ε > 0. Since QT (µT ) = 0, there exists κ = κ(ε, T ) ∈ [0, 1] such that

µT

(
[−ε− κσ(0)L(T ),+∞)

)
≥ N(T )κ .

In particular, this implies µT ≻ Nκδ−ε−κσ(0)L(T ). Therefore, Corollary 3.3 and a shift by ε yield,

PµT

(
1

b∗T

(
max(XN(T )

T )−m∗
T

)
≤ −λ

)
≤ PNκδ(−κσ(0)L(T ))

(
1

b∗T

(
max(XN(T )

T )− ε−m∗
T

)
≤ −λ

)
,

and since ε/b∗T < λ/2 for T sufficiently large, we deduce from Proposition 3.6 that the first term in (3.10)
vanishes as T → +∞.

On the other hand, for ε > 0 the definition of QT (µT ) implies

∀κ ∈ [0, 1] , µT

(
[−(κ− ε)σ(0)L(T ),+∞)

)
< Nκ.

Recall the definition of µε from (3.3). In particular, one notices for all κ ∈ [0, 1],

µε

(
[−(κ+ ε)σ(0)L(T ),+∞)

)
≥ Nκ .

Recalling that µT (R) ≤ N(T ) by assumption, one obtains that µT ≺ µε(·−2εσ(0)L(T )). Therefore, applying
Corollary 3.3 to an appropriately shifted process yields,

PµT

(
1

b∗T

(
max(XN(T )

T )−m∗
T

)
≥ λ

)
≤ Pµε

(
1

b∗T

(
max(XN(T )

T ) + 2εσ(0)L(T )−m∗
T

)
≥ λ

)
.

Recall that L(T ) ≤ b∗T . Taking ε sufficiently small and letting T be large, we deduce from Proposition 3.7
that the second term in (3.10) can be arbitrarily small, which concludes the proof of the theorem. □
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4. Preliminaries on the BBM with barriers

Let us put aside the N -BBM for now, and consider the branching Brownian motion between barriers, a
variant of the BBM which is the cornerstone of the proof of Theorem 1.2. This section assembles all our
notation on the BBM killed at certain barriers, as well as preliminary results. We first introduce some
notation which is used throughout the remainder of this paper, then we present the main ideas and tools for
the proofs of Propositions 3.6 and 3.7.

4.1. Preliminaries and notation. Recall (3.4–3.5), where we fix η > 0 sufficiently small so that σ ∈ Sη. In
the following, for any function θ : R+ → R∗

+ such that θ(T ) → 0 as T → +∞, we write for f, g : R+ → R+,
and T ≥ 0,

(4.1) f(T ) ≤θ g(T ) if f(T ) ≤ θ(T )g(T ) ,

and, symmetrically, g(T ) ≥θ f(T ) if g(T ) ≥ θ(T )−1f(T ). In particular, having (4.1) for some θ(·) and all T
large implies f(T ) ≪ g(T ); and, conversely, having f(T ) ≪ g(T ) implies that there exists some θ(·) such
that f(T ) ≤θ g(T ) for T sufficiently large.

In the following we fix 1 ≪ L(T ) ≪ T such that L(T ) ≪ T 1/3, L(T ) ≫ T 1/3 or L(T ) ∼ αT 1/3, α > 0 as

T → +∞ ; and let ∗ ∈ {sup, sub, crit} denote the matching regime. Then, let θ̃(·) be an (arbitrary) function
taking values in (0, 1] and vanishing at infinity, which may depend on L(T ), such that, for T sufficiently
large, one has 

1 ≤θ̃ L(T ) ≤θ̃ T 1/3 , if ∗ = sub ,

1 ≤θ̃ T 1/3 ≤θ̃ T , if ∗ = crit ,

T 1/3 ≤θ̃ L(T ) ≤θ̃ T , if ∗ = sup .

We then set θ :=
√
θ̃. We have

(4.2)


θ−1(T ) ≤θ L(T ) ≤θ θ(T )T 1/3 , if ∗ = sub ,

θ−1(T ) ≤θ T 1/3 ≤θ θ(T )T , if ∗ = crit ,

θ−1(T )T 1/3 ≤θ̃ L(T ) ≤θ θ(T )T , if ∗ = sup .

A pair of barriers, which we usually write (γ∗
T (·), γ∗

T (·)) in the remainder of this paper, is a pair of (smooth)
functions from [0, T ] to R, depending on L(T ), which satisfy the following for some h > x > 0:

(4.3) γ∗
T (0) := −xσ(0)L(T ) < 0 , and γ∗

T (r)− γ∗
T (r) := hσ(r/T )L(T ) , ∀ r ∈ [0, T ] .

We refer to γ∗
T (·) (resp. γ∗

T (·)) as the lower (resp. upper) barrier. Therefore, throughout the article and all
regimes, the parameter h denotes (up to a scaling term) the gap in-between the two barriers, and x denotes
(up to a scaling term) the distance from the origin to the lower barrier at time t = 0. When we want to
explicit the parameters h > x > 0 for which the barriers satisfy (4.3), we shall add them as superscripts by

writing γ∗,h,x
T , γ∗,h,x

T (when they are clear from context we shall not write them, to lighten formulae).
For t ∈ [0, T ] and an interval I ⊂ [0, h], we denote the set of particles which remained between the barriers

throughout [0, t] and ended in γ∗
T (t) + σ(t/T )L(T ) · I at time t with

(4.4) A∗
T,I(t) :=

{
u ∈ Nt

∣∣∣ ∀s ∈ [0, t], Xu(s) ∈
[
γ∗
T (s), γ

∗
T (s)

]
;

Xu(t)−γ∗
T (t)

σ(t/T )L(T ) ∈ I
}
.

To lighten notation, we shall also write A∗
T (t) := A∗

T,[0,h](t) and A∗
T,z(t) := A∗

T,[z,h](t) respectively for the

specific cases I = [0, h] (no constraint on the final height within the barriers) and I = [z, h], for some
z ∈ [0, h) (lower constraint only). Furthermore, for 0 ≤ s ≤ t ≤ T , we denote with R∗

T (s, t) ∈ N the number
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of particles which remain above γ∗
T until they get killed by γ∗

T at some time τ ∈ [s, t]: more precisely,2

(4.5) R∗
T (s, t) :=

∣∣∣∣∣∣
⋃

τ∈[s,t]

{
u ∈ Nτ

∣∣∣∀ r < τ, Xu(r) ∈
(
γ∗
T (r), γ

∗
T (r)

)
; Xu(τ) = γ∗

T (τ)
}∣∣∣∣∣∣ .

Recall the definitions of v(·) and Ψ(·) from (1.2) and (1.4) respectively, and let wh,T ∈ C1([0, 1]) be defined
by3

(4.6) wh,T (r) := −
∫ r

0

σ(u)

α3h2
Ψ

(
α3h3σ

′(u)

σ(u)

)
du ≥ 0 , r ∈ [0, 1] .

Let h > x > 0. Later, we will choose them both to be close to 1. Then, depending on L(T ) and its regime
∗ ∈ {sup, sub, crit}, we define a pair of barriers by setting, for t ∈ [0, T ],

γsup
T (t) = γsup,h,x

T (t) := v(t/T )T + hL(T )

∫ t/T

0

(σ′)−(u) du− xσ(0)L(T ) ,(4.7)

γsub
T (t) = γsub,h,x

T (t) := v(t/T )T

√
1− π2

h2L(T )2
− xσ(0)L(T ) ,(4.8)

γcrit
T (t) = γcrit,h,x

T (t) := v(t/T )T − wh,T (t/T )L(T )− xσ(0)L(T ) ,(4.9)

and we let γ∗
T (t) := γ∗

T (t) + hσ(t/T )L(T ) in each regime, so that (4.3) holds for h > x > 0 fixed. One of the
core ideas used in the remainder of this paper is that, when started from a single particle, the N -BBM is
quite similar to a BBM whose particles are killed when reaching the barriers γ∗

T (·), γ∗
T (·), as soon as their

parameters h > x > 0 are both close to 1. Those processes are illustrated in each of the three regimes in
Figure 3.

The following lemma shows that the quantity m∗
T , defined in (1.11), is indeed well approximated by

γ∗,h,x
T (T ) when h and x are close to 1.

Lemma 4.1. Let ∗ ∈ {sup, sub, crit}. Then,

(4.10) lim sup
(h,x)→(1,1),

h>x>0

lim sup
T→+∞

1

b∗T

∣∣∣m∗
T − γ∗,h,x

T (T )
∣∣∣ = 0 .

Proof. The proof is straightforward in all three regimes. In the super-critical case, one has

γsup,h,x
T (T ) = v(1)T + hL(T )

∫ 1

0

[
(σ′)+ − σ′](u) du− xσ(0)L(T ) + hσ(1)L(T )

= v(1)T + hL(T )

∫ 1

0

(σ′)+(u) du+ (h− x)σ(0)L(T ) ,

so 1
L(T ) |m

sup
T − γsup,h,x

T (T )| ≤ η−1(|1− h|+ |h− x|) for all T ≥ 0, which yields the expected result. In the

sub-critical regime, one has

γsub,h,x
T (T ) = v(1)T

√
1− π2

h2L(T )2
+O (L(T )) ,

2One can check with standard branching processes theory that R∗
T (s, t) is a measurable, almost surely finite random variable;

and that, with probability 1, two particles do not reach the upper barrier at the same time. For the sake of conciseness we do
not develop on that in this paper.

3Let us point out that, compared to (1.7), we added an α in the denominator: this is because it will be more convenient in

upcoming computations to express the second order of the critical regime (4.9) in terms of L(T ) ∼ αT 1/3 instead of T 1/3.
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0 T

γcrit
T (·)

γcrit
T (·)

(a) L(T ) ≍ T 1/3 (crit)

0 t sub
T 2t sub

T
... T

γsub
T (·)

γsub
T (·)

(b) L(T ) ≪ T 1/3 (sub)

0 T
2

T

γsup
T (·)

γsup
T (·)

(c) L(T ) ≫ T 1/3 (sup)

Figure 3. Illustration of the BBM between barriers, which approximates the N -BBM. In each
regime, we draw the typical trajectory of a single particle that survives until time T (we do not
show this rigorously, but this is the heuristic guiding our calculations). (A) In the critical regime,
the trajectory resembles that of a Brownian motion constrained to remain between the space-time
barriers and, moreover, in a time-inhomogeneous potential of Airy-type. (B) In the sub-critical
regime, we compare the N -BBM with the BBM between barriers directly only on a time interval
of length tsubT chosen to be slightly larger than L(T )3, using a block decomposition to recover the
process on the full interval [0, T ]. (C) In the super-critical regime, the surviving trajectories are
localized in the vicinity of the lower barrier on each interval where σ(·) is increasing ([0, 1/2] in
this picture), and in the vicinity of the upper barrier on each interval where σ(·) is decreasing
([1/2, 1] in this picture).

where O(L(T )) is locally uniform in h > x > 0. Letting h close to 1 and writing the Taylor expansion√
1− y = 1 − y

2 + o(y) as y → 0, this yields (4.10). Regarding the critical regime, recall that Ψ satisfies
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Ψ(−q) = q +Ψ(q) for all q ∈ R. Therefore, wh,T satisfies

wh,T (1) = −
∫ 1

0

σ(u)

α3h2
Ψ

(
α3h3σ

′(u)

σ(u)

)
dv

= −
∫ 1

0

σ(u)

α3h2
Ψ

(
−α3h3σ

′(u)

σ(u)

)
dv + σ(1)− σ(0) .

Plugging this into (4.9) and recalling that L(T ) ∼ αT 1/3 in this regime, this straightforwardly concludes the
proof. □

We conclude this subsection by claiming the following useful fact: we may “tighten” the barriers on a
short time interval (i.e. shorter than L(T )3), by modifying the parameters h > x > 0. Recall from (4.1) that
θ(·) denotes a function vanishing at +∞.

Lemma 4.2. Let ∗ ∈ {sup, sub, crit} and let t = t(T ) such that 0 ≤ t(T ) ≤θ L(T )3 ∧ T for T sufficiently
large. Let h > x > 0 and h′ > x′ > 0 such that

(4.11) x′ < x , and h′ − x′ < h− x .

Then, there exists T0 such that, for T ≥ T0 and s ∈ [0, t(T )], one has

(4.12) γ∗,h,x
T (s) ≤ γ∗,h′,x′

T (s) ≤ γ∗,h′,x′

T (s) ≤ γ∗,h,x
T (s) .

Moreover, T0 is uniform in σ ∈ Sη, and locally uniform in h > x > 0, h′ > x′ > 0 which satisfy (4.11).

Proof. Notice that the assumptions also imply h′ < h. We prove this claim separately for each ∗ ∈
{sup, sub, crit}. In the super-critical case, one has for all s ∈ [0, T ],

γsup,h′,x′

T (s)− γsup,h,x
T (s) = (h′ − h)L(T )

∫ t/T

0

(σ′)−(u) du− (x′ − x)σ(0)L(T )

≥ −(h− h′) η−1θ(T )L(T ) + (x− x′)ηL(T ) ≥ 0 ,

where the last inequality holds for T larger than some T0 locally uniform in x, x′, h, h′. Moreover, one can
easily check that

(4.13) γsup,h,x
T (s) = v(t/T )T + hL(T )

∫ t/T

0

(σ′)+(u) du+ (h− x)σ(0)L(T ) ,

for all s ∈ [0, T ], h > x > 0. Hence, one has for all s ∈ [0, T ].

γsup,h,x
T (s)− γsup,h′,x′

T (s) = (h− h′)L(T )

∫ t/T

0

(σ′)+(u) du+ [(h− x)− (h′ − x′)]σ(0)L(T ) ≥ 0 ,

which concludes the proof in the super-critical regime.
Regarding the sub-critical case, we have for s ∈ [0, T ],

(4.14) γsub,h′,x′

T (s)− γsub,h,x
T (s) = (x− x′)σ(0)L(T ) +

[√
1− π2

h′2L(T )2
−
√

1− π2

h2L(T )2

]
v(s/T )T ,

and a direct Taylor expansion gives as L(T ) → +∞,

(4.15)

√
1− π2

h′2L(T )2
−
√

1− π2

h2L(T )2
= −π2(h2 − h′2)

2(hh′L(T ))2
+O(L(T )−4) .

Recall that t(T ) ≤ θ(T )L(T )3 ≤ T in the sub-critical regime: thus, one has for s ∈ [0, t(T )],

v(s/T )T = T

∫ s/T

0

σ(u) du ≤ η−1t(T ) ≤ η−1θ(T )L(T )3 .
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Since x > x′, we deduce that for T sufficiently large, the second term in the r.h.s. of (4.14) is larger than
− 1

2 (x− x′)ηL(T ), uniformly in σ ∈ Sη and s ∈ [0, t(T )], locally uniformly in x, x′, h, h′; which is one of the
expected results. On the other hand we have for all s ∈ [0, T ],

γsub,h,x
T (s)− γsub,h′,x′

T (s)

= (h− h′)σ(s/T )L(T ) + (x′ − x)σ(0)L(T ) +

[√
1− π2

h2L(T )2
−
√

1− π2

h′2L(T )2

]
v(s/T )T

= [(h− x)− (h′ − x′)]σ(s/T )L(T ) + (x− x′)[σ(s/T )− σ(0)]L(T )−O(θ(T )L(T )) ,

where we used (4.15). Recalling (3.5) and that t(T ) ≤ θ(T )T , the second term above is larger than
−O(θ(T )L(T )) for T large. Therefore, the r.h.s. above is larger than 1

2 [(h − x) − (h′ − x′)]ηL(T ) for T
sufficiently large: this concludes the proof in the sub-critical regime.

We finally turn to the critical case. Recall (4.6) and that Ψ is continuous, hence

sup
r∈[h′,h]

sup
s∈[0,t(T )]

|wr,T (s/T )| ≤
t(T )

T

η−1

α3h′2 sup
{
|Ψ(q)|, q ∈ [−α3h′3η−2, α3h3η−2]

}
.

Since we assumed t(T ) ≤ θ(T )(L(T )3 ∧ T ) for T large, there exists C > 0, uniform in σ ∈ Sη and locally
uniform in h, h′, such that for T sufficiently large, one has |wr,T (s/T )| ≤ Cθ(T ) for all r ∈ [h′, h] and
s ∈ [0, t(T )]. In particular, this implies

γcrit,h′,x′

T (s)− γcrit,h,x
T (s) ≥ (x− x′)σ(0)L(T )− 2Cθ(T )L(T ) ,

and γcrit,h,x
T (s)− γcrit,h′,x′

T (s) ≥ (h− h′)σ(s/T )L(T ) + (x′ − x)σ(0)L(T )− 2Cθ(T )L(T ) ,

for all s ∈ [0, t(T )]. Assuming T is sufficiently large and reproducing the arguments from the sub-critical
case (we do not write them again), this completes the proof of the lemma. □

4.2. First and second moment formulae. We now introduce several exact formulae which will be used
throughout Section 5 to estimate some moments of |A∗

T,I(·)| and R∗
T (·, ·).

First, several results from Section 5 rely on the first moment formula for branching Markov processes, often
called “Many-to-one lemma”, as well as Girsanov’s theorem: we condense them in the following statement.
Recall from Section 3.1 that Eµ, Pµ denote the expectation and law of the time-inhomogeneous BBM started
from some configuration µ ∈ C and that Ex, Px denote expectation and law of a single time-inhomogeneous
Brownian motion (Bt)t≥0.

Lemma 4.3 (First moment formula). Let ∗ ∈ {sup, sub, crit}, h > x > 0 and I ⊂ [0, h] an interval. Then,
one has

Eδ0

[
|A∗

T,I(t)|
]
= e

t
2 Exσ(0)L(T )

[
1{∀s≤t, Bs

σ(s/T )L(T )
∈[0,h];

Bt
σ(t/T )L(T )

∈I}(4.16)

× exp

(
− γ∗

T
′(t)Bt

σ2(t/T )
+

γ∗
T
′(0)

σ(0)
xL(T ) +

∫ t

0

∂

∂u

(
γ∗
T
′(u)

σ2(u/T )

)∣∣∣∣
u=s

Bs ds−
∫ t

0

(γ∗
T
′(s))2

2σ2(s/T )
ds

)]
.

Moreover, letting H0(Y ) := inf{t ≥ 0, Yt = 0} for (Yt)t≥0 ∈ C0(R+), one has

Eδ0

[
R∗

T (0, t)
]
= E(h−x)σ(0)L(T )

[
eH0(B)/2 1{H0(B)≤t} 1{∀s≤H0(B), Bs

σ(s/T )L(T )
∈[0,h]}(4.17)

× exp

(
− γ∗

T
′(0)

σ(0)
(h− x)L(T )−

∫ H0(B)

0

∂

∂u

(
γ∗
T
′(u)

σ2(u/T )

)∣∣∣∣
u=s

Bs ds−
∫ H0(B)

0

(γ∗
T
′(s))2

2σ2(s/T )
ds

)]
.
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Remark 4.1. (i) The terms involving derivatives of the form ∂
∂u (· · · ) appearing in the r.h.s. of (4.16–4.17)

are to be interpreted as being defined Lebesgue-almost everywhere. This matters only in the supercritical case,
where the definition of the barrier functions involve σ−(u), whose derivative may be discontinuous at a finite
number of points.

(ii) Let us mention that (4.17) has an analogous formulation in terms of γ∗
T instead of γ∗

T , which involves
the hitting time of the curve (hσ(s/T )L(T ))s∈[0,T ]. We decided to stick with the expression (4.17) in the
lemma, since it is used more often in this paper.

Proof. Let us start with (4.16). The Many-to-one lemma for branching Markov processes, see e.g. [41,
Theorem 4.1] or [60, Theorem 2.1] together with Girsanov’s theorem yield,

Eδ0

[
|A∗

T,I(t)|
]
= Eδ0

[ ∑
u∈Nt

1{
∀s≤t,

Xu(s)−γ∗
T

(s)

σ(s/T )L(T )
∈[0,h] ;

Xu(t)−γ∗
T

(t)

σ(t/T )L(T )
∈I
}]

= Eδ0

[
|Nt|

]
×P0

(
∀s ≤ t,

Bs − γ∗
T (s)

σ(s/T )L(T )
∈ [0, h] ;

Bt − γ∗
T (t)

σ(t/T )L(T )
∈ I

)
= Eδ0

[
|Nt|

]
×E−γ∗

T (0)

[
1{

∀s≤t, Bs
σ(s/T )L(T )

∈[0,h] ;
Bt

σ(t/T )L(T )
∈I
} e− ∫ t

0

γ∗
T

′(s)
σ2(s/T )

dBs−
∫ t
0

(γ∗
T

′(s))2

2σ2(s/T )
ds

]
.(4.18)

Recall that Eδ0

[
|Nt|

]
= e

t
2 under our assumptions, and write with an integration by parts, for t ∈ [0, T ],

(4.19)

∫ t

0

γ∗
T
′(s)

σ2(s/T )
dBs =

γ∗
T
′(t)Bt

σ2(t/T )
− γ∗

T
′(0)B0

σ2(0)
−
∫ t

0

∂

∂u

(
γ∗
T
′(u)

σ2(u/T )

)∣∣∣∣
u=s

Bs ds .

Since (4.3) implies γ∗
T (0) = −xσ(0)L(T ), plugging this into (4.18) yields (4.16).

Regarding (4.17), the Many-to-one lemma gives

Eδ0

[
R∗

T (0, t)
]
= E0

[
eH0(γ

∗
T−B)/21{H0(γ∗

T−B)≤t}1{∀s≤H0(γ∗
T−B),

γ∗
T

(s)−Bs

σ(s/T )L(T )
≤h
}] .

Then, applying Girsanov’s theorem and recalling that (Bs)s≤t under Px as the same law as (−Bs)s≤t under
P−x, x ∈ R, one obtains

Eδ0

[
R∗

T (0, t)
]
= Eγ∗

T (0)

[
eH0(B)/21{H0(B)≤t}1{∀s≤H0(B), Bs

σ(s/T )L(T )
≤h
}e∫ H0(B)

0

γ∗
T

′(s)
σ2(s/T )

dBs−
∫ H0(B)
0

(γ∗
T

′(s))2

2σ2(s/T )
ds
]
.

Recalling that γ∗
T (0) = (h− x)σ(0)L(T ) by (4.3), and replacing γ∗

T with γ∗
T in (4.19), this yields (4.17) and

finishes the proof of the lemma. □

We also present the “Many-to-two lemma” below, which will be used in upcoming second moment
computations. For y, w ∈ R, 0 ≤ s ≤ t ≤ T , we let

G∗(y, w, s, t) dw(4.20)

:= Eδ(s,γ∗
T

(s)+yσ(s/T )L(T ))

[
#
{
u ∈ Nt

∣∣∣ ∀ r ∈ [s, t], Xu(r) ∈
[
γ∗
T (r), γ

∗
T (r)

]
;

Xu(t)−γ∗
T (t)

σ(t/T )L(T ) ∈ dw
}]

,

denote the expected number of descendants in the BBM of a single particle at time-space location (s, γ∗
T (s) +

yσ(s/T )L(T )), whose path remain between the barriers γ∗
T (·), γ∗

T (·) until time t, at which point it reaches an
infinitesimal neighborhood of γ∗

T (t) + wσ(t/T )L(T ) (notice that it is zero unless y, w ∈ [0, h]). In particular,
one has

Eδ0 [|A∗
T,I(t)|] =

∫
I

G∗(x,w, 0, t)dw.(4.21)
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Lemma 4.4 (“Many-to-two lemma”, see Theorem 4.15 in [41] or Theorem 2.2 in [60]). Let ∗ ∈ {sup, sub, crit},
t ≤ T , and z ∈ [0, h). Then, one has

(4.22) Eδ0

[
|A∗

T,z(t)|2
]
= Eδ0

[
|A∗

T,z(t)|
]
+ β0E[ξ(ξ − 1)]

∫ t

0

ds

∫ h

0

G∗(x, y, 0, s)

(∫ h

z

G∗(y, w, s, t) dw

)2

dy .

Finally, in order to use the formulae from the previous lemmas, we rely on a result on the density of a
Brownian motion killed outside an interval. Recall that the standard, time-homogeneous Brownian motion is
denoted by (Ws)s≥0. The following result can be found for example in e.g. [19, Part II.1, Eq. 1.15.8] or [48,
(7.8–7.10)].

Lemma 4.5 ((7.8–7.10) in [48]). For t > 0, h > 0, and x, z ∈ [0, h], one has,

(4.23)

Px

(
∀s ≤ t, Ws ∈ [0, h] ; Wt ∈ dz

)
=

2

h

∞∑
n=1

exp
(
− π2

2h2
n2t
)
sin
(πnx

h

)
sin
(πnz

h

)
dz

=
2

h
exp

(
− π2

2h2
t
)
sin
(πx

h

)
sin
(πz
h

)(
1 + o(1)

)
dz,

where o(1) is a term vanishing as t/h2 → +∞, uniformly in x, z (see [48, (7.9)] for an explicit expression).

5. Moment estimates on the BBM with barriers

Recall (4.4) and (4.5): in this section we compute first and second moment estimates of |A∗
T,I(t)|, as

well as first moment estimates of R∗
T (0, t), in all three regimes (super-critical, sub-critical and critical).

These estimates will be used throughout Sections 6 and 7 below, in order to prove Propositions 3.6 and 3.7
respectively. Let us warn the reader that the upcoming proofs contain a lot of bookkeeping (especially for
the first moment estimates), mainly due to the fact that we need to obtain bounds which are uniform in
certain ranges of values for t, σ(·) and other parameters.

5.1. Super-critical case. In this section we assume T 1/3 ≪ L(T ) ≪ T , and σ ∈ Ssup
η for some η > 0

(recall (3.4–3.6)); in particular, there exist n ≥ 1 and 0 = u0 < u1 < . . . < un such that σ is monotonic on
[ui−1, ui] and ui − ui−1 ≥ η, 1 ≤ i ≤ n. Recall that γsup

T is defined in (4.7), and that γsup
T is such that (4.3)

holds. We begin this section by computing first moment estimates for Asup
T,I (t), t ∈ [0, T ], I ⊂ [0, h] an

interval. Finally, recall (4.1), and that we fixed some arbitrary θ : R+ → R∗
+ that vanishes at +∞ such

that (4.2) holds.

Proposition 5.1 (First moment, Super-critical). Let h > 0. As T → +∞, one has

(5.1) E
[
|Asup

T,I (t)|
]
≤ e(x−inf I)L(T )+o(L(T )) ,

uniformly in σ ∈ Ssup
η , x ∈ [0, h] and I ⊂ [0, h] an interval. Moreover for any h > 0, T0 ≥ 0 fixed, one has

as T → +∞, for every interval I ⊂ [0, h] with non-empty interior,

(5.2) E
[
|Asup

T,I (t)|
]
≥ e(x−inf I)L(T )+o(L(T )) ,

locally uniformly in x ∈ (0, h), inf I ∈ [0, h) and sup I − inf I ∈ (0, h], uniformly in σ ∈ Ssup
η , and uniformly

in t = t(T ) ∈ [0, T ] which satisfies L(T ) ≤θ t(T ) ≤ T for T ≥ T0.

Remark 5.1. (i) Here, “locally uniformly” means that for any ε > 0, there exists o(L(T )) ∈ R such
that |o(L(T ))| ≪ L(T ) as T → +∞ and (5.2) holds uniformly in x ∈ [ε, h − ε], inf I ∈ [0, h − 4ε] and
sup I − inf I > 4ε. Moreover, let us stress that “uniformly” in σ(·) and t(T ) means that this error term does
not depend on those, as long as η, θ(·) and T0 are fixed. In the remainder of the paper we will not write T0

in similar statements, but rather “L(T ) ≤θ t(T ) ≤ T for T sufficiently large”, to lighten the phrasing.
(ii) Finally, let us mention that, in (5.2), the assumption t(T ) ≥θ L(T ) is necessary since a branching

process (without selection) started from one individual needs a time ≈ L(T ) to grow to a population of size
eO(L(T )).
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Let us briefly present the idea of the proof: the main difficulty lies in showing the lower bound (5.2).
We obtain it by restricting Asup

T,I (t) to the subset of particles that follow a specific strategy: when σ(·) is
increasing (resp. decreasing) on an interval [ui−1, ui], i ≤ n, we only consider particles whose trajectories
remain close to the lower (resp. upper) barrier on [ui−1T, uiT ]. More precisely, for some τT , hT which are
defined below, we consider particles that stay within a distance O(hT ) of the lower/upper barrier on the
time interval [ui−1T + τT , uiT − τT ], see Figure 4. The following lemma will be used to bound from below
the probability that a single particle follows this strategy on one interval [ui−1T, uiT ], i ≤ n. Its proof is
delayed afterwards.

0 τT T
2 − τT T

2
T
2 + τT T − τT T

−xσ(0)L(T )

0

(h− x)σ(0)L(T )

γsup
T (·) +O(hT )

γsup
T (·)

γsup
T (·)

γsup
T (·)−O(hT )

Figure 4. Illustration of the strategy of a particle contributing to the lower bound for the first
moment in Proposition 5.1 (super-critical case). In this figure we consider t = T and a function
σ(·) increasing on [0, 1/2], decreasing on [1/2, 1]. We consider separately each time interval on
which σ(·) is monotone. Let τT and hT be as in the proof of Lemma 5.2. On [τT , T/2− τT ], we
introduce an additional killing barrier at distance O(hT ) of γ

sup
T (·), and constrain particles to

remain below this barrier. On [T/2 + τT , T − τT ], the additional barrier is located at distance
O(hT ) of γ

sup
T (·), and particles are constrained to remain above it.

Lemma 5.2. Assume T 1/3 ≪ L(T ) ≪ T , and let h, η > 0, ε ∈ (0, h/2). Define,

Υ :=
{
(x, t, σ, I)

∣∣x ∈ [ε, h− ε] ; t ∈ [θ−1(T )L(T ), T ] ; σ ∈ Sη ; I = [a, b] ⊂ [0, h], b− a ≥ 2ε
}
.

Then, as T → +∞, one has for every 0 ≤ C < ∞,

1

L(T )
inf

(x,t,σ,I)∈Υ
logExσ(0)L(T )

[
exp

(
−C

T

∫ t

0

Bs ds

)
1{

∀s∈[0,t], Bs
σ(s/T )L(T )

∈[0,h] ;
Bt

σ(t/T )L(T )
∈I
}](5.3)

−→
T→+∞

0 .

Proof of Proposition 5.1 assuming Lemma 5.2. Let σ ∈ Ssup
η , with u0, . . . , un as above. Let us assume

h > x > 0, otherwise the l.h.s. of (5.1) is zero and the proof is immediate. Recall Lemma 4.3, in
particular (4.16). Notice that (4.7) implies,

γsup
T

′(s) = σ(s/T ) + h
L(T )

T
(σ′(s/T ))− , ∀ s ∈ [0, T ] ,
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so one has for t ∈ [0, T ],

E
[
|Asup

T,I (t)|
]
= e

t
2 Exσ(0)L(T )

[
1{

∀s∈[0,t], Bs
σ(s/T )L(T )

∈[0,h] ;
Bt

σ(t/T )L(T )
∈I
}

× exp

(
−γsup′(t)Bt

σ2(t/T )
+

γsup′(0)

σ(0)
xL(T ) +

∫ t

0

∂

∂u

(
γsup
T

′(u)

σ2(u/T )

)∣∣∣∣
u=s

Bs ds−
∫ t

0

(γsup′(s))2

2σ2(s/T )
ds

)]
= exL(T )+O(L(T )2/T ) Exσ(0)L(T )

[
1{

∀s∈[0,t], Bs
σ(s/T )L(T )

∈[0,h] ;
Bt

σ(t/T )L(T )
∈I
}(5.4)

× exp

(
− Bt

σ(t/T )
− 1

T

∫ t

0

σ′(s/T )

σ2(s/T )
Bs ds− h

L(T )

T

∫ t

0

(σ′(s/T ))−

σ(s/T )
ds

)]
.

Proof of (5.1) (upper bound). Using that σ′ = (σ′)+ − (σ′)− and making use of the constraints on Bs, (5.4)
yields

E
[
|Asup

T,I (t)|
]
≤ e(x−inf(I))L(T )+O(L(T )2/T ) Exσ(0)L(T )

[
1{

∀s∈[0,t], Bs
σ(s/T )L(T )

∈[0,h] ;
Bt

σ(t/T )L(T )
∈I
}

× exp

(
− 1

T

∫ t

0

(σ′)+(s/T )

σ2(s/T )
Bs ds

)]
,

and the latter expectation is bounded by 1, which proves (5.1).

Proof of (5.2) (lower bound). Let ε > 0 be sufficiently small such that 4ε ≤ sup(I)− inf(I) and x ∈ [ε, h− ε].
Define

(5.5) If := [inf(I), inf(I) + 4ε] ⊂ I.

By constraining (Bs/σ(s/T )L(T ))s≥0 to end in If at time t, one deduces from (5.4) that,

E
[
|Asup

T,I (t)|
]
≥ e(x−inf I+4ε)L(T )+O(L(T )2/T ) Exσ(0)L(T )

[
1{

∀s∈[0,t], Bs
σ(s/T )L(T )

∈[0,h] ;
Bt

σ(t/T )L(T )
∈If

}(5.6)

× exp

(
− 1

T

∫ t

0

σ′(s/T )

σ2(s/T )
Bs ds− h

L(T )

T

∫ t

0

(σ′(s/T ))−

σ(s/T )
ds

)]
.

In order to bound the right-hand side of (5.6) from below, we wish to decompose the trajectory at the times
u0T, . . . , unT and apply Lemma 5.2 to each part. We have to be a bit careful in doing this, in order to
ensure that the final time t is not too close to one of these times. Also, we have to constrain the trajectory
to return to certain intervals at each time. More precisely, set imax := max{i ≤ n : uiT ≤ t− θ−1(T )L(T )}
and define intervals and time steps as follows:

Ii := [ε, h− ε] ∋ x, 0 ≤ i ≤ imax ti := uiT ∧ (t− θ−1(T )L(T )), 0 ≤ i ≤ imax

Iimax+1 := If timax+1 := t

Note that ti+1 − ti ≥ θ−1(T )L(T ) by construction, for every i = 0, . . . , imax.
We now set for each i = 0, . . . , imax,

Ei := inf
y∈Ii

E(ti,yσ(ti/T )L(T ))

[
1{

∀s∈[ti,ti+1],
Bs

σ(s/T )L(T )
∈[0,h] ;

Bti+1
σ(ti+1/T )L(T )

∈Ii+1

}(5.7)

× exp

(
− 1

T

∫ ti+1

ti

σ′(s/T )

σ2(s/T )
Bs ds− h

L(T )

T

∫ ti+1

ti

(σ′(s/T ))−

σ(s/T )
ds

)]
.

Equation (5.6) yields

E
[
|Asup

T,I (t)|
]
≥ e(x−inf I+4ε)L(T )+O(L(T )2/T ) ×

imax∏
i=0

Ei.(5.8)
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It remains to show that, uniformly in σ ∈ Ssup
η and t such that L(T ) ≤θ t ≤ T , we have

Ei = exp(o(L(T ))), i = 0, . . . , imax.(5.9)

We now want to distinguish between two cases, depending on i = 0, . . . , imax through the sign of σ′(·/T ) on
the interval [ti, ti+1]. Note that by the assumption on σ and by the definition of the ti’s, σ

′(·/T ) indeed does
not change sign on [ti, ti+1], unless ti = t− θ−1(T )L(T ) (and therefore, ti+1 = t). In this case, the sign may
change, leading to a third case to consider.

Case 1: σ′(·/T ) is non-negative on [ti, ti+1]. In this case, we have (σ′)− = 0 and σ′ = (σ′)+. Hence, we
get from (5.7),

Ei = inf
y∈Ii

E(ti,yσ(ti/T )L(T ))

[
1{

∀s∈[ti,ti+1],
Bs

σ(s/T )L(T )
∈[0,h] ;

Bti+1
σ(ti+1/T )L(T )

∈Ii+1

}(5.10)

× exp

(
− 1

T

∫ ti+1

ti

(σ′)+(s/T )

σ2(s/T )
Bs ds

)]
.

Note that (σ′)+(s/T )/σ2(s/T ) ≤ η−3 for each s ∈ [0, T ], by the assumptions on σ. We can therefore
apply Lemma 5.2 to the right-hand side of (5.10), with the process (Bs)s≥0 replaced by the shifted process
(Bti+s)s≥0. This proves (5.9) in this case.

Case 2: σ′(·/T ) is non-positive on [ti, ti+1]. In this case, we have σ′ = −(σ′)−. Hence, we get from (5.7),

Ei = inf
y∈Ii

E(ti,yσ(ti/T )L(T ))

[
1{

∀s∈[ti,ti+1],
Bs

σ(s/T )L(T )
∈[0,h] ;

Bti+1
σ(ti+1/T )L(T )

∈Ii+1

}
× exp

(
− 1

T

∫ ti+1

ti

(σ′)−(s/T )

σ2(s/T )
(hσ(s/T )L(T )−Bs) ds

)]
.

We apply Girsanov’s theorem to the shifted process (Bs − hσ(s/T )L(T ))s≤u1T . Letting ρ(s) :=
hσ(s/T )L(T ), one has on the event {∀s ∈ [ti, ti+1], |Bs| ≤ hη−1L(T )} that,

(5.11)

∣∣∣∣∫ ti+1

ti

ρ′(s)

σ2(s/T )
dBs

∣∣∣∣ ≤ 3h2η−4L(T )2

T
, and

∣∣∣∣∫ ti+1

ti

(ρ′(s))2

2σ2(s/T )
ds

∣∣∣∣ ≤ h2η−4L(T )2

2T
,

(this follows from an integration by parts and computations similar to those of (4.16) and (5.4)—we do not
detail them again). Both those terms are o(L(T )) uniformly in σ ∈ Ssup

η ; therefore, Girsanov’s theorem and
the symmetry of Brownian motion yield,

E1 = eo(L(T )) inf
y∈Ii

E(h−y)σ(ti/T )L(T )

[
1{

∀s∈[ti,ti+1],
Bs

σ(s/T )L(T )
∈[0,h] ;

Bti+1
σ(ti+1/T )L(T )

∈(h−Ii+1)}

× exp

(
− 1

T

∫ ti+1

ti

(σ′)−(s/T )

σ2(s/T )
Bs ds

)]
.

We now conclude as in Case 1, proving (5.9) in this case as well.

Case 3: ti = t− θ−1(T )L(T ). In this case i = imax and ti+1 = t. We brutally bound the term inside the
exponential in (5.7) from below by

− 1

T

∫ ti+1

ti

|σ′(s/T )|
σ(s/T )

2hL(T ) ds ≥ −2hη−2 θ
−1(T )L(T )

T
L(T ) = o(L(T )),

since θ−1(T )L(T ) ≪ T by (4.2). We conclude again by a use of Lemma 5.2 as in Case 1.
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Recollecting (5.8) and (5.9) and taking ε → 0, this concludes the proof of (5.2) and finishes the proof of
the proposition. □

Proof of Lemma 5.2. Throughout the proof, all statement involving t or σ are meant to hold uniformly in
t ≥θ L(T ) and σ ∈ Sη.

Since the expectation is bounded by 1, we only have to prove a lower bound. Let x ∈ [ε, h − ε],
t := t(T ) ∈ [0, T ], σ ∈ Sη and I ⊂ [0, h] of length at least 2ε. Recall from (3.1) the definition of the time-
change C1-diffeomorphism J(·): in particular, (Wr)r≥0 denotes the standard, time-homogeneous Brownian
motion, and (WJ(s))s∈[0,T ] has the same law as (Bs)s∈[0,T ]. Hence, for t ∈ [0, T ], one has

Exσ(0)L(T )

[
exp

(
−C

T

∫ t

0

Bs ds

)
1{

∀s∈[0,t], Bs
σ(s/T )L(T )

∈[0,h] ;
Bt

σ(t/T )L(T )
∈I
}]

= Exσ(0)L(T )

[
exp

(
−C

T

∫ J(t)

0

1

σ2(J−1(s)/T )
Ws ds

)
1{

∀s∈[0,J(t)], Ws
σ(J−1(s)/T )L(T )

∈[0,h] ;
WJ(t)

σ(t/T )L(T )
∈I
}]

≥ Exσ(0)L(T )

[
exp

(
−C ′

T

∫ J(t)

0

Ws ds

)
1{

∀s∈[0,J(t)], Ws
σ(J−1(s)/T )L(T )

∈[0,h] ;
WJ(t)

σ(t/T )L(T )
∈I
}],

with C ′ = Cη−2, using that σ ∈ Sη. Recall that T
1/3 ≤θ L(T ) ≤θ t ≤ T by assumption. Fix (τT )T>0 and

(hT )T>0, satisfying, as T → +∞,

(5.12) L(T ) ≪ τT ≪ θ−1(T )L(T ), hT ∨ T

h2
T

≪ L(T ), τT ≪ L(T )hT .

For example, we may set τT =
√
θ−1(T )L(T ) and hT =

√
T 1/3L(T ), as one quickly checks.

Assume T is sufficiently large so that 2τT ≤ θ−1(T )L(T ) and hT ≤ ηL(T )/3. In order to bound from
below the last expectation, we constrain the trajectory (Ws)s∈[0,J(t)] to land in [hT , 2hT ] at times τT and
J(t)− τT , and to remain below 3hT in-between; then we apply Markov’s property at times τT and J(t)− τT .
We obtain,

(5.13) Exσ(0)L(T )

[
exp

(
−C ′

T

∫ J(t)

0

Ws ds

)
1{

∀s∈[0,J(t)], Ws
σ(J−1(s)/T )L(T )

∈[0,h] ;
WJ(t)

σ(t/T )L(T )
∈I
}] ≥ B1×B2×B3 ,

where

B1 := Exσ(0)L(T )

[
exp

(
−C ′

T

∫ τT

0

Ws ds

)
1{

∀s≤τT , Ws
σ(J−1(s)/T )L(T )

∈[0,h] ;WτT
∈[hT ,2hT ]

}] ,
B2 := inf

y∈[hT ,2hT ]
Ey

[
exp

(
−C ′

T

∫ J(t)−2τT

0

Ws ds

)
1{

∀s≤J(t)−2τT ,Ws∈[0,3hT ] ;WJ(t)−2τT
∈[hT ,2hT ]

}] ,
B3 := inf

y∈[hT ,2hT ]
Ey

[
exp

(
−C ′

T

∫ τT

0

Ws ds

)
1{

∀s≤τT , Ws
σ(J−1(s+J(t)−τT )/T )L(T )

∈[0,h] ;
WτT

σ(t/T )L(T )
∈I
}] .

Let us now bound from below B1, B2 and B3 separately.
We start with B2. On the event {∀s ∈ [0, J(t)− 2τT ], Ws ∈ [0, 3hT ]}, (3.1) and (5.12) imply that,

1

T

∫ J(t)−2τT

0

Ws ds ≤ 3hT (J(t)− 2τT )

T
≤ 3η−2hT ≪ L(T ) ,

as T → +∞. Hence one has,

(5.14) B2 ≥ eo(L(T )) inf
y∈[hT ,2hT ]

Py

(
∀s ≤ J(t)− 2τT , Ws ∈ [0, 3hT ] ; WJ(t)−2τT ∈ [hT , 2hT ]

)
,
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as T → +∞. Recalling Lemma 4.5, notice that there exists a constant K > 0 such that,

∀ t′ ≥ K , inf
y∈[1,2]

Py

(
∀s ≤ t′, Ws ∈ [0, 3] ; Wt′ ∈ [1, 2]

)
≥ sin2(π/3)

3
exp

(
−π2

18
t′
)

.

Furthermore, the left-hand side of the last display is positive and continuous in t′ for t′ ∈ (0,K] since the
density of Brownian motion killed outside the interval [0, 3] solves the heat equation with Dirichlet boundary
condition at 0 and 3. Furthermore, the limit as t′ → 0 of the left-hand side of the last display equals 1/2 > 0,
as one readily checks. Thus, we have for some c0 > 0,

∀ t′ ≥ 0 , inf
y∈[1,2]

Py

(
∀s ≤ t′, Ws ∈ [0, 3] ; Wt′ ∈ [1, 2]

)
≥ c0 exp

(
−π2

18
t′
)

.

In particular, (5.14) and the Brownian scaling property yield

(5.15) B2 ≥ eo(L(T )) exp

(
−π2

18

J(t)− 2τT
h2
T

)
≥ eo(L(T )) ,

since J(t)−2τT
h2
T

= O(T/h2
T ) = o(L(T )) by (3.1) and (5.12).

Let us turn to B1. Since τT ≪ T , one has on the event {∀s ≤ τT , Ws ≤ hσ(J−1(s)/T )L(T )} that,

(5.16)
1

T

∫ τT

0

Ws ds ≤ hη−1L(T )τT
T

≪ L(T ) ,

as T → +∞. Moreover, since τT ≪ T , we have for T large enough,∣∣∣∣σ(J−1(s)

T

)
− σ(0)

∣∣∣∣ ≤ ε

2
, ∀s ≤ τT .

Hence, for T large enough,

(5.17) B1 ≥ eo(L(T ))Pxσ(0)L(T )

(
∀s ≤ τT , Ws ∈ [0, (h− ε/2)σ(0)L(T )] ; WτT ∈ [hT , 2hT ]

)
,

The Brownian reflection principle (see e.g. [19, Part 1, Ch. 4]) yields, for every y ∈ [hT , 2hT ],

Pxσ(0)L(T )

(
WτT ∈ dy

)
=

1√
2πτT

exp
(
− (xσ(0)L(T )−y)2

2τT

)
dy,

Pxσ(0)L(T )

(
WτT ∈ dy; inf

s≤τT
Ws ≤ 0

)
=

1√
2πτT

exp
(
− (xσ(0)L(T )+y)2

2τT

)
dy,

Pxσ(0)L(T )

(
WτT ∈ dy; sup

s≤τT

Ws ≥ (h− ε/2)σ(0)L(T )
)
=

1√
2πτT

exp
(
− ((2h−x−ε)σ(0)L(T )−y)2

2τT

)
dy.

Now note that for y ∈ [hT , 2hT ], by (5.12),

(xσ(0)L(T ) + y)2

2τT
− (xσ(0)L(T )− y)2

2τT
≥ εηL(T )hT

τT
≫ 1.

Furthermore, using that 2h− x− ε ≥ x+ ε, we have for y ∈ [hT , 2hT ], again by (5.12),

((2h− x− ε)σ(0)L(T )− y)2

2τT
− (xσ(0)L(T )− y)2

2τT
≥ εηL(T )

τT
≫ 1.

It follows from the above estimates, that for T large enough,

Pxσ(0)L(T )

(
∀s ≤ τT , Ws ∈ [0, (h− ε/2)σ(0)L(t)] ; WτT ∈ [hT , 2hT ]

)
≥ hT√

2πτT
exp

(
− (xσ(0)L(T )−2hT )2

2τT

)
(1− o(1)) ≥ eo(L(T )) ,(5.18)

by (5.12). Equations (5.17) and (5.18) imply that B1 ≥ eo(L(T )) as T → +∞. The term B3 is handled
similarly. Recollecting (5.13) and (5.15), this finishes the proof of the lemma.
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□

We now provide an upper bound on the second moment of |Asup
T,I (t)| when I = [z, h] for some z ∈ [0, h]

and t ∈ [0, T ].

Proposition 5.3 (Second moment, Super-critical). Let h > 0. One has as T → +∞,

(5.19) E
[
|Asup

T,z(t)|2
]
≤ e(x+h−2z)L(T )+o(L(T )) ,

uniformly in t ∈ [0, T ], σ ∈ Sη, x ∈ [0, h] and z ∈ [0, h].

Remark 5.2. The proof of Proposition 5.3 relies mostly on the Many-to-two lemma (Lemma 4.4) and
the upper bound (5.1) from Proposition 5.1. Noticeably, the second moment estimates in the sub-critical
and critical cases will be obtained very similarly, by using respectively the first moment upper bounds from
Propositions 5.5 and 5.9 below.

Proof. The Many-to-two lemma (Lemma 4.4) states that

E
[
|Asup

T,z(t)|2
]
− E

[
|Asup

T,z(t)|
]
= β0E[ξ(ξ − 1)]

∫ t

0

ds

∫ h

0

Gsup(x, y, 0, s)

(∫ h

z

Gsup(y, w, s, t) dw

)2

dy .

Similarly to (4.21), one has
∫ h

z
Gsup(y, w, s, t)dw = E[|Ãsup

T,z(t− s)|], where Ãsup
T,z is defined similarly to Asup

T,z

by replacing σ(·) with σ(· − s/T ). Recall also the upper bound (5.1) from Proposition 5.1, which is uniform
in x ∈ [0, h], I ⊂ [0, h], σ ∈ Sη and t ∈ [0, T ]. Therefore, we have for any s ∈ [0, t],∫ h

0

Gsup(x, y, 0, s) dy

(∫ h

z

Gsup(y, w, s, t) dw

)2

≤ eo(L(T ))

∫ h

0

Gsup(x, y, 0, s) e2(y−z)L(T ) dy ,

where we used that the error term from (5.1) is uniform in y, z, s, t. Let K > 0 a large constant, and split
[0, h] into K intervals of length h

K . For any 0 ≤ i < K, one deduces from Proposition 5.1,∫ (i+1) h
K

i h
K

Gsup(x, y, 0, s) e2(y−z)L(T ) dy ≤ e2((i+1) h
K −z)L(T ) × e(x−i h

K )L(T )+o(L(T ))

≤ e((2+i) h
K +x−2z)L(T )+o(L(T ))

≤ e2
h
K L(T )+(x+h−2z)L(T )+o(L(T )).

Therefore, summing over 0 ≤ i < K and integrating over s ∈ [0, t], one obtains

E
[
|Asup

T,z(t)|2
]
− E

[
|Asup

T,z(t)|
]
≤ eo(L(T )) × e2

h
K L(T ) × t×K × e(x+h−2z)L(T ).

Taking K → +∞, and recalling that t ≤ T ≤ L(T )3 and E[|Asup
T,z(t)|] ≤ e(x−z)L(T )+o(L(T )), this yields the

expected upper bound uniformly in t, σ(·), x and z. □

We conclude this section with an estimate on the number of particles killed at the upper barrier. Recall
the definition of Rsup

T (s, t), 0 ≤ s ≤ t ≤ T from (4.5).

Proposition 5.4 (Killed particles, Super-critical). Let h > 0. Then as T → +∞, one has

(5.20) E [Rsup
T (0, T )] ≤ e−(h−x)L(T )+o(L(T )) ,

uniformly in x ∈ [0, h] and σ ∈ Sη.

Proof. Recall that we may write γsup
T as in (4.13): in particular, one has for s ∈ [0, T ],

(γsup
T )′(s) = σ(s/T ) + h(σ′)+(s/T )

L(T )

T
.
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Recollect (4.17) from Lemma 4.3. On the one hand, one has for T sufficiently large, uniformly in s ∈ [0, T ]
and σ ∈ Sη, that

∂

∂u

(
γsup
T

′(u)

σ2(u/T )

)∣∣∣∣
u=s

≥ − 1

T

σ′(s/T )

σ2(s/T )
− hη−7L(T )

T 2
,

so, on the event {∀s ≤ H0(B), Bs ≤ hσ(s/T )L(T )}, one obtains

−
∫ H0(B)

0

∂

∂u

(
γsup
T

′(u)

σ2(u/T )

)∣∣∣∣
u=s

Bs ds ≤ 1

T

∫ H0(B)

0

σ′(s/T )

σ2(s/T )
Bs ds+ h2η−8L(T )

2

T
.

On the other hand, one has∫ H0(B)

0

(γsup
T

′(s))2

2σ2(s/T )
ds ≥ H0(B)

2
+ h

L(T )

T

∫ H0(T )

0

(σ′)+(s/T )

σ(s/T )
ds .

Therefore, (4.17) eventually yields

E [Rsup
T (0, T )] ≤ e−(h−x)L(T )+o(L(T ))E(h−x)σ(0)L(T )

[
1{H0(B)≤T}1{∀s≤H0(B), Bs

σ(s/T )L(T )
∈[0,h]}

× exp

(
1

T

∫ H0(B)

0

σ′(s/T )

σ2(s/T )
Bs ds− h

L(T )

T

∫ H0(T )

0

(σ′)+(s/T )

σ(s/T )
ds

)]
.

Recall that σ′(u) = (σ′)+(u)− (σ′)−(u) for all u ∈ [0, 1]. Thus one obtains on the event {∀ s ≤ H0(B), Bs ≤
hσ(s/T )L(T )} that,

E [Rsup
T (0, T )] ≤ e−(h−x)L(T )+o(L(T ))E(h−x)σ(0)L(T )

[
1{H0(B)≤T}1{∀s≤H0(B), Bs

σ(s/T )L(T )
∈[0,h]}

× exp

(
− 1

T

∫ H0(B)

0

(σ′)−(s/T )

σ2(s/T )
Bs ds

)]
,

and the latter expectation is bounded by 1, which concludes the proof. □

5.2. Sub-critical case. In this section we assume ∗ = sub, that is 1 ≪ L(T ) ≪ T 1/3, and recall from (4.8)
and (4.3) that we defined the lower and upper barriers, for t ∈ [0, T ], by

γsub
T (t) :=

√
1− π2

h2L(T )2
× v(t/T )T − xσ(0)L(T ) ,

and γsub
T (t) := γsub

T (t) + hσ(t/T )L(T ) for some h > x > 0. Recall (4.4): in particular, the set of descendants
remaining between the barriers and reaching an interval I ⊂ [0, h] at time t is denoted by Asub

T,I (t). Recall

also (3.4) and (4.1), where we fixed some η > 0 and θ : R+ → R∗
+ such that θ(T ) → 0 as T → +∞ and (4.2)

holds.

Proposition 5.5 (First moment, Sub-critical). Let h > 0. As T → +∞, one has

(5.21) E
[
|Asub

T,I (t)|
]
≤ e(x−inf I)L(T )+o(L(T )) ,

uniformly in x ∈ [0, h], I ⊂ [0, h] an interval, σ ∈ Sη, and t = t(T ) such that 0 ≤ t(T ) ≤θ

√
TL(T )3 for T

sufficiently large. Moreover, as T → +∞ one also has for every interval I ⊂ [0, h] with non-empty interior,

(5.22) E
[
|Asub

T,I (t)|
]
≥ e(x−inf I)L(T )+o(L(T )) ,

locally uniformly in x ∈ (0, h), inf I ∈ [0, h) and sup I − inf I ∈ (0, h]; and uniformly in σ ∈ Sη and t = t(T )

such that L(T ) ≤θ t(T ) ≤θ

√
TL(T )3 for T sufficiently large.

This proposition should be compared with Proposition 5.1 for the super-critical regime. The definitions of
“uniformly” and “locally uniformly” are the same as in Remark 5.1.
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Remark 5.3. The upper bound on t in the hypotheses of Proposition 5.5 can be improved. However, in
contrast to the analogous results in the super-critical and critical regimes, in general we do not expect the
estimates from Proposition 5.5 to hold for all t ≤ T anyway, at least not if L(T ) is sufficiently small. For
this reason, the proofs of Propositions 3.6 and 3.7 in Sections 6 and 7 below will require additional arguments
in the sub-critical regime.

Proof. Recall Lemma 4.3, in particular (4.16). Notice that (4.8) implies that for all s ∈ [0, T ], T ≥ 0,

γsub
T

′(s)

σ(s/T )
=

√
1− π2

h2L(T )2
,

which does not depend on s. On the one hand, this yields for all s ∈ [0, T ],

(5.23)

(
γsub
T

′(s)
)2

2σ2(s/T )
=

1

2
− π2

2h2L(T )2
,

On the other hand, on the event { Bs

σ(s/T )L(T ) ∈ [0, h],∀s ≤ t}, one has

(5.24)

∫ t

0

∂

∂u

(
γsub
T

′(u)

σ2(u/T )

)∣∣∣∣
u=s

Bs ds ≤ η−3

T
× hη−1L(T )× θ(T )

√
TL(T )3 = o(L(T )) ,

uniformly in t ≤θ

√
TL(T )3 and σ ∈ Sη. Therefore, (4.16) becomes

E
[
|Asub

T,I (t)|
]
= exp

(
π2

2h2

t

L(T )2
+ o(L(T ))

)
Exσ(0)L(T )

[
exp

(
− Bt

σ(t/T )
+ xL(T )

)
(5.25)

× 1{∀s≤t, Bs
σ(s/T )L(T )

∈[0,h] ;
Bt

σ(t/T )L(T )
∈I}

]
.

We now focus on the latter expectation. It can be bounded from above by

(5.26) e(x−inf I)L(T ) Pxσ(0)L(T )

(
∀s ≤ t,

Bs

σ(s/T )L(T )
∈ [0, h]

)
;

and, letting any εT → 0 as T → +∞ and adding the constraint Bt

σ(t/T )L(T ) ≤ inf I + εT , it can be bounded

from below by

(5.27) e(x−εT−inf I)L(T ) Pxσ(0)L(T )

(
∀s ≤ t,

Bs

σ(s/T )L(T )
∈ [0, h] ;

Bt

σ(t/T )L(T )
∈ (inf I, inf I + εT )

)
.

Therefore, writing z := inf I to lighten notation, both statements of the proposition are obtained by showing

that (5.26–5.27) are of order exp((x − z)L(T ) − π2

2h2
t

L(T )2 + o(L(T ))). Once again, we achieve this via

a comparison with the standard, time-homogeneous Brownian motion (Ws)s≥0. In the following, recall
Lemma 4.5.

Upper bound. Using (3.5), the Brownian scaling property and a time change, we have

Pxσ(0)L(T )

(
Bs ∈ [0, h σ(s/T )L(T )], ∀s ≤ t

)
≤ Pxσ(0)L(T )

(
Bs ∈ [0, h (σ(0) + η−2t/T )L(T )], ∀s ≤ t

)
= P

x
σ(0)

σ(0)+η−2t/T

(
Bs ∈ [0, h], ∀s ≤ t

L(T )2(σ(0)+η−2t/T )2

)
= P

x
σ(0)

σ(0)+η−2t/T

(
Ws ∈ [0, h], ∀s ≤ t

L(T )2(σ(0)+η−2t/T )2

t

∫
0
σ2(u/T )du

)
≤ P

x
σ(0)

σ(0)+η−2t/T

(
Ws ∈ [0, h], ∀s ≤ t

L(T )2
(σ(0)−η−2t/T )2

(σ(0)+η−2t/T )2

)
.
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Then, (3.5) implies that, for T sufficiently large, (σ(0)−η−2t/T )2

(σ(0)+η−2t/T )2 ≥ 1
2 uniformly in σ ∈ Sη and t ≤θ

√
TL(T )3.

Moreover Lemma 4.5 implies that there exists a constant K > 0 such that,

∀ t′ ≥ K, sup
y∈[x/2,x]

Py(∀s ≤ t′, Ws ∈ [0, h]) ≤ 8

π
exp

(
− π2

2h2
t′
)

,

where we also used that
∫ h

0
sin(πz/h)dz = 2h/π. For any t such that t ≥ 2KL(T )2, this yields

Px

(
∀s ≤ t/L(T )2, Ws ∈ [0, h σ(t/T )/σ(0)]

)
≤ 8

π
exp

(
− π2

2h2

t

L(T )2
(σ(0)−η−2t/T )2

(σ(0)+η−2t/T )2

)
≤ 8

π
exp

(
− π2

2h2

t

L(T )2
+

2π2η−3

h2

t2

L(T )2T

)
,(5.28)

and, by assumption, we have t2

L(T )2T ≤ θ(T )2L(T ) = o(L(T )) for T large. On the other hand if t ≤ 2KL(T )2,

then one may write | π2

2h2
t

L(T )2 | ≤ Kπ2

h2 in (5.25), and the probability in (5.26) is bounded by 1. Finally,

taking the maximum of this and (5.28), we obtain an upper bound which is uniform in σ ∈ Sη and t(T ) such

that 0 ≤ t ≤θ

√
TL(T )3.

Lower bound. Similarly to the upper bound, we have to distinguish the cases t smaller or larger than KL(T )2,
for some constant K which is determined in (5.33) below.

Case t(T ) ≥ KL(T )2. Recall that we want to bound from below the expression in (5.27). Let εT such

that 1 ≫ εT ≫ max(θ(T )
√
L(T )3T−1, L(T )−1) as T → +∞. For T sufficiently large, this and (3.5) imply

z + εT < h and [z + εT /3, z + 2εT /3]σ(0) ⊂ [z, z + εT ]σ(t/T ) uniformly in σ ∈ Sη and locally uniformly in z.
Thus we have the lower bound

(5.29)

Pxσ(0)L(T )

(
∀s ≤ t, Bs ∈ [0, h σ(s/T )L(T )] ; Bt ∈ [z, z + εT ]σ(t/T )L(T )

)
≥ Pxσ(0)L(T )

(
∀s ≤ t, Bs ∈ [0, h σ(0)L(T )] ; Bt ∈ [z + εT /3, z + 2εT /3]σ(0)L(T )

)
.

Define

(5.30) τ = τ(t) :=
1

σ2(0)L(T )2

∫ t

0

σ2(u/T ) du ,

in particular (3.5) and t ≤θ

√
TL(T )3 imply that∣∣∣τ − t

L(T )2

∣∣∣ = T

L(T )2

∣∣∣∣∣
∫ t/T

0

(
σ(u)2

σ(0)2
− 1

)
du

∣∣∣∣∣ ≤ T

L(T )2

∫ t/T

0

u× 2σ′(u)σ(u) du ≤ T

L(T )2
η−2

(
t

T

)2

= O
(
θ(T )2L(T )

)
,

so that we have

(5.31)
∣∣∣τ − t

L(T )2

∣∣∣ = o(L(T )),

uniformly in σ ∈ Sη and t. Using the Brownian scaling property and a time change, we have

Pxσ(0)L(T )

(
∀s ≤ t, Bs ∈ [0, h σ(0)L(T )] ; Bt ∈ [z + εT /2, z + εT ]σ(0)L(T )

)
= Px

(
∀s ≤ τ, Ws ∈ [0, h] ; Wτ ∈ [z + εT /3, z + 2εT /3]

)
.(5.32)
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By Lemma 4.5, there exists a large constant K > 0 such that, for T sufficiently large, if t ≥ KL(T )2 then
τ ≥ K/2, and,

Px

(
∀s ≤ τ, Ws ∈ [0, h] ; Wτ ∈ [z + εT /3, z + 2εT /3]

)
≥ 1

h
exp

(
− π2

2h2
τ
)
sin
(πx

h

)∫ z+2εT /3

z+εT /3

sin
(πy
h

)
dy .(5.33)

Recalling εT ≫ L(T )−1 and that sin(πw) ≥ 1
2 (w ∧ 1− w), ∀w ∈ [0, 1], we have as soon as T is sufficiently

large,

(5.34)

∫ z+2εT /3

z+εT /3

sin
(πy
h

)
dy ≥ εT

6

(
z + εT /3

h
∧
(
1− z + 2εT /3

h

))
≥ ε2T

18h
= exp(o(L(T ))), .

Plugging this and (5.31) into (5.33), this finally yields the lower bound uniformly in t ≥ KL(T )2 and σ ∈ Sη.

Case t(T ) ≤ KL(T )2. Let εT which satisfies L(T )−1 ≪ εT ≪ L(T )−
1
2 . Reproducing the computation (5.29–

5.32) with that choice of εT , we then only need to prove that (5.32) is larger than exp(o(L(T ))) (since one

has π2

2h2
t

L(T )2 ≥ 0 in (5.25)). Using standard computations on the Gaussian density, one has

(5.35) Px

(
Wτ ∈ [z + εT /3, z + 2εT /3]

)
≥ εT

3

1√
2πτ

exp

(
− (|z − x|+ εT )

2

2τ

)
≥ exp(o(L(T ))) ,

where the second inequality follows from the observation that (3.5), (5.30) and t ≥θ L(T ) imply τ−1 ≤
2θ(T )L(T ) = o(L(T )) for T sufficiently large. Moreover, we claim that

(5.36) lim inf
T→+∞

Px

(
∀s ≤ τ, Ws ∈ [0, h]

∣∣∣Wτ ∈ [z + εT /3, z + 2εT /3]
)

> 0 ,

locally uniformly in x, z. With this, one only needs to take the minimum between (5.33) and (5.35–5.36),
then plug it into (5.27), to obtain the announced lower bound uniformly in t(T ) and σ(·).

Let us now prove (5.36). We write that t ≤ KL(T )2 implies τ ≤ 2K for T large, and
(5.37)

Px

(
∀s ≤ τ, Ws ∈ [0, h]

∣∣∣Wτ ∈ [z + εT /3, z + 2εT /3]
)

≥ Px

(
∀u ≤ 1, τ−

1
2

(
Wuτ − uz − (1− u)x

)
∈ [− x∧z√

2K
, h−x∨z√

2K
]
∣∣∣ τ− 1

2 (Wτ − z) ∈ τ−
1
2 [εT /3, 2εT /3]

)
.

Moreover, (5.30) implies τ ≥ (2θ(T )L(T ))−1 for T large, so τ−
1
2 εT → 0 as T → +∞. Therefore, the

Gaussian process (τ−
1
2 (Wuτ − uz − (1 − u)x))u∈[0,1] conditioned to W0 − x = 0, Wτ − z ∈ [εT /3, 2εT /3]

converges in law to a standard Brownian bridge (X0,0
u )u∈[0,1] as T → +∞ (see [17, Sect. 9]); more precisely,

the r.h.s of (5.37) converges to P(X0,0
u ∈ [− x∧z√

2K
, h−x∨z√

2K
],∀u ≤ 1) > 0 as T → +∞, and this convergence is

uniform in L(T ) ≤θ t ≤ KL(T )2. Since the latter probability is positive, this concludes the proof. □

We now provide an upper bound on the second moment of |Asub
T,I (t)| when I = [z, h] for some z ∈ [0, h].

Remark 5.4. Let us point out that, in contrast to the super-critical case (recall Proposition 5.3), the

statement below involves an error factor O(t): in general one cannot guarantee for all t ∈ [0,
√
TL(T )3] that

t ≤ eo(L(T )) in the sub-critical regime, especially when L(T ) grows very slowly in T . However this will not be
an issue in this paper, since in Sections 6–7 we shall consider values t = t(T ) which are at most polynomial
in L(T ).

Proposition 5.6 (Second moment, Sub-critical). Let h > 0. As T → +∞, one has

(5.38) E
[
|Asub

T,z(t)|2
]
≤ e(x+h−2z)L(T )+o(L(T )) ×O(t) ,
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uniformly in x ∈ [0, h], z ∈ [0, h], σ ∈ Sη and t = t(T ) such that 0 ≤ t(T ) ≤θ

√
TL(T )3 for T sufficiently

large.

Proof. This proposition is very similar to Proposition 5.3. Reproducing all arguments from its proof but
using (5.21) instead of (5.1), one obtains for K ∈ N and T sufficiently large,

E
[
|Asub

T,z(t)|2
]
− E

[
|Asub

T,z(t)|
]
≤ e2

h
K L(T )+o(L(T )) × t×K × e(x+h−2z)L(T ),

uniformly in x, z ∈ [0, h], σ ∈ Sη and 0 ≤ t ≤θ

√
TL(T )3. Taking K large, this yields the expected result. □

We conclude this section with an estimate on the number of particles killed at the upper barrier. Recall
the definition of Rsub

T (s, t), 0 ≤ s ≤ t ≤ T from (4.5).

Proposition 5.7 (Killed particles, Sub-critical). Let h > 0. Then as T → +∞, one has

(5.39) E
[
Rsub

T (0, t)
]
≤ e−(h−x)L(T )+o(L(T )) ×O

(
tL(T )−2 ∨ 1

)
,

uniformly in x ∈ [0, h], σ ∈ Sη, and t = t(T ) such that 0 ≤ t ≤θ

√
TL(T )3 for T sufficiently large.

Notice that, similarly to Proposition 5.6, we have an additional error term O(tL(T )−2 ∨ 1), which vanishes
as soon as t(T ) is at most polynomial in L(T ).

Proof. This proof relies on a comparison with the time-homogeneous case, which has already been studied
in [47, 48]. Recollect (4.17) from Lemma 4.3. Notice that (γsub

T )′(s) = (γsub
T )′(s) +O(L(T )/T ) uniformly in

s ∈ [0, T ], σ ∈ Sη. Combining this with (5.23–5.24), we deduce from (4.17) that,

E[Rsub
T (0, t)] = e−(h−x)L(T )+o(L(T ))E(h−x)σ(0)L(T )

[
exp

(
π2

2h2

H0(B)

L(T )2

)
1{H0(B)≤t}1{∀s≤H0(B), Bs

σ(s/T )L(T )
≤h}

]
.

Therefore, it only remains to bound from above the latter expectation. Using the Brownian scaling property,
we have

E(h−x)σ(0)L(T )

[
exp

(
π2

2h2

H0(B)

L(T )2

)
1{H0(B)≤t}1{∀s≤H0(B), Bs

σ(s/T )L(T )
∈[0,h]}

]

= E(h−x)

[
exp

(
π2

2h2
σ2(0)H0(B)

)
1{H0(B)≤t/(L(T )2σ2(0))}1{∀s≤H0(B), Bs∈[0,h σ(s/T )/σ(0)]}

]
.

Let (Ws)s≥0 denote the standard, time-homogeneous Brownian motion, recall the definition of J(s) from (3.1),
and recall (3.5). In particular, we have for s ∈ [0, T ],

s σ2(0)
(
1− η−2 s

T

)2 ≤ J(s) ≤ s σ2(0)
(
1 + η−2 s

T

)2
.

Thus, applying the time change (3.1) gives,

E(h−x)

[
exp

(
π2

2h2
σ2(0)H0(B)

)
1{H0(B)≤t/(L(T )2σ2(0))}1{∀s≤H0(B), Bs∈[0,h σ(s/T )/σ(0)]}

]

= E(h−x)

[
exp

(
π2

2h2
σ2(0)J−1(H0(W ))

)
1{H0(W )≤J(t/[L(T )2σ2(0)])}1{∀s≤H0(W ),Ws∈[0,h σ(s/T )/σ(0)]}

]

≤ E(h−x)

[
exp

(
π2

2h2

(
1− η−2 t

T

)−2
H0(W )

)
1{

H0(W )≤ t
L(T )2

(1+η−2t/T )2
}1{∀s≤H0(W ),Ws∈[0,h (1+η−2t/T )]}

]
.

Moreover, on the event H0(W ) ≤ 2t
L(T )2 , one has

(
1 − η−2 t

T

)−2
H0(W ) =

(
1 + η−2 t

T

)−2
H0(W ) + o(L(T ))

(recall that t ≤θ

√
TL(T )3). Then, the expectation above has already been estimated in [47, Lemma 2.2.1]
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(see also [48, Lemma 7.1]): therefore, we have for some universal C > 0,

E(h−x)

[
exp

(
π2

2h2

(
1 + η−2 t

T

)−2
H0(W )

)
1{

H0(W )≤ t
L(T )2

(1+η−2t/T )2
}1{∀s≤H0(W ),Ws∈[0,h (1+η−2t/T )]}

]
≤ π t

h2L(T )2 sin
(
π h−x

h

(
1 + η−2 t

T

)−1
)
+ C h−x

h

(
1 + η−2 t

T

)−1
= O

(
tL(T )−2 ∨ 1

)
,

uniformly in σ ∈ Sη and 0 ≤ t(T ) ≤θ

√
TL(T )3, which concludes the proof. □

5.3. Critical case. In this section we assume there exists α > 0 such that L(T ) ∼ αT 1/3 as T → +∞.
Recall the definition and properties of Ψ from (1.4). We recollect the following result from [52].

Lemma 5.8 ([52, Lemma 2.4]). Let W a standard time-homogeneous Brownian motion, q ∈ R, 0 < a < b < 1
and 0 < a′ < b′ < 1. Then,

(5.40)

lim
t→∞

1

t
sup

x∈[0,1]

logEx

[
e−q

∫ t
0
Wsds1{∀s≤t,Ws∈[0,1]}

]
= lim

t→∞

1

t
inf

x∈[a,b]
logEx

[
e−q

∫ t
0
Wsds1{∀s≤t,Ws∈[0,1] ; Wt∈[a′,b′]}

]
= Ψ(q) .

In the critical regime, recall from (4.9) and (4.3) that the lower and upper barriers are defined, for
t ∈ [0, T ], by

γcrit
T (t) = v(t/T )T − wh,T (t/T )L(T )− xσ(0)L(T ) ,

and γcrit
T (t) = γcrit

T (t) + hσ(t/T )L(T ) for some h > x > 0, and where wh,T ∈ C1([0, 1]) is defined in (4.6).

Remark 5.5. Let us point out that wh,T (u) ∼ π2

2α3h2 v(u) as α → 0, so that choice of upper barrier
matches the sub-critical asymptotics of the N-BBM when α is small (recall (1.11), Lemma 4.1 and that
L(T ) = o(T/L(T )2) in that case). Moreover, the relation Ψ(−q) = q +Ψ(q), q ∈ R yields

α

(
wh,T (u)− h

∫ u

0

(σ′)−(s) ds

)
−→

α→+∞

a1
21/3

∫ u

0

σ(v)1/3|σ′(v)|2/3dv ,

for all u ∈ (0, 1]. Thus, multiplying these terms by T 1/3 ∼ α−1L(T ), we see that the upper barrier matches
the super-critical asymptotics of the N -BBM when α is large; and when σ is decreasing, one also recovers
the asymptotics of Proposition 1.3.

Recalling (4.4), the set of descendants remaining between the barriers and ending in a (rescaled) interval
I ⊂ [0, h] at time t is denoted by Acrit

T,I (t).

Proposition 5.9 (First moment, Critical). Let h > 0. One has, as T → +∞,

(5.41) E
[
|Acrit

T,I (t)|
]
≤ e(x−inf I)L(T )+o(T 1/3) ,

uniformly in t ∈ [0, T ], σ ∈ Sη, x ∈ [0, h], and I ⊂ [0, h] an interval. Moreover, one also has, as T → +∞,
for every interval I ⊂ [0, h] with non-empty interior,

(5.42) E
[
|Acrit

T,I (t)|
]
≥ e(x−inf I)L(T )+o(T 1/3) ,

locally uniformly in x ∈ (0, h), inf I ∈ [0, h) and sup I − inf I ∈ (0, h]; and uniformly in σ ∈ Sη and t = t(T )
such that L(T ) ≤θ t(T ) ≤ T for T sufficiently large.

Here again, this proposition should be compared with Propositions 5.1 and 5.5 for the super- and sub-critical
regimes; and the definitions of “locally uniformly” and “uniformly” are the same as in Remark 5.1.
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Proof. We follow a similar strategy as in [52], approximating the time-inhomogeneous variance by constants
on suitable time intervals. Recall (4.16) from Lemma 4.3. Notice that (4.9) implies

(5.43) γcrit
T

′(s) = σ(s/T ) + w′
h,T (s/T )

L(T )

T
= σ(s/T ) +O(T−2/3) ,

uniformly in s ∈ [0, T ] and σ ∈ Sη; more precisely, one can check that the function Ψ(·) is bounded on
[−α3h3η−2, α3h3η−2], as well as wh,T (·) and w′

h,T (·) on [0, 1], uniformly in σ ∈ Sη. In the following, we let

Ψ := sup{|Ψ(q)|, q ∈ [−α3h3η−2, α3h3η−2]} , Ψ
′
:= sup{|Ψ′(q)|, q ∈ [−α3h3η−2, α3h3η−2]} ,

which are well defined since Ψ is convex on R. Therefore, on the event { Bs

σ(s/T )L(T ) ∈ [0, h],∀s ≤ t}, one
deduces from (4.16) and a straightforward computation that,

(5.44)

E
[
|Acrit

T,I (t)|
]
= exp

(
xL(T ) +

L(T )

T

∫ t

0

w′
h,T (s/T )

σ(s/T )
ds+O(T−1/3)

)
×Exσ(0)L(T )

[
exp

(
− Bt

σ(t/T )
− 1

T

∫ t

0

σ′(s/T )

σ2(s/T )
Bsds

)
1{∀s≤t, Bs

σ(s/T )L(T )
∈[0,h] ;

Bt
σ(t/T )L(T )

∈I}
]
.

Upper bound. Let z := inf I. Let t ∈ [0, T ], and assume first that (t, T ) satisfies t ≤ T 5/6. Then, (5.44) gives

E
[
|Acrit

T,I (t)|
]
≤ e(x−z)L(T )+O(T 1/6)Pxσ(0)L(T )

(
∀s ≤ t, Bs

σ(s/T )L(T ) ∈ [0, h] ; Bt

σ(t/T )L(T ) ∈ I
)

≤ e(x−z)L(T )+O(T 1/6) ,(5.45)

uniformly in σ ∈ Sη and t ∈ [0, T 5/6].

For (t, T ) such that t ≥ T 5/6, let us split [0, t] into intervals of length KL(T )2, where K is a large constant
which is determined below. Writing imax := ⌊t/(KL(T )2)⌋, we let ti := iKL(T )2 for 0 ≤ i < imax, and
timax := t (notice that (timax − timax−1) ∈ [KL(T )2, 2KL(T )2]). Define for 1 ≤ i ≤ imax,

(5.46)

σi := sup
[ti−1,ti]

σ , σi := inf
[ti−1,ti]

σ ,

and σ′
i := sup

[ti−1,ti]

σ′ , σ′
i := inf

[ti−1,ti]
σ′,

and σ0 = σ0 := σ(0). Using the Markov property at times ti, 1 ≤ i < imax, one has

Exσ(0)L(T )

[
exp

(
− Bt

σ(t/T )
− 1

T

∫ t

0

Bs
σ′(s/T )

σ2(s/T )
ds

)
1{∀s≤t, Bs

σ(s/T )L(T )
∈[0,h] ;

Bt
σ(t/T )L(T )

∈I}
]

≤ e−zL(T )
imax∏
i=1

sup
y∈[0,hσiL(T )]

E(ti−1,y)

[
exp

(
− 1

T

∫ ti

ti−1

Bs
σ′
i

σ2
i

ds

)
1{∀s∈[ti−1,ti], Bs∈[0,hσiL(T )]}

]
.(5.47)

To lighten notation, let us focus on the factor i = 1, but the following proof holds for other blocks as well
(including [timax−1, timax

]). Let ε > 0. Recalling the time-change J(s) :=
∫ s

0
σ2(r/T )dr, s ≤ T from (3.1),
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and using the Brownian scaling property, we have for y ∈ [0, hσ1L(T )],

Ey

[
exp

(
− 1

T

σ′
1

σ2
1

∫ t1

0

Bsds

)
1{Bs∈[0,hσ1L(T )], ∀s≤t1}

]
(5.48)

= Ey

[
exp

(
− 1

T

σ′
1

σ2
1

∫ J(t1)

0

Ws (J
′(J−1(s)))−1ds

)
1{Ws∈[0,hσ1L(T )], ∀s≤J(t1)}

]

≤ Ey

[
exp

(
− 1

T

σ′
1

σ4
1

∫ σ2
1t1

0

Wsds

)
1{Ws∈[0,hσ1L(T )], ∀s≤σ2

1t1}

]

≤ Ey/(hσ1L(T ))

[
exp

(
− 1

T

σ′
1

σ4
1

(hσ1L(T ))
3

∫ σ2
1t1/(hσ1L(T ))2

0

Wsds

)
1{Ws∈[0,1], ∀s≤σ2

1t1/(hσ1L(T ))2}

]

≤ Ey/(hσ1L(T ))

[
exp

(
−σ′

1

σ1
α3h3(1− ε)

∫ σ2
1t1/(hσ1L(T ))2

0

Wsds

)
1{Ws∈[0,1], ∀s≤σ2

1t1/(hσ1L(T ))2}

]
,

where the last inequality holds for T sufficiently large, by recalling (3.5) and that L(T ) ∼ αT 1/3. Let ε > 0,
and recall that ti − ti−1 ≥ KL(T )2 for all i. Assume w.l.o.g that L(T ) > 0 for all T : then t1 → +∞ as
K → +∞ uniformly in T : applying Lemma 5.8, there exists Kε > 0 such that for K > Kε, one has

sup
y∈[0,1]

Ey

[
exp

(
−σ′

1

σ1
α3h3(1− ε)

∫ σ2
1t1/(hσ1L(T ))2

0

Wsds

)
1{Ws∈[0,1], ∀s≤σ2

1t1/(hσ1L(T ))2}

]

≤ exp

(
t1

h2L(T )2
σ2
1

σ2
1

[
Ψ

(
σ′
1

σ1
α3h3(1− ε)

)
+ ε

])
,

for all T ≥ 0. Then, for T sufficiently large, (3.5) and the definitions of Ψ, Ψ
′
yield,

σ2
1

σ2
1

[
Ψ

(
σ′
1

σ1
α3h3(1− ε)

)
+ ε

]
≤ Ψ

(
σ′
1

σ1
α3h3

)
+ c1Ψ

KL(T )2

T
+ εc1(Ψ

′ + 1) ,

for some constant c1 > 0. Therefore, there exists T0(K, ε) > 0 such that, for K sufficiently large and
T ≥ T0(K, ε), (5.47) becomes

Exσ(0)L(T )

[
exp

(
− Bt

σ(t/T )
− 1

T

∫ t

0

Bs
σ′(s/T )

σ2(s/T )
ds

)
1{∀s≤t, Bs

σ(s/T )L(T )
∈[0,h] ;

Bt
σ(t/T )L(T )

∈I}
]

≤ e−zL(T ) exp

(
imax∑
i=1

(ti − ti−1)

h2L(T )2

[
Ψ

(
σ′
i

σi
α3h3

)
+ c1Ψ

KL(T )2

T
+ εc1(Ψ

′ + 1)

])
.

Using a Riemann sum approximation, there exists T0(K, ε) > 0 such that, for K large and T ≥ T0(K, ε),
and for t ≥ T 5/6, one has

(5.49)

imax∑
i=1

(ti − ti−1)

L(T )2
Ψ

(
σ′
i

σi
α3h3

)
≤ 1

L(T )2

∫ t

0

Ψ

(
σ′(r/T )

σ(r/T )
α3h3

)
dr + ε

t

L(T )2
.

Moreover, one has

(5.50)

imax∑
i=1

(ti − ti−1)

h2L(T )2

[
Ψ
KL(T )2

T
+ ε(Ψ′ + 1)

]
= O(1) + εO(T 1/3) .

Recollect (5.44) and recall that L(T ) ∼ αT 1/3. Recalling the definition of wh,T from (4.6) and that
1

L(T )2 ∼ α−3 L(T )
T , we finally obtain that there exist some C,C ′ > 0 (depending only on η, ε and α) such that
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for T large enough, one has

(5.51) E
[
|Acrit

T,z(t)|
]
≤ exp

(
(x− z)L(T ) + C + C ′εT 1/3

)
,

for all t ≥ T 5/6. Taking the maximum of (5.45) and (5.51), and letting ε → 0, this finally yields the expected
upper bound uniformly in σ(·) and t ∈ [0, T ].

Lower bound. Similarly to the upper bound, we distinguish the cases t smaller or larger than T 5/6. We
first consider the case t ≥ T 5/6, using the same time split with intervals of length KL(T )2 and notation as
above (recall (5.46)). Let 0 < a < b < h such that x ∈ (a, b), and ε > 0 such that z + ε < h. We bound the
expectation in (5.44) from below by constraining the trajectory to pass through the intervals [a, b] · σiL(T )
at times ti, 1 ≤ i ≤ imax − 1. Hence, the Markov property gives

Exσ(0)T 1/3

[
exp

(
− Bt

σ(t/T )
− 1

T

∫ t

0

Bs
σ′(s/T )

σ2(s/T )
ds

)
1{∀s≤t, Bs∈[0,hσ(s/T )L(T )] ;

Bt≥zσ(t/T )L(T )

}
]

≥ e−(z+ε)L(T )
imax−1∏
i=1

inf
y∈[a,b]·σi−1L(T )

E(ti−1,y)

[
exp

(
− 1

T

σ′
i

σ2
i

∫ ti

ti−1

Bsds

)
1{∀s∈[ti−1,ti], Bs∈[0,hσiL(T )] ;

Bti
∈[aσiL(T ),bσiL(T )]

}
](5.52)

× inf
y∈[a,b]·σimax−1L(T )

E(timax−1,y)

[
exp

(
− 1

T

σ′
imax

σ2
imax

∫ timax

timax−1

Bsds

)
1{∀s∈[timax−1,t], Bs∈[0,hσimax

L(T )] ;

Bt∈[zσ(t/T )L(T ),(z+ε)σ(t/T )L(T )]

}
]
.

Let us focus on the factor i = 1 here again (others are handled similarly, including the last one). Reproducing
the time-change argument from (5.48), one has for y ∈ [a, b] · σ(0)L(T ),

Ey

[
exp

(
− 1

T

σ′
1

σ2
1

∫ t1

0

Bsds

)
1{∀s≤t1, Bs∈[0,hσ1L(T )] ;

Bt1∈[aσ1L(T ),bσ1L(T )]

}
]

≥ Ey

[
exp

(
− 1

T

σ′
1

σ4
1

∫ J(t1)

0

Wsds

)
1{∀s≤J(t1),Ws∈[0,hσ1L(T )] ;

WJ(t1)∈[aσ1L(T ),bσ1L(T )]

}
]
.

Recall (3.5). Applying Lemma 5.8 and the Brownian scaling property, one obtains similarly to the upper
bound (we do not write the details again),

inf
y∈[a,b]·σ(0)L(T )

Ey

[
exp

(
− 1

T

σ′
1

σ4
1

∫ J(t1)

0

Wsds

)
1{∀s≤J(t1),Ws∈[0,hσ1L(T )] ;

WJ(t1)∈[aσ1L(T ),bσ1L(T )]

}
]

≥ exp

[
t1

h2L(T )2
Ψ

(
σ′
1

σ1

α3h3

)
−O(L(T )2/T )− εO(1)

]
.

for some Kε > 0, K ≥ Kε and T0(K, ε) > 0, T ≥ T0(K, ε). Reproducing this lower bound for all factors
of (5.52), using a Riemann sum approximation similar to (5.49) and recollecting (5.44), we may conclude
similarly to the upper bound in the case t ≥ T 5/6.

Let us now consider the case t ≤ T 5/6. Recall the proof of the first moment lower bound in the sub-critical
case (Proposition 5.5), that is (5.27, 5.29–5.32). We define as in (5.30),

τ = τ(T ) :=
1

σ2(0)L(T )2

∫ t

0

σ2(u/T ) du ,

and (εT )T≥0 such that T−1/3 ≪ εT ≪ T−1/6 as T → +∞. Then, the Brownian scaling property and a time
change yield, similarly to the sub-critical regime,

(5.53) E
[
|Acrit

T,I (t)|
]
≥ e(x−z−εT )L(T )+o(T 1/3) Px

(
∀ s ≤ τ, Ws ∈ [0, h] ; Wτ ∈ [z + εT /3, z + 2εT /3]

)
.
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It remains to prove that the probability above is larger than eo(T
1/3). Recall Lemma 4.5: proceeding similarly

to (5.33–5.34), there exists R > 0 such that,

∀t′ ≥ R , Px

(
∀s ≤ t′, Ws ∈ [0, h] ; Wt′ ∈ [z + εT /3, z + 2εT /3]

)
≥ 1

h

ε2T
18h

sin
(πx

h

)
exp

(
− π2

2h2
t′
)

.

If t, T satisfy 2RL(T )2 ≤ t ≤ T 5/6, then (3.5) implies R ≤ τ ≤ 2α−2T 1/6 for T sufficiently large, uniformly

in σ ∈ Sη. In particular the r.h.s. above, evaluated at t′ = τ , is larger than eO(T 1/6), uniformly in σ ∈ Sη

and locally uniformly in x, z. On the other hand, if t, T satisfy t ≤ 2RL(T )2, then τ ≤ 4R for T sufficiently
large, uniformly in σ ∈ Sη. Moreover, one notices that t ≥θ L(T ) and εT ≪ T−1/6 imply that τ−1/2εT → 0
as T → +∞. Recalling (5.35–5.37) from the sub-critical case, we have already proven by introducing a
Brownian bridge that, under this assumption, the probability in (5.53) is larger than eo(L(T )) for T large: we
do not replicate the details of the proof here.

Therefore, we derived three lower bounds which hold respectively in the cases t ≥ T 5/6, 2RL(T )2 ≤ t ≤
T 5/6 and L(T ) ≤θ t ≤ 2RL(T )2: taking the minimum of these, we obtain a lower bound that holds uniformly
in L(T ) ≤θ t ≤ T and σ ∈ Sη, which fully concludes the proof of the proposition. □

Proposition 5.10 (Second moment, Critical). Let h > 0. As T → +∞, one has

(5.54) E
[
|Acrit

T,z(t)|2
]
≤ e(x+h−2z)L(T )+o(T 1/3) .

uniformly in x ∈ [0, h], z ∈ [0, h], σ ∈ Sη and t ∈ [0, T ].

This statement is analogous to Propositions 5.3 and 5.6 in the super- and sub-critical cases respectively.

Since its proof is identical (using the upper bound (5.41), and observing that t ≤ T = eo(T
1/3) in the critical

regime), we do not reproduce it here.
We now state the analogue of Proposition 5.7 regarding the number of particles killed by the upper barrier.

Recall from (4.5) that Rcrit
T (s, t), 0 ≤ s ≤ t ≤ T denotes the expected number of particles killed by the upper

barrier on the time interval [s, t].

Proposition 5.11 (Killed particles, Critical). Let h > 0. Then as T → +∞, one has

(5.55) E[Rcrit
T (0, T )] ≤ e−(h−x)L(T )+o(T 1/3) ,

uniformly in x ∈ [0, h] and σ ∈ Sη.

Proof. Recollect (4.17) from Lemma 4.3. Notice that (γcrit
T )′(·) = (γcrit

T )′(·) + hσ′(·/T )L(T )
T , and recall that

γcrit
T (0) = (h − x)σ(0)L(T ). Combining this with (5.43), we deduce from (4.17) with a straightforward

computation that

E[Rcrit
T (0, T )] = e−(h−x)L(T )+O(T−1/3)E(h−x)σ(0)L(T )

[
1{H0(B)≤T}1{∀s≤H0(B), Bs

σ(s/T )L(T )
∈[0,h]}

× exp

(
L(T )

T

∫ H0(B)

0

w′
h,T (s/T )− hσ′(s/T )

σ(s/T )
ds+

1

T

∫ H0(B)

0

σ′(s/T )

σ2(s/T )
Bsds

)]
,

and it remains to show that the latter expectation is of order exp(o(T 1/3)). Let us apply Girsanov’s theorem
and the Brownian symmetry property to the process (hσ(s/T )L(T )−Bs)s≥0: recalling estimates from (5.11)

and setting H̃(B) := H0(B − hσ(·/T )L(T )) to lighten notation, this yields,

E(h−x)σ(0)L(T )

[
1{H0(B)≤T}1{∀s≤H0(B), Bs

σ(s/T )L(T )
∈[0,h]}e

L(T )
T

∫ H0(B)
0

w′
h,T (s/T )−hσ′(s/T )

σ(s/T )
ds+ 1

T

∫ H0(B)
0

σ′(s/T )

σ2(s/T )
Bsds

]

= eO(T−1/3) Exσ(0)L(T )

[
1{H̃(B)≤T}1{∀s≤H̃(B), Bs

σ(s/T )L(T )
∈[0,h]}e

L(T )
T

∫ H̃(B)
0

w′
h,T (s/T )

σ(s/T )
ds− 1

T

∫ H̃(B)
0

σ′(s/T )

σ2(s/T )
Bsds

]
.
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Notice that the latter formula is equivalent to rewriting (4.17) in terms of γ∗
T instead of γ∗

T (details are left to

the reader). Then we split [0, T ] into intervals of length T 5/6, setting ti := iT 5/6 for 0 ≤ i < imax := ⌊T 1/6⌋
and timax := T . Thus we have,

Exσ(0)L(T )

[
1{H̃(B)≤T}1{∀s≤H̃(B), Bs

σ(s/T )L(T )
∈[0,h]}e

L(T )
T

∫ H̃(B)
0

w′
h,T (s/T )

σ(s/T )
ds− 1

T

∫ H̃(B)
0

σ′(s/T )

σ2(s/T )
Bsds

]

≤
imax−1∑
i=0

Exσ(0)L(T )

[
1{ti<H̃(B)≤ti+1}1

{
∀s≤H̃(B), Bs

σ(s/T )L(T )
∈[0,h]

}eL(T )
T

∫ H̃(B)
0

w′
h,T (s/T )

σ(s/T )
ds− 1

T

∫ H̃(B)
0

σ′(s/T )

σ2(s/T )
Bsds

]

≤
imax−1∑
i=0

eO(T 1/6) Exσ(0)L(T )

[
1{

∀s≤iT 5/6, Bs
σ(s/T )L(T )

∈[0,h]
}eL(T )

T

∫ iT5/6

0

w′
h,T (s/T )

σ(s/T )
ds− 1

T

∫ iT5/6

0
σ′(s/T )

σ2(s/T )
Bsds

]
,

uniformly in σ ∈ Sη. Recalling (5.47–5.49) from the proof of Proposition 5.9, we have already proven that

the latter expectation is of order eo(T
1/3) as T → +∞ uniformly in 1 ≤ i ≤ imax = O(T 1/6) (we do not

reproduce the details). This concludes the proof of the proposition. □

6. Lower bound on the maximum of the N-BBM

In this section we prove Proposition 3.6 by considering a BBM between well chosen barriers and showing
that it is equal to an N−-BBM with large probability. Then, the lower bound is obtained by showing that
the maximum of the BBM between barriers is close to the upper barrier via a moment method. The following
results hold for all three regimes ∗ ∈ {sub, sup, crit}, where we use our notation from Section 4.

6.1. Estimates for the BBM between barriers. We first focus on the case κ ∈ (0, 1), and consider
a BBM between barriers starting with Nκ particles. In order to lighten upcoming formulae, we assume
that they are initially located at the origin: then, results on the process started from the initial measure
Nκδ−κσ(0)L(T ) are obtained through a direct shift of upcoming estimates. Let us recall that we omit the
integer parts when writing Nκ, κ ≥ 0 (i.e. we assume that Nκ ∈ N).

Since the moment estimates from Section 5.2 do not hold on the whole interval [0, T ] in the sub-critical
case, let us define

(6.1) t∗T :=

{
min

(
L(T )4, L(T )2T 1/3

)
if ∗ = sub ,

T if ∗ ∈ {sup, crit} ,

which is the time horizon we consider below: we compute a lower bound on the N -BBM at time t∗T ,
∗ ∈ {sub, sup, crit}; then, in the sub-critical regime, we extend the lower bound up to time T with additional
arguments.

Let η > 0, and consider a vanishing function θ(T ) → 0 as T → +∞ (depending on L(T )), such that for T
sufficiently large, one has (4.2), as well as

(6.2) L(T )3 ≤θ tsubT ≤ (L(T )3)2/3T 1/3 ≤θ

√
TL(T )3 , if ∗ = sub .

Let 0 < ε < 1 be small, and fix

(6.3) h = 1− ε , x = (1− κ)(1− ε) ∈ (0, h) .

Then, define the barriers γ∗
T , γ

∗
T for each regime ∗ ∈ {sup, sub, crit} according to (4.7), (4.8) and (4.9)

respectively, with these parameters h > x > 0; in particular they satisfy (4.3).
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Recall the definitions of A∗
T,I , R

∗
T (s, t) from (4.4), (4.5), and that N = N(T ) = eL(T ). Then, moment

estimates from Propositions 5.1, 5.3, 5.5, 5.6, 5.9 and 5.10 yield for all regimes ∗ ∈ {sup, sub, crit},
Eδ0

[
|A∗

T,I(t)|
]
≤ Nx−inf I+o(1) ,(6.4)

Eδ0

[
|A∗

T,I(t)|
]
= Nx−inf I+o(1) if, additionally, t ≥θ L(T ) ,(6.5)

Eδ0

[
|A∗

T,z(t)|2
]
≤ Nx+h−2z+o(1) ,(6.6)

for some vanishing terms o(1) as T → +∞: in (6.4, 6.6), these error terms are uniform in σ ∈ S∗
η , 0 ≤ t ≤ t∗T

and x, z ∈ [0, h], I ⊂ [0, h] a non-trivial sub-interval; and in (6.5), it is uniform in σ ∈ S∗
η , L(T ) ≤θ t ≤ t∗T

and locally uniform in x, I. Let us point out that the additional error factors from Propositions 5.6 and 5.7
in the sub-critical case are absorbed into the No(1), since tsubT ≤ L(T )4 = eo(L(T )).

With those parameters and initial condition, let us first prove that the BBM between the barriers γ∗
T , γ

∗
T

does not contain more than N particles at any time in [0, t∗T ] with high probability.

Proposition 6.1. Let ε, h, x as in (6.3), and κ ∈ (0, 1). Then there exist constants c1, c2 > 0 such that,
for T sufficiently large, one has

(6.7) PNκδ0

(
∃s ≤ t∗T : |A∗

T (s)| > N
)

≤ c1N
−c2 ,

where c1, c2 are uniformly bounded away from 0 and ∞ in σ ∈ S∗
η , and locally uniformly in ε, κ ∈ (0, 1).

Proof. Define λ := 1− ε
2 (1− κ) ∈ (x+ κ, 1). With a union bound, we write

PNκδ0

(
∃s ≤ t∗T : |A∗

T (s)| > N
)

≤
t∗T−1∑
k=0

PNκδ0

(
∃s ∈ [k, k + 1] : |A∗

T (s)| > N
)

≤
t∗T−1∑
k=0

PNκδ0

(
|A∗

T (k)| > Nλ
)
+ PNκδ0

(
|A∗

T (k)| ≤ Nλ ; ∃ s ∈ [k, k + 1] : |A∗
T (s)| > N

)
,(6.8)

where we wrote t∗T − 1 instead of ⌈t∗T − 1⌉ to lighten notation. On the one hand, the additivity of |A∗
T (k)| in

the initial measure implies that

ENκδ0 [|A∗
T (s)|] = Nκ Eδ0 [|A∗

T (s)|].
One deduces from Markov’s inequality and (6.4) that for all 0 ≤ k ≤ t∗T − 1,

(6.9) PNκδ0

(
|A∗

T (k)| > Nλ
)
≤ NκN−λ Eδ0

[
|A∗

T (k)|
]
= N−(λ−x−κ)+o(1) ,

for T large, where o(1) does not depend on k or σ ∈ S∗
η .

On the other hand, let (Zt)t≥0 denote the population size of a BBM without selection (in particular its
population size is non-decreasing in time), and let A denote the set of counting measures on R with mass at
most Nλ. Using Markov’s property and a straightforward coupling argument, one has for 0 ≤ k ≤ t∗T − 1,

PNκδ0

(
|A∗

T (k)| ≤ Nλ ; ∃ s ∈ [k, k + 1] : |A∗
T (s)| > N

)
≤ sup

µ∈A
Pµ(Z1 > N) .

Since Eµ[Z1] = e1/2µ(R) for any µ ∈ A, one has by Markov’s inequality,

Pµ(Z1 > N) ≤ N−(1−λ)e1/2 .

Recollecting (6.8, 6.9) and (6.1), we finally obtain in all regimes,

PNκδ0

(
∃s ≤ t∗T : |A∗

T (s)| > N
)
≤ L(T )4 ×N− ε

2 (1−κ)+o(1) = N− ε
2 (1−κ)+o(1)‘ ,

which concludes the proof. □

We now bound from below the number of particles located at a given height, at a time t not too small.
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Proposition 6.2. There exist c1, c2 > 0 such that, for T sufficiently large, one has

(6.10) PNκδ0

(
|A∗

T,[z,z+ε](t)| ≥ N1−ε−z
)

≥ 1− c1N
−c2 ,

where c1, c2 are uniformly bounded away from 0 and ∞ in σ ∈ S∗
η , t ∈ [θ(T )−1L(T ), t∗T ] and z ∈ [0, 1− 2ε],

and locally uniformly in ε, κ ∈ (0, 1).

Notice that, taking z = 1− 2ε, this proposition implies that, with large probability, there are at least Nε

particles located in the vicinity of the upper barrier γ∗
T at time t∗T .

Proof. Applying Paley-Zygmund’s inequality, we have

(6.11) PNκδ0

(
|A∗

T,[z,z+ε](t)| ≥ N1−ε−z
)
≥
(
1− N1−ε−z

ENκδ0 [|A∗
T,[z,z+ε](t)|]

)2

×
ENκδ0 [|A∗

T,[z,z+ε](t)|]2
ENκδ0 [|A∗

T,[z,z+ε](t)|2]
.

For all M ∈ N, I ⊂ [0, h] and t ≥ 0, recall that EMδ0 [|A∗
T,I(t)|] = MEδ0 [|A∗

T,I(t)|]. Regarding the second
moment, by splitting the sum over pairs of particles u, v ∈ Nt depending on whether they come from the
same ancestor or two distinct ancestors at time 0, we obtain for any I ⊂ [0, h], t ≥ 0,

(6.12) EMδ0

[
|A∗

T,I(t)|2
]
= MEδ0

[
|A∗

T,I(t)|2
]
+M(M − 1)Eδ0 [|A∗

T,I(t)|]2.
Recalling (6.4–6.6) and the definitions of x, h from (6.3), we obtain

PNκδ0

(
|A∗

T,[z,z+ε](t)| ≥ 1
)
≥
(
1−N (1−ε−z)−κ−(x−z)+o(1)

)2 (
1 +Nx+h−2z−κ−2(x−z)+o(1)

)−1

=
(
1−N−εκ+o(1)

)2 (
1 +N−εκ+o(1)

)−1

≥ 1−N−εκ+o(1) ,

as T → +∞, uniformly in σ ∈ S∗
η and t ∈ [θ(T )−1L(T ), t∗T ], which concludes the proof. □

6.2. Proof of Proposition 3.6. We finally prove Proposition 3.6. This is achieved by coupling the BBM
between barriers with an N -BBM, through the introduction of an N−-BBM and the application of Lemma 3.2.
Recall that the point measure of the N -BBM throughout time is denoted by (XN

t )t≥0. We first claim the
following, which is a consequence of Propositions 6.1 and 6.2.

Lemma 6.3. Let ∗ ∈ {sub, sup, crit}. There exists c1, c2 > 0 such that for T sufficiently large, one has

(6.13) PNκδ0

(
XN

t

[
γ∗
T (t) + (1− 2ε)σ(t/T )L(T ) , +∞

)
< Nε

)
≤ c1N

−c2 ,

and

(6.14) PNκδ−κσ(0)L(T )

(
max(XN

t∗T
) ≤ γ∗

T (t
∗
T ) + (1− 2ε)σ(t∗T /T )L(T )− κσ(0)L(T )

)
≤ c1N

−c2 ,

where c1, c2 are uniformly bounded away from 0 and ∞ in σ ∈ S∗
η , t ∈ [θ(T )−1L(T ), t∗T ], and locally uniformly

in ε, κ ∈ (0, 1).

Proof of Lemma 6.3. Let us first prove (6.13). Denote by (XN−
t )t≥0 the point process of a BBM with the

following selection mechanism: particles are killed whenever they are not among the N highest or when they
hit one of the barriers γ∗

T , γ
∗
T . In particular it is an N−-BBM (recall Definition 3.1), therefore Lemma 3.2

yields that for any y ∈ R,

(6.15) PNκδ0

(
XN

t∗T
([y,+∞)) < Nε

)
≤ PNκδ0

(
XN−

t∗T
([y,+∞)) < Nε

)
.

Let (XB
t )t≥0 be the point process of a BBM killed at the barriers γ∗

T , γ
∗
T but without any other selection.

By Proposition 6.1, it has a large probability under PNκδ0 to contain fewer than N particles at all time on

[0, t∗T ], in which case its trajectory is equal to that of the process (XN−
t )t∈[0,t∗T ]. Therefore, for T sufficiently

large and y ∈ R,

(6.16) PNκδ0

(
XN−

t∗T
([y,+∞)) < Nε

)
≤ PNκδ0

(
XB

t∗T
([y,+∞)) < Nε

)
+ c1N

−c2 .
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Finally, letting t ∈ [θ(T )−1L(T ), t∗T ] and y = γ∗
T (t) + (1− 2ε)σ(t/T )L(T ), and applying Proposition 6.2 with

z = 1− 2ε, this yields

PNκδ0

(
XN

t

[
γ∗
T (t) + (1− 2ε)σ(t/T )L(T ) , +∞

)
< Nε

)
≤ PNκδ0

(
|A∗

T,1−2ε(t
∗
T )| < Nε

)
+ c1N

−c2 ≤ 2c1N
−c2 ,

uniformly in σ, t, from which (6.13) follows.
Regarding (6.14), one deduces straightforwardly from (6.13) that

PNκδ0

(
max(XN

t∗T
) ≤ γ∗

T (t
∗
T ) + (1− 2ε)σ(t∗T /T )L(T )

)
≤ c1N

−c2 ,

and shifting this estimate by −κσ(0)L(T ) concludes the proof. □

With this at hand, we resume the proof of Proposition 3.6. To that end, we first claim that it suffices
to prove the following, slightly weaker statement in which the uniformity in κ ∈ [0, 1] is replaced by local
uniformity in κ ∈ (0, 1). Recall (1.10, 1.11).

Lemma 6.4. Let ∗ ∈ {sup, sub, crit}. Let λ > 0, κ ∈ (0, 1) and η > 0. Then as T → +∞, one has

(6.17) PNκδ−κσ(0)L(T )

(
1

b∗T

(
max(XN

T )−m∗
T

)
≤ −λ

)
−→ 0 ,

and the convergence is uniform in σ ∈ S∗
η , and locally uniform in κ ∈ (0, 1).

Proof of Proposition 3.6 subject to Lemma 6.4. We start with the case κ close to 1. Let ∗ ∈ {sup, sub, crit}
and λ > 0. Notice that there exists ε > 0 such that

(6.18) lim sup
T→+∞

εσ(0)L(T )

b∗T
≤ λ

3
.

Indeed, in the sub-critical regime this follows from the fact that L(T ) ≪ bsubT , and in the other cases this holds
as soon as ε ≤ (λη/3) limT→+∞(b∗T /L(T )) (the latter limit being equal to 1, resp. 1/α, in the super-critical,
resp. critical regime). Moreover, one has Nκδ−κσ(0)L(T ) ≻ N1−εδ−σ(0)L(T ) for κ ∈ [1− ε, 1], so Corollary 3.3
implies that,

PNκδ−κσ(0)L(T )

(
1

b∗T

(
max(XN

T )−m∗
T

)
≤ −λ

)
≤ PN1−εδ−σ(0)L(T )

(
1

b∗T

(
max(XN

T )−m∗
T

)
≤ −λ

)
≤ PN1−εδ−(1−ε)σ(0)L(T )

(
1

b∗T

(
max(XN

T )−m∗
T

)
≤ −λ

3

)
,

where the last inequality is obtained for T sufficiently large by shifting the process upward by εσ(0)L(T ),
and by recalling (6.18). Applying Lemma 6.4 with κ = 1 − ε, this proves that (6.17) holds uniformly in
κ ∈ [1− ε, 1].

Regarding the case κ small, let ε > 0, and recall that (Nt)t≥0 denotes the set of particles in the BBM
throughout time; and let Zt := |NT |, t ≥ 0. We claim the following.

Lemma 6.5. Let ε, ε′ > 0. One has for T sufficiently large:
(i) Pδ0(ZεL(T ) ≤ Nε/4) ≤ ε′,
(ii) Pδ0(∃ s ≤ εL(T ) : Zs ≥ N) ≤ ε′,
(iii) Pδ0(∃u ∈ NεL(T ) : Xu(εL(T )) ≤ −2εη−1L(T )) ≤ ε′.

Those statements follow from classical results on the BBM and birth processes, we postpone their proof
for now. For ε > 0 and κ ∈ [0, ε], notice that Nκδ−κσ(0)L(T ) ≻ δ−εσ(0)L(T ); so we deduce from Corollary 3.3
and a shift that, for ε > 0 and κ ∈ [0, ε],

PNκδ−κσ(0)L(T )

(
1

b∗T

(
max(XN

T )−m∗
T

)
≤ −λ

)
≤ Pδ0

(
1

b∗T

(
max(XN

T )− εσ(0)L(T )−m∗
T

)
≤ −λ

)
.
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Let ε′ > 0. We apply the Markov property at time εL(T ), noticing that Lemma 6.5 implies for T sufficiently
large,

Pδ0

XN
εL(T )

((
−∞,−2εη−1L(T )

])
= 0 ;

XN
εL(T )

([
− 2εη−1L(T ),+∞

))
≥ Nε/4

 ≥ 1− 3ε′ ,

(indeed, on the event {∀s ≤ εL(T ), Zs < N}, the particle configurations of the BBM and N -BBM at time
εL(T ) are the same). In particular, on that event we have XN

εL(T ) ≻ Nε/4δ−2εη−1L(T ). Applying Markov’s

property at time εL(T ), then Corollary 3.3 again and a shift, we obtain

PNκδ−κσ(0)L(T )

(
1

b∗T

(
max(XN

T )−m∗
T

)
≤ −λ

)
≤ 3ε′ + PNε/4δ(εL(T ),− ε

4
σ(0)L(T ))

(
1

b∗T

(
max(XN

T )− ε
(
3σ(0)/4 + 2η−1

)
L(T )−m∗

T

)
≤ −λ

)
.

Recall that (3σ(0)/4 + 2η−1)L(T ) = O(b∗T ); hence, choosing ε′ and ε = ε(λ, η) small enough, we conclude

the proof of Proposition 3.6 by applying Lemma 6.4 at time T − εL(T ) with Nε/4 initial particles. □

We now prove Lemma 6.5. Let us first recall the following classical result on pure birth processes (see
e.g. [5, Ch. III]). In the following we consider a pure birth process (Zt)t≥0 with same rate β0 and offspring
distribution ξ as our time-inhomogeneous BBM (Xt)t∈[0,T ], and with Z0 := 1; in particular, when restricted
to [0, T ], it has the same distribution as the BBM’s population size (|Nt|)t∈[0,T ] under Pδ0 .

Proposition 6.6. [5, Theorems III.7.1–2] Let Ft := σ(Zs, s ≤ t), t ≥ 0. Then, under Pδ0 , the process
(e−t/2Zt)t≥0 is a (Ft)t≥0-martingale, is non-negative and converges a.s. and in L1 to some random variable
W . Moreover, E[W ] = 1 and Pδ0(W > 0) = 1.

Proof of Lemma 6.5. Let us start with Lemma 6.5.(i–ii). We prove them for a birth process (Zt)t≥0 by using
Proposition 6.6; then these statements also hold for (|Nt|)t∈[0,T ], assuming T was taken sufficiently large.
On the one hand, for any x > 0, one has for t sufficiently large

P(Zt ≤ et/4) ≤ P(e−t/2Zt ≤ x) ≤ P(W ≤ 2x) + o(1) ,

where the second inequality comes from the L1 convergence of the martingale, i.e. P(|W − e−t/2Zt| > x) → 0
as t → +∞. Assuming x was chosen sufficiently small and replacing t with εL(T ), this proves Lemma 6.5.(i)
for T sufficiently large. On the other hand, we have by Doob’s martingale inequality that, for t ≥ 0,

P(∃ s ≤ t : e−s/2Zs ≥ et/2) ≤ e−t/2 .

Again, letting t = εL(T ) and assuming T large enough, this implies Lemma 6.5.(ii).4

We now turn to Lemma 6.5.(iii), where we let Zt := |Nt| for t ∈ [0, T ]. Let (Y i
t )t∈[0,T ], i ∈ N denote a

sequence of i.i.d. time-inhomogeneous Brownian motions with infinitesimal variance σ(·/T ). As a consequence
of Slepian’s lemma [62], one has for t ∈ [0, T ] and k ∈ N,

Pδ0

(
∃u ∈ Nt : Xu(t) ≤ −2η−1t

∣∣Zt = k
)
≤ P0

(
∃i ≤ k : Y i

t ≥ 2η−1t
)
= 1−

[
1−P0(Y

1
t ≥ 2η−1t)

]k
,

where we also used the Brownian symmetry property. Recall that for i ∈ N,

E0

[
(Y i

t )
2
]
=

∫ t

0

σ2(s/T ) ds ≤ η−2t,

and recall the standard Gaussian tail estimate, P0(W1 ≥ x) ≤ 1
x
√
2π

e−x2/2 for x > 1. Thus, for t sufficiently

large, one has

P0(Y
1
t ≥ 2η−1t) ≤ P0(W1 ≥ 2

√
t) ≤ 1

2
√
2πt

e−2t .

4Actually this proves a much stronger result, but we do not need it in this paper.
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Let t = εL(T ) in the above, and recall from Proposition 6.6 that Pδ0(ZεL(T ) ≥ N(T )3ε/2) → 0 as T → +∞
(this is similar to Lemma 6.5, we do not write the details again). Therefore, we deduce for T large,

Pδ0

(
∃u ∈ NεL(T ) : Xu(εL(T )) ≤ −2εη−1L(T )

)
≤ o(1) + 1−

[
1− 1

2
√
2πεL(T )

N(T )
−2ε

]N(T )3ε/2

= o(1) ,

which concludes the proof. □

It only remains to prove Lemma 6.4. We proceed differently depending on the regime satisfied by L(T ).

Proof of Lemma 6.4, super-critical and critical regimes. In the super-critical and critical regimes, the proof
is immediate from Lemmata 6.3 and 4.1. Indeed, in both cases one has t∗T = T ; recalling (6.3) and the

notation γ∗,h,x
T (·) from Section 4.1, one has

γ
∗,1−ε,(1−ε)(1−κ)
T (T ) + (1− 2ε)σ(1)L(T )− κσ(0)L(T )

= γ
∗,1−ε,1−ε(1−κ)
T (T )− εσ(1)L(T ) .(6.19)

Letting ε be arbitrarily small and applying Lemmata 4.1 and 6.3 (more precisely (6.14)), this gives exactly
Lemma 6.4 in both regimes. □

We now turn to the proof of Lemma 6.4 in the sub-critical regime (L(T ) ≪ T 1/3), which requires more
care. Since our estimates do not directly hold at time T in that regime, we split the interval [0, T ] into blocks
whose lengths are of order tsubT , apply our estimates on each of those, then use them to reconstruct a process
on [0, T ] which is dominated by the N -BBM.

First, we may always bound the N -BBM from below by having it start with fewer particles, recall
Corollary 3.3: hence, in (6.13) and in the following, we assume that ε is small and that κ = ε without loss of
generality. Moreover, it will be very convenient to work with quantiles instead of the maximal displacement:
recalling (3.2), write for µ ∈ C,

(6.20) qκ(µ) := qNκ(µ) = inf{x ∈ R, µ([x,+∞)) < Nκ} ,
and recall that for any µ ≺ ν, one has by definition qκ(µ) ≤ qκ(ν). We now introduce an auxiliary process

(XN

t )0≤t≤T . Let us define K := ⌊2T/tsubT ⌋, and for 0 ≤ k ≤ K − 1, let tk := k
2 t

sub
T , and tK = T (so

tK − tK−1 ∈ [ 12 t
sub
T , tsubT ]). The process (XN

t )0≤t≤T is defined as follows: starting from ⌊Nκ⌋δ0 (we omit the

integer part in the following), it evolves between times tk and tk+1 as the process XN . Then, at every time
tk, 1 ≤ k < K, all but the Nκ top-most particles are removed, and the remaining particles are all set to
the lowest among their positions. In other words, a configuration µ ∈ CN is replaced by the configuration

Nκδqκ(µ). Applying Corollary 3.3 inductively, one obtains straightforwardly a coupling such that XN

T ≺ XN
T

with probability 1. In particular the law of qκ(X
N

T ) stochastically bounds from below the law of qκ(XN
T ),

which is lower than max(XN
T ); hence it suffices to prove (6.17) with max(XN

T ) replaced by qκ(X
N

T ).
For 1 ≤ k ≤ K, write

Xk = qκ
(
XN

tk

)
− qκ

(
XN

tk−1

)
,

so that qκ(X
N

T ) = X1 + · · ·+XK (recall that XN

0 = Nκδ0). By the definition of the process XN
and the

fact that a translation of the N -BBM is again an N -BBM started from a translated initial configuration, the
random variables X1, . . . , XK are independent.

Using that notation, we may finally prove Lemma 6.4 in the sub-critical regime. However, the proof relies
on two different methods, depending on the speed at which N(T ) diverges.

Proof of Lemma 6.4, sub-critical regime and N(T ) growing super-polynomially. Assume that N(T ) grows
super-polynomial in T , i.e. L(T ) ≫ log(T ). Recall (6.13), which implies for 1 ≤ k ≤ K that

(6.21) P
(
Xk ≥ γsub

T (tk)− γsub
T (tk−1)− η−1L(T )

)
≥ 1− c1N

−c2 ,
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for some c1, c2 locally uniform in ε = κ ∈ (0, 1). Recalling the definition of the process (XN

t )0≤t≤T , that the

Xk, 1 ≤ k ≤ K are independent and that qκ(X
N

T ) = X1 + · · ·+XK , one deduces through a direct induction
that

PNκδu0

(
qκ(X

N

T ) ≥ γsub
T (T )−Kη−1L(T )

)
≥ (1− c1N

−c2)K .

Notice that KN−c2 ≤ θ(T )T
L(T )3 e

−c2L(T ); so, under the assumption L(T ) ≫ log(T ), the latter probability goes

to 1 as T → +∞, locally uniformly in κ ∈ (0, 1). Recalling that qκ(X
N

T ) stochastically bounds from below
max(XN

T ), this finally implies

PNκδu0

(
max(XN

T ) ≤ γsub
T (T )−Kη−1L(T )

)
−→ 0

as T → +∞, locally uniformly in κ. Moreover, Kη−1L(T ) ≤ η−1 θ(T )T
L(T )2 = o(T/L(T )2) and L(T ) =

o(T/L(T )2). Hence, applying a shift −κσ(0)L(T ) to the estimate above, we deduce from Lemma 4.1 and
the same computation as (6.19) that, with ε arbitrarily small, the lower bound (6.17) holds in the case N(T )
sub-critical, super-polynomial. □

If L(T ) is too small, the decomposition above involves so many blocks that, with large probability, the

auxiliary process XN
does not satisfy the event (6.21) on some of them. However, having a small L(T )

allows us to use a second moment method, relying only on very crude bounds on the second moments of Xk,
1 ≤ k ≤ K.

Proof of Lemma 6.4, sub-critical regime, L(T ) growing slowly. In the following, we assume that L(T ) grows
very slowly with T , in fact, L(T ) ≪ T 1/8 is enough. In particular, we are still in the sub-critical regime,
and (6.1) yields tsubT = L(T )4. We claim the following: there exist c1, c2 > 0 such that for T sufficiently
large, for every k ∈ {1, . . . ,K}, we have

E[Xk] ≥ (γsub
T (tk)− γsub

T (tk−1))(1− c1N
−c2)− c1L(T ),(6.22)

Var
(
Xk

)
≤ c1(t

sub
T )2.(6.23)

Let us see how equations (6.22) and (6.23) imply the lemma. First note that using (6.22), we have

E[X1 + . . .+XK ] ≥ γsub
T (T )(1− c1N

−c2)− c1L(T )×K,

and, using that K ≤ 2T/tsubT = 2T/L(T )4, we get that

E[qκ(X
N

T )] = E[X1 + . . .+XK ] ≥ γsub
T (T ) + o

(
T

L(T )2

)
.

Furthermore, by the independence of the random variables X1, . . . , Xk, we get using (6.23) that

Var(qκ(X
N

T )) =
K∑

k=1

Var(Xk) ≤ 2 c1t
sub
T T = o

((
T

L(T )2

)2
)
,

where for the last equality we used that tsubT = L(T )4 and L(T ) ≪ T 1/8. Using the Bienaymé-Chebychev
inequality, this yields that

qκ(X
N

T ) ≥ γsub
T (T ) + oP

(
T

L(T )2

)
,

with large probability, where we recall the notation oP(·) from Theorem 1.2.. Here again, applying a shift
−κσ(0)L(T ) = o(T/L(T )2) to the estimate above and letting κ, ε be small, we deduce from Lemma 4.1 and
the same computation as (6.19) that the lower bound (6.17) holds in the case L(T ) ≪ T 1/8.

It remains to prove (6.22) and (6.23). We start with (6.22). Noting that the process evolves between
times tk and tk+1 as a N -BBM with variance profile σ(tk/T + ·), it is enough to show that

(6.24) ENκδ0

[
qκ(XN

t )
]
≥ γsub

T (t) (1− c1N
−c2).
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where c1, c2 are uniform in σ ∈ S∗
η and t ∈ [ 12 t

sub
T , tsubT ]. Most hard work has been done in Lemma 6.3, which

yields that, with the same notation,

(6.25) PNκδ0

(
qκ(XN

t ) < γsub
T (t)

)
≤ c1N

−c2 .

Assuming from now on that T is large enough, so that γsub
T (t) ≥ ctsubT ≥ 0 for some c > 0 and all

t ∈ [ 12 t
sub
T , tsubT ], we deduce from (6.25) that

(6.26) ENκδ0

[
qκ(XN

t ) 1{qκ(XN
t )≥0}

]
≥ γsub

T (t)PNκδ0

(
qκ(XN

t ) ≥ γsub
T (t)

)
≥ γsub

T (t) (1− c1N
−c2) ,

uniformly in t ∈ [ 12 t
sub
T , tsubT ]. On the other hand, recalling from Proposition 3.4.(i) that we can couple XN

and a BBM X in such a way that XN
t ⊂ Xt for all t, we have

ENκδ0

[
qκ(XN

t ) 1{qκ(XN
t )≤0}

]
≥ −ENκδ0

[
(min(Xt))− 1{qκ(XN

t )≤0}

]
,

and, using the Cauchy-Schwarz inequality and the symmetry of the Gaussian distribution, we get

(6.27) ENκδ0

[
qκ(XN

t ) 1{qκ(XN
t )≤0}

]
≥ −

√
ENκδ0

[
(max(Xt))2+

]
× PNκδ0

(
qκ(XN

t ) ≤ 0
)
.

Let us recall the following standard result on Gaussian random variables. Let us mention that we are not
aiming for optimal constants or bounds in this statement. The proof is postponed to the end of this section.

Lemma 6.7. Let t ∈ (0, T ], M ≥ 1 and (gi)1≤i≤M a centered Gaussian vector, such that each gi has variance
ρ2 ≥ 0. Then, for M ≥ 2, one has

(6.28) E
[
(max{gi, 1 ≤ i ≤ M})2+

]
≤ 4ρ2 logM .

We wish to apply Lemma 6.7 to bound ENκδ0

[
(max(Xt))

2
+

]
. To do this, condition on the branching

times and denote by Zt the number of particles at time t. Then apply the lemma with M = Zt and ρ2 =
σ2(t/T )× t and recall that σ ∈ Sη. This gives

ENκδ0

[
(max(Xt))

2
+

]
≤ 4η−2 × t× ENκδ0 [logZt].

But we have ENκδ0 [Zt] = Nκet/2 and Zt ̸= 0 almost surely, so that by Jensen’s inequality,√
ENκδ0

[
(max(Xt))2+

]
≤
√
4η−2 × t× (κ logN + t/2) ≤ CtsubT ,

for some C > 0, using that t ≤ tsubT and logN = L(T ) = o(tsubT ). Plugging this into (6.27) and using (6.25),
we get, possibly modifying the values of c1 and c2,

(6.29) ENκδ0

[
qκ(XN

t ) 1{qκ(XN
t )≤0}

]
≥ −γsub

T (t) c1N
−c2 .

Combining (6.26) and (6.29) yields (6.24) and therefore (6.22).
The proof of (6.23) is much simpler: it suffices to prove E[X2

k ] ≤ c1(t
sub
T )2 for some c1 > 0, which

is obtained via the embedding of the N -BBM into a BBM without selection used above, together with
Lemma 6.7. Details are omitted. □

Proof of Lemma 6.7. This result is standard, but we provide a proof for completeness. For u0 > 0, bound

E
[
(max{gi, 1 ≤ i ≤ M})2+

]
=

∫ +∞

0

2uP(max{gi, 1 ≤ i ≤ M} ≥ u) du

≤ u2
0 +

∫ +∞

u0

2uP(max{gi, 1 ≤ i ≤ M} ≥ u) du .
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A union bound and a standard estimation on the Gaussian tail imply that, for u > ρ,

(6.30) P(max{gi, 1 ≤ i ≤ M} ≥ u) ≤ M

√
2

π

ρ

u
exp(−u2/2ρ2) ≤ M

√
2

π
exp(−u2/2ρ2) .

Using (6.30), one has for u0 > ρ,

E
[
max{gi, 1 ≤ i ≤ M}2

]
≤ u2

0 + 2

√
2

π
Mρ2 exp(−u2

0/2ρ
2) .

Letting u0 = ρ
√
2 logM , and M ≥ 2, this concludes the proof. □

Remark 6.1. With this, the proof of Lemma 6.4 is finally completed in every regime for L(T ). Indeed, the
only case we have not treated is when the sub-critical regime alternates between the sub-cases N(T ) super-
polynomial and L(T ) smaller than T 1/8. This situation can be handled e.g. by letting L1(T ) := L(T )∧(log T )2,
L2(T ) := L(T ) ∨ (log T )2, then applying (6.17) to both cases (for which we have displayed complete proofs).
Then the l.h.s. in (6.17) for the “oscillating” L(T ) is bounded from above by the maximum of two vanishing
sequences: we leave the details to the reader.

7. Upper bound on the maximum of the N-BBM

Let ∗ ∈ {sub, sup, crit}. In this section we present the proof of Proposition 3.7, which is analogous to that
of Proposition 3.6: we show that the trajectory of a BBM between well-chosen barriers is equal to that of an
N+-BBM with large probability, and deduce an upper bound on the N -BBM with a coupling argument
(recall Lemma 3.2). In particular, for the comparison to hold, we must tune the barrier parameters (h, x) so
that the BBM between barriers counts approximately N1+δ particles at time t∗T for some δ > 0 (recall (6.1)):
this implies with large probability that there are at least N living particles at all time t ∈ [0, t∗T ]. But then,
we face the additional complication that whenever a particle is killed by the upper barrier γ∗

T , this breaks
the monotone coupling between the BBM with barriers and the N -BBM (this was not an issue in Section 6).
Furthermore, shifting the upper barrier upward does not diminish the number of particles it kills. We will see
below (in the sub-critical and critical regimes) that there exists no choice of parameters (h, x) which ensures
us both that N particles are alive at all time, and that no particle hits the upper barrier (see Remark 7.3 for
the details).

This issue is related to the following crucial idea: in a branching process with a lower killing barrier, the
evolution of the population size throughout time is closely related to the behavior of “peaking” particles.
More precisely, whenever an individual rises very far from the lower barrier, it has the opportunity to
generate a very large number of offspring in the time span before it gets close to the lower barrier again.
This was observed in particular in [11] when studying a (homogeneous) BBM with absorption at 0 and
near-critical drift: the authors tune the drift so that the population size remains roughly eL for a time L3,
L > 0; and in that regime, they observe that removing peaking particles (i.e. introducing a second killing
barrier around height L) strongly affects the survival probability of the whole process on the time interval
[0, L3] —even though that second barrier actually kills much fewer than eL particles. In our setting, this
translates into the following heuristics: if there are at least N(T ) living particles at all time t ∈ [0, t∗T ], and if
t∗T is too large (that is t∗T ≳ L(T )3, which happens in the regimes ∗ ∈ {sub, crit}), then with large probability
some particles rise to a height of order L(T ) above the lower barrier before time t∗T ; and, if they are not
killed, they reproduce a lot, resulting in a large increase in the total population size and allowing many
descendants to rise even higher.

Therefore, we shall modify the BBM between barriers by coloring instead of killing all peaking particles
(i.e. individuals that reach the upper barrier γ∗

T ) and controlling their offspring with a slightly stronger
selection of their descendants (i.e. we kill the descendants of a colored particle at a shifted-upward lower
barrier). This defines a multi-type branching process, and we shall tailor it so that, with large probability, (i)
there are still N living particles at all time t ∈ [0, t∗T ], and (ii) the total population of the process does not
blow up due to peaking particles. In particular, with large probability, no particle of this multi-type branching
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process will be able to overtake the upper barrier γ∗
T by too much. An illustration of this multi-type process

is given in Figure 5.

0 T

γ∗T(·)

γred
T (·)

γ∗T(·)

γred
T (·)

Coloring
Killing

Figure 5. Illustration of the multi-type process. As in the original BBM between barriers, an
uncolored individual is killed whenever it reaches γ∗

T (·). However, when it reaches γ∗
T (·) it is not

killed but colored in red instead. Thereafter all its descendants are also colored in red, and they are
killed whenever they reach one of two new barriers, γred

T (·) and γred
T (·), which are shifted-upward

versions of γ∗
T (·) and γ∗

T (·). The barriers will be chosen so that, with high probability, no particle
reaches γred

T (·), and there are at least N particles above γred
T (·) at all time.

Remark 7.1. In their study of the homogeneous N -BRW, Bérard and Gouéré [8] use another argument for
the upper bound of the speed (Section 5 in their article). Their argument relies on a deterministic lemma,
which ensures that a walk with bounded steps and which reaches a certain height has to have a portion of
its trajectory that stays above a certain linear barrier for a certain amount of time. Then they use a result
by Gantert, Hu and Shi [37] on the survival probability of a branching random walk killed below a linear
barrier. This argument requires to consider a time horizon which is significantly larger than L(T )3. It could
be adapted to our setting only in a certain part of the subcritical regime, but not if L(T ) is only slightly
smaller than T 1/3 and certainly not in the critical regime. Our argument circumvents this issue by relying
instead on a one-step iteration of more straightforward barrier estimates.

Let ε ∈ (0, 1) a small parameter, and fix

(7.1) h = 1 + ε , x = 1 +
2

3
ε .

Then, define once again the barriers γ∗
T , γ

∗
T for each regime ∗ ∈ {sup, sub, crit} according to (4.7), (4.8)

and (4.9) respectively, with those h, x; in particular they satisfy (4.3).
We define the “red” barriers for s ∈ [0, T ] by

(7.2) γred
T (s) := γ∗

T (s) +
ε

3
σ(s/T )L(T ) , and γred

T (s) := γ∗
T (s) +

ε

3
σ(s/T )L(T ) ,
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which are slightly shifted versions of γ∗
T , γ

∗
T , so that γ∗

T (s) ≤ γred
T (s) ≤ γ∗

T (s) ≤ γred
T (s) for all s ∈ [0, T ]. We

also define the sets of “white” and “red” particles by

(7.3) Nwhite
s :=

{
u ∈ Ns

∣∣∀ r ≤ s, Xu(r) ∈
(
γ∗
T (r), γ

∗
T (r)

)}
,

and

(7.4) N red
s :=

u ∈ Ns

∣∣∣∣∣∣∣∃ τ ≤ s :

Xu(τ) = γ∗
T (τ),

∀ r ≤ τ, Xu(τ) ∈
(
γ∗
T (r), γ

∗
T (r)

)
,

∀ r ∈ [τ, s], Xu(r) ∈
(
γred
T (r), γred

T (r)
]
 .

In other words, we start the process with only white particles, which are killed at γ∗
T . When they reach γ∗

T ,
they are “colored” red (instead of being killed) and keep evolving; however, red particles and their offspring
are thereafter killed at the barriers γred

T and γred
T .

Recall t∗T and θ(·) from (6.1–6.2). Recall the definitions of A∗
T,I , R

∗
T (s, t) from (4.4), (4.5), which are

expressed in terms of γ∗
T and γ∗

T . Let us rewrite all estimates from Propositions 5.1, 5.3, 5.4, 5.5, 5.6, 5.7,
5.9, 5.10 and 5.11 for an initial condition (or, equivalently, both barriers) shifted by −yσ(0)L(T ), y ∈ [0, x)
(respectively shifted by +yσ(0)L(T )): this formulation is more convenient to handle all atoms from the
initial distribution µε (recall (3.3)). For all regimes ∗ ∈ {sup, sub, crit}, one has

Eδ−yσ(0)L(T )

[
|A∗

T,I(t)|
]
≤ Nx−y−inf I+o(1) ,(7.5)

Eδ−yσ(0)L(T )

[
|A∗

T,I(t)|
]
= Nx−y−inf I+o(1) if, additionally, t ≥θ L(T ) ,(7.6)

Eδ−yσ(0)L(T )

[
|A∗

T,z(t)|2
]
≤ Nx+h−y−2z+o(1) ,(7.7)

Eδ−yσ(0)L(T )

[
R∗

T (0, t
∗
T )
]
≤ N−(h+y−x)+o(1) ,(7.8)

for some vanishing terms o(1) as T → +∞: more precisely, in (7.5, 7.7, 7.8), these error terms are uniform in
σ ∈ S∗

η , 0 ≤ t ≤ t∗T and x, z ∈ [0, h], I ⊂ [0, h] a non-trivial sub-interval; and in (7.6), it is uniform in σ ∈ S∗
η ,

L(T ) ≤θ t ≤ t∗T and locally uniform in x, I.
For ε > 0, s ∈ [0, T ], let us generalize the counting measure µε defined in (3.3), by letting

(7.9) µε,s :=

⌈ε−1⌉∑
k=0

⌈
Nkε+ ε

2

⌉
δ−kεσ(s/T )L(T ) , and µε := µε,0 .

Recall that µε is supported on [−σ(0)L(T ), 0] ⊂ (γred
T (0), γ∗

T (0)), and notice that µε([−σ(0)L(T ), 0]) ≥ N1+ε

and δ0 ≺ µε. In the remainder of this section we will assume that ε−1 ∈ N and omit all integer parts, in
order to lighten all formulae.

7.1. Estimates for the BBM between barriers. We start the multi-type branching-selection process
with only white particles distributed according to µε, and prove that, with large probability, the following
three claims hold:

(C-1) there are at least N (white) particles above γred
T at all time t ∈ [0, t∗T ],

(C-2) no particle reaches γred
T throughout [0, t∗T ],

(C-3) the distribution of particles between the barriers at time t ≲ t∗T is close to µε,t.

Remark 7.2. Let us mention that the third claim (C-3) is actually not needed to prove Theorem 1.2; however
it is needed for Proposition 1.5, and it relies on moment methods similar to (C-1) and (C-2), so we included
its proof in this section.

Lower bound on the number of living particles. Let us first prove (C-1), which ensures us that no particle
from (Nwhite

s ∪N red
s )s∈[0,t∗T ] killed either by γ∗

T or γred
T is among the N highest of the process at any time.

Proposition 7.1. Let ε ∈ (0, 1) and h, x as in (7.1). Then there exist constants c1, c2 > 0 such that, for T
sufficiently large, one has

(7.10) Pµε

(
∃s ≤ t∗T : |A∗

T, ε3
(s)| < N

)
≤ c1N

−c2 ,
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where c1, c2 are uniformly bounded from 0 and ∞ in σ ∈ S∗
η , and locally uniformly in ε ∈ (0, 1).

The proof uses the following lemma, which bounds from below the survival probability, for a time shorter
than L(T )3, of a single particle between γred

T and γ∗
T . Recall that θ(T ) is defined in (6.1–6.2).

Lemma 7.2. Let t′(T ) := θ(T )(L(T )3 ∧ T ). Then

Pδ−σ(0)L(T )

(
∃u ∈ Nt′ : ∀s ≤ t′, Xu(s) ∈ [γred

T (s), γ∗
T (s)]

)
≥ No(1) ,

as T → +∞, uniformly in σ ∈ S∗
η and locally uniformly in ε ∈ (0, 1).

Proof of Lemma 7.2. Recall Lemma 4.2, which ensures us that we may tighten the barriers on a short time

interval. More precisely let K > 3 a large constant, and recall Lemma 4.2 and the notation γ∗,h′,x′

T , γ∗,h′,x′

T

for h′ > x′ > 0. Then, the lemma and a vertical shift of the process yield

Pδ−σ(0)L(T )

(
∃u ∈ Nt′ : ∀s ≤ t′, Xu(s) ∈ [γred

T (s), γ∗
T (s)]

)
≥ Pδ0

(
∃u ∈ Nt′ : ∀s ≤ t′, Xu(s) ∈

[
γ
∗, ε

K , ε
2K

T (s), γ
∗, ε

K , ε
2K

T (s)
])

,

Recall the definition of A∗
T (·) from (4.4), and let us extend it to a generic pair of barriers γ∗,h′,x′

T , γ∗,h′,x′

T ,
for h′ > x′ > 0, by writing for s ∈ [0, T ],

A∗,h′,x′

T (s) :=
{
u ∈ Nt

∣∣∣ ∀s ∈ [0, t], Xu(s) ∈
[
γ∗,h′,x′

T (s), γ∗,h′,x′

T (s)
]}

.

Then, Paley-Zygmund’s inequality gives

Pδ0

(
∃u ∈ Nt′ : ∀s ≤ t′, Xu(s) ∈

[
γ
∗, ε

K , ε
2K

T (s), γ
∗, ε

K , ε
2K

T (s)
])

= Pδ0

(∣∣A∗, ε
K , ε

2K

T (t′(T ))
∣∣ ≥ 1

)
≥ Eδ0

[∣∣A∗, ε
K , ε

2K

T (t′(T ))
∣∣]2

Eδ0

[∣∣A∗, ε
K , ε

2K

T (t′(T ))
∣∣2] .

One easily checks that (4.2) implies that L(T ) ≤θ t′(T ). Recalling the moment estimates (7.5–7.7) for the
triplet of parameters (h′, x′, y) = ( ε

K , ε
2K , 0), one obtains as T → +∞,

Eδ0

[∣∣A∗, ε
K , ε

2K

T (t′(T ))
∣∣] = N

ε
2K +o(1) , and Eδ0

[∣∣A∗, ε
K , ε

2K

T (t′(T ))
∣∣2] ≤ N

3ε
2K +o(1) .

Therefore, one finally deduces that

Pδ−σ(0)L(T )

(
∃u ∈ Nt′ : ∀s ≤ t′, Xu(s) ∈ [γred

T (s), γ∗
T (s)]

)
≥ N− ε

K +o(1) ,

as T → +∞; letting K → +∞, this finishes the proof of the lemma. □

Proof of Proposition 7.1. Since one has µε ≻ N1+ ε
2 δ−σ(0)L(T ), we only have to prove (7.10) for the latter

initial measure; then the proposition follows from a direct monotonic coupling argument.
We prove this proposition with a union bound, splitting the time interval [0, t∗T ] into a first part of length

t′(T ) := θ(T )(L(T )3 ∧ T ), and the remainder into intervals of length 1. Thus,

P
N1+ ε

2 δ−σ(0)L(T )

(
∃s ≤ t∗T : |A∗

T, ε3
(s)| < N

)
≤ P

N1+ ε
2 δ−σ(0)L(T )

(
∃s ≤ t′(T ) : |A∗

T, ε3
(s)| < N

)
+

t∗T−1∑
k=t′(T )

P
N1+ ε

2 δ−σ(0)L(T )

(
∃s ∈ [k, k + 1] : |A∗

T, ε3
(s)| < N

)
,(7.11)

where, again, we respectively wrote t′(T ), t∗T − 1 instead of ⌊t′(T )⌋, ⌈t∗T − 1⌉ to lighten notation. Notice that
the sum may be empty in the super-critical regime.
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We start with the first term in (7.11). Let M denote the number of individuals from the initial population
which have at least one descendant surviving between γred

T and γ∗
T until time t′ := t′(T ). For a single initial

particle in −σ(0)L(T ), we write,

pT := Pδ−σ(0)L(T )

(
∃u ∈ Nt′ : ∀s ≤ t′, Xu(s) ∈ [γred

T (s), γ∗
T (s)]

)
≥ No(1) ,

where the last inequality is the content of Lemma 7.2. In particular, one has,

pT = Pδ−σ(0)L(T )
(M = 1) = 1− Pδ−σ(0)L(T )

(M = 0) .

Starting from an initial population of N1+ ε
2 particles, recall that they have independent offspring. Therefore,

under P
N1+ ε

2 δ−σ(0)L(T )
, one has that M is a binomial random variable with parameters (N1+ ε

2 , pT ). Moreover,

bounding the first term in (7.11) from above by killing particles at γred
T , we have,

P
N1+ ε

2 δ−σ(0)L(T )

(
∃s ≤ t′(T ) : |A∗

T, ε3
(s)| < N

)
≤ P

N1+ ε
2 δ−σ(0)L(T )

(M < N) .

Then, Paley-Zygmund’s inequality yields,

P
N1+ ε

2 δ−σ(0)L(T )
(M ≥ N) ≥

(
1− N

E
N1+ ε

2 δ−σ(0)L(T )
[M ]

)2 E
N1+ ε

2 δ−σ(0)L(T )
[M ]2

E
N1+ ε

2 δ−σ(0)L(T )
[M2]

=
(
1−N− ε

2 p−1
T

)2 N1+ ε
2 pT

1− pT +N1+ ε
2 pT

.

This implies P
N1+ ε

2 δ−σ(0)L(T )
(M < N) ≤ N− ε

2+o(1) as T → +∞, uniformly in σ ∈ S∗
η , which is the announced

upper bound for the first term in (7.11).
We now turn to the second term in (7.11). Recall (4.4): in particular, let D(s) denotes the set of white

particles that end in the interval [γred
T (s) + ε

2σ(s/T )L(T ), γ
∗
T (s)− ε

2σ(s/T )L(T )] at time s, that is,

D(s) := A∗
T,[ 5ε6 ,h− ε

2 ]
(s) .

Then, we bound each term of the sum with an union bound, for k ≥ t′(T ),
(7.12)
P
N1+ ε

2 δ−σ(0)L(T )

(
∃s ∈ [k, k + 1] : |A∗

T, ε3
(s)| < N

)
≤ P

N1+ ε
2 δ−σ(0)L(T )

(
|D(k)| < N1+ ε

4

)
+ P

N1+ ε
2 δ−σ(0)L(T )

(
|D(k)| ≥ N1+ ε

4 ; ∃s ∈ [k, k + 1] : |A∗
T, ε3

(s)| < N
)

We handle those two terms separately. Applying Paley-Zygmund’s inequality, we have

(7.13) P
N1+ ε

2 δ−σ(0)L(T )

(
|D(k)| ≥ N1+ ε

4

)
≥
(
1− N1+ ε

4

E
N1+ ε

2 δ−σ(0)L(T )

[
|D(k)|

])2 E
N1+ ε

2 δ−σ(0)L(T )

[
|D(k)|

]2
E
N1+ ε

2 δ−σ(0)L(T )

[
|D(k)|2

] .
Then, since k ≥ t′(T ) ≥θ L(T ), (7.6) implies that

Eδ−σ(0)L(T )
[|D(k)|] = N− ε

6+o(1),

as T → +∞. Moreover, (7.7) yields

Eδ−σ(0)L(T )

[
|D(k)|2

]
≤ N1+o(1),

as T → +∞. Noticing that the first moment of |D(k)| is additive in the initial measure, applying (6.12) to
its second moment and plugging these estimates into (7.13), we finally obtain

(7.14) P
N1+ ε

2 δ−σ(0)L(T )

(
|D(k)| ≥ N1+ ε

4

)
≥
(
1−N− ε

12+o(1)
)2 (

1 +N− ε
6+o(1)

)−1

= 1−N− ε
12+o(1) ,

where o(1) denotes a term vanishing as T → +∞ uniformly in t′(T ) ≤ k ≤ t∗T and σ ∈ S∗
η .
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Regarding the second term in (7.12), let A denote the set of counting measures supported on [γred
T (k) +

ε
2σ(k/T )L(T ), γ

∗
T (k)− ε

2σ(k/T )L(T )] with total mass at least N1+ ε
4 . Using the Markov property at time k,

we have

P
N1+ ε

2 δ−σ(0)L(T )

(
|D(k)| ≥ N1+ ε

4 ; ∃ s ∈ [k, k + 1] : |A∗
T, ε3

(s)| < N
)

≤ sup
µ∈A

Pµ

(
∃ s ≤ 1 : |Ã∗

T, ε3
(s)| < N

)
,

with Ã∗
T, ε3

(·) being defined similarly to the event A∗
T, ε3

(·) for barriers γ∗
T , γ

∗
T shifted in time by k. Since

adding particles to the initial measure µ only decreases the probability in the r.h.s. above (this is follows
from a direct coupling argument), on can restrict the supremum to measures µ with total mass exactly N1+ ε

4 .
If the total population decreases from N1+ ε

4 to N at some time s ≤ 1, this implies that, among the initial
particles, at least N1+ ε

4 −N of them have no living descendant at time 1. Hence, a union bound yields

(7.15) sup
µ∈A

Pµ

(
∃ s ≤ 1 : |Ã∗

T, ε3
(s)| < N

)
≤
(

N1+ ε
4

N1+ ε
4 −N

)
×
(
sup
y

Pδy

(
|Ã∗

T, ε3
(1)| = 0

))N1+ ε
4 −N

,

where the supremum is taken over y ∈ [γred
T (k) + ε

2σ(k/T )L(T ), γ
∗
T (k)− ε

2σ(k/T )L(T )]. For any such y, we
may couple the N -BBM starting from y with a Brownian motion (Bs)s≥0 without reproduction, by looking
at an arbitrary descendant of y. If the N -BBM starting from δy goes extinct, the coupled Brownian motion
crosses one of the barriers γred

T , γ∗
T on the time interval [0, 1]. To do so, it must travel a distance at least

ε
4σ(0)L(T ), uniformly in y: therefore, there exists c, C > 0, (locally) uniformly in the parameters as in the
statement of the proposition, such that, for large T ,

sup
y

Pδy

(
|Ã∗

T, ε3
(1)| = 0

)
≤ sup

y
Py

(
∃ s ≤ 1 : |Bs − y| > ε

4σ(0)L(T )
)

≤ Ce−cL(T )2 ≤ 1/2 ,

where the second inequality follows from standard computations on the Brownian motion. Plugging
this into (7.15) and using that

(
a
b

)
≤ aa−b for any a, b ∈ N, the second term in (7.12) is bounded from

above by N−c′N1+ ε
4 ), for some c′ > 0, (locally) uniformly in the parameters as in the statement of the

proposition. Recollecting (7.14) and summing over O(t∗T ) terms in (7.11), we finally obtain the announced
upper bound. □

Number of particles killed by the upper barrier. Let us now turn to the second claim (C-2). We provide some
estimates on the number of particles reaching either of the upper barriers before time t∗T . First we bound
from above the number of white particles that reach γ∗

T , i.e. white particles which are colored red: this is
exactly given by R∗

T (0, t
∗
T ) (recall its definition from (4.5)). Then, for each particle reaching γ∗

T for the first
time, we estimate the number of (red) particles from its offspring that reach γred

T . Recall (7.8).

Claim 7.3. One has, as T → +∞,

(7.16) Eµε [|R∗
T (0, t

∗
T )|] ≤ N

ε
6+o(1),

uniformly in σ ∈ S∗
η and locally uniformly in ε ∈ (0, 1).

Claim 7.4. Let t0 ∈ [0, t∗T ), and consider a BBM starting from one (red) particle in time-space location
(t0, γ

∗
T (t0)). Then one has, as T → +∞,

(7.17) Eδ(t0,γ∗
T

(t0))

∣∣∣∣∣∣
⋃

t0≤s≤t∗T

{
u ∈ Nr

∣∣∣∣∣ ∀ t0 ≤ r < s, Xu(r) ∈ (γred
T (r), γred

T (r)) ;

Xu(s) = γred
T (s)

}∣∣∣∣∣∣
 ≤ N− ε

3+o(1),

where o(1) vanishes as T → +∞ uniformly in t0 ∈ [0, t∗T ) and σ ∈ S∗
η , and locally uniformly in ε ∈ (0, 1).

Proof of Claims 7.3, 7.4. The first result is a direct corollary of (7.8) and the additivity in the initial measure:
indeed, one has for any 0 ≤ k ≤ ε−1,

E
Nkε+ ε

2 δ−kεσ(0)L(T )
[R∗

T (0, t
∗
T )] = Nkε+ ε

2Eδ−kεσ(0)L(T )
[R∗

T (0, t
∗
T )] ≤ N (kε+ ε

2 )−(kε+ ε
3 )+o(1) = N

ε
6+o(1) ,
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so Claim 7.3 follows by summing over k. Regarding Claim 7.4, it also follows from (7.8) applied to a time-
and space-shifted BBM on the time interval [t0, t

∗
T ], killed at the barriers γred

T , γred
T , and starting from a

single particle at distance ε
3σ(t0/T )L(T ) from the upper barrier γred

T (we do not write the details again). □

Remark 7.3. Let us point out that the upper bound in Claim 7.3 is larger than 1, so, with positive probability,
there exist white particles that reach γ∗

T before time t∗T . The reader can check that, in the sub-critical and
critical regimes, there does not exist a choice of initial configuration µ and barrier parameters (h, x) → (1, 1)
(recall Lemma 4.1) which yields simultaneously Proposition 7.1 and a moment estimate lower than 1 in
Claim 7.3. This is not an issue in the super-critical regime since the proof of Proposition 7.1 can be simplified
(see (7.11)), giving more leeway in the choice of (h, x).

Following these observations, we may finally prove that γred
T does not kill any particle with high probability.

Let Rred
T (0, t) denote the number of particles killed by γred

T . In particular, they remained above γ∗
T until some

time τu ≤ t∗T upon which they reached γ∗
T and were colored red; then they remained above γred

T throughout
[τu, t

∗
T ] and reached γred

T at some time r ∈ [τu, t] (upon which they are killed).

Proposition 7.5. One has, as T → +∞,

(7.18) Eµε

[
Rred

T (0, t∗T )
]
≤ N− ε

6+o(1),

uniformly in σ ∈ S∗
η and locally uniformly in ε ∈ (0, 1).

With this proposition at hand, claim (C-2) is obtained by applying Markov’s inequality to Rred
T (0, t∗T ).

Proof. This result is a consequence of Claims 7.3, 7.4 and a bit of stopping lines theory (recall Section 3.2).
Define

L :=
{
(u, s)

∣∣ ∀r < s, Xu(r) ∈ (γ∗
T (r), γ

∗
T (r)) ; Xu(s) = γ∗

T (s)
}
,

which is the (random) stopping line containing white particles at the moment they hit γ∗
T (·) and get colored.

Let

FL := σ



∀r ≤ s, Xu(r) > γ∗

T (r) ;

∀r < s, Xu(r) < γ∗
T (r) ;

Xu(s) ∈ A

 ; s ≥ 0, u ∈ Ns, A ⊂ R a Borel set

 .

Informally, FL is the sigma-algebra containing all information about white particles. Then the strong
branching property [43, Theorem 4.14] states that, conditionally on FL, the sub-trees of the process rooted
at the pairs (u, s) ∈ L are independent with respective distributions Pδ(s,Xu(s))

= Pδ(s,γ∗
T

(s))
.

Notice that Claim 7.3 implies |L| = R∗
T (0, t

∗
T ) < +∞, Pµε

-almost surely. Moreover, any particle in
Rred

T (0, t∗T ) almost surely has a single ancestor (u, τ) ∈ L —in particular this ancestor u was colored red at
time τ . Therefore, we obtain by conditioning with respect to FL and applying the strong branching property,

Eµε

[
Rred

T (0, t∗T )
]

= Eµε

Eµε

 ∑
(u,τ)∈L

∣∣∣∣∣ ⋃
τ≤r≤t∗T

{
v ∈ Nr, v ≽ u

∣∣∣∣∣ ∀ s ∈ [τ, r), Xv(s) ∈ (γred
T (s), γred

T (s)) ;

Xv(r) = γred
T (r)

}∣∣∣∣∣
∣∣∣∣∣∣FL


= Eµε

 ∑
(u,τ)∈L

Eδ
(τ,γsub

T
(τ))

∣∣∣∣∣∣
⋃

τ≤t≤t∗T

{
v ∈ Nr

∣∣∣∣∣ ∀ s ∈ [τ, r), Xv(s) ∈ (γred
T (s), γred

T (s)) ;

Xv(r) = γred
T (r)

}∣∣∣∣∣∣
 ,

where v ≽ u means that v ∈ Nr is a descendant of u ∈ Nτ , τ ≤ r. Plugging Claims 7.3, 7.4 into this, we
finally obtain

Eµε

[
Rred

T (0, t∗T )
]
≤ Eµε

[
N− ε

3+o(1) ×
∣∣L∣∣] = N− ε

3+o(1) ×N
ε
6+o(1) = N− ε

6+o(1),

which concludes the proof. □
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Particle distribution at the final time. Finally, we prove the third statement (C-3). We first provide the
following two estimates, respectively for white and red particles.

Lemma 7.6. The following statements hold uniformly in σ ∈ S∗
η and locally uniformly in ε ∈ (0, 1).

(i) For 0 ≤ j, k ≤ ε−1, one has, as T → +∞,

(7.19) inf
s∈[θ(T )−1L(T ),t∗T ]

P
Nkε+ ε

2 δ−kεσ(0)L(T )

(
N (j+1)ε ≤

∣∣∣A∗
T,[h−(j+1)ε,h−jε](s)

∣∣∣ ≤ N (j+2)ε
)
≥ 1−N− ε

6+o(1) .

(ii) Let t0 ∈ [0, t∗T ), and consider a BBM starting from one (red) particle in time-space location (t0, γ
∗
T (t0)).

Then for 0 ≤ j ≤ ε−1, one has, as T → +∞,

(7.20) sup
s∈[t0,t∗T ]

Eδ(t0,γ∗
T

(t0))

[∣∣∣∣∣
{
u ∈ Ns

∣∣∣∣∣∀ t0 ≤ r < s, Xu(r) ∈ (γred
T (r), γred

T (r)) ;

Xu(s)−γ∗
T (s)

σ(s)L(T ) ∈ [h− (j + 1)ε, h− jε]

}∣∣∣∣∣
]

≤ N (j+1)ε+o(1) .

From these results, the claim (C-3) follows naturally: let (Xwhite−red
s )s∈[0,t∗T ] denote the empirical mass

measure on R of the process defined by white and red particles, that is

(7.21) Xwhite−red
s :=

∑
u∈Nwhite

s ∪N red
s

δXu(s) , s ∈ [0, t∗T ] .

Recall (7.9). In order to have a condensed statement, let us write µ
(y)
ε,s for the counting measure µε,s shifted

upward by y, that is µ
(y)
ε,s(·) := µε,s(· − y), for s ∈ [0, T ], y ∈ R.

Proposition 7.7. Let ε > 0. Then one has as T → +∞,

(7.22) inf
s∈[θ(T )−1L(T ),t∗T ]

Pµε

(
µ
(γ∗

T (s)−εσ(s)L(T ))
ε,s ≺ Xwhite−red

s ≺ N
5
2 εµ

(γ∗
T (s))

ε,s

)
≥ 1−N− ε

6+o(1) ,

uniformly in σ ∈ S∗
η and locally uniformly in ε ∈ (0, 1).

Proof of Lemma 7.6. (i) Recall (7.1) and (7.5–7.7). On the one hand, Markov’s inequality gives

P
Nkε+ ε

2 δ−kεσ(0)L(T )

(∣∣∣A∗
T,[h−(j+1)ε,h−jε](s)

∣∣∣ > N (j+2)ε
)

≤ Nkε+ ε
2N−(j+2)εEδ−kεσ(0)L(T )

[∣∣∣A∗
T,[h−(j+1)ε,h−jε](s)

∣∣∣]
≤ Nkε+ ε

2N−(j+2)εNx−kε−h+(j+1)ε+o(1) = N− 5
6 ε+o(1),

for 0 ≤ k, j ≤ ε−1, s ≤ t∗T and T large. On the other hand, Paley-Zygmund’s inequality and (7.5), (7.7)
yield for s ∈ [θ(T )−1L(T ), t∗T ], (we leave the details to the reader),

P
Nkε+ ε

2 δ−kεσ(0)L(T )

(∣∣∣A∗
T,[h−(j+1)ε,h−jε](s)

∣∣∣ ≥ N (j+1)ε
)

≥
(
1−N− ε

6+o(1)
)2 (

1 +N− ε
6+o(1)

)−1

≥ 1−N− ε
6+o(1) ,

for some c1, c2 > 0 and T sufficiently large, which concludes the proof of (7.19).
(ii) Similarly to Claim 7.4, this follows from (7.5) applied to a time- and space-shifted BBM on the

time interval [t0, t
∗
T ], killed at the barriers γred

T , γred
T , and starting from a single particle at distance

(h− ε
3 )σ(t0/T )L(T ) from the lower barrier γred

T (we leave the details to the reader). □

Proof of Proposition 7.7. Recall Claim 7.3 and (7.20). Using the strong branching property [43, Theo-
rem 4.14], one deduces uniformly in 0 ≤ j ≤ ε−1, s ∈ [θ(T )−1L(T ), t∗T ],

Eµε

[∣∣∣{u ∈ N red
s

∣∣∣ Xu(s)−γ∗
T (s)

σ(s)L(T ) ∈
[
− (j + 1)ε,−jε

]}∣∣∣] ≤ N
ε
6+(j+1)ε+o(1) .

Hence, a union bound and Markov’s inequality yield,

Pµε

(
∃ 0 ≤ j ≤ ε−1 :

∣∣∣{u ∈ N red
s ;

Xu(s)−γ∗
T (s)

σ(s)L(T ) ∈ [−(j + 1)ε,−jε]
}∣∣∣ > N (j+2)ε

)
≤ N− 5

6 ε+o(1) .
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Moreover, a union bound and (7.19) yield that, uniformly in s ∈ [θ(T )−1L(T ), t∗T ],

Pµε

(
∃ 0 ≤ j ≤ ε−1 :

∣∣∣{u ∈ Nwhite
t∗T

;
Xu(t

∗
T )−γ∗

T (t∗T )
σ(t∗T )L(T ) ∈

[
− (j + 1)ε,−jε

]}∣∣∣ /∈ (ε−1 + 1)
[
N (j+1)ε, N (j+2)ε

])
≤

ε−1∑
j=0

ε−1∑
k=0

sup
s∈[ 12 t

∗
T ,t∗T ]

P
Nkε+ ε

2 δ−kεσ(0)L(T )

(∣∣∣A∗
T,[h−(j+1)ε,h−jε](s)

∣∣∣ /∈ [N (j+1)ε, N (j+2)ε
])

≤ N− ε
6+o(1) ,

for T large. Therefore, there exists Tε > 0 such that for T ≥ Tε, with large Pµε
-probability, for all

0 ≤ j ≤ ε−1, there are between N (j+1)ε and N (j+3)ε particles (white or red) ending in the interval
γ∗
T (s) + σ(s)L(T )[−(j + 1)ε,−jε] at time s, uniformly in s ∈ [θ(T )−1L(T ), t∗T ]. Recalling (7.9), this directly

implies the proposition. □

7.2. Proof of Proposition 3.7. We may finally provide the proof of Proposition 3.7. It shares several
similarities to that of Lemma 6.4, notably with the sub-critical case needing additional work (since our
moment estimates do not hold until time T ). Recall that the point measure of the N -BBM throughout time
is denoted by (XN

t )t≥0. Let ε ∈ (0, 1), ∗ ∈ {sub, sup, crit}, and recall (6.1), (7.1) and the definitions of γ∗
T ,

γ∗
T from (4.7–4.9).

Lemma 7.8. Let ε ∈ (0, 1) and ∗ ∈ {sub, sup, crit}. There exists c1, c2 > 0 such that for T sufficiently large,
one has

(7.23) inf
t∈[0,t∗T ]

Pµε

(
max(XN

t ) ≤ γred
T (t)

)
≥ 1− c1N

−c2 ,

and

(7.24) inf
t∈[θ(T )−1L(T ),t∗T ]

Pµε

(
XN

t ≺ µ
(γ∗

T (t)+3εσ(t/T )L(T ))
ε,t

)
≥ 1− c1N

−c2 ,

where c1, c2 are uniformly bounded away from 0 and ∞ in σ ∈ S∗
η and locally uniformly in ε ∈ (0, 1).

Let us mention that the proof of Theorem 1.2 only requires (7.23); however (7.24) is obtained with the
same method and is needed to prove Proposition 1.5 in Section 8.

Proof of Lemma 7.8. Let us start with (7.23). Denote by (XN+
t )t≥0 the point process of a BBM with the

following selection mechanism: a particle is killed whenever it satisfies simultaneously (i) there are N other
particles above it, and (ii) it is below the barrier γ∗

T or it is below γred
T and has an ancestor which is above

γ∗
T . Recalling Definition 3.1, this process is an N+-BBM.

Recall from (7.3–7.4) and (7.21) the definition of the multi-type process (Xwhite−red
t )t≥0 containing both

“white” and “red” particles. We claim that one has for some c1, c2 > 0,

(7.25) Pµε

(
max(XN+

t ) > γred
T (t)

)
≤ Pµε

(
max(Xwhite−red

t ) > γred
T (t)

)
+ 2c1N

−c2 = 2c1N
−c2 ,

for T sufficiently large, uniformly in t ≤ t∗T . Indeed, Proposition 7.5 and Markov’s inequality imply that, as
T → +∞,

Pµε

(
∃s ∈ [0, t∗T ], ∃u ∈ Nwhite

s ∪N red
s : Xu(s) = γred

T (s)
)

≤ c1N
−c2 ,

for some c1, c2 > 0, uniformly in σ ∈ S∗
η and locally uniformly in ε ∈ (0, 1). Furthermore, Proposition 7.1

implies that, with probability larger than 1 − c1N
−c2 , there are N particles above γred

T (·) at all time

t ≤ t∗T . Therefore, with probability larger than 1− 2c1N
c2 , the two processes (XN+

t )t≥0 and (Xwhite−red
t )t≥0

constructed by applying a selection mechanism to a BBM have the exact same trajectory, yielding (7.25).
Finally, (7.23) follows directly from the coupling between an N+-BBM and an N -BBM given in Lemma 3.2.

Regarding (7.24), the same coupling argument and Proposition 7.7 yield that

inf
s∈[ 12 t

∗
T ,t∗T ]

Pµε

(
XN

s ≺ N
5
2 εµ

(γ∗
T (s))

ε,s

)
≥ 1− 3c1N

−c2 ,
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for large T , uniformly in σ ∈ S∗
η and locally uniformly in ε ∈ (0, 1). Moreover, XN

s contains at most N
particles by definition, whereas µε,s contains strictly more. Hence, recalling the definition of µε,s (7.9) and
shifting it upward by 3εσ(s/T )L(T ), this finally implies (7.24). □

Proof of Proposition 3.7, super-critical and critical regimes. In the super-critical and critical regimes, Propo-
sition 3.7 follows directly from Lemma 7.8 (more precisely (7.23)) and Lemma 4.1. Indeed, recall (7.1–7.2)

and that t∗T = T in those regimes (see (6.1)). Recalling the notation γ∗,h,x
T , h > x > 0, one has

γred
T (T ) = γ

∗,1+ε,1+ 2ε
3

T (T ) +
ε

3
σ(1)L(T ) .

Letting ε arbitrarily small and applying Lemmata 7.8 and 4.1, this implies Proposition 3.7 in both regimes. □

We now turn to the sub-critical regime. In a similar manner to Section 6.2, we split the interval [0, T ]
into blocks of length 1

2 t
sub
T : more precisely, let K := ⌊2T/tsubT ⌋, and for 0 ≤ k ≤ K − 1, let tk := k

2 t
sub
T ,

and tK = T (so tK − tK−1 ∈ [ 12 t
sub
T , tsubT ]). However, in contrast to Section 6.2, a first moment method is

sufficient to prove Proposition 3.7 (no second moment estimate is required), and this proof holds throughout
the sub-critical regime (so there is no need to handle the super-polynomial case separately).

Proof of Proposition 3.7, sub-critical regime. We define an auxiliary process (X̂N
t )t∈[0,T ] as follows: it starts

from Nδ0 and evolves as the process XN between times tk and tk+1. Then at each time tk, all particles are
displaced to the highest among their positions: in other words, a configuration µ is replaced with Nδmax(µ)

(notice that X̂N always contains exactly N particles). By a coupling argument (recall Corollary 3.3) and

an induction, one may construct a coupling such that XN
T ≺ X̂N

T with probability 1. In particular, it is

sufficient to prove the proposition with max(X̂N
T ) instead of max(XN

T ).
For 1 ≤ k ≤ K, let us define

Yk := max(X̂N
tk
)−max(X̂N

tk−1
) ,

so that max(X̂N
T ) = Y1 + · · ·+ YK . Let us prove that, for 1 ≤ k ≤ K, one has

(7.26) E[Yk] ≤ γsub
T (tk)− γsub

T (tk−1) + c1L(T ) ,

for some c1 > 0, and we claim that the Proposition 3.7 follows. Indeed, this implies

E[max(X̂N
T )] ≤ γsub

T (T ) + c1L(T )×K .

Recalling that K ≤ 2T/tsubT and that tsubT ≫ L(T )3 (see (6.2)), Markov’s inequality yields that

max(X̂N
T ) ≤ γsub

T (T ) + oP

(
T

L(T )2

)
.

Recall (4.8) and that max(X̂N
T ) dominates stochastically max(XN

T ): hence, letting ε → 0 and applying
Lemma 4.1, this finally yields (3.8).

Let us prove (7.26). Notice that the process X̂N evolves between times tk and tk+1 as the N -BBM with

variance profile σ(tk/T + ·), and that X̂N
tk

= Nδmax(X̂N
tk

) for all 0 ≤ k < K. Thus it is enough to show that

(7.27) ENδ0 [maxXN
t ] ≤ Eµε

[maxXN
t ] + η−1L(T ) ≤ γsub

T (t) + c1L(T ) ,

for some c1 > 0 uniform in σ ∈ Sη and t ∈ [ 12 t
sub
T , tsubT ]. The first inequality in (7.27) is obtained by writing

µε ≻ Nδ−η−1L(T ) and translating the N -BBM by η−1L(T ), so we only have to prove the second one. Recall

from Proposition 3.4.(i) that there exists a coupling between XN and a BBM (Xt)t∈[0,T ] without selection,

such that XN
t ⊂ Xt a.s. for all t ∈ [0, T ]. Thus for t ∈ [ 12 t

sub
T , tsubT ], one has

(7.28) Eµε

[
maxXN

t

]
≤ Eµε

[
maxXN

t 1{maxXN
t ≤γred

T (t)}
]
+ Eµε

[
maxXt 1{maxXN

t >γred
T (t)}

]
.
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The first term from (7.28) is clearly bounded by γred
T (t) ≤ γsub

T (t) + η−1L(T ), so it remains to bound the
second term. Let C > 0 a large constant: then one has

Eµε

[
maxXt 1{maxXN

t >γred
T (t)}

]
≤ C(tsubT )2 Pµε

(
maxXN

t > γred
T (t)

)
+ Eµε

[
maxXt, 1{maxXt>C(tsubT )2}

]
.

Recalling Lemma 7.8, more precisely (7.23), the first term in the r.h.s. above is bounded by C(tsubT )2×c1N
−c2

uniformly in t ∈ [ 12 t
sub
T , tsubT ]. Moreover, (6.1) implies that tsubT ≤ L(T )4, so this term vanishes when T

becomes large.
Finally, let us prove that Eµε [maxXt 1{maxXt>C(tsubT )2}] also vanishes as T → +∞, uniformly in t ∈

[ 12 t
sub
T , tsubT ] and locally uniformly in ε. Recalling Proposition 3.4.(ii), it is sufficient to prove this for a BBM

starting from the configuration N2δ0 ≻ µε. Moreover, we claim that for any M ≥ 2, A ≥ 1, and (gi)1≤i≤M a
centered Gaussian vector such that each gi has variance ρ2 > 0, one has

(7.29) E
[
max(gi, 1 ≤ i ≤ M) 1{max(gi,1≤i≤M)≥A}

]
≤ Mρ√

2π

(
1 + ρ2/A2

)
e−A2/2ρ2

.

This result is standard, and can be proven similarly to Lemma 6.7 by writing for A ≥ 0 and any real random
variable Y ,

E[Y 1{Y≥A}] = AP(Y ≥ A) +

∫ +∞

A

P(Y ≥ x) dx .

For the sake of conciseness we leave the details to the reader. Therefore, conditioning X with respect to its
branching epochs and letting Zt denote its population size at time t ∈ [ 12 t

sub
T , tsubT ], we obtain

Eµε

[
maxXt 1{maxXt>C(tsubT )2}

]
≤ EN2δ0

[
maxXt 1{maxXt>C(tsubT )2}

]
≤ c1 × EN2δ0

[
Zt

]
× tsubT e−c2(t

sub
T )2 ,

for some c1, c2 > 0, where the first inequality follows from Proposition 3.4.(ii). Moreover, one has EN2δ0 [Zt] =

N2et/2 ≤ N2et
sub
T , so this concludes the proof of (7.27). □

8. Proofs of complementary results

In this section we complete the proofs of all remaining statements from Section 1, by showing Propo-
sitions 1.3, 1.5, 1.6 (the latter and (1.16) implying Theorem 1.7), and finally Theorem 1.8. All of these
are either obtained through refinements of arguments from the proof of Theorem 1.2 presented before; or
they are direct applications of Theorem 1.2, coupling propositions or other results from previous sections.
Therefore, let us warn the reader that most of the upcoming proofs are not presented in full details. Indeed,
the authors believe that understanding the pivotal arguments from the proof of Theorem 1.2, specifically
Corollary 3.3 and the main ideas from Sections 6–7, is vital before moving on to other results. Hence, the
focus of this section is put on additional, new arguments which are to be combined with those presented
before.

8.1. Super-critical L(T ), decreasing variance (Proposition 1.3). Let σ ∈ C2([0, 1]) be strictly decreas-
ing, let L(T ) = logN(T ) ≫ T 1/3 (so the regime is super-critical), and consider the initial configuration δ0.
In [51], the authors study the speed of a time-inhomogeneous BBM (Xt)t∈[0,T ], without selection and with
strictly decreasing variance. Recall that a1 denotes the absolute value of the largest zero of Ai. Starting
from a single particle in 0 (so QT (δ0) = 0), they prove in [51, Theorem 1.1] that, under those assumptions,

(8.1)

(
max(XT )− v(1)T +

a1
21/3

T 1/3

∫ 1

0

σ(u)1/3|σ′(u)|2/3 du+ σ(1) log(T )

)
T≥0

is tight.

Thus, Proposition 1.3 can be deduced from the couplings from Corollary 3.3 and Proposition 3.4, by
comparing the super-critical regime of the N -BBM with the critical regime on the one hand, and with a

BBM without selection on the other hand. For α ∈ R, recall the definitions of mcrit
T = mcrit

T (α) and msup-d
T
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from (1.11). Then, recalling the asymptotic properties of Ψ(·) (see (1.4)) and that σ′(·) is negative, one
notices that,

lim
α→+∞

lim sup
T→+∞

T−1/3
∣∣∣mcrit

T (α)−msup-d
T

∣∣∣ = 0 .

Fix α and define Mα(T ) := exp(αT 1/3): for T sufficiently large, one has Mα(T ) ≤ N(T ). By Corollary 3.3
and Proposition 3.4, for T large, one can construct two couplings with an Mα(T )-BBM and a BBM without
selection (all started from δ0), such that

XMα(T )
s ≺ XN(T )

s ≺ Xs , ∀ s ∈ [0, T ] .

Recall that, for λ > 0, Proposition 3.6 yields

lim
T→+∞

Pδ0

(
T−1/3

(
max

(
XMα(T )

T

)
−mcrit

T (α)
)
≤ −λ

)
= 0 .

Moreover, the statement (8.1) directly implies,

(8.2) lim
T→+∞

Pδ0

(
T−1/3

(
max(XT )−msup-d

T

)
≥ λ

)
= 0 .

Letting α be very large (depending on λ) and combining these estimates with the coupling above, we conclude

that T−1/3
(
max(XN(T )

T )−msup-d
T

)
converges to 0 in Pδ0-probability as T → +∞. □

Remark 8.1. Let us mention that [51] makes strong assumptions (σ strictly decreasing and initial con-
figuration δ0) in order to obtain a sharp result in (8.1). If the convergence (8.2) were to be proven with σ
non-increasing and a generic initial configuration, then Proposition 1.3 and its proof would immediately
extend to this more general setting. This is discussed again in Remark 8.3 below.

8.2. Final-time distribution for the critical and super-critical regimes (Proposition 1.5). Let
∗ ∈ {crit, sup} (in particular t∗T = T ) and η > 0 throughout this section. We first prove (1.13), then we use
it to deduce (1.14).

Let λ > 0, and recall from Section 3.4 how a coupling argument yields Theorem 1.2 subject to Proposi-
tions 3.6, 3.7. The same coupling method can be used to deduce (1.13) from the following lemma.

Lemma 8.1. Let ∗ ∈ {crit, sup}, and λ, η > 0. Then, one has

(8.3) lim
ε→0

lim sup
T→+∞

sup
σ∈S∗

η

Pµε

(
∃ y ∈ [0, 1] : XN(T )

T

([
QT (µT ) +m∗

T − yσ(1)L(T ),+∞
))

≥ N(T )y+λ
)
= 0 ,

and, for any fixed r ∈ (0, 1),
(8.4)

lim
T→+∞

sup
κ∈[0,1]

sup
σ∈S∗

η

PNκδ−κσ(0)L(T )

(
∃y ∈ [r, 1] : XN(T )

T

([
QT (µT ) +m∗

T − yσ(1)L(T ),+∞
))

≤ N(T )y−λ
)
= 0.

Proof of (1.13) subject to Lemma 8.1. Using arguments very similar to the ones from the proof of Theo-
rem 1.2 in Section 3.4, we obtain from Lemma 8.1 that for every fixed r ∈ (0, 1), as T → ∞

(8.5) sup
y∈[r,1]

∣∣∣∣∣ logXN(T )
T ([QT (µT ) +m∗

T − yσ(1)L(T ),+∞))

L(T )
− y

∣∣∣∣∣ −→ 0 , in PµT
-probability.

In particular, we have XN(T )
T ([QT (µT ) +m∗

T − rσ(1)L(T ),+∞)) ≥ 1 with high probability, so that we can
replace log by log+. It remains to consider y ∈ [0, r]. We have

sup
y∈[0,r]

∣∣∣∣∣ log+ XN(T )
T ([QT (µT ) +m∗

T − yσ(1)L(T ),+∞))

L(T )
− y

∣∣∣∣∣
≤ log+ XN(T )

T ([QT (µT ) +m∗
T − rσ(1)L(T ),+∞))

L(T )
+ r,
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so that (8.5) implies that the r.h.s. converges to 2r in PµT
-probability as T → +∞. Letting r → 0, we

obtain the result. □

Proof of Lemma 8.1. We can assume QT (µT ) = 0 without loss of generality (recall (3.9)). We first prove (8.3),
i.e. the upper bound on the final-time distribution of the process. Let ε ∈ (0, 1), λ > 0 and recall the
definition of µε,s, s ∈ [0, T ] from (7.9), and of m∗

T from (1.11). By Lemma 4.1, one has for ε sufficiently
small and T large that,

(8.6)
1

L(T )

∣∣γ∗,1+ε,1+ 2
3 ε

T (T )−m∗
T

∣∣ ≤ λ

2
,

where we wrote the parameters of the barrier γ∗
T explicitly. Then, recall that by equation (7.24) from

Lemma 7.8, we have for T sufficiently large,

inf
σ∈S∗

η

Pµε

(
XN

T ≺ µ
(γ∗

T (T )+3εσ(1)L(T ))
ε,T

)
≥ 1− c1N

−c2 ,

where c1, c2 are constants depending locally uniformly on ε; and γ∗
T (·) is defined in (4.7) and (4.9) (with

parameters h = 1 + ε, x = 1 + 2
3ε). In particular, defining

Iε,λ,σT :=
{
y ∈ [0, 1], µ

(γ∗
T (T )+3εσ(1)L(T ))

ε,T

([
m∗

T − yσ(1)L(T ),+∞
))

≥ N(T )y+λ
}

,

we deduce that,

sup
σ∈S∗

η

Pµε

(
∃y ∈ [0, 1] : XN

T

([
m∗

T − yσ(1)L(T ),+∞
))

≥ N(T )y+λ
)

≤ 1{∃σ∈S∗
η ; Iε,λ,σ

T ̸=∅} + c1N
−c2 ,(8.7)

Finally, for y ∈ [0, 1] and σ ∈ S∗
η , one has

µ
(γ∗

T (s)+3εσ(s/T )L(T ))
ε,s

([
m∗

T − yσ(1)L(T ),+∞
))

=

ε−1∑
k=0

Nkε+ ε
2 1{γ∗

T (s)+3εσ(s/T )L(T )−kεσ(1)L(T )≥m∗
T−yσ(1)L(T )}

≤
yε−1+3η−2+ε−1 λ

2∑
k=0

Nkε+ ε
2 ≤ (ε−1(1 + λ/2) + 3η−2)Ny+4η−2ε+λ

2 ,

where we used (8.6). Assuming ε is sufficiently small above (depending on λ and η), this implies that Iε,λ,σT

is empty for T large enough uniformly in σ ∈ S∗
η ; this completes the proof of (8.3).

We now turn to (8.4). Quite similarly to Proposition 3.6, let us first prove that the convergence holds
locally uniformly in κ ∈ (0, 1), then extend it to κ ∈ [0, 1] via coupling arguments (recall Lemma 6.4 from
Section 6.2). Let ε ∈ (0, 1), h = 1− ε, x = (1− ε)(1−κ), and recall Proposition 6.2. Replicating the coupling
arguments from Section 6.2, more precisely (6.15–6.16), one obtains for 1 ≤ j ≤ ε−1 and T sufficiently large,

PNκδ0

(
XN

T

([
γ∗
T (T )− jεσ(1)L(T ),+∞

))
≥ N jε

)
≥ 1− c1N

−c2 ,

where c1, c2 > 0 are constants uniform in σ ∈ S∗
η , 1 ≤ j ≤ ε−1, and locally uniform in ε, κ ∈ (0, 1) (we do

not reproduce the details). Writing a union bound, this yields

(8.8) PNκδ0

(
∀1 ≤ j ≤ ε−1, XN

T

([
γ∗
T (T )− jεσ(1)L(T ),+∞

))
≥ N jε

)
≥ 1− ε−1c1N

−c2 .

Let ε′ > 0: recalling (1.11) and Lemma 4.1, one has for ε sufficiently small and T large that,

(8.9)
1

L(T )

∣∣γ∗,1−ε,(1−ε)(1−κ)
T (T )− κσ(0)L(T )−m∗

T

∣∣ ≤ ε′ ,
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where we used that γ
∗,1−ε,(1−ε)(1−κ)
T (T ) − κσ(0)L(T ) = γ

∗,1−ε,1−ε(1−κ)
T (T ). Moreover, for y ∈ [ε + ε′η, 1],

there exists 1 ≤ jy ≤ ε−1 such that (y − ε′η−1)ε−1 ∈ [jy, jy + 1); thus we deduce that,{
∃y ∈ [ε+ ε′η−1, 1] : XN

T

([
m∗

T − yσ(1)L(T ),+∞
))

< Ny−λ
}

⊂
{
∃1 ≤ j ≤ ε−1 : XN

T

([
γ
∗,1−ε,(1−ε)(1−κ)
T (T )− κσ(0)L(T )− jεσ(1)L(T ),+∞

))
< N (j+1)ε+ε′η−1−λ

}
.

Assume that ε′, ε are sufficiently small so that ε+ ε′η−1 ≤ min(r, λ). Then, shifting the initial distribution
in (8.8) by −κσ(0)L(T ), this implies

(8.10) PNκδ−κσ(0)L(T )

(
∃ y ∈ [r, 1] : XN

T

([
m∗

T − yσ(1)L(T ),+∞
))

< Ny−λ
)

≤ ε−1c1N
−c2 ,

uniformly in σ ∈ S∗
η and locally uniformly in κ ∈ (0, 1), which is the expected result.

To finish the proof of Lemma 8.1, it remains to extend (8.10) to κ close to 0 or 1, which is achieved
very similarly to the proof of Proposition 3.6 subject to Lemma 6.4 in Section 6.2. For the case κ large,
assume without loss of generality that 0 < r < ε < λ, and notice that for any κ ∈ [1 − εη−2, 1], one has

N1−εη−2

δ−σ(0)L(T ) ≺ Nκδ−κσ(0)L(T ). Hence, Corollary 3.3 yields,

PNκδ−κσ(0)L(T )

(
∃y ∈ [r, 1] : XN

T

([
m∗

T − yσ(1)L(T ),+∞
))

< Ny−λ
)

≤ PN(1−εη−2)δ−(1−εη−2)σ(0)L(T )

(
∃y ∈ [r, 1] : XN

T

([
m∗

T − yσ(1)L(T ) + εη−2σ(0)L(T ),+∞
))

< Ny−λ
)

≤ PN(1−εη−2)δ−(1−εη−2)σ(0)L(T )

(
∃y ∈ [r − ε, 1] : XN

T

([
m∗

T − yσ(1)L(T ),+∞
))

< Ny−(λ−ε)
)
,

where we also shifted the process upward by εη−2σ(0)L(T ) in the first inequality. Applying (8.10) to the
latter (with κ = 1− εη−2), this proves that the convergence also holds uniformly in κ close to 1.

It only remains to treat the case κ small. Recall Lemma 6.5, which implies that, for an N -BBM started
from δ0, one has XN

εL(T ) ≻ Nε/4δ−2εη−1L(T ) with Pδ0-probability close to 1. Letting κ ∈ [0, ε], writing

δ−εσ(0)L(T ) ≺ Nκδ−κσ(0)L(T ) and applying the Markov property at time εL(T ), one can again extend the
convergence uniformly to κ ∈ [0, ε] through Corollary 3.3: since this is a carbon copy of arguments presented
in Section 6.2, we leave the details to the reader. □

Remark 8.2. Let us mention that the proof above can be applied to the sub-critical regime, yielding an
estimate on the distribution of the process at any time t ∈ [θ(T )−1L(T ), tsubT ]. Unfortunately, the error term
o(T/L(T )2) in our maximal displacement result renders this obsolete at time T . If one manages to compute
sharper estimates on the maximal displacement of the N -BBM with sub-critical population (with an error at
most o(L(T ))), the arguments above can be adapted straightforwardly. However, it seems very unlikely that
such a sharp limit estimate would be non-random: instead we expect it to be obtained through martingale
methods or similar arguments, with a non-trivial dependency on the realization of the process near time t = 0
and on the “peaking” events throughout the trajectory (i.e. when a particle rises and reproduces significantly:
see [48] for a study of those in the case of an N-BBM with constant N , time-homogeneous variance and
close to the equilibrium measure).

Proof of (1.14). We can assume QT (µT ) = 0 without loss of generality (recall (3.9)). We start with the
lower bound on the diameter. Let δ > 0, and notice that Theorem 1.2 implies for ∗ ∈ {crit, sup},

PµT

(
max(XN(T )

T )−min(XN(T )
T ) ≤ (1− 2δ)σ(1)L(T )

)
≤ PµT

(
min(XN(T )

T ) ≥ m∗
T − (1− δ)σ(1)L(T )

)
+ o(1)

= PµT

(
XN(T )

T

(
[m∗

T − (1− δ)σ(1)L(T ),+∞)
)
≥ N

)
+ o(1) ,

and by (1.13), the latter goes to 0 as T goes to +∞, for any δ > 0.
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Regarding the upper bound on the diameter, it suffices to prove that

(8.11) PµT

(
min(XN(T )

T ) ≤ m∗
T − (1 + 2δ)σ(1)L(T )

)
= o(1)

as T → +∞ for any δ > 0, and the result follows similarly from Theorem 1.2. Consider XN(T )
T−δ3L(T ) the

particle configuration of the N -BBM at time T − δ3L(T ), and define

(8.12) A := XN(T )
T−δ3L(T ) ∩

[
m∗

T − (1 + δ)σ(1)L(T ),+∞
)
≺ XN(T )

T−δ3L(T ) .

Recall (3.2), and notice that for any µ ∈ CN one has qN (µ) = min(µ) if µ(R) = N , and qN (µ) = −∞ else.
Thus, applying the Markov property at time T − δ3L(T ), one obtains that,

PµT

(
min(XN(T )

T ) ≤ m∗
T − (1 + 2δ)σ(1)L(T )

∣∣∣XN(T )
T−δ3L(T )

)
≤ PµT

(
qN (XN(T )

T ) ≤ m∗
T − (1 + 2δ)σ(1)L(T )

∣∣∣XN(T )
T−δ3L(T )

)
= P

(T−δ3L(T ),XN(T )

T−δ3L(T )
)

(
qN (XN(T )

T ) ≤ m∗
T − (1 + 2δ)σ(1)L(T )

)
≤ P(T−δ3L(T ),A)

(
qN (XN(T )

T ) ≤ m∗
T − (1 + 2δ)σ(1)L(T )

)
,

where the last inequality follows from Corollary 3.5. Moreover, Lemma 8.1 (more specifically (8.4)) implies

that, with large probability, A contains at least N1−δ4 particles. Using standard arguments on birth
processes (such as Proposition 6.6), one observes that, with large probability, the N -BBM started from

(T − δ3L(T ),A) contains at time T exactly N(T ) particles: in particular, qN (XN(T )
T ) = min(XN(T )

T ) with
large P(T−δ3L(T ),A)-probability, and

P(T−δ3L(T ),A)

(
qN (XN(T )

T ) ≤ m∗
T − (1 + 2δ)σ(1)L(T )

)
= P(T−δ3L(T ),A)

(
min(XN(T )

T ) ≤ m∗
T − (1 + 2δ)σ(1)L(T )

)
+ o(1) .

Recall from Proposition 3.4.(i) that one can couple XN(T ) with a BBM started from (T − δ3L(T ),A)

such that XN(T )
T ⊂ XT . Thus,

P(T−δ3L(T ),A)

(
min(XN(T )

T ) ≤ m∗
T − (1 + 2δ)σ(1)L(T )

)
≤ P(T−δ3L(T ),A)

(
min(XT ) ≤ m∗

T − (1 + 2δ)σ(1)L(T )
)

= P(T−δ3L(T ),−A)

(
max(XT ) ≥ −m∗

T + (1 + 2δ)σ(1)L(T )
)
,

where we used the symmetry of the BBM. Since (−A) ≺ Nδ−m∗
T+(1+δ)σ(1)L(T ) by definition, one deduces

from Proposition 3.4 and a shift that

P(T−δ3L(T ),−A)

(
max(XT ) ≥ −m∗

T + (1 + 2δ)σ(1)L(T )
)

≤ P(T−δ3L(T ),Nδ0)

(
max(XT ) ≥ δσ(1)L(T )

)
.

Then, we conclude the proof directly with a union bound: indeed, one deduce again from standard arguments

on birth processes that, with large P(T−δ3L(T ),Nδ0)-probability, X contains at most N1+δ2 particles; so letting

Y be a centered Gaussian variable with variance T
∫ 1

1−δ3L(T )/T
σ2(s)ds = (1+o(1))σ2(1)δ3L(T ), one deduces

from standard Gaussian estimates that,

P(T−δ3L(T ),Nδ0)

(
max(XT ) ≤ δσ(1)L(T )

)
≤ o(1) +N1+δ2P(Y ≥ δσ(1)L(T ))

≤ o(1) + e(1+δ2)L(T ) × c1
√
δ/L(T ) e−c2δ

−1L(T ) ,

where c1, c2 > 0 are universal constants. Provided that δ > 0 is small enough, this concludes the proof
of (1.14). □
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8.3. Adaptation of the proof to deterministic branching times (Proposition 1.6). In this section we
do not present a full proof of Proposition 1.6: instead we detail how all our previous results and proofs can be

adapted to the time-inhomogeneous BBMdb. Throughout this section, we let (X̃t)t∈[0,T ] (resp. (X̃N
t )t∈[0,T ])

denote the particle configurations of the BBMdb (resp. N -BBMdb). We first focus on adapting the proof of
Theorem 1.2, that is Sections 3 through 7.

Section 3. We start with the coupling statements on the BBMdb and N -BBMdb. Regarding Lemma 3.2, the
construction of the coupling in [48, Section 2.3] is done by induction on the sequence of (random) epochs
(tn)n≥1 upon which either a particle branches, or a particle dies. Having the epochs be deterministic does
not alter the construction, except for the fact that multiple particles are branching simultaneously. However,
the construction can be adapted to that case very straightforwardly: as a matter of fact it has already be
done in [8, Lemma 1] for one step of the (homogeneous) branching random walk with selection. Regarding
Proposition 3.4, the definition of the N -BBM as a BBM with some selection mechanism L is unchanged, so
the first statement still holds; and in the proof of the second statement one only needs to replace the BBM’s
with BBMdb’s.

Finally, the statements of Propositions 3.6 and 3.7 can be rephrased straightforwardly in temrs of the
N -BBM: then the same arguments as in Section 3.4 yield that Theorem 1.2 also holds for the N -BBMdb
subject to these propositions.

Sections 4 and 5. All definitions and notation from Section 4.1 are unchanged. The main differences are in
Section 4.2, more precisely in the statements of the Many-to-one and Many-to-two lemmas. On the one hand,

recall that |Nt| denotes the population size of the BBM at time t ∈ [0, T ], and let |Ñt| denote that of the
BBMdb. Then the Many-to-one lemma still holds for the BBMdb, subject to replacing Eδ0 [|Nt|] = et/2 with,

Eδ0 [|Ñt|] =
(
Eξ
)⌊t/2 log Eξ⌋

,

in Lemma 4.3 (the equality above is proven by induction). Notice that this is of order et/2+O(1), so that
change does not affect the resulting first moment estimates up to constant factors. On the other hand, we
provide a discrete-time version of the Many-to-two lemma. It is obtained by standard arguments involving
the decomposition of pairs of individuals according to their most recent common ancestor, see e.g. [60,

Appendix II] or [52, Lemma 3.6]. Let Ã∗
T,z(·), G̃(·) be defined similarly to A∗

T,z(·), G(·) respectively in (4.4)

and (4.20), where we replace the BBM with a BBMdb.

Lemma 8.2 (Many-to-two lemma, deterministic branching). Let ∗ ∈ {sup, sub, crit}. Let t ≤ T , γ∗
T , γ

∗
T ∈

C1([0, T ]) which satisfy (4.3), and z ∈ [0, h). Then, one has,

Eδ0

[
|Ã∗

T,z(t)|2
](8.13)

= Eδ0

[
|Ã∗

T,z(t)|
]
+ E[ξ(ξ − 1)]

⌊t/(2 log Eξ)⌋−1∑
k=0

∫ h

0

G̃∗(x, y, 0, (2 logEξ)k)
(∫ h

z

G̃∗(y, w, (2 logEξ)k, t)dw
)2

dy.

Replacing Lemma 4.4 with Lemma 8.2 in the proofs of Propositions 5.3, 5.6 and 5.10, and using the
adaptation of Lemma 4.3 discussed above in all the other propositions from Section 5, we obtain the same
moment estimates on the BBMdb between barriers as we do for the BBM, in all regimes.

Sections 6 and 7. All statements in these sections immediately hold for the N -BBMdb: indeed, the proofs in
these sections are entirely based on the moment estimates from Section 5, as well as some technical results
on the barriers (such as Lemma 4.2) which are not affected by the choice of branching mechanism. Therefore,
this finishes the adaptation of Propositions 3.6 and 3.7 to the N(T )-BBMdb, proving that the results of
Theorem 1.2 also hold for that process.

Super-critical regime, decreasing variance. Recall the proof of Proposition 1.3 from Section 8.1. To the
authors knowledge, there is currently no equivalent to (8.1) for the BBMdb (or BRW) in the literature,
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however [52] has proven that (8.2) holds for a large class of discrete-time, time-inhomogeneous branching
random walks (BRW), among which Gaussian BRW, see [52, Theorem 1.3]. Therefore, replacing Corollary 3.3
and Proposition 3.4 with the coupling arguments discussed above for the N -BBMdb, and applying [52,
Theorem 1.3] to the BBMdb at its final time, the adaptation of Proposition 1.3 to deterministic branching
times is straightforward (we do not replicate the proof).

Remark 8.3. Let us mention that [52, Theorem 1.3] also holds for σ non-increasing, hence so does (1.12) for
the superscript sup-d in the N -BBMdb. This provides a slightly more complete statement for the N -BBMdb
and N -CREM than Proposition 1.3 (where we assumed σ strictly decreasing), however one still requires an
initial configuration δ0 when quoting [52].

Final-time distribution Regarding (1.13), it is sufficient to prove that Lemma 8.1 also holds for the N -BBMdb

X̃N . A thorough inspection of the proof shows that all arguments therein can be adjusted to deterministic
branching times, with no more work than what has already been presented for the adaptation Theorem 1.2
above. In order not to overburden this paper, we do not repeat those arguments here. In the proof of (1.14),
there is one occurrence of the Many-to-one lemma which has to be replaced with the N -BBMdb version as
above, and the rest of the proof is unchanged. This fully concludes the proof of Proposition 1.6. □

8.4. N-BBM with time-inhomogeneous selection (Theorem 1.8). Let ℓ ∈ C1([0, 1]), L̂(T ) → +∞
as T → +∞ and L(·, T ) defined as in (1.20): in this section we prove Theorem 1.8 by approximating the
N(·, T )-BBM by a process with constant selection on a short time interval, and applying Theorem 1.2 and

Proposition 1.5 to the latter. We first consider the super-critical and critical regimes (L̂(T ) ≫ T 1/3 or

L̂(T ) = T 1/3): we prove (1.23) and (1.25) simultaneously, then (1.24) and (1.26). Finally, we prove (1.23) in

the sub-critical regime (L̂(T ) ≪ T 1/3).
Before that, we provide a coupling proposition that extends Corollary 3.3 and Proposition 3.4.(i) to a

setting with time-inhomogeneous selection. Notice that, with the definitions above, for any T > 0 there are
finitely many t ∈ [0, T ] upon which t 7→ N(t, T ) changes its integer part.

Proposition 8.3. Let T ≥ 0 fixed. Let N1(·, T ), N2(·, T ) two positive functions on [0, T ] such that
N1(t, T ) ≤ N2(t, T ) for all 0 ≤ t ≤ T . Assume that their integer parts change finitely many times in

t ∈ [0, T ]. Let µ1 ∈ CN1(0,T ) and µ2 ∈ CN2(0,T ) which satisfy µ1 ≺ µ2: then there exists (XN1(·,T )
t )t∈[0,T ] and

(XN2(·,T )
t )t∈[0,T ], respectively an N1(·, T )- and an N2(·, T )-BBM, such that XN1(·,T )

0 = µ1, XN2(·,T )
0 = µ2

and XN1(·,T )
t ≺ XN2(·,T )

t for all t ∈ [0, T ] with probability 1.
Moreover, there also exists a coupling with a time-inhomogeneous BBM without selection started from µ1,

such that XN1(·,T )
t ⊂ Xt for all t ∈ [0, T ] with probability 1.

Proof. This is very similar to the adaptation made in Section 8.3 above: the only difference between this
proposition and the setting of Corollary 3.3 and Proposition 3.4.(i) is that particles may be killed at some
deterministic epochs, i.e. when the integer part of N1(·, T ) or N2(·, T ) diminishes. Since we assumed that
there are finitely many such epochs, the constructions of the coupling and the stopping line can be adapted
straightforwardly. □

Let us now return to the proof of Theorem 1.8, starting with (1.23) and (1.25) in the critical and
super-critical regimes.

Proof of (1.23) and (1.25), super-critical and critical regimes. Recall the definition of QT (·) from (1.3), and
let us extend it into

(8.14) Qs
T (µ) := sup

{
q ∈ R

∣∣∃κ ∈ [0, 1] : µ
(
[q − κσ(s/T )L(T ),+∞)

)
≥ N(T )κ

}
, s ∈ [0, T ].

Recall Proposition 1.5: then we have the following.
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Lemma 8.4. Let ∗ ∈ {crit, sup} and η > 0. Let µT ∈ CN , and denote with XN(T ) an N(T )-BBM (with
time-homogeneous selection) started from µT , T ≥ 0, with infinitesimal variance σ2(·/T ), σ ∈ S∗

η . Then as
T → +∞, one has

(8.15) sup
σ∈S∗

η

1

L(T )

∣∣∣QT
T (XN(T )

T )−QT (µT )−m∗
T

∣∣∣ −→ 0 , in PµT
-probability.

Proof of Lemma 8.4. This is a direct corollary of Proposition 1.5 —more precisely Lemma 8.1— and the

definition (8.14). Indeed, the upper bound on QT
T (X

N(T )
T ) follows from the fact that (8.3) provides an upper

bound on XN(T )
T

(
[m∗

T − yσ(1)L(T ),+∞)
)
holding for all y ∈ [0, 1] with large probability; the lower bound

is obtained through a direct application of (8.4). Finally, as stated in Lemma 8.1, the result is uniform in
σ ∈ S∗

η . □

With Proposition 8.3 and Lemma 8.4 at hand, Theorem 1.8 is obtained quite naturally in the critical
and super-critical regimes, by writing a block decomposition of the process. Indeed, let us first consider

the critical regime, i.e. L̂(T ) = T 1/3. Recall the definition of m̂crit
T from (1.22). Let ε > 0 small (assume

ε−1 ∈ N for the sake of simplicity), and part [0, T ] into ε−1 intervals of length εT . Define for 1 ≤ i ≤ ε−1,

ℓi := inf{ℓ(u), u ∈ [(i− 1)ε, iε]} , and ℓi := sup{ℓ(u), u ∈ [(i− 1)ε, iε]} ,
and define similarly σi, σi, σ

′
i and σ′

i. Define also,

N i(T ) := exp(ℓiT
1/3) , and N i(T ) := exp(ℓiT

1/3) .

Finally, we let for 1 ≤ i ≤ ε−1,

mi,ε := T

∫ iεT

(i−1)εT

σ(u)du + ε T 1/3 inf

{
σ

ℓ
Ψ

(
−ℓ3

σ′

σ

) ∣∣∣∣σ ∈ [σi, σi], σ
′ ∈ [σ′

i, σ
′
i], ℓ ∈ [ℓi, ℓi]

}
,

mi,ε := T

∫ iεT

(i−1)εT

σ(u)du + ε T 1/3 sup

{
σ

ℓ
Ψ

(
−ℓ3

σ′

σ

) ∣∣∣∣σ ∈ [σi, σi], σ
′ ∈ [σ′

i, σ
′
i], ℓ ∈ [ℓi, ℓi]

}
.

Using a Riemann sum approximation and that σ ∈ S∗
η , ℓ ∈ C1([0, 1]), one observes that

(8.16) lim
ε→0

T−1/3

∣∣∣∣∣m̂crit
T −

ε−1∑
i=1

mi,ε

∣∣∣∣∣ = lim
ε→0

T−1/3

∣∣∣∣∣m̂crit
T −

ε−1∑
i=1

mi,ε

∣∣∣∣∣ = 0 .

Let (Fs)s∈[0,T ] denote the natural filtration of the N(·, T )-BBM. Following from Proposition 8.3, there exists

an N i(T )- and a N i(T )-BBM, both starting from the initial measure XN(·,T )
(i−1)εT at time (i− 1)εT , such that,

(8.17) PµT

(
XNi(T )

iεT ≺ XN(·,T )
iεT ≺ XNi(T )

iεT

∣∣∣F(i−1)εT ; XNi(T )

(i−1)εT = XN(·,T )
(i−1)εT = XNi(T )

(i−1)εT

)
= 1 .

Moreover, Lemma 8.4 states that, for λ > 0, there exists T0 > 0 (depending only on η, ε, λ) such that for
T ≥ T0,

(8.18)

PµT

(
1

T 1/3

(
QiεT

T

(
XNi(T )

iεT

)
−Q

(i−1)εT
T

(
XN(i−1)(T )

(i−1)εT

)
−mi,ε

)
< −ελ

∣∣∣∣F(i−1)εT

)
≤ ε2 ,

and PµT

(
1

T 1/3

(
QiεT

T

(
XNi(T )

iεT

)
−Q

(i−1)εT
T

(
XN(i−1)(T )

(i−1)εT

)
−mi,ε

)
> ελ

∣∣∣∣F(i−1)εT

)
≤ ε2 .

Recalling Theorem 1.2, one obtains similarly for T ≥ T0,

(8.19)

PµT

(
1

T 1/3

(
max

(
XNi(T )

iεT

)
−Q

(i−1)εT
T

(
XN(i−1)(T )

(i−1)εT

)
−mi,ε

)
< −ελ

∣∣∣∣F(i−1)εT

)
≤ ε2 ,

and PµT

(
1

T 1/3

(
max

(
XNi(T )

iεT

)
−Q

(i−1)εT
T

(
XN(i−1)(T )

(i−1)εT

)
−mi,ε

)
> ελ

∣∣∣∣F(i−1)εT

)
≤ ε2 .
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Apply the Markov property at times (i− 1)εT , 1 ≤ i ≤ ε−1 − 1, one deduces with a union bound and (8.17),

PµT

 1

T 1/3

(
max

(
XN(·,T )

T

)
−QT (µT )−

ε−1∑
i=1

mi,ε

)
< −λ


≤

ε−1−1∑
i=1

PµT

(
1

T 1/3

(
QiεT

T

(
XNi(T )

iεT

)
−Q

(i−1)εT
T

(
XN(i−1)(T )

(i−1)εT

)
−mi,ε

)
< −ελ

∣∣∣∣XNi(T )

(i−1)εT = XN(·,T )
(i−1)εT

)
+ PµT

(
1

T 1/3

(
max

(
XN ε−1 (T )

T

)
−Q

(1−ε)T
T

(
XN(ε−1−1)(T )

(1−ε)T

)
−mε−1,ε

)
< −ελ

∣∣∣∣XNε−1 (T )

(1−ε)T = XN(·,T )
(1−ε)T

)
,

for T ≥ T0(η, λ, ε); and by (8.18–8.19), the latter sum is bounded by ε. Recalling (8.16) and letting ε → 0,
this finally proves the lower bound in (1.23); and the upper bound is obtained similarly. Moreover, (1.25) is
obtained with an analogous computation, by applying Proposition 1.5 instead of (8.19) to the last block
(i = ε−1) of the decomposition above. This concludes the proof of Theorem 1.8 in the critical regime.

Regarding the super-critical case, it is proven by replicating the proof above mutatis mutandis: that

is, replacing T 1/3 with L̂(T ) ≫ T 1/3, m̂crit
T with m̂sup

T , and adapting the definitions of mi,ε, mi,ε above
accordingly. This is very straightforward, so we leave the details to the reader. □

Proof of (1.24). This is immediate: recall that, in the super-critical regime with decreasing variance, the

convergence (1.24) does not depend on the specifics of ℓ(·), L̂(T ). Hence the super-critical N(·, T )-BBM can
still be coupled with, on the one hand a critical Mα(T )-BBM with population size Mα(T ) := exp(αT 1/3) ≪
inf{N(s, T ), 0 ≤ s ≤ T}, α > 0; and on the other hand a BBM without selection (see Proposition 8.3).
Therefore, the proof of Proposition 1.3 above fully accommodates to super-critical, time-inhomogeneous
selection. We leave the details to the reader. □

Proof of (1.26). This is also straightforward: recalling the proof of (1.23, 1.25), it suffices to estimate

min(XN(·,T )
T ) in the last block of the decomposition. One can estimate both min(XNε−1

T ) and min(XNε−1

T )
by using (1.14) and Theorem 1.2; and reproducing the coupling arguments from the proof of (1.14) (we
do not write the details again, but let us recall that they do not immediately follow from the definition of

stochastic domination), this gives the expected estimate on min(XN(·,T )
T ). □

Proof of (1.23), sub-critical regime. In that regime there is no equivalent to Proposition 1.5 or Lemma 8.4,
so one cannot split the interval [0, T ] into blocks of length εT ; however, the proofs of Lemma 6.4 (for
the lower bound) and Proposition 3.7 (upper bound), in the sub-critical regime, already rely on a block
decomposition. Hence, Theorem 1.8 can be obtained by approximating the N(·, T )-BBM by a process with
piecewise-constant selection, and reproducing the arguments from the proof of Theorem 1.2.

More precisely, let us first discuss the lower bound. Let K = ⌊2T/tsub⌋ and for 0 ≤ k ≤ K − 1, tk = k
2 t

sub
T ,

and tK = T . Let Nk = inf{N(s, T ), tk−1 ≤ s ≤ tk}, and recall the construction of the auxiliary process XN

from Section 6.2: let us tweak it such that (1) at times tk, 1 ≤ k ≤ K, all particles but the ⌊Nk⌋ top-most
ones are removed, and the remaining particles are set to the lowest among their positions; and (2) on the

interval [tk−1, tk], the process XN
evolves like an Nk-BBM, where Nk is constant. Therefore, this process is

still stochastically dominated by the N -BBM, and the remainder of the proof from Section 6.2 still holds for
this process (since the selection is constant on each interval [tk−1, tk]), both for the super-polynomial and
small N(T ) cases. We deduce from this a lower bound on the maximal displacement of the N(·, T )-BBM,
and a Riemann sum approximation (analogous to (8.16)) finally shows that it is of order m̂sub

T − o(T/L(T )2)
for T large. Since all these adaptations are very straightforward, and rely on arguments that were already
applied in other parts of the paper, we leave the remaining details to the reader. Finally, the upper bound is
obtained with analogous arguments. □
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Remark 8.4. Let us point out that Theorem 1.8 assumes that the “regime” for the selection (i.e. L̂(T ))

remains the same throughout [0, T ]. If the regime changes finitely many times, e.g. L̂(T ) is replaced with

some L̂k(T ) on an interval [tk−1, tk], 1 ≤ k ≤ K, one can derive similar results by induction: indeed, (1.25)

and Lemma 8.4 provide an estimate on Qtk
T (XN(·,T )

tk
) if the regime is critical or super-critical on [tk−1, tk];

and in the sub-critical case L̂k(T ) ≪ T 1/3, one has,

Qtk
T (XN(·,T )

tk
) = Qtk

T (δ
maxXN(·,T )

tk

) +O(L̂k(T )).

Then, one can apply Theorem 1.8 on each interval [tk−1, tk] inductively. We do not write any statement or
proof for this fact, since this follows from a carbon copy of arguments presented above.
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