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MAXIMAL DISPLACEMENT OF A TIME-INHOMOGENEOUS N(T)-PARTICLES

BRANCHING BROWNIAN MOTION

ALEXANDRE LEGRAND AND PASCAL MAILLARD

Abstract. The N-particles branching Brownian motion (N-BBM) is a branching Markov process which
describes the evolution of a population of particles undergoing reproduction and selection. It shares many

properties with the N -particles branching random walk (N -BRW), which itself is strongly related to physical
p-spin models, or to Derrida’s Random Energy Model [25, 26]. The N-BRW can also be seen as the
realization of an optimization algorithm over hierarchical data, which is often called beam search [15].

More precisely, the maximal displacement of the N-BRW (or N-BBM) can be seen as the output of the
beam search algorithm; and the population size N is the “width” of the beam, and (almost) matches the
computational complexity of the algorithm.

In this paper, we investigate the maximal displacement at time T of an N-BBM, where N = N(T )

is picked arbitrarily depending on T and the diffusion of the process σ(·) is inhomogeneous in time. We
prove the existence of a transition in the second order of the maximal displacement when logN(T ) is of

order T 1/3. When logN(T ) ≪ T 1/3, the maximal displacement behaves according to the Brunet-Derrida

correction [21, 6] which has already been studied for N a large constant and for σ constant. When

logN(T ) ≫ T 1/3, the output of the algorithm (i.e. the maximal displacement) is subject to two phenomena:

on the one hand it begins to grow very slowly (logarithmically) in terms of the complexity N ; and on
the other hand its dependency in the time-inhomogeneity σ(·) becomes more intricate. The transition at

logN(T ) ≈ T 1/3 can be interpreted as an “efficiency ceiling” in the output of the beam search algorithm,

which extends previous results from [1] regarding an algorithm hardness threshold for optimization over the
Continuous Random Energy Model.
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1. Introduction and main results

The branching Brownian motion (BBM) can be described as follows. At time t = 0 we consider a
(non-empty) initial configuration of particles on the real line, which all start moving as standard Brownian
motions until some exponentially distributed random times with parameter β0. All those movements and
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exponential “clocks” are taken independently from one another. When one of the exponential clocks rings, the
corresponding particle splits into a random number ξ ≥ 2 of new ones at its location. Then, those particles
start evolving the same way, independently, with their own exponential clocks. Following a generalization
first introduced in [29], in this paper we will be interested in BBM’s with time-inhomogeneous motion. More
precisely, let σ ∈ C2([0, 1]) be a positive function: then for some fixed final time T > 0, we assume that, at
time t ∈ [0, T ], the infinitesimal variance of all the Brownian motions involved in the construction is given by
σ2(t/T ).

From this process, one can construct the (time-inhomogeneous) N -particles branching Brownian motion
(N -BBM) by adding the following selection mechanism: we start from an initial configuration containing at
most N particles, N ∈ N. At any time of a splitting event, we remove all particles which are not among the
N highest of the whole population. We denote by XN

T the particle configuration of the N -BBM at time T ,
seen as a (finite) counting measure on R (full formal notation and construction of the N -BBM are presented
more extensively below). We write max(XN

T ) for the maximal displacement of the process at time T , i.e. the
position of the highest living particle from the N -BBM. Similarly, XT denotes the particle configuration of
the BBM (without selection) at time T , and max(XT ) the maximal displacement of the BBM.

On the one hand, the maximum displacement of the BBM has been extensively investigated in the literature,
both for the time-homogeneous and inhomogeneous cases, see [19, 20, 29, 48] or more recently [2, 46, 47]
among other works. On the other hand, studying the maximum of the homogeneous N -BBM is a more
difficult matter: it was first done in [21] with heuristic methods, and later in [43] (see also [6]). The goal of
this paper is to study the maximum of the N -BBM in the time-inhomogeneous case. Moreover, we will be
interested in the case where N depends on T , with N = N(T ) → ∞ as T → ∞. More precisely, we define

(1.1) L(T ) := logN(T ) ,

and we shall consider the regime where 1 ≪ logN(T ) ≪ T . Note that the original BBM formally corresponds
to N = +∞.

In the remainder of this section, we state the mathematical results of this paper. The most important
takeaway from this article is that the maximal displacement of the N(T )-BBM undergoes a phase transition
at a critical scale L(T ) ≍ T 1/3, and we fully determine the asymptotics at, below and above this scale.
We also provide results for variants of the model including the continuous random energy model (CREM).
This is related to the topic of hardness thresholds for optimization algorithms on random instances. Such
a threshold was already established in [1] for the specific case of the CREM—see Figure 1 for simulations
which illustrate this phenomenon for the N -BBM considered here. In this context our results amount to
“zooming in” at the threshold. We further discuss this in Section 2.1 below. We also provide more refined
numerical experiments on a discrete-space variant in Section 2.3.

1.1. Statement of results on the N-BBM.

Notations. Throughout this paper, C2([0, 1]) denotes the set of C2 functions from [0, 1] to (0,+∞) (in
particular they are positive). Let the infinitesimal variance of the N(T )-BBM be given by σ2(t/T ), t ∈ [0, T ],
for some σ ∈ C2([0, 1]). Define

(1.2) v(s) =

∫ s

0

σ(s) ds , s ∈ [0, 1],

which is called the natural speed of the BBM. Recall that ξ denotes the offspring distribution of particles,
and β0 denotes the branching rate: in this paper we assume E[ξ2] < +∞, and, using the Brownian scaling
property, one can assume without loss of generality that β0 = (2(E[ξ]− 1))−1.

Let C denote the set of all finite particle configurations, i.e. all finite counting measures on R; and for
N ≥ 1, let CN := {µ ∈ C ; µ(R) ≤ N}. For µ ∈ C (resp. µ ∈ CN ), the law of the BBM (resp. N -BBM)
starting from the initial configuration µ will be denoted Pµ (we use the same notation for both, and what
branching process is considered at any given time will always be clear from context).
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Figure 1. Running maximum of simulations of time-inhomogeneous N -BBM with varying N .
Parameters: T = 1000, σ(t) = 0.125+ t2. The dashed curve corresponds to the theoretical position
of the running maximum of the time-inhomogeneous BBM without selection (N = ∞), which is
attained up to random O(1) fluctuations, see [17].

For any µ ∈ C, define

QT (µ) := sup
{
q ∈ R

∣∣∃κ ∈ [0, 1] , µ
(
[q − κσ(0)L(T ),+∞)

)
≥ N(T )κ

}
(1.3)

= inf
{
q ∈ R

∣∣∀κ ∈ [0, 1] , µ
(
[q − κσ(0)L(T ),+∞)

)
< N(T )κ

}
.

We shall see below that this term determines how the choice of the initial configuration µ ∈ CN(T ) reverberates
on the displacement of the N(T )-BBM after a long time (see Section 3.3 for more details). For instance, one
can check for y ∈ R that QT (δy) = y and QT (N(T )δy) = y + σ(0)L(T ).

Let Ai and Bi denote respectively the Airy functions of first and second kind, and define

(1.4) Ψ(q) :=
q2/3

21/3
sup

{
λ ≤ 0 ; Ai(λ)Bi(λ+ (2q)1/3) = Ai(λ+ (2q)1/3)Bi(λ)

}
< 0 , q > 0 ,

and Ψ(−q) := q +Ψ(q) for −q < 0; and finally Ψ(0) := −π2

2 . It is proven in [47, Lemmata 1.7, A.4] that
q 7→ Ψ(q) is well-posed and convex (hence continuous) on R. Moreover, let a1 denotes the absolute value of

the largest root of Ai (i.e. a1 = 2.33811 . . .); then one has Ψ(q) ∼ − a1q
2/3

21/3
as q → +∞.

Let us denote the positive and negative parts of a real number with

(1.5) (x)+ := x1{x≥0} , (x)− := −x1{x≤0} , ∀x ∈ R ,

and, for a function f : R → R, let us write similarly (f)+(x) := (f(x))+ and (f)−(x) := (f(x))−, x ∈ R.
Furthermore, oP(f(T )) denotes a random quantity which, when divided by f(T ), converges to 0 in PµT

-
probability as T → +∞. Finally, we say that a function σ ∈ C2([0, 1]) changes its monotonicity finitely
many times if there exists u0 = 0 < u1 < . . . < up = 1 such that σ is monotonic (i.e. non-increasing or
non-decreasing) on each [ui−1, ui], 1 ≤ i ≤ p.
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Main result: asymptotic of the maximum. We now state the main result of this paper.

Theorem 1.1. Let σ ∈ C2([0, 1]), let L(T ) = logN(T ) → +∞ as T → +∞, and denote with XN(T )
T the

empirical measure on R at time T > 0 of a N(T )-BBM with infinitesimal variance σ2(·/T ), started from

some initial configuration µT ∈ CN(T ), T ≥ 0. Let max(XN(T )
T ) denote the maximal displacement of the

process at time T . We have the following.
(i) (Sub-critical regime) Assume 1 ≪ L(T ) ≪ T 1/3. Then,

(1.6) max(XN(T )
T ) = QT (µT ) + v(1)T

(
1− π2

2L(T )2

)
+ oP

(
T

L(T )2

)
.

(ii) (Critical regime) Assume L(T ) ∼ αT 1/3 for some α ∈ (0,+∞). Then,

(1.7) max(XN(T )
T ) = QT (µT ) + v(1)T +

[∫ 1

0

σ(u)

α2
Ψ
(
− α3σ

′(u)

σ(u)

)
du

]
T 1/3 + oP

(
T 1/3

)
.

(iii) (Super-critical regime) Assume T 1/3 ≪ L(T ) ≪ T , and that σ changes its monotonicity finitely
many times. Then,

(1.8) max(XN(T )
T ) = QT (µT ) + v(1)T +

[∫ 1

0

(σ′)+(u) du

]
L(T ) + oP

(
L(T )

)
.

In the super-critical regime (1.8), if σ is non-increasing, Theorem 1.1 gives little information. However,
we complete it with the following result.

Proposition 1.2. Let σ ∈ C2([0, 1]) be strictly decreasing, let T 1/3 ≪ L(T ) ≤ +∞, and consider the initial
particle configuration δ0 (i.e. one particle at the origin). Then as T → +∞, one has,

(1.9) max(XN(T )
T ) = v(1)T − a1

21/3

[∫ 1

0

σ(u)1/3|σ′(u)|2/3 du
]
T 1/3 + oP

(
T 1/3

)
.

Some assumptions in this proposition (namely, constraining the initial configuration to be δ0, and assuming
σ is strictly decreasing) are not as general as one would expect when compared to Theorem 1.1: we further
discuss them in the proof, see Section 8.1 below.

Remark 1.1. Let us point out that Proposition 1.2 also holds for L(T ) = +∞, that is for the maximum of
the BBM without selection when σ is decreasing: this has already been proven in [46]. However, when σ is
not decreasing, the maximum of the BBM without selection is vmaxT + o(T ) for some vmax > v(1) (this is a
well-known result, which follows e.g. from direct adaptations of [18] or [47]). This is in line with (1.8), since
one can let L(T ) be arbitrarily close to T , hence it implies that the maximum of the BBM without selection
is larger than any v(1)T + o(T ) for σ not decreasing.

Notational convention and rephrasing of the main result. In order to write Theorem 1.1 and upcoming
statements in a more condensed form, let us denote the three regimes (i.e. T 1/3 ≪ L(T ) ≪ T , L(T ) ∼ αT 1/3

and 1 ≪ L(T ) ≪ T 1/3) respectively with the superscripts “sup”, “crit” and “sub”. We will also occasionally
consider the regime L(T ) ≫ T 1/3 in the case of non-increasing σ, which we denote with the superscript
“sup-d”. In what follows, we will always assume that N depends on T according to one of the four regimes.
Furthermore, in the “sup” regime we always implicitly assume that σ changes its monotonicity finitely many
times (this technical restriction is further discussed below) and in the “sup-d” regime we assume that σ is
decreasing. Then, we define the error scaling terms for each regime with

(1.10) bsupT := L(T ) , bcritT = bsup-dT := T 1/3 , and bsubT :=
T

L(T )2
,
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for T ≥ 0; and the limiting terms with,

(1.11)

msup
T := v(1)T +

[∫ 1

0

(σ′)+(u) du

]
L(T ) ,

mcrit
T := v(1)T +

[∫ 1

0

σ(u)

α2
Ψ
(
− α3σ

′(u)

σ(u)

)
du

]
T 1/3 ,

msub
T := v(1)T

(
1− π2

2L(T )2

)
,

and msup-d
T := v(1)T − a1

21/3

[∫ 1

0

σ(u)1/3|σ′(u)|2/3 du
]
T 1/3.

Theorem 1.1 and Proposition 1.2 can then be summarized as follows:

Theorem 1.3 (Rephrasing of Theorem 1.1 and Proposition 1.2). Let the assumptions of Theorem 1.1 (in
the regimes “sup”, “crit” or “sub”) or of Proposition 1.2 (in the regime “sup-d”) hold. Then, for every
∗ ∈ {sup, crit, sub, sup-d}, we have as T → +∞,

(1.12) max(XN(T )
T ) = QT (µT ) +m∗

T + oP
(
b∗T
)
.

Complementary result: empirical measure and diameter. We complement the main result with a statement,
in the critical and super-critical regimes, about the empirical measure of the particles below the asymptotic
maximum and the diameter of the configuration at the final time. We do not expect the very same claim to
hold in general in the subcritical regime: especially for (1.13), a random centering would be required, see
Remark 8.2. We write log+(x) = log(x ∨ 1).

Proposition 1.4. Suppose the assumptions of Theorem 1.1 hold and that we are in the critical or super-
critical regime, i.e. ∗ ∈ {crit, sup}. Then, as T → ∞,

(1.13) sup
y∈[0,1]

∣∣∣∣∣ log+ XN(T )
T

(
[QT (µT ) +m∗

T − yσ(1)L(T ),+∞)
)

L(T )
− y

∣∣∣∣∣ −→ 0 , in PµT
-probability.

Additionally, if min(XN(T )
T ) denotes the position of the minimum of the N(T )-BBM at time T , then

(1.14) max(XN(T )
T )−min(XN(T )

T ) = σ(1)L(T ) + oP(L(T )).

Remark 1.2. We can rephrase the first part of Proposition 1.4 as follows: in the critical and super-critical
regimes, one has for T large,

XN(T )
T ([QT (µT ) +m∗

T − yσ(1)L(T ),+∞)) = N(T )y+oP(1),

uniformly in y ≤ 1 not too close to zero.

1.2. Results on variants of the N-BBM. In this section, we introduce two variants and one extension of
the N -BBM and state results analogous to Theorem 1.1 and Propositions 1.2 and 1.4.

N-BBM with deterministic branching times. Our results also apply to a variant of the N -BBM in which
particles branch simultaneously at deterministic times on a time grid aN, for some a > 0. Let ξ and σ be as
above. The process is then defined as follows: Given T > 0, particles diffuse independently according to time
inhomogeneous branching Brownian motions with infinitesimal variance σ2(t/T ) at time t. Furthermore, at
each time which is a multiple of a = 2 logE[ξ], each individual is replaced independently from the others by
a random number of particles with the same distribution as ξ. In the following, the BBM with deterministic
branching times will be called “BBMdb”, and its counterpart with selection will be called “N -BBMdb”.

Proposition 1.5. Let N(T ) → +∞ as T → +∞, then the results of Theorem 1.1, Propositions 1.2 and 1.4
also apply to the N(T )-BBMdb.

Remark 1.3. Note that we have chosen the value of a above for convenience, but we can handle any value
of a by a time-change and using a different function σ.
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Continuous random energy model (CREM). In the same vein as Proposition 1.5, the results presented in
this paper can be applied to a class of discrete-time branching random walks with Gaussian increments.
Here, we focus on the specific case of the Continuous Random Energy Model (CREM). This model was
introduced in [18] as a generalization of Derrida’s Generalized Random Energy Model (GREM) [27], and
can be constructed as follows.

Consider a function A from [0, 1] to [0, 1] which is C1 and satisfies A(0) = 0, A(1) = 1 and A′(s) > 0 for

all s ∈ [0, 1]. Let TT := {∅} ∪
⋃T

i=1{0, 1}i denote the rooted binary tree of depth T ∈ N, and for 0 ≤ i ≤ T ,
write Vi for the set of vertices u ∈ TT with depth |u| = i. Let XCREM

∅ := 0. For u ∈ TT−1, and ui one of its

two offspring, i ∈ {0, 1}, let XCREM
ui −Xu be a centered Gaussian random variable with variance

T
(
A
( |u|+1

T

)
−A

( |u|
T

))
,

and assume the XCREM
ui −XCREM

u , u ∈ TT−1, i ∈ {0, 1} are independent. Then the (Hamiltonian of the) CREM
with parameters A(·) and T is given by the values of the process X on the leaves of TT , that is (X

CREM
u )u∈VT

.
The CREM can also be constructed from a variant of the time-inhomogeneous BBMdb presented above.

Indeed, consider (X̃t)t∈[0,T ] a BBMdb with infinitesimal variance σ2(s) := A′(s), s ∈ [0, 1], and where
all particles branch simultaneously into ξ ≡ 2 offspring each at each time of the grid aN, where we take

a := 2 log 2. We assume T ∈ aN, but the process ends at time T before branching. Assuming X̃ starts from
two particles at the origin (or that it branches instantly at time 0), one obtains the following equality in law:

(1.15) X̃T
(d)
=
(√

2 log 2XCREM
u

)
u∈VT/(2 log 2)

.

Let N ∈ N, and let (XCREM
u )u∈TT

be the construction of the CREM on the whole tree TT as presented
above. We may construct an “N -CREM” with the following procedure: perform a breadth-first exploration
of the tree TT , noting encountered values of XCREM at depth k with Xk,1, Xk,2, . . . Then, remove from the
tree all vertices (as well as the sub-tree they support) from Vk which are not associated with one of the
N highest values from the sequence Xk,i, i ≥ 1. Repeat that procedure at depth k + 1, considering only
the offspring of vertices which were not removed. When that procedure ends, it yields a family which we
denote (XN-CREM

T,i )i≤N(T ) ⊂ (XCREM
u )u∈VT

: this can be seen as an optimization algorithm on the CREM, with

complexity —that is, the number of queries throughout the procedure— of order O(TN). In particular,
choosing a specific sequence N = N(T ) allows for any complexity in T for that algorithm. One can also
interpret (XN-CREM

T,i )i≤N as the final values of a (discrete time) branching random walk with selection.
Recall that we defined the N -BBMdb above, i.e. the BBM with selection and deterministic branching

times. Then the BBM–CREM correspondence (1.15) also apply to the N -particles variants: more precisely,
one has

(1.16) X̃ 2N
T

(d)
=
(√

2 log 2 XN-CREM
T/(2 log 2),i

)
1≤i≤N

.

Remark 1.4. The presence of a 2N in the l.h.s. of (1.16) comes from the fact that, in the N -CREM, one has
to consider 2N Gaussian increments, then select the N highest before having the particles reproduce; whereas
in the N -BBMdb, the selection happens just after the reproduction event. Notice that, if N = N(T ) → +∞
as T → +∞, one has log(2N) ∼ logN =: L(T ): so the maximal displacement of the N -BBM and (2N)-BBM
have the same asymptotics in Theorem 1.1.

Let max(XN-CREM
T ) := max{XN-CREM

T,i ; 1 ≤ i ≤ N(T )}, and recall (1.10) and (1.11). We have the following

result, which is an immediate corollary of Proposition 1.5 and (1.16).

Theorem 1.6. Consider the CREM with parameters A(·) and T ∈ N. Let N = N(T ) → +∞ as T → +∞,
and consider the associated N -CREM. Let ∗ ∈ {sup, crit, sub, sup-d} denote the regime satisfied by L(T ) :=
logN(T ), and σ2(·) := A′(·) ∈ C2([0, 1]). Then as T → +∞, one has,

(1.17) max(XN-CREM
T ) = (2 log 2)−1/2 m∗

(2 log 2)T + oP
(
b∗(2 log 2)T

)
.
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Moreover, assume ∗ ∈ {crit, sup}; then one has as T → +∞,
(1.18)

sup
y∈[0,1]

∣∣∣∣∣ log+ #
{
i ≤ N ; XN-CREM

T,i ≥ (2 log 2)−1/2[m∗
(2 log 2)T − yσ(1)L(T )]

}
L(T )

− y

∣∣∣∣∣ −→ 0 , in PµT
-probability,

and

(1.19) max(XN-CREM
T )−min(XN-CREM

T ) = (2 log 2)−1/2σ(1)L(T ) + oP(L(T )).

N -BBM with time-inhomogeneous selection. It is natural to extend the N -BBM by allowing the selection
mechanism to be time-inhomogeneous as well. That is, starting from a (time-inhomogeneous) BBM over
the time horizon T > 0, at any time s ∈ [0, T ], keep only the particles at the N(s, T ) highest of the whole
population, for some function N(·, T ) fixed beforehand. Let us call this model the N(·, T )-BBM. The results
presented above—namely Theorem 1.1 and Proposition 1.4—can be extended to a class of N(·, T )-BBM
in which the selection does not vary too much: more precisely, the selection remains in the “same regime”
throughout the time interval [0, T ].

Consider some growing function L̂(T ) → +∞ as T → +∞, and a positive function ℓ ∈ C1([0, 1]), note
that this implies that ℓ is bounded away from 0 and +∞. Define for 0 ≤ s ≤ T ,

(1.20) L(s, T ) = logN(s, T ) := ℓ(s/T ) L̂(T ) ,

the log-population size at time s ∈ [0, T ] of the N(·, T )-BBM. We say that,

— L̂(T ) is sub-critical if 1 ≪ L̂(T ) ≪ T 1/3,

— L̂(T ) is critical if L̂(T ) ∼ T 1/3,

— L̂(T ) is super-critical if T 1/3 ≪ L̂(T ) ≪ T .
Let us adapt the notation from (1.10–1.11) by defining for T ≥ 0,

(1.21) b̂supT := L̂(T ) , b̂critT := T 1/3 , and b̂subT :=
T

L̂(T )2
,

as well as,

(1.22)

m̂sup
T := v(1)T +

[∫ 1

0

ℓ(u)(σ′)+(u) du

]
L̂(T ) ,

m̂crit
T := v(1)T +

[∫ 1

0

σ(u)

ℓ(u)2
Ψ
(
− ℓ(u)3

σ′(u)

σ(u)

)
du

]
T 1/3 ,

and m̂sub
T := v(1)T

(
1− π2

2 L̂(T )2

∫ 1

0

1

ℓ(u)2
du

)
.

Recall also the definitions of bsup-dT , msup-d
T . Then we have the following.

Theorem 1.7. Let σ ∈ C2([0, 1]). Let L̂(T ) → +∞ as T → +∞, let ℓ ∈ C1([0, 1]) and define N(·, T ) as

in (1.20). Denote with XN(·,T )
T the empirical measure on R at time T > 0 of a N(·, T )-BBM with infinitesimal

variance σ2(·/T ), started from some initial configuration µT ∈ CN(0,T ), T ≥ 0. Let max(XN(·,T )
T ) denote the

maximal displacement of the process at time T . Let ∗ ∈ {sub, crit, sup} denote the regime satisfied by L̂(T ).
Then as T → +∞, one has

(1.23) max(XN(·,T )
T ) = QT (µT ) + m̂∗

T + oP
(
b∗T
)
.

Moreover, if σ is strictly decreasing, µT ≡ δ0 and T 1/3 ≪ L̂(T ) ≤ +∞, then

(1.24) max(XN(·,T )
T ) = msup-d

T + oP
(
bsup-dT

)
.
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Finally if the regime satisfies ∗ ∈ {crit, sup}, one also has

(1.25) sup
y∈[0,1]

∣∣∣∣∣ log+ XN(·,T )
T ([QT (µT ) + m̂∗

T − yσ(1)ℓ(1)L̂(T ) , +∞))

ℓ(1)L̂(T )
− y

∣∣∣∣∣ −→ 0 , in PµT
-probability,

and

(1.26) max(XN(·,T )
T )−min(XN(·,T )

T ) = σ(1)ℓ(1)L̂(T ) + oP(L(T )).

Let us stress that the result (1.24) in the regime sup-d does not depend on L̂(T ) and ℓ(·), but matches
Proposition 1.2 for homogeneous selection.

Organization of the paper. In Section 2 we motivate the results obtained in this article and compare
them with previous works from the literature. Then, the vast majority of this paper focuses on the proof of
Theorem 1.1: in particular, branching epochs of particles are assumed random (exponentially distributed),
and N(T ), L(T ) are defined as in (1.1). Even though Theorem 1.1 is a weaker statement than Theorem 1.7,
the authors believe that this organization of the paper makes the proof more understandable. Moreover,
most complementary results, notably Proposition 1.5 and Theorem 1.7, are consequences of Theorem 1.1, or
direct adaptations of arguments presented in its proof.

In Section 3 we present the time-inhomogeneous BBM and N(T )-BBM. Then in Proposition 3.2 we
introduce the main coupling argument that is used throughout this paper. In Section 3.3, we state two
key results in Propositions 3.3 and 3.4, which provide respectively a lower bound and an upper bound on
the maximal displacement of the N(T )-BBM for some specific initial configurations. Using these and the
coupling from Proposition 3.2, we deduce Theorem 1.1 for any initial configuration.

The four next sections of the paper are dedicated to the proofs of Propositions 3.3 and 3.4. The core idea
of the proof is to approximate the N(T )-BBM with a different selection mechanism on the BBM, namely
killing particles when they reach certain well-chosen barriers. In Section 4 we introduce the relevant barriers
depending on the regime: super-critical, sub-critical and critical; as well as some preliminary results. Then
in Section 5 we compute moment estimates on some functions of the BBM between barriers in each of those
regimes.

With these moment estimates, the proofs of Propositions 3.3 and 3.4 are finally displayed in Sections 6
and 7 respectively. The comparison between N(T )-BBM and BBM with barriers passes through couplings
with some intermediary processes, the N−-BBM and N+-BBM respectively, which have already been
introduced in [43] for the time-homogeneous N -BBM with constant N . Let us mention that the proofs
presented in these sections rely almost solely on the moment estimates proven in Section 5, in particular
most arguments apply simultaneously to all three regimes. Nevertheless, the sub-critical regime requires
more work than the other two, both for the lower and upper bound, because the moment estimates from
Section 5 are slightly weaker in that case. These sections complete the proof of Theorem 1.1.

Afterwards, Section 8 presents the proofs of all remaining statements from Section 1, that is Proposi-
tions 1.2, 1.4, 1.5 (from which one deduces Theorem 1.6), and Theorem 1.7. All of these rely on Theorem 1.1,
or arguments from its proof presented in previous sections.

2. Motivations and comments

2.1. Motivation: algorithmic hardness threshold for the CREM. The initial motivation for this
work stems from a large body of literature on algorithmic hardness thresholds for combinatorial optimization
problems on random instances. This has been a very active research area in the last two decades, drawing
extensively on results and methods from the theory of spin glasses in statistical mechanics. See e.g. [30, 33]
and the references therein. A stylized model of a spin glass is the continuous random energy model (CREM),
defined in Section 1. The algorithmic hardness of optimizing the Hamiltonian of the CREM has been studied
by Addario-Berry and Maillard [1]. We recall their main result:



MAXIMAL DISPLACEMENT OF A TIME-INHOMOGENEOUS N(T)-BBM 9

Theorem 2.1 (from [1]). Consider the CREM with parameters A(·) and T ∈ N, let σ2(·) := A′(·) ∈ C2([0, 1])

and vc :=
√
2 log 2 v(1) =

√
2 log 2

∫ 1

0
σ(s)ds. Let ε > 0, then the following holds

(i) There exists a linear-time algorithm that finds a vertex u ∈ VT such that XCREM
u ≥ (vc − ε)T with high

probability.
(ii) There exists γ = γ(A, ε) > 0 such that for T sufficiently large, for any algorithm, the number of

queries performed before finding a vertex u ∈ VT such that XCREM
u ≥ (vc + ε)T is stochastically bounded from

below by a geometric random variable with parameter exp(−γT ).

In other words, Theorem 2.1 proves the existence of an algorithmic hardness threshold for the CREM:
finding a vertex with a value greater than (vc + ε)T for a given ε > 0 typically requires a number of queries
exponential in T , whereas values smaller than (vc − ε)T can be obtained in linear time.

In light of Theorem 2.1, it is natural to ask about the complexity of finding vertices in the CREM with
value near the threshold value vcT . The present paper aims to provide a partial answer to this question.
Indeed, we study in detail the efficiency of a particular algorithm—the N -CREM—which has complexity
(i.e. number of queries) O(TN). The interesting regime is when the complexity is stretched exponential
in T , i.e. N = N(T ) = exp(O(Tκ)) for some κ ∈ (0, 1). Our results can then be summarized as follows
(see Theorem 1.6): when κ < 1/3, then with high probability, the value found by the algorithm is far
below the threshold, more precisely, at vcT − O(T 1−2κ). On the other hand, if κ > 1/3, then the value
found by the algorithm is with high probability above the threshold and of order vcT +O(Tκ)—unless σ
is non-increasing, in which case the value found by the algorithm is o(T 1/3) close to the maximum value,
which is of order vcT − O(T 1/3) with high probability. Furthermore, we precisely describe the transition
between the subcritical regime κ < 1/3 and the super-critical regime κ > 1/3.

The N -CREM considered in this article can be viewed as a particular greedy-type algorithm, in a similar
spirit as the algorithm studied in [1]. More precisely, it may be regarded as a beam search algorithm [15],
with the parameter N being the width of the beam. Our main result (Theorem 1.6) then precisely describes
how the output of the algorithm depends on the width of the beam N , with a phase transition happening
at logN ≈ T 1/3. A practical takeaway might be the following: for the beam search algorithm, increasing
the width N of the beam substantially improves the output in the subcritical regime logN ≪ T 1/3, due to
the singular second order term T/(logN)2 in the value of the output; whereas in the super-critical regime
logN ≫ T 1/3, increasing the width of the beam comes with little improvement of the output, which only
grows logarithmically in N .

The efficiency of beam search algorithms is still an active research area, see e.g. [41] and the references
therein. The beam search algorithm considered here is quite special, due to the nature of the CREM. For
example, the output of the algorithm is a non-decreasing function of the width of the beam, which is in
general not the case [41]. Nevertheless, we hope that our results shed light on the behavior of general beam
search algorithms for hard optimization problems on random instances, as the width of the beam grows to
infinity.

The efficiency of more general optimization algorithms for the CREM is an interesting open problem.
We believe that the N -CREM considered here is close to optimal within the class of algorithms of a given
complexity. Indeed, due to the particular structure of the CREM (in particular, the branching property),
it is always favorable (on average) to explore subtrees of vertices of large values as opposed to subtrees of
vertices of smaller values. The N -CREM is therefore a very natural candidate for an asymptotically optimal
algorithm for this model.

2.2. Comparison with previous results.

The Brunet-Derrida behavior in the sub-critical regime. Results similar to (1.6) have already been obtained
for some (time-homogeneous) branching processes with selection, see e.g. [6, 43] respectively for the N -
particles branching random walk (N -BRW) and the N -BBM. In those papers, the authors prove for fixed
N ∈ N the existence of an asymptotic speed vN := limT→+∞ max(XN

T )/T , where (XN
T ) denotes either the

N -BRW or N -BBM. Then, when N → +∞, this asymptotic speed converges very slowly —like (logN)−2—



10 A. LEGRAND AND P. MAILLARD

to v∞ := limT→+∞ max(XT )/T , the asymptotic speed of the corresponding (time-homogeneous) branching
process without selection. This slow convergence has been called Brunet-Derrida behavior : it was first
observed in [21] with heuristic methods and numerical simulations, and it is expected to hold for many
models that fall under the universality class of the FKPP equation (see [23]). The phrasing of Theorem 1.1
above differs from previous results on N -particles branching processes such as [6], where the authors first
take the limit T → +∞ for N finite, then N → +∞. In fact, equation (1.6) in Theorem 1.1 can be seen as
an expansion of the Brunet-Derrida behavior to all diverging sequences (T,N) such that T 1/3 ≫ logN ≫ 1.
To emphasize this, we claim the following.

Corollary 2.2. Let (XN
T )T≥0 an N-BBM (or N-BBMdb) with infinitesimal variance σ2(·/T ). For any

ε > 0 and sequence (µT )T≥0 in C, one has,

(2.1) lim sup
N→+∞

lim sup
T→+∞

PµT

(
(logN)2

T

∣∣∣∣max(XN
T )−QT (µT )− v(1)T

(
1− π2

2(logN)2

)∣∣∣∣ > ε

)
= 0 .

This corollary follows naturally from (1.6) and a diagonal argument: if (2.1) does not hold, then one
can construct a sequence (Nk, Tk)k≥1 for which the probability above remains large. However, one can
freely choose (Tk)k≥1 such that Tk ≫ (logNk)

3 for large k, and this directly contradicts the sub-critical
result from Theorem 1.1 (we leave the details of the proof to the reader). Nevertheless, let us mention that
Corollary 2.2 does not directly imply the almost-sure existence of an asymptotic speed for finite N , i.e.
vN = limT→+∞ max(XN

T )/T (e.g., compare with [6, Proposition 2]), which would require a little more work.
As a side note, let us point out that one could consider an N -BBM with fixed N ∈ N, choose a time-

horizon T := T (N), then let N → +∞. Our result can directly be adapted to that convention, where
the three regimes (sub-critical, critical and super-critical), respectively match a time-horizon which is long
(T ≫ (logN)3), critical (T ≈ (logN)3) or short (T ≪ (logN)3). Moreover, let us mention that this critical
time scale T ≈ (logN)3 already appeared in the study of the (time homogeneous) N -BRW [6, 47] and
N -BBM [43].

1:3 space-time scaling in branching Brownian motion and branching random walks. The 1:3 space-time
scaling has appeared many times in the study of branching Brownian motion and branching random walks.
For the time-homogeneous versions of these processes, it appears in the N -particle process mentioned above
as well as in the process with absorption at a linear space-time barrier, with the earliest appearance being,
to our knowledge, in Kesten [39] and later developments by many authors [28, 50, 34, 7, 9, 8, 10, 11, 44, 45].
Pemantle [50] is motivated by algorithmic aspects, inspired by Aldous [3, 4]. The 1:3 scaling also appears
in the study of the particles in BBM or BRW without selection remaining close to the running maximum
throughout their trajectory, which is usually called a “consistent(ly) maximal displacement” [31, 37, 32, 51].

A heuristic explanation of the appearance of the 1:3 space-time scaling is the following: Suppose we
consider particles whose trajectory is confined to a region in space whose size is of order L ≪ T 1/2. Forcing
a particle to stay within such a region incurs a probability cost of order exp(−O(T/L2))— this comes
from a calculation involving a single Brownian motion. On the other hand, the density of particles decays
exponentially fast when moving away from the bulk, since we enter a large deviation regime. Hence, when
calculating the number of particles staying in this space-time region, we can gain a factor exp(O(L)) by
shifting the reference frame towards the bulk by an amount of order L, which we can do without leaving
the region we are considering. We can make the two factors match if L ≍ T 1/3. Of course, determining the
precise constants is a non-trivial task and amounts to finding the optimal shape of the space-time region.

In the context of time-inhomogeneous BBM or BRW, the 1:3 scaling has been considered to our knowledge
only in the study of extremal particles, in the regimes where their trajectories stay close to the running
maximum during a macroscopic time [47, 46]. Relatedly, it appears in the time-inhomogeneous Fisher-KPP
equation [49], due to a duality relation with the time-inhomogeneous BBM.

2.3. Generic branching random walk and numerical simulations. In Theorem 1.6 we provided an
asymptotic of max(XN-CREM

T ) as T → +∞ for the N -CREM, N = N(T ), and we commented in Section 2.1
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that it may be seen as an optimization algorithm on realizations of the CREM. We conjecture that such
results adapt to more general (i.e. non-Gaussian) branching random walks (BRW). In this section we present
the conjectured formulae that would extend Theorem 1.1 to a generic BRW, and then we display numerical
simulations in the case of a Bernoulli BRW.

Conjecture for the general BRW. We introduce some notation in the vein of [47], which we only use in this
section. Let (Ls)s∈[0,1] be a family of laws of point processes. Then, the BRW with offspring distributions
(Ls)s∈[0,1] is constructed until time T ∈ N, starting from some initial configuration µT ∈ C, by induction: at
generation t < T , an individual u ∈ Nt located in x ∈ R generates |Lu

t/T | children located respectively in

x+ Y for Y ∈ Lu
t/T , where the point processes Lu

t/T ∼ Lt/T are independent in u, t. We write ξt/T ∼ |Lu
t/T |

for the law of the number of children at generation t, and we assume E[ξ2s ] < +∞ and ms := E[ξs] ≥ 1 for
all s ∈ [0, 1]. We write,

(2.2) κs(θ) := logE

[ ∑
Y ∈Ls

eθY

]
, θ ≥ 0 , s ∈ [0, 1] ,

for the log-Laplace transform of the offspring point processes. Consider its Fenchel-Legendre transform, that
is

(2.3) κ∗
s(v) = sup

θ>0
[vθ − φs(θ)] , v ∈ R , s ∈ [0, 1] .

Morally, if a = (as)s∈[0,1] denotes a “speed profile”, the number of particles from the BRW that remain close

to at/TT at all time t ∈ [0, T ], is roughly exp(−
∑T

t=1 κ
∗
t/T (at/T )), see e.g. [12, 4] or more recently [47]. In

particular, letting vmax be the first order of the speed of the maximum of the BRW (without selection), it
satisfies,

vmax = sup

{∫ 1

0

asds ; (as)s∈[0,1] càdlag s.t. ∀ s ≤ 1,

∫ s

0

κ∗
u(au)du ≤ 0

}
.

Assume that for all s ∈ [0, 1], there exists a greatest root vs of κ∗
s(v) = 0, and that κ∗

s is finite in a
neighborhood of vs; then the “natural speed” of the process is defined by

(2.4) vnat = sup

{∫ 1

0

asds ; (as)s∈[0,1] càdlag s.t. ∀ s ≤ 1, κ∗
s(as) ≤ 0

}
=

∫ 1

0

vsds ≤ vmax .

Finally, one defines (θs)s∈[0,1], (σs)s∈[0,1] with,

(2.5) ∀ s ≤ 1 , θs := ∂vκ
∗
s(vs) = (∂θκs)

−1(vs) , and σ2
s = ∂2

θκs(θs) = 1/∂2
vκ

∗
s(vs) .

Remark 2.1. In the case of a centered Gaussian BRW (i.e. the variables Y ∈ Ls are independent with law
N (0, σ2(s))), then one has κs(θ) = logms + θ2σ2(s)/2. In particular one has vs := σ(s)

√
2 logms, s ∈ [0, 1];

and vs, σ(s) do satisfy (2.5) with θs :=
√
2 logms/σ(s). In particular for ms = m constant for all s ∈ [0, 1],

vnat = v(1)
√
2 logm matches the definition of v(1) from Section 1 (up to a scaling factor coming from our

initial choice of branching rate β0).

Conjecture 2.3. With the notation above, let N(T ) = eL(T ) and consider XN(T )
T the configuration at

generation T of an N(T )-BRW started from a single particle at the origin (i.e. µT = δ0) and with offspring
distributions (Lt/T ), t ≤ T . Assume that (vs)s∈[0,1] is well-defined. Then, if L(T ) ∼ αT 1/3 for some α ∈ R,
one has as T → +∞,

(2.6) max
(
XN(T )

T

)
= vnatT +

[∫ 1

0

θsσ
2
s

α2
Ψ

(
α3θ̇s
θ3sσ

2
s

)
ds

]
T 1/3 + oP

(
T 1/3

)
.

If 1 ≪ L(T ) ≪ T 1/3, then

(2.7) max
(
XN(T )

T

)
= vnatT −

(
π2

2

∫ 1

0

θsσ
2
s ds

)
T

L(T )2
+ oP

(
T

L(T )2

)
.
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If T 1/3 ≪ L(T ) ≪ T , then

(2.8) max
(
XN(T )

T

)
= vnatT +

[∫ 1

0

(θ̇s)
−

θ2s
ds

]
L(T ) + oP

(
L(T )

)
,

where (·)− denotes the negative part; and if additionally θ̇s ≥ 0 for all s ∈ [0, 1], then

(2.9) max
(
XN(T )

T

)
= vnatT − a1

21/3

[∫ 1

0

(θ̇sσs)
2/3

θs
ds

]
T 1/3 + oP

(
T 1/3

)
.

On different matter, recall that we left the case L(T ) ≍ T (that is N(T ) = eγT for some γ > 0) completely
open. Considering the definitions above, we may write the following conjecture, which matches [1, (5.1)] in
particular.

Conjecture 2.4. For the N-BRW with N(T ) = eγT , γ > 0, one has max(XN(T )
T ) = vγmaxT + oP(T ) as

T → +∞, where

vγmax := sup

{∫ 1

0

asds ; (as)s∈[0,1] càdlag s.t. ∀ s ≤ 1, −γ ≤
∫ s

0

κ∗
u(au)du ≤ 0

}
.

Example: Bernoulli BRW. We now turn to the case of Bernoulli increments: for p ∈ [0, 1], we write
Y ∼ Ber(p) if P(Y = +1) = 1 − P(Y = 0) = p. In particular E[Y ] = p and Var(Y ) = p(1 − p). Let
p : [0, 1] → (0, 1) a C2 function (we write ps := p(s)), and assume that Ls, s ∈ [0, 1] is such that, for Ls ∼ Ls,
then the variables Y ∈ Ls are independent with law Ber(ps). Then the log-Laplace and Fenchel-Legendre
transforms from (2.2–2.3) can be written,

κs(θ) = logms + log(1 + ps(e
θ − 1)) ,

and

κ∗
s(v) = − logms +DKL(Ber(a)||Ber(ps)) = − logms + (1− v) log

1− v

1− ps
+ v log

v

ps
,

where DKL(·||·) denotes the Kullback–Leibler divergence. Moreover, the speed profile (vs)s∈[0,1] and the
natural speed vnat in (2.4) are well defined if msps < 1 for all s ∈ [0, 1].

In the following, we take ξs ≡ 2 = ms for all s ∈ [0, 1] (i.e. branching is binary), and ps < 1/2. Then, the
functions vs, θs and σs, s ∈ [0, 1] are well defined and can be explicitly expressed in terms of each other.
One can numerically calculate vs as the greatest root of κ∗

s(v) = 0, and express θs and σs in terms of vs as
follows:

θs = ∂vκ
∗
s(vs) = log

(
(1− ps)vs
(1− vs)ps

)
,(2.10)

σ2
s = 1/∂2

vκ
∗
s(vs) = vs(1− vs) .(2.11)

We conducted extensive numerical simulations of maximal (and minimal) displacements of this particular
Bernoulli N -BRW. These simulations were made for two different choices of ps, s ∈ [0, 1] and various values
of T and N = N(T, α), the latter being chosen such that (logN)/T 1/3 takes a predetermined value α > 0,
with α ∈ {0.5, 1, 2, 4}. For every simulation, we start with N particles in 0, and we plot

(2.12) max
N(T )
T :=

max
(
XN(T )

T

)
− vnatT

T 1/3
, min

N(T )
T :=

min
(
XN(T )

T

)
− vnatT

T 1/3

the position of the maximum and minimum, recentered by the first-order term provided by Conjecture 2.3
and rescaled by T 1/3, as a function of α. We further compare the output with the theoretical result as
T → ∞, with fixed α. The results of the simulations are presented in Figure 2.

The simulations use a trick from Brunet and Derrida [22], which consists of storing the number of particles
at each site, instead of the position of every particle individually. This allows for an algorithm with a
complexity of O(αL(T )T ) arithmetical operations, since only O(αL(T )) sites are occupied at every time,
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(a) ps = 0.4− 0.3s (θs decreasing in s)

(b) ps = 0.1 + 0.3s (θs increasing in s)

Figure 2. Numerical simulations of the recentered, rescaled maximum and minimum positions

max
N(T )
T and min

N(T )
T (see (2.12)) of the binary, Bernoulli N -BRW and comparison with the

theoretical values. See text for details.

with very high probability. The code, written in Julia, took several hours to run on a 2020 MacBook Pro
with M1 chip.

2.4. Perspectives. Let us discuss several ways in which our work could be expanded.

Technical restrictions. There are a few technical assumptions in Theorem 1.1 which we do not expect to be
optimal. On the one hand we take an offspring distribution per individual ξ ≥ 2 a.s. for the sake of simplicity,
but we also expect our results to hold for ξ ≥ 0, E[ξ] > 1 and E[ξ2] < +∞. Notice that if P(ξ = 0) > 0, then
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the BRW/BBM has a positive probability of extinction, hence such results should hold conditionally to the
survival of the process.

On the other hand, we take σ(·) in C2([0, 1]), and in the super-critical regime we assume that it changes
its monotonicity finitely many times. We expect the results to hold for all C1 function, however proving
this is not a trivial endeavor (for example, the term

∫
(σ′)+(u)du in (1.8), or equivalently the total variation

of σ, may be arbitrarily large even for σ in C1([0, 1]) and close to a constant for the uniform norm). Most
importantly, our results also assume that σ is bounded from above and below: this assumption is largely
needed throughout our proof, but it does rule out many functions of physical relevance (see e.g. [40]).

Empirical distribution in the sub-critical regime. Estimates on the empirical distribution of the process in
Proposition 1.4 are expected to hold in the sub-critical regime, however it is expected that msub

T should be
replaced with a random centering (see Remark 8.2 for more details). We also expect (1.14) to hold in that
case, but it is not an immediate consequence of our results so we leave it to further work.

Very large population. In the super-critical regime we left out the case L(T ) ∼ cT , c > 0. As stated in
Conjecture 2.4, we expect the first order of max(XN

T ) to transition from v(1)T to vmaxT as c increases, when
σ is not decreasing. Even though our methodology is still expected to yield the correct estimates with an
appropriate choice of barriers in Section 4, removing the assumption L(T ) ≪ T from our proofs requires
several additional arguments and technical estimations, that we leave to further work.

Genealogy of the N-BBM. In [9], the authors study the genealogy of a sample of particles in a (time
homogeneous) BBM with drift and adsorption, and prove that it converges to the genealogy of the Bolthausen-
Sznitman coalescent. More specifically, they choose a near critical drift depending on some constant L > 0,
such that the process contains roughly eL particles throughout a time interval of length L3, and they remain
in a space interval of length L; moreover the adsorption only kills the bottom-most particles of the process.
Comparing these properties with those of the N(T )-BBM, we therefore expect the same convergence to
hold for the genealogy of the N(T )-BBM in the critical regime logN ≈ T 1/3, up to a time-change of the
coalescent due to the inhomogeneity in time. Regarding the sub-critical (resp. super-critical) regime, a
similar convergence should hold towards the (time-changed) law of the Bolthausen-Sznitman coalescent,
running on a very long (resp. very short) time interval.

Comparison between “beam search” N-BBM/BRW and other algorithms. As mentioned at the end of
Section 2.1 for the CREM, we conjecture that other optimization algorithms on BRW trajectories do not
fare much better than the beam search/N -BRW for the same complexity. Moreover, we believe that the
phenomenon of “algorithmic hardness threshold” that we observed at logN ≈ T 1/3 for the N -BRW, may
extend beyond the sole case of beam search to more general optimization algorithms on random instances.

General time-inhomogeneous BRW. Our current results only apply to the N -BBM and Gaussian N -BRW,
but we conjecture that they can be extended to more general BRW laws, as presented in Conjecture 2.3.
Moreover, let us stress that the largest part of Sections 6 and 7 does not rely on the Gaussian distribution
(nor the random branching times, see Section 8.3). Therefore, most of the required work should come from
obtaining moment estimates as in Section 5, which we expect to be technically involved.

3. Construction and couplings of the N-BBM

3.1. Definition of the time-inhomogeneous BBM and N-BBM. Let us start this section by recalling
elementary facts on time-inhomogeneous Brownian motions, and introducing some notation. Throughout
this paper, the standard, time-homogeneous Brownian motion on R will be denoted with (Wt)t≥0. Let T > 0
and σ ∈ C2([0, T ]): then the time-inhomogeneous Brownian motion on [0, T ], with infinitesimal variance
σ2(·/T ) and started from 0, is the centered Gaussian process (Bt)t∈[0,T ] such that,

E0[BsBt] =

∫ s∧t

0

σ2(u/T ) du , ∀ s, t ∈ [0, T ] .
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It satisfies

(3.1) (Bt)t∈[0,T ]
(d)
= (WJ(t))t∈[0,T ] , where J(t) :=

∫ t

0

σ2(s/T ) ds ,

and J(·) is a time-change C1-diffeomorphism. Notice that the later identity also holds for W ,B started
from some x ∈ R, i.e. W0 = B0 = x Px-a.s.. In this paper, the law and expectation of a (non-branching)
Brownian motion started from x ∈ R will always be denoted with Px and Ex respectively. Similarly, the law
of the Brownian motion started from time-space location (s, x) ∈ [0, T ]×R (i.e. shifted in time by s) will be
denoted P(s,x). It will always be clear from context whether the process considered is the time-homogeneous
(W ) or inhomogeneous (B) variant.

The branching Brownian motion (BBM). We now turn to the branching Brownian motion. In this paper
we do not expand to much on precise definitions of branching Markov processes, but the reader can refer
to [35, 36] for a very complete and general construction, or e.g. [5] for a more accessible presentation.

The (time-inhomogeneous) branching Brownian motion (BBM) on [0, T ] can be described with some
random families, (Nt)t∈[0,T ] and (Xu(t))u∈Nt,t∈[0,T ], where the (finite) set Nt denotes the labels of particles
alive at time t ∈ [0, T ], and Xu(t) denotes the position at time t ∈ [0, T ] of a particle u ∈ Nt; which satisfies
the following properties:

— each individual u ∈ Nt, t ∈ [0, T ] dies at rate β0 ≥ 0, and is immediately replaced by a random number
of descendants with law ξ ≥ 2 at the same position,

— for u ∈ Nt, t ∈ [0, T ], the function (Xu(s))s∈[0,t] denotes the positions of u and its ancestors throughout
[0, t]: it has same law as a time-inhomogeneous Brownian motion (Bs)s∈[0,T ] started from Xu(0),

— the evolution of particles (lifespan, number of descendants and infinitesimal displacement) are indepen-
dent.

Remark 3.1. Throughout the remainder of this paper, unless stated otherwise, the branching processes
we consider have offspring distribution ξ ≥ 2 with E[ξ2] < +∞, and branching rate β0 = (2(E[ξ] − 1))−1;
in particular, if the process is started from a single particle at x ∈ R, a standard computation yields
Eδx [|Nt|] = et/2 for all t ∈ [0, T ] (see e.g. [5]). We do not write those assumptions again.

Recall that C denotes the set of all finite counting measures on R. Then, letting Xt :=
∑

u∈Nt
δXu(t), the

family (Xt)t∈[0,T ] defines a Markov process on C, which completely describes the particle configurations of
the BBM —in the following, we only write the sets of labels (Nt)t∈[0,T ] explicitly if they are needed. Since

we assumed E[ξ2] < +∞, the total population of the process does not blow up on [0, T ] with probability 1
(see e.g. [52] for a proof). For µ ∈ C, the law and expectation of the (time-inhomogeneous) BBM started
from the initial configuration X0 = µ will be denoted Pµ and Eµ respectively throughout this paper. When
it is started from a single particle at the origin (i.e. µ = δ0), we shall sometimes omit the subscript and
write P, E.

With a slight abuse of notation, any finite counting measure µ ∈ C can be written as a finite subset of
R, with possible repetition of its elements. In particular, for µ, ν ∈ C, one may write µ ⊂ ν if all atoms in
the counting measure µ are also present in ν. Regarding the BBM, one has max(Xt) = maxu∈Nt

Xu(t) with
that notation. Finally, let us mention that one can consider a time-homogeneous BBM very similarly by
replacing (Bs)s∈[0,T ] with (Ws)s∈[0,T ] in the definition above; but unless specified otherwise, we shall only
consider time-inhomogeneous BBM’s throughout this paper.

The N-BBM. Recall that CN denotes the set of counting measures on R with total mass at most N . The
N-particles branching Brownian motion (N -BBM) started from µ ∈ CN can be defined from the original
BBM (Xt)t∈[0,T ] by only keeping its N highest particles at all time, killing (i.e. removing from the process)
the others as well as their offspring. For convenience, we allow the N-BBM to start with fewer than N
particles. Its particle configuration and set of (living) particles at time t ∈ [0, T ] are respectively denoted with
XN

t and NN
t (the positions of particles are still denoted Xu(t), u ∈ NN

t , t ∈ [0, T ]). A rigorous construction
of the N -BBM is presented in Proposition 3.1 below.
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3.2. Monotonous couplings. For µ, ν ∈ C, we write µ ≺ ν if µ([x,+∞)) ≤ ν([x,+∞)) for all x ∈ R; in
particular this implies µ(R) ≤ ν(R) and max(µ) ≤ max(ν). Moreover, for two random counting measures X ,
Y on R, we say that “X is stochastically dominated by Y” if there exists a coupling between X and Y such
that P(X ≺ Y) = 1. In this section, we are interested in couplings between BBM’s and/or N -BBM’s which
preserve the comparison ≺ through time. Those are quite standard properties, which we reproduce here for
the sake of completeness. Recall that, with an abuse of notation, any counting measure µ ∈ C can be seen as
a finite subset of R (with possible repetition of its elements).

Proposition 3.1. For N ∈ N, µ ∈ CN , there exists a coupling between a BBM and an N-BBM both
started from µ, such that, with probability 1, one has XN

t ⊂ Xt for all t ∈ [0, T ]. In particular, one has
Pµ(∀ t ∈ [0, T ] ,XN

t ≺ Xt) = 1.

Proof. Consider a BBM without selection (Xt)t∈[0,T ] started from µ, and recall that the trajectory of an
individual u ∈ Nt throughout [0, t] in the BBM is written (Xu(s)), s ∈ [0, t]. Let us construct an N -BBM
which satisfies XN

t ⊂ Xt for all t ∈ [0, T ]. First we let XN
0 = µ; then, let (tk)1≤k≤K , t1 < t2 < . . . < tK

denote the (random) epochs of branching events in the BBM X , and let t0 := 0, tK+1 := T (since the
branching process does not explode in finite time, that sequence is a.s. well-defined and finite). For s < t1,
let NN

s := Ns and XN
s := Xs.

Assume that NN
t , XN

t are defined for t ∈ [0, tk), 1 ≤ k ≤ K, and satisfy XN
t ⊂ Xt for all t ∈ [0, tk);

and let us extend their definition to [tk, tk+1). Let Mk−1 ≤ N denote the number of living particles in the
N -BBM between times tk−1 and tk. Let us assume (without loss of generality) that for s ∈ [tk−1, tk), the set

of particle labels can be written NN
s = {uk−1

1 , . . . , uk−1
Mk−1

} ⊂ Ns.

At time tk, one individual w0 ∈ Ntk branches and is immediately replaced with ξk ∼ ξ descendants,

which we label w1, . . . , wξk . If w0 /∈ NN
tk−1

, then we let NN
s := NN

tk−1
and XN

s :=
∑Mk−1

i=1 δX
u
k−1
i

(s) for all

s ∈ [tk, tk+1). Otherwise, we consider the set

L := {w1, . . . , wξk}
⋃

NN
s \ {w0} .

For u ∈ L, define Yu := limt↑tk Xu(t) if u ∈ NN
s , and Yu := limt↑tk Xw0

(t) if u ∈ {w1, . . . , wξk}. Let us order
the family Y = (Yu)u∈L, and for all s ∈ [tk, tk+1), let NN

s ⊂ L denote the N labels associated with the
highest values of Y (if |L| < N , let NN

tk
:= L). Finally, let XN

s :=
∑

u∈NN
s
δXu(s) for all s ∈ [tk, tk+1).

Therefore, we have extended the definition of (NN
s ,XN

s ) to the interval [tk, tk+1); and one can check that
it has the same law as an N -BBM, and that XN

s ⊂ Xs for all s < tk+1 with probability 1. By iterating
this construction up to time T (upon which there is no reproduction event with probability 1), we obtain a
coupling between the BBM and N -BBM such that, with probability 1, XN

s ⊂ Xs throughout [0, T ]. □

Furthermore, we claim that for N1 ≤ N2 it is possible to couple an N1- and an N2-BBM such that, if
their respective initial configurations µ1, µ2 satisfy µ1 ≺ µ2, then the stochastic domination between the
processes is maintained throughout [0, T ] with probability 1. We also provide a similar result for the BBM
without selection.

Proposition 3.2. (i) Let µ1, µ2 ∈ C such that µ1 ≺ µ2. There exists (N1,t,X1,t)t∈[0,T ], (N2,t,X2,t)t∈[0,T ]

two BBM’s on the same probability space such that X1,0 = µ, X2,0 = ν and X1,t ≺ X2,t for all t ∈ [0, T ] with
probability 1.

(ii) Let N1, N2 ∈ N, N1 ≤ N2. Let µ1 ∈ CN1
and µ2 ∈ CN2

which satisfy µ1 ≺ µ2: then there also

exists (NN1
t ,XN1

t )t∈[0,T ] and (NN2
t ,XN2

t )t∈[0,T ] respectively an N1- and an N2-BBM, such that XN1
0 = µ1,

XN2
0 = µ2 and XN1

t ≺ XN2
t for all t ∈ [0, T ] with probability 1.

(iii) Under the assumptions of (ii), let 0 ≤ β1 ≤ β2; then the processes XN1 , XN2 above may be taken
with respective branching rates β1 and β2 instead of β0, and the monotonous coupling also holds.

Proposition 3.2.(iii) is the only statement in this paper where we consider branching rates different from
β0. It will only be applied with β1 = 0 and β2 = β0 > 0: since a branching rate equal to 0 means that there
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is no reproduction event (hence no selection) throughout [0, T ], in that case the process (XN1
t )t∈[0,T ] is a

collection of independent, non-branching Brownian motions, started from the atoms of µ1.

Proof. (i) The construction of a coupling for processes without selection is very straightforward. Let
k = µ1(R), K = µ2(R) (so k ≤ K), and let (M1

t ,Z1
t )t∈[0,T ], . . . , (MK

t ZK
t )t∈[0,T ] be K i.i.d. copies of a

(time-inhomogeneous) BBM, all starting from the initial configuration δ0 ∈ C —more precisely, the Mi
t

denote the sets of particle labels, and Zi
t ∈ C the counting measure describing the particles’ positions from

the i-th BBM at time t ∈ [0, T ]. For any x ∈ R and fixed i ≤ K, we write

x+ Zi
t :=

∑
u∈Mi

t

δx+Xu(t),

for t ∈ [0, T ]: then (Mi
t, x+ Zi

t)t∈[0,T ] defines a BBM started from δx ∈ C. Writing µ1 =
∑k

i=1 δxi
for some

x1 ≥ . . . ≥ xk ∈ R, we let

N1,t :=
⊔
i≤k

Mi
t , and X1,t :=

k∑
i=1

(xi + Zi
t) , t ∈ [0, T ],

so (N1,t,X1,t)t∈[0,T ] is a BBM started from µ1. Moreover, there exists y1 ≥ . . . ≥ yK such that µ2 =
∑K

i=1 δyi ;
thus, we define

N2,t :=
⊔
i≤K

Mi
t , and X2,t :=

K∑
i=1

(yi + Zi
t) , t ∈ [0, T ],

and (N2,t,X2,t)t∈[0,T ] is a BBM started from µ2. Finally, the assumption µ1 ≺ µ2 implies xi ≤ yi for all
1 ≤ i ≤ k; so for any t ∈ [0, T ] and z ∈ R,

X1,t([z,+∞)) =

k∑
i=1

∑
u∈Mi

t

1{xi+Xu(t)≥z} ≤
k∑

i=1

∑
u∈Mi

t

1{yi+Xu(t)≥z} ≤
K∑
i=1

∑
u∈Mi

t

1{yi+Xu(t)≥z}

= X2,t([z,+∞)),

which concludes the proof.
(ii) In order to couple two processes undergoing selection, one needs a little more caution than in the

proof of (i).
Let N := N2 ≥ N1: for the convenience of the proof, we extend the counting measures µ1, µ2 to

R := R ∪ {−∞} by setting µi({−∞}) := N − µi(R), i ∈ {1, 2}. Then, µ1(R) = µ2(R) = N , and in the
following any counting measure on R with mass at most N will be extended similarly to a counting measure

on R with mass exactly N . Moreover, we may write µ1 =
∑N

n=1 δx0
n
for some x0

1 ≥ . . . ≥ x0
N ≥ −∞, and

µ2 =
∑N

n=1 δy0
n
for some y01 ≥ . . . ≥ y0N ≥ −∞. Since we assumed µ1 ≺ µ2, one has x0

n ≤ y0n for 1 ≤ n ≤ N .
We consider the following, which we take independently from each other:

— (Bn,k
t )t≥0, 1 ≤ n ≤ N , k ≥ 0, an i.i.d. family of (time-inhomogeneous) Brownian motions,

— {tk, 1 ≤ k ≤ K} the atoms of a homogeneous Poisson point process on [0, T ] with intensity β0N (in
particular K ∼ Pois(β0NT )); we also write t0 := 0 and tK+1 := T .
— (Uk)k≥1 an i.i.d. family of uniform random variables on {1, . . . , N},
— (ξk)k≥1 an i.i.d. family of random variables with same law as ξ.
Let us introduce some notation. For 0 ≤ s < t1, let NN

s := {u0
1, . . . , u

0
N} a set of N arbitrary labels; and

for 1 ≤ n ≤ N , s ∈ [0, t1),

X1
u0
n
(s) := x0

n +Bn,0
s , and X2

u0
n
(s) := y0n +Bn,0

s .

Then, we may define

Z1
s :=

N∑
n=1

δX1
u0
n
(s) , and Z2

s :=

N∑
n=1

δX2
u0
n
(s),
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which are counting measures on R with total mass N . From these, we construct the Ni-BBM for i ∈ {1, 2},
by letting XNi

s be the restriction of Zi
s to R, and NNi

s := {u0
i ; Xu0

i
(s) ∈ R}: since we assumed that µi

contains at most Ni real points, so does the counting measure Zi
s (or equivalently XNi

s ) for all s ∈ [0, t1).
Let us assume that the processes (LN

s ,Zi
s)s∈[0,tk) and (NNi

s ,XNi
s )s∈[0,tk), i ∈ {1, 2} are defined for some

1 ≤ k ≤ K, and that they satisfy the following:
(a) for s ∈ [tk−1, tk), the set of labels is given by LN

s := {uk−1
1 , . . . , uk−1

N },
(b) for i ∈ {1, 2}, the number of real particles in the i-th process at time tk−1 is Mk−1

i := Zi
tk−1

(R) ≤ Ni;

and for s ∈ [tk−1, tk), the labels of real particles are given by NNi
s = {uk−1

n ; n ≤ Mk−1
i }.

(c) one has Z1
tk−1

=
∑N

n=1 δxk−1
n

for some xk−1
1 ≥ . . . ≥ xk−1

N ≥ −∞, and Z2
tk−1

=
∑N

n=1 δyk−1
n

for some

yk−1
1 ≥ . . . ≥ yk−1

N ≥ −∞. Moreover, one has Z1
s ≺ Z2

s for all s ∈ [tk−1, tk), in particular xk−1
n ≤ yk−1

n for
1 ≤ n ≤ N .

(d) one has Zi
s =

∑N
n=1 δXi

u
k−1
n

(s) for i ∈ {1, 2} and s ∈ [tk−1, tk), where

X1
uk−1
n

(s) := xk−1
n +Bn,k−1

s −Bn,k−1
tk−1

, and X2
uk−1
n

(s) := yk−1
n +Bn,k−1

s −Bn,k−1
tk−1

;

in particular, XNi
s is the restriction of Zi

s to R. Moreover, one has XN1
s ≺ XN2

s for all s < tk.
Let us show that those objects can be extended to the interval [tk, tk+1) in a way that satisfies the same
properties.

First, let us reorder the labels depending on their position when s ↑ tk. For i ∈ {1, 2}, and 1 ≤ n ≤ N ,
define Y i

n := limt↑τk X
i
uk−1
n

(t). Hence for i ∈ {1, 2}, there exists a permutation πi ∈ SN such that

(Y i
πi(n))1≤n≤N is non-increasing in n. Moreover, the assumption (c) above ensures us that Y 1

n ≤ Y 2
n for all

1 ≤ n ≤ N .
Then, recall the definitions of Uk and ξk. At time tk, let us have the processes Zi

(·), i ∈ {1, 2} realize a

branching event, such that in both processes the Uk-th particle counting from the top at time tk (it has

label uk−1

π−1
i (Uk)

) dies and is replaced with ξk descendants. Notice that there a three possibilities:

— the reproducing particle is at −∞ in both Zi
s, i ∈ {1, 2}, s ∈ [tk−1, tk), in particular it is in neither

XN1
s or XN2

s ,
— the reproducing particle is at −∞ in Z1

s , but is real in Z2
s , s ∈ [tk−1, tk),

— the reproducing particle is real in both processes.
Let LN

tk
= {uk

n ; 1 ≤ n ≤ N} a new set of labels. For i ∈ {1, 2}, if the “reproducing” particle in Zi
s is at

−∞, we simply forgo the reproduction and write Mk
i := Mk−1

i , NNi
tk

= {uk
n ; n ≤ Mi}. If a real particle

reproduces at time tk (so it has label uk−1

π−1
i (Uk)

), it is removed from the process Zi
(·), and replaced with ξk

offspring: hence, we let Mk
i := max(Ni,M

k−1 + ξk − 1) and N i
tk

:= {uk
n ; n ≤ Mi}. In both cases, we let

Xi
uk
n
(tk) := Y i

πi(n) for 1 ≤ n ≤ N (recall that the Y ’s have been reordered), and,

Zi
tk

:=

N∑
n=1

δXi

uk
n
(tk) , and XNi

tk
:=

Mk
i∑

n=1

δXi

uk
n
(tk),

the latter being the restriction of Zi
tk

to R by construction. Moreover, one notices that Z1
tk

≺ Z2
tk
, and

similarly XN1
tk

≺ XN2
tk

.
This completely defines the particle configurations at time tk: for i ∈ {1, 2}, s ∈ (tk, tk+1), we naturally

extend the definitions of Zi
s, X

Ni
tk

above by letting

Xi
uk
n
(s) := Y i

πi(n) +Bn,k
s −Bn,k

tk
,

and since one has Y 1
n ≤ Y 2

n for all 1 ≤ n ≤ N , the comparison XN1
s ≺ XN2

s still holds for all s < tk+1.
Iterating this construction until time tK+1 = T (upon which there is no reproduction), this defines processes
(NNi

s ,XNi
s )s∈[0,T ], i ∈ {1, 2}, with XN1

s ≺ XN2
s for all s ∈ [0, T ]. Moreover, it follows naturally from the
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construction that each process has the same law as a time-inhomogeneous Ni-BBM, finishing the proof of
the proposition.

(iii) The proof is very similar to that of (ii). Recall that, when the branching rates were both assumed
equal to β0, the sequence of branching epochs of the coupled processes can be described with a Poisson
point process (PPP) {tk, k ≥ 1} with intensity β0N on [0, T ]. Thus, let us define A1 := {t1k, k ≥ 1},
A2 := {t̃2k, k ≥ 1} two independent PPP on [0, T ] with respective intensities β1N and (β2 − β1)N ; and let
{t2k, k ≥ 1} := A1 ∪ A2: this defines a PPP with intensity β2N on [0, T ]. Then, one can reproduce the

construction from (ii) with the following modification: construct the two N -BBM’s XN1

(·) , X
N2

(·) by induction

on the intervals [t2k−1, t
2
k), k ≥ 1. Then:

— if t2k ∈ A1, define the two N -BBM’s on [t2k, t
2
k+1) exactly as in Proposition 3.2.(ii),

— if t2k ∈ A2, only apply the reproduction and selection procedure to the N2-BBM, and let the configuration
of the N1-BBM be unchanged at t2k. Since the reproduction and selection mechanism only “increases” the

measure XN2

t2k
at time t2k, one still has XN1

t2k
≺ XN2

t2k
.

Applying these changes to the proof of (ii), one deduces (iii) straightforwardly. For the sake of conciseness,
we do not reproduce all the details here but leave them to the reader. □

3.3. Main propositions and proof of Theorem 1.1. Let N = N(T ) → +∞ as T → +∞, and define
L(T ) = logN(T ). Using the coupling propositions presented above, notably Proposition 3.2.(ii), we claim
that it is sufficient to prove Theorem 1.1 for some specific initial configurations, and the main result follows.
In order to condense all upcoming statements, let us recall the following notation: the three regimes
(L(T ) ≪ T 1/3, L(T ) ≫ T 1/3 and T ∼ αT 1/3) are respectively denoted with the abbreviations sub, sup
and crit. Recall the definitions of the scaling and limiting terms in all regimes from (1.10) and (1.11). In
the remainder of this paper, we shall write “let ∗ ∈ {sup, sub, crit}” instead of “let 1 ≪ L(T ) ≪ T which
satisfies either L(T ) ≪ T 1/3, L(T ) ≫ T 1/3 or L(T ) ∼ αT 1/3 for some α > 0 as T → +∞”; and the symbol
∗ shall denote the regime corresponding to the choice of L(T ). In particular, many upcoming statements are
formulated in terms of b∗T , m

∗
T instead of bsup, bsub . . .mcrit

T , (and similarly for any upcoming notation).
Let us introduce two specific families of initial configurations. We will estimate the maximal displacement of

the N(T )-BBM when started from one of those, then we shall deduce the general case with the coupling result
from Proposition 3.2. On the one hand, for κ ∈ [0, 1] we shall consider the measure ⌊Nκ⌋δ−κσ(0)L(T ) ∈ CN .
On the other hand we define for ε ∈ (0, 1),

(3.2) µε :=

⌈ε−1⌉∑
k=0

⌈
Nkε+ ε

2

⌉
δ−kεσ(0)L(T ) ∈ C .

Notice that µε contains more than N particles: when starting an N -BBM from µε, we instantaneously kill
all particles which are not in the N highest. This measure can be seen as an almost-exponential distribution
of (roughly) N particles over the interval [−σ(0)L(T ), 0]. Furthermore, recall (1.3): then one can show that,
for κ ∈ [0, 1] and ε ∈ (0, 1),

QT (⌊Nκ⌋δ−κσ(0)L(T )) = σ(0) log
(
⌊Nκ⌋N−κ

)
= o(1) , and 0 ≤ QT (µε) ≤ εσ(0)L(T ) .

In particular, assuming ε is arbitrarily small, these quantities are of order o(L(T )) when T is large.
Furthermore, it will be convenient in the remainder of this paper to formulate statements which hold

uniformly on some class of variance functions σ(s/T ), s ∈ [0, T ], σ ∈ C2([0, 1]). Therefore, we define for
η > 0 small,

(3.3) Sη :=
{
σ ∈ C2([0, 1]) ; ∀u ∈ [0, 1] , |σ′(u)| ≤ η−1 , |σ′′(u)| ≤ η−1 and η ≤ σ(u) ≤ η−1

}
,

in particular C2([0, 1]) =
⋃

η>0 Sη, and σ ∈ Sη implies

(3.4) ∀ 0 ≤ u, v ≤ 1 ,

∣∣∣∣σ(u)σ(v)
− 1

∣∣∣∣ ≤ η−2|u− v| .
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For the convenience of the notation, we also define

Ssup
η :=

{
σ ∈ Sη ; ∃u0 = 0 < u1 < . . . < u⌈η−1⌉ = 1 ; σ is monotonic on [ui−1, ui], 1 ≤ i ≤ ⌈η−1⌉

}
,(3.5)

Scrit
η = Ssub

η := Sη ,

With those definitions, we have the following results.

Proposition 3.3. Let ∗ ∈ {sup, crit, sub}, and λ, η > 0. Then,

(3.6) lim
T→+∞

sup
κ∈[0,1]

sup
σ∈S∗

η

PNκδ−κσ(0)L(T )

(
1

b∗T

(
max(XN(T )

T )−m∗
T

)
≤ −λ

)
= 0 .

Proposition 3.4. Let ∗ ∈ {sup, crit, sub}, and λ, η > 0. Then,

(3.7) lim
ε→0

lim sup
T→+∞

sup
σ∈S∗

η

Pµε

(
1

b∗T

(
max(XN(T )

T )−m∗
T

)
≥ λ

)
= 0 .

Propositions 3.3 and 3.4 may be seen as particular cases of Theorem 1.1 (with some added uniformity
in σ(·)). Their proofs are contained in Sections 6 and 7 respectively, and rely on moment estimates from
Section 5. In the remainder of this section, we deduce Theorem 1.1 from these propositions.

Proof of Theorem 1.1 subject to Propositions 3.3 and 3.4. Let µT ∈ CN(T ). Recall the definition of QT (·)
from (1.3) and notice that, for any x ∈ R,
(3.8) QT (µT (· − x)) = x+QT (µT )) .

Hence, by shifting the process and initial configuration by −QT (µT ), T ≥ 0, we may assume without loss of
generality that QT (µT ) = 0. Let λ > 0, and let us write with an union bound,

PµT

(
1

b∗T

∣∣∣max(XN(T )
T )−m∗

T

∣∣∣ ≥ λ

)
≤ PµT

(
1

b∗T

(
max(XN(T )

T )−m∗
T

)
≤ −λ

)
+ PµT

(
1

b∗T

(
max(XN(T )

T )−m∗
T

)
≥ λ

)
.(3.9)

Then we treat both terms separately.
Let ε > 0. Since QT (µT ) = 0, there exists κ = κ(ε, T ) ∈ [0, 1] such that

µT

(
[−ε− κσ(0)L(T ),+∞)

)
≥ N(T )κ .

In particular, this implies µT ≻ Nκδ(−ε−κσ(0)L(T )). Therefore, Proposition 3.2 and a shift by ε yield,

PµT

(
1

b∗T

(
max(XN(T )

T )−m∗
T

)
≤ −λ

)
≤ PNκδ(−κσ(0)L(T ))

(
1

b∗T

(
max(XN(T )

T )− ε−m∗
T

)
≤ −λ

)
,

and since ε/b∗T < λ/2 for T sufficiently large, we deduce from Proposition 3.3 that the first term in (3.9)
vanishes as T → +∞.

On the other hand, for ε > 0 the definition of QT (µT ) implies

∀κ ∈ [0, 1] , µT

(
[ε− κσ(0)L(T ),+∞)

)
< Nκ.

Recall the definition of µε from (3.2). In particular, one notices for all κ ∈ [0, 1],

µε

(
[−κσ(0)L(T ),+∞)

)
≥ N (⌊κε−1⌋+ 1

2 )ε ≥ Nκ .

Recalling that µT (R) ≤ N(T ) by assumption, one obtains that µT ≺ µε(· − ε). Therefore, Proposition 3.2
and a shift by −ε yield,

PµT

(
1

b∗T

(
max(XN(T )

T )−m∗
T

)
≥ λ

)
≤ Pµε

(
1

b∗T

(
max(XN(T )

T ) + ε−m∗
T

)
≥ λ

)
.

Assuming ε was taken sufficiently small and letting T be large, we deduce from Proposition 3.4 that the
second term in (3.9) can be arbitrarily small, which concludes the proof of the theorem. □



MAXIMAL DISPLACEMENT OF A TIME-INHOMOGENEOUS N(T)-BBM 21

4. Preliminaries on the BBM with barriers

Let us put aside the N -BBM for now, and consider the branching Brownian motion between barriers, a
variant of the BBM which is the cornerstone of the proof of Theorem 1.1. This section assembles all our
notation on the BBM killed at certain barriers, as well as preliminary results. We first introduce some
notation which are used in Sections 5 through 7, then we present the main ideas and tools for the proofs of
Propositions 3.3 and 3.4.

4.1. Preliminaries and notation. Recall (3.3–3.4), where we fix η > 0 sufficiently small so that σ ∈ Sη. In
the following, for any function θ : R+ → R∗

+ such that θ(T ) → 0 as T → +∞, we write for f, g : R+ → R+,
and T ≥ 0,

(4.1) f(T ) ≤θ g(T ) if f(T ) ≤ θ(T )g(T ) ,

and, symmetrically, g(T ) ≥θ f(T ) if g(T ) ≥ θ(T )−1f(T ). In particular, having (4.1) for some θ(·) and all T
large implies f(T ) ≪ g(T ); and, conversely, having f(T ) ≪ g(T ) implies that there exists some θ(·) such
that f(T ) ≤θ g(T ) for T sufficiently large.

In the following we fix 1 ≪ L(T ) ≪ T such that L(T ) ≪ T 1/3, L(T ) ≫ T 1/3 or L(T ) ∼ αT 1/3, α > 0 as
T → +∞ ; and let ∗ ∈ {sup, sub, crit} denote the matching regime. Then, let θ(·) be an (arbitrary) vanishing
function, which may depend on L(T ), such that, for T sufficiently large, one has

(4.2)

{
1 ≤θ L(T ) ≤θ T 1/3 , if ∗ = sub ,

T 1/3 ≤θ L(T ) ≤θ T , if ∗ = sup .

A pair of barriers, which we usually write (γ∗
T (·), γ∗

T (·)) in the remainder of this paper, is a pair of (smooth)
functions from [0, T ] to R, depending on L(T ), which satisfy the following for some h > x > 0:

(4.3) γ∗
T (0) := −xσ(0)L(T ) < 0 , and γ∗

T (r)− γ∗
T (r) := hσ(r/T )L(T ) , ∀ r ∈ [0, T ] .

We refer to γ∗
T (·) (resp. γ∗

T (·)) as the lower (resp. upper) barrier. Therefore, throughout the article and all
regimes, the parameter h denotes (up to a scaling term) the gap in-between the two barriers, and x denotes
the distance from the origin to the lower barrier at time t = 0. When we want to explicit the parameters

h > x > 0 for which the barriers satisfy (4.3), we shall add them as superscripts by writing γ∗,h,x
T , γ∗,h,x

T

(when they are clear from context we shall not write them, to lighten formulae).
Recall that Eµ, Pµ denote the expectation and law of a BBM started from some configuration µ ∈ C. For

y, w ∈ R, 0 ≤ s ≤ t ≤ T , we let

G∗(y, w, s, t) dy(4.4)

:= Eδ(s,γ∗
T

(s)+yσ(s/T )L(T ))

[∣∣∣{u ∈ Nt ; Xu(r) ∈
[
γ∗
T (r), γ

∗
T (r)

]
, ∀ r ∈ [s, t] ,

Xu(t)−γ∗
T (t)

σ(t/T )L(T ) ∈ dw
}∣∣∣],

denote the expected number of descendants in the BBM of a single particle at time-space location (s, γ∗
T (s) +

yσ(s/T )L(T )), whose path remain between the barriers γ∗
T (·), γ∗

T (·) until time t, at which point it reaches an
infinitesimal neighborhood of γ∗

T (t) + wσ(t/T )L(T ) (notice that it is zero unless y, w ∈ [0, h]). Furthermore,
for t ∈ [0, T ], we denote the set of particles which remained between the barriers throughout [0, t] and ended
at time t in some interval γ∗

T (t) + σ(t/T )L(T ) · I, I ⊂ [0, h], with

(4.5) A∗
T,I(t) :=

{
u ∈ Nt

∣∣∣ Xu(s) ∈
[
γ∗
T (s), γ

∗
T (s)

]
, ∀ s ∈ [0, t] ;

Xu(t)−γ∗
T (t)

σ(t/T )L(T ) ∈ I
}
.

In particular, one has Eδ0 [|A∗
T,I(t)|] =

∫
I
G∗(x,w, 0, t)dw. To lighten notation, we shall also write A∗

T (t) :=

A∗
T,[0,h](t) and A∗

T,z(t) := A∗
T,[z,h](t) respectively for the specific cases I = [0, h] (no constraint on the

final height within the barriers) and I = [z, h], for some z ∈ [0, h) (lower constraint only). Finally, for
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0 ≤ s ≤ t ≤ T , let R∗
T (s, t) ∈ N denote the number of particles which remain above γ∗

T until they get killed
by γ∗

T at some time r ∈ [s, t]: more precisely,1

(4.6) R∗
T (s, t) :=

∣∣∣∣∣∣
⋃

r∈[s,t]

{
u ∈ Nr

∣∣∣Xu(v) ∈
(
γ∗
T (v), γ

∗
T (v)

)
∀ v < r ; Xu(r) = γ∗

T (r)
}∣∣∣∣∣∣ .

With the above notation at hand, we may present the main ideas of the remainder of the proof. Recall
the definitions of v(·) and Ψ(·) from (1.2) and (1.4) respectively, and let wh,T ∈ C1([0, 1]) be defined by2

(4.7) wh,T (r) := −
∫ r

0

σ(u)

α3h2
Ψ

(
α3h3σ

′(u)

σ(u)

)
du ≥ 0 , r ∈ [0, 1] .

Let h > x > 0. Then, depending on L(T ) and its regime ∗ ∈ {sup, sub, crit}, we define a pair of barriers by
setting, for t ∈ [0, T ],

γsup
T (t) := v(t/T )T + hL(T )

∫ t/T

0

(σ′)−(u) du− xσ(0)L(T ) ,(4.8)

γsub
T (t) := v(t/T )T

√
1− π2

h2L(T )2
− xσ(0)L(T ) ,(4.9)

γcrit
T (t) := v(t/T )T − wh,T (t/T )L(T )− xσ(0)L(T ) ,(4.10)

and we let γ∗
T (t) := γ∗

T (t) + hσ(t/T )L(T ) in each regime, so that (4.3) holds for h > x > 0 fixed. One of
the core ideas used in Sections 5 through 7 is that, when started from a single particle, the N -BBM is
quite similar to a BBM whose particles are killed when reaching the barriers γ∗

T (·), γ∗
T (·), as soon as their

parameters h > x > 0 are both close to 1. In particular, recall (1.10–1.11), and let us point out the following
convergence.

Lemma 4.1. Let ∗ ∈ {sup, sub, crit}. Then,

(4.11) lim sup
(h,x)→(1,1),

h>x>0

lim sup
T→+∞

1

b∗T

∣∣∣m∗
T − γ∗,h,x

T (T )
∣∣∣ = 0 .

Proof. The proof is straightforward in all three regimes. In the super-critical case, one has

γsup,h,x
T (T ) = v(1)T + hL(T )

∫ 1

0

[
(σ′)+ − σ′](u) du− xσ(0)L(T ) + hσ(1)L(T )

= v(1)T + hL(T )

∫ 1

0

(σ′)+(u) du+ (h− x)σ(0)L(T ) ,

so 1
L(T ) |m

sup
T − γsup,h,x

T (T )| ≤ η−1(|1− h|+ |h− x|) for all T ≥ 0, which yields the expected result. In the

sub-critical regime, one has

γsub,h,x
T (T ) = v(1)T

√
1− π2

h2L(T )2
+O (L(T )) ,

where O(L(T )) is locally uniform in h > x > 0. Letting h close to 1 and writing the Taylor expansion√
1− y = 1 − y

2 + o(y) as y → 0, this yields (4.11). Regarding the critical regime, recall that Ψ satisfies

1One can check with standard branching processes theory that R∗
T (s, t) is a measurable, almost surely finite random variable;

and that, with probability 1, two particles do not reach the upper barrier at the same time. For the sake of conciseness we do
not develop on that in this paper.

2Let us point out that, compared to (1.7), we added an α in the denominator: this is because it will be more convenient in

upcoming computations to express the second order of the critical regime (4.10) in terms of L(T ) ∼ αT 1/3 instead of T 1/3.
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Ψ(−q) = q +Ψ(q) for all q ∈ R. Therefore, wh,T satisfies

wh,T (1) = −
∫ 1

0

σ(u)

α3h2
Ψ

(
α3h3σ

′(u)

σ(u)

)
dv

= −
∫ 1

0

σ(u)

α3h2
Ψ

(
−α3h3σ

′(u)

σ(u)

)
dv + σ(1)− σ(0) .

Plugging this into (4.10) and recalling that L(T ) ∼ αT 1/3 in this regime, this straightforwardly concludes
the proof. □

In Section 5 below, we prove that the BBM between the barriers γ∗
T , γ

∗
T satisfies the following moment

estimates:
(4.12)

Eδ0

[
|A∗

T,I(t)|
]
≈ e(x−inf I)L(T ) , Eδ0

[
|A∗

T,z(t)|2
]
≲ e(x+h−2z)L(T ) , and Eδ0

[
R∗

T (0, t)
]
≲ e−(h−x)L(T ) .

for T sufficiently large, where precise assumptions on t, z, I and statements are formulated in Section 5.
Thereafter, Sections 6 and 7 make use of these estimates to state rigorous comparisons between the N -BBM
and the BBM between the barriers γ∗

T , γ
∗
T , from which we finally deduce Propositions 3.3 and 3.4.

4.2. Toolbox for moment estimates. In order to prove the moment estimates from (4.12), we introduce
some technical tools which are useful throughout Section 5 and for similar computations below (e.g.
Lemma 7.2).

Most of the first moment estimates below rely on the first moment formula for branching Markov
processes [36, Theorem 4.1], often called “Many-to-one lemma”, as well as Girsanov’s theorem: we condense
them in the following statement.

Lemma 4.2. Let ∗ ∈ {sup, sub, crit}. Let t ≤ T , γ∗
T , γ

∗
T ∈ C2([0, T ]) which satisfy (4.3) for some h > x > 0,

and I ∈ Bor([0, h]). Then, one has

Eδ0

[
|A∗

T,I(t)|
]
= e

t
2 Exσ(0)L(T )

[
1{ Bs

σ(s/T )L(T )
∈[0,h] ∀s≤t;

Bt
σ(t/T )L(T )

∈I}(4.13)

× exp

(
− γ∗

T
′(t)Bt

σ2(t/T )
+

γ∗
T
′(0)

σ(0)
xL(T ) +

∫ t

0

∂

∂u

(
γ∗
T
′(u)

σ2(u/T )

)∣∣∣∣
u=s

Bs ds−
∫ t

0

(γ∗
T
′(s))2

2σ2(s/T )
ds

)]
.

Moreover, letting H0(Y ) := inf{t ≥ 0, Yt = 0} for (Yt)t≥0 ∈ C0(R+), one has

Eδ0

[
R∗

T (0, t)
]
= E(h−x)σ(0)L(T )

[
eH0(B)/2 1{H0(B)≤t} 1{ Bs

σ(s/T )L(T )
∈[0,h] ∀s≤H0(B)}(4.14)

× exp

(
− γ∗

T
′(0)

σ(0)
(h− x)L(T )−

∫ H0(B)

0

∂

∂u

(
γ∗
T
′(u)

σ2(u/T )

)∣∣∣∣
u=s

Bs ds−
∫ H0(B)

0

(γ∗
T
′(s))2

2σ2(s/T )
ds

)]
.

Let us mention that (4.14) has an analogous formulation in terms of γ∗
T instead of γ∗

T , which involves the
hitting time of the curve (hσ(s/T )L(T ))s∈[0,T ]. We decided to stick with the expression (4.14) in the lemma,
since it is used more often in this paper.
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Proof. Let us start with (4.13). The Many-to-one lemma [36, Theorem 4.1] and Girsanov’s theorem yield,

Eδ0

[
|A∗

T,I(t)|
]
= Eδ0

[ ∑
u∈Nt

1{Xu(s)−γ∗
T

(s)

σ(s/T )L(T )
∈[0,h],∀s≤t ;

Xu(t)−γ∗
T

(t)

σ(t/T )L(T )
∈I
}]

= Eδ0

[
|Nt|

]
×P0

(
Bs − γ∗

T (s)

σ(s/T )L(T )
∈ [0, h],∀s ≤ t ;

Bt − γ∗
T (t)

σ(t/T )L(T )
∈ I

)
= Eδ0

[
|Nt|

]
×E−γ∗

T (0)

[
1{ Bs

σ(s/T )L(T )
∈[0,h],∀s≤t ;

Bt
σ(t/T )L(T )

∈I
} e− ∫ t

0

γ∗
T

′(s)
σ2(s/T )

dBs−
∫ t
0

(γ∗
T

′(s))2

2σ2(s/T )
ds

]
.(4.15)

Recall that Eδ0

[
|Nt|

]
= e

t
2 under our assumptions, and write with an integration by parts, for t ∈ [0, T ],

(4.16)

∫ t

0

γ∗
T
′(s)

σ2(s/T )
dBs =

γ∗
T
′(t)Bt

σ2(t/T )
− γ∗

T
′(0)B0

σ2(0)
−
∫ t

0

∂

∂u

(
γ∗
T
′(u)

σ2(u/T )

)∣∣∣∣
u=s

Bs ds .

Since (4.3) implies γ∗
T (0) = −xσ(0)L(T ), plugging this into (4.15) yields (4.13).

Regarding (4.14), the Many-to-one lemma gives

Eδ0

[
R∗

T (0, t)
]
= E0

[
eH0(γ

∗
T−B)/21{H0(γ∗

T−B)≤t}1{ γ∗
T

(s)−Bs

σ(s/T )L(T )
≤h, ∀s≤H0(γ∗

T−B)
}] .

Then, applying Girsanov’s theorem and recalling that (Bs)s≤t under Px as the same law as (−Bs)s≤t under
P−x, x ∈ R, one obtains

Eδ0

[
R∗

T (0, t)
]
= Eγ∗

T (0)

[
eH0(B)/21{H0(B)≤t}1{ Bs

σ(s/T )L(T )
≤h, ∀s≤H0(B)

}e∫ H0(B)
0

γ∗
T

′(s)
σ2(s/T )

dBs−
∫ H0(B)
0

(γ∗
T

′(s))2

2σ2(s/T )
ds
]
.

Recalling that γ∗
T (0) = (h− x)σ(0)L(T ) by (4.3), and replacing γ∗

T with γ∗
T in (4.16), this yields (4.14) and

finishes the proof of the lemma. □

Remark 4.1. The reader may notice that, in the super-critical regime, Lemma 4.2 requires to differentiate
(σ′)+ or (σ′)−: since we assume σ ∈ Ssup

η ⊂ C2([0, 1]) in that regime, there is only finitely many points where

those derivatives are ill-defined —and even at those points, (σ′)+ and (σ′)− admit left- and right-derivatives,
which are bounded (in absolute value) by η−1. Therefore, all estimations involving these can be rendered
rigorous by splitting the interval [0, T ], and we may write with an abuse of notation ∥((σ′)+)′∥∞ ≤ η−1,
∥((σ′)−)′∥∞ ≤ η−1. In order not to overburden the presentation of the proofs, we omit those details in the
remainder of this paper.

Let us also quote the “Many-to-two lemma” [36, Theorem 4.15] below, which will be used in all second
moment computations.

Lemma 4.3 (Many-to-two lemma). Let ∗ ∈ {sup, sub, crit}. Let t ≤ T , γ∗
T , γ

∗
T ∈ C1([0, T ]) which sat-

isfy (4.3), and z ∈ [0, h). Then, one has

(4.17) Eδ0

[
|A∗

T,z(t)|2
]
= Eδ0

[
|A∗

T,z(t)|
]
+ β0E[ξ(ξ − 1)]

∫ t

0

ds

∫ h

0

G∗(x, y, 0, s)

(∫ h

z

G∗(y, w, s, t) dw

)2

dy .

Then we quote a sharp result on the survival probability of the standard Brownian motion between
barriers, see e.g. [16, Part II.1, Eq. 1.15.8] or more recently [43, (7.8–7.10)]. Recall that the standard,
time-homogeneous Brownian motion is denoted (Ws)s≥0.

Lemma 4.4 (Brownian motion in an interval). For t > 0, h > 0, and x, z ∈ [0, h], one has,

(4.18)

Px

(
Ws ∈ [0, h], ∀ s ≤ t ; Wt ∈ dz

)
=

2

h

∞∑
n=1

exp
(
− π2

2h2
n2t
)
sin
(πnx

h

)
sin
(πnz

h

)
dz

=
2

h
exp

(
− π2

2h2
t
)
sin
(πx

h

)
sin
(πz
h

)(
1 + o(1)

)
dz,
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where o(1) is a term vanishing as t/h2 → +∞, uniformly in x, z (see [43, (7.9)] for an explicit expression).

Finally, we provide a technical lemma on our choice of barriers γ∗
T , γ

∗
T , for ∗ ∈ {sup, sub, crit}. Recall their

definition from (4.8–4.10), and the notation γ∗
T = γ∗,h,x

T and γ∗
T = γ∗,h,x

T . We claim that we may “tighten”
the barriers on a short time interval (i.e. shorter than L(T )3), by modifying the parameters h > x > 0.
Recall from (4.1) that θ(·) denotes a function vanishing at +∞.

Lemma 4.5. Let ∗ ∈ {sup, sub, crit}, and let t = t(T ) such that 0 ≤ t(T ) ≤θ L(T )3 ∧ T for T sufficiently
large. Let h > x > 0 and h′ > x′ > 0 such that

(4.19) x′ < x , and h′ − x′ < h− x .

Then, there exists T0 such that, for T ≥ T0 and s ∈ [0, t(T )], one has

(4.20) γ∗,h,x
T (s) ≤ γ∗,h′,x′

T (s) ≤ γ∗,h′,x′

T (s) ≤ γ∗,h,x
T (s) .

Moreover, T0 is uniform in σ ∈ Sη, and locally uniform in h > x > 0, h′ > x′ > 0 which satisfy (4.19).

Proof. Notice that the assumptions also imply h′ < h. We prove this claim separately for each ∗ ∈
{sup, sub, crit}.

In the super-critical case, since (h′ − h) < 0, one has for all s ∈ [0, T ],

γsup,h′,x′

T (s)− γsup,h,x
T (s) = (h′ − h)L(T )

∫ t/T

0

(σ′)−(u) du− (x′ − x)σ(0)L(T )

≥ (h′ − h) η−1θ(T )L(T ) + (x− x′)ηL(T ) ≥ 0 ,

where the last inequality holds for T larger than some T0 locally uniform in x, x′, h, h′. Moreover, one can
easily check that

(4.21) γsup,h,x
T (s) = v(t/T )T + hL(T )

∫ t/T

0

(σ′)+(u) du+ (h− x)σ(0)L(T ) ,

for all s ∈ [0, T ], h > x > 0. Hence, one has for all s ∈ [0, T ].

γsup,h,x
T (s)− γsup,h′,x′

T (s) = (h− h′)L(T )

∫ t/T

0

(σ′)+(u) du+ [(h− x)− (h′ − x′)]σ(0)L(T ) ≥ 0 ,

which concludes the proof.
Regarding the sub-critical case, on the one hand we have for s ∈ [0, T ],

(4.22) γsub,h′,x′

T (s)− γsub,h,x
T (s) = (x− x′)σ(0)L(T ) +

[√
1− π2

h′2L(T )2
−

√
1− π2

h2L(T )2

]
v(s/T )T ,

and a direct Taylor expansion gives as L(T ) → +∞,

(4.23)

√
1− π2

h′2L(T )2
−

√
1− π2

h2L(T )2
= −π2(h2 − h′2)

2(hh′L(T ))2
+O(L(T )−4) .

Recall that t(T ) ≤ θ(T )L(T )3 ≤ T in the sub-critical regime: thus, one has for s ∈ [0, t(T )],

v(s/T )T = T

∫ s/T

0

σ(u) du ≤ η−1t(T ) ≤ η−1θ(T )L(T )3 .

Since x > x′, we deduce that for T sufficiently large, the second term in the r.h.s. of (4.22) is larger than
− 1

2 (x− x′)ηL(T ), uniformly in σ ∈ Sη and s ∈ [0, t(T )], locally uniformly in x, x′, h, h′; which is one of the
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expected results. On the other hand we have for all s ∈ [0, T ],

γsub,h,x
T (s)− γsub,h′,x′

T (s)

= (h− h′)σ(s/T )L(T ) + (x′ − x)σ(0)L(T ) +

[√
1− π2

h2L(T )2
−

√
1− π2

h′2L(T )2

]
v(s/T )T

= [(h− x)− (h′ − x′)]σ(s/T )L(T ) + (x− x′)[σ(s/T )− σ(0)]L(T )−O(θ(T )L(T )) ,

where we used (4.23). Recalling (3.4) and that t(T ) ≤ θ(T )T , the second term above is larger than
−O(θ(T )L(T )) for T large. Therefore, the r.h.s. above is larger than 1

2 [(h − x) − (h′ − x′)]ηL(T ) for T
sufficiently large: this concludes the proof in the sub-critical regime.

We finally turn to the critical case. Recall (4.7) and that Ψ is continuous, hence

sup
r∈[h′,h]

sup
s∈[0,t(T )]

|wr,T (s/T )| ≤
t(T )

T

η−1

α3h′2 sup
{
|Ψ(q)| ; q ∈ [−α3h′3η−2, α3h3η−2]

}
.

Since we assumed t(T ) ≤ θ(T )(L(T )3 ∧ T ) for T large, there exists C > 0, uniform in σ ∈ Sη and locally
uniform in h, h′, such that for T sufficiently large, one has |wr,T (s/T )| ≤ Cθ(T ) for all r ∈ [h′, h] and
s ∈ [0, t(T )]. In particular, this implies

γcrit,h′,x′

T (s)− γcrit,h,x
T (s) ≥ (x− x′)σ(0)L(T )− 2Cθ(T )L(T ) ,

and γcrit,h,x
T (s)− γcrit,h′,x′

T (s) ≥ (h− h′)σ(s/T )L(T ) + (x′ − x)σ(0)L(T )− 2Cθ(T )L(T ) ,

for all s ∈ [0, t(T )]. Assuming T is sufficiently large and reproducing the arguments from the sub-critical
case (we do not write them again), this completes the proof of the lemma. □

4.3. Two auxiliary particle systems. In order to compare the N -BBM and the BBM between barriers,
we use in Sections 6 and 7 the following variants of the N -BBM, which were already introduced in [43] for
the time-homogeneous N -BBM. For some γ ∈ C1([0, T ]), the N−-BBM and the N+-BBM are constructed as
two systems of BBM undergoing selection with respective mechanisms:

— In the N−-BBM, a particle u is killed at time t if either it reaches the lower barrier γ (i.e. Xu(t) ≤ γ(t))
or there are at least N other particles v ∈ Nt with larger displacement Xv(t);

— In the N+-BBM, a particle u is killed at time t if it is simultaneously located below the lower barrier
(Xu(t) ≤ γ(t)) and below at least N other particles v ∈ Nt with larger displacement Xv(t).

3

Let (XN−

t )t≥0 (resp. (XN+

t )t≥0) denote the empirical measure of an N−-BBM (resp. N+-BBM). Then
we have the following result.

Lemma 4.6 (Lemma 2.9 in [43]). Let γ ∈ C1([0, T ]). Let ν−0 , νN0 and ν+0 denote (possibly random) finite
counting measures on R with M(νN0 ) ≤ N and ν−0 ≺ νN0 ≺ ν+0 . Then there exists a coupling between

the N−-BBM, N-BBM and N+-BBM started respectively from ν−0 , νN0 and ν+0 such that (XN−

t )t≥0 ≺
(XN

t )t≥0 ≺ (XN+

t )t≥0 with probability 1.

Remark 4.2. The results in Maillard [43] concern the time-homogeneous N-BBM, but the proofs can be
extended verbatim to the time-inhomogeneous N -BBM. Since we already presented a complete construction
of a coupling of time-inhomogeneous processes in Proposition 3.2, we decided not to reproduce that proof in
this paper. However, let us mention that there are two simple improvements to [43, Lemma 2.9] which can be
made with a direct check of the proof therein (see [43, Section 2.3]):

(i) The proof of the coupling between N+- and N -BBM in [43, Section 2.3] relies on the fact that the lower
barrier can only kill the bottommost particles of the process N+. However this assumption can be relaxed for
the coupling between the N−-BBM and N -BBM, since killing any other particle than the bottommost in the
N−-BBM only lowers its empirical measure by that much. Therefore, in the N−-BBM one can additionally
kill at some upper barrier γ and the coupling of Lemma 4.6 still holds.

3In both cases, whenever the N -th lowest particle is above γ and branches, we arbitrarily kill only one of its two descendants.
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(ii) One can also consider a multi-type N+-BBM (or N−-BBM): let I denote a (finite) set of particle
types and define some barriers γi ∈ C1([0, T ]), i ∈ I; then, define a multi-type N+-BBM by killing a particle
of type i ∈ I at time t ∈ [0, T ] if it is below γi(t) and there are N particles with higher displacements. Then
the proof of [43, Lemma 2.9] can directly be adapted to this multi-type N+-BBM, yielding a monotonic
coupling with a (typeless) N -BBM.

5. Moment estimates on the BBM with barriers

In this section we state and prove precise versions of (4.12) in the three regimes: super-critical, sub-critical
and critical. Let us warn the reader that the upcoming proofs contain a lot of bookkeeping (especially for
the first moment estimates), mainly due to the fact that we need to obtain bounds which are uniform in
certain ranges of values for t, σ(·) and other parameters.

5.1. Super-critical case. In this section we assume T 1/3 ≪ L(T ) ≪ T , and σ ∈ Ssup
η for some η > 0

(recall (3.3–3.5)); in particular, there exists u0 = 0 < u1 < . . . < uη−1 such that σ is monotonic on [ui−1, ui],
1 ≤ i ≤ η−1 (we assume w.l.o.g. that η−1 ∈ N to lighten notation). Recall that γsup

T is defined in (4.8),
and that γsup

T is such that (4.3) holds. Recall also (4.4–4.5): we begin this section by computing first
moment estimates for Asup

T,I (t), t ∈ [0, T ], I ⊂ [0, T ]. Finally, recall (4.1), and that we fixed some arbitrary
θ : R+ → R∗

+ that vanishes at +∞.

Proposition 5.1 (First moment, Super-critical). Let h > 0. As T → +∞, one has

(5.1) E
[
|Asup

T,I (t)|
]
≤ e(x−inf I)L(T )+o(L(T )) ,

uniformly in σ ∈ Ssup
η , x ∈ [0, h] and I ⊂ [0, h] a non-trivial sub-interval (i.e. which contains at least two

points). Moreover for any h > 0, T0 ≥ 0 fixed, one has as T → +∞,

(5.2) E
[
|Asup

T,I (t)|
]
≥ e(x−inf I)L(T )+o(L(T )) ,

locally uniformly in x ∈ (0, h), inf I ∈ [0, h] with sup I − inf I > 0, uniformly in σ ∈ Ssup
η , and uniformly in

t = t(T ) ∈ [0, T ] which satisfies L(T ) ≤θ t(T ) ≤ T for T ≥ T0.

Remark 5.1. (i) Here, “locally uniformly” means that for any ε > 0, there exists o(L(T )) ∈ R such that
|o(L(T ))| ≪ L(T ) as T → +∞, and the lower bound holds uniformly in x ∈ [ε, h− ε], inf I ∈ [0, h− 4ε] and
sup I − inf I > 4ε. Moreover, let us stress that “uniformly” in σ(·) and t(T ) means that this error term does
not depend on those, as long as η, θ(·) and T0 are fixed. In the remainder of the paper we will not write T0

in similar statements, but rather “L(T ) ≤θ t(T ) ≤ T for T sufficiently large”, to lighten the phrasing.
(ii) Finally, let us mention that, in (5.2), the assumption t ≥θ L(T ) is necessary (but maybe not optimal),

since a branching process (without selection) started from one individual needs a time ≈ L(T ) to grow to a
population of size eO(L(T )).

The core of the proof of Proposition 5.1 is contained in the following lemma. Its proof is displayed
afterwards.

Lemma 5.2. Assume T 1/3 ≪ L(T ) ≪ T , and let h, η > 0, ε ∈ (0, h/2). Define,

Υ1 :=
{
(x, t, σ, I)

∣∣ t ∈ [θ−1(T )L(T ), T ], σ ∈ Sη, I = [a, b] ⊂ [0, h], b− a ≥ 2ε, x ∈ [ε, h− ε]
}
,

and

Υ2 :=
{
(x, t, σ, I)

∣∣ t ∈ [0, T ], σ ∈ Sη, I = [a, b] ⊂ [0, h], b− a ≥ 2ε, x ∈ [ε, h− ε]∩ [a+ ε2−η−1

, b− ε2−η−1

]
}
,

and Υ := Υ1 ∪Υ2. Then, as T → +∞, one has

1

L(T )
inf

(x,t,σ,I)∈Υ
logExσ(0)L(T )

[
exp

(
− 1

T

∫ t

0

|σ′(s/T )|
σ2(s/T )

Bs ds

)
1{ Bs

σ(s/T )L(T )
∈[0,h], ∀s∈[0,t] ;

Bt
σ(t/T )L(T )

∈I
}](5.3)

−→
T→+∞

0 .
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Let us comment briefly on this statement: this proves that the expectation in (5.3) is larger than eo(L(T ))

uniformly in x, t, σ, I, under one of the following assumptions: either t is not too small (see the definition of
Υ1), or the starting point of the process x is not too far from the target interval I (see Υ2: for the sake
of simplicity we restrict ourselves to x ∈ I◦). These assumptions are necessary (but maybe not optimal):
indeed, the reader can check with (3.4) and standard Gaussian estimates on Bt that, if t is too small and
d(x, I) too large, the expectation in (5.3) may be much smaller than e−L(T ).

Proof of Proposition 5.1. Let σ ∈ Ssup
η ; in particular, there exists u0 = 0 < u1 < . . . < uη−1 = 1 such that

σ, for each 1 ≤ i ≤ η−1, σ is either non-increasing or non-decreasing on [ui−1, ui]. Let us assume h > x > 0,
otherwise the l.h.s. of (5.1) is zero and the proof is immediate. Recall Lemma 4.2, in particular (4.13).
Notice that (4.8) implies,

γsup
T

′(s) = σ(s/T ) + h
L(T )

T
(σ′(s/T ))− , ∀ s ∈ [0, T ] ,

so one has for t ∈ [0, T ],

E
[
|Asup

T,I (t)|
]
= e

t
2 Exσ(0)L(T )

[
1{ Bs

σ(s/T )L(T )
∈[0,h], ∀ s∈[0,t] ;

Bt
σ(t/T )L(T )

∈I
}

× exp

(
−γ∗

T
′(t)Bt

σ2(t/T )
+

γ∗
T
′(0)

σ(0)
xL(T ) +

∫ t

0

∂

∂u

(
γ∗
T
′(u)

σ2(u/T )

)∣∣∣∣
u=s

Bs ds−
∫ t

0

(γ∗
T
′(s))2

2σ2(s/T )
ds

)]
= exL(T )+O(L(T )2/T ) Exσ(0)L(T )

[
1{ Bs

σ(s/T )L(T )
∈[0,h], ∀ s∈[0,t] ;

Bt
σ(t/T )L(T )

∈I
}(5.4)

× exp

(
− Bt

σ(t/T )
− 1

T

∫ t

0

σ′(s/T )

σ2(s/T )
Bs ds− h

L(T )

T

∫ t

0

(σ′(s/T ))−

σ(s/T )
ds

)]
.

Upper bound. One has − Bt

σ(t/T ) ≤ −(inf I)L(T ) in (5.4), and for u ∈ [0, 1], σ′(u) = (σ′)+(u) − (σ′)−(u).

Thus, (5.4) yields

E
[
|Asup

T,I (t)|
]
≤ e(x−inf(I))L(T )+O(L(T )2/T ) Exσ(0)L(T )

[
1{ Bs

σ(s/T )L(T )
∈[0,h], ∀ s∈[0,t] ;

Bt
σ(t/T )L(T )

∈I
}

× exp

(
− 1

T

∫ t

0

(σ′)+(s/T )

σ2(s/T )
Bs ds

)]
,

and the latter expectation is bounded by 1, which proves the upper bound.

Lower bound. Let ε > 0 such that inf(I) + 4ε < sup(I), and define,

(5.5) Iη−1 := [inf(I), inf(I) + 4ε] ⊂ I .

By constraining (Bs/σ(s/T )L(T ))s≥0 to end in Iη−1 at time t, one deduces from (5.4) that,

E
[
|Asup

T,I (t)|
]
≥ e(x−inf I+4ε)L(T )+O(L(T )2/T ) Exσ(0)L(T )

[
1{ Bs

σ(s/T )L(T )
∈[0,h], ∀ s∈[0,t] ;

Bt
σ(t/T )L(T )

∈Iη−1

}(5.6)

× exp

(
− 1

T

∫ t

0

σ′(s/T )

σ2(s/T )
Bs ds− h

L(T )

T

∫ t

0

(σ′(s/T ))−

σ(s/T )
ds

)]
.

Let us prove that the expectation in the r.h.s. is larger than exp(−η−1εL(T )) for T large, uniformly in
σ ∈ Ssup

η and L(T ) ≤θ t ≤ T . Then, letting ε → 0 this gives the expected result.
Recall the definition of (ui)0≤i≤η−1 : let J1 (resp. J2) denote the indices of the intervals on which σ(·) is

non-decreasing (resp. decreasing), more precisely,

J1 := {1 ≤ i ≤ η−1 ; σ′(u) ≥ 0, ∀u ∈ [ui−1, ui]}, and J2 := {1, . . . , η−1} \ J1 .
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Then, a direct computation yields,

(5.7) − 1

T

∫ t

0

(σ′(s/T ))−

σ(s/T )
ds =

∑
i∈J2

log

(
σ(ui ∧ (t/T ))

σ(ui−1 ∧ (t/T ))

)
.

Let imax = imax(t) := max{i ≤ η−1; t > uiT}. Finally, define (Ii)1≤i≤η−1 a sequence of intervals such that
I1 has length at least 2ε, and

∀ 2 ≤ i ≤ η−1 , Ii−1
(ε2−i) ⊂ Ii and Ii−1 ⊂ [ε, h− ε] ,

where Iη−1 ⊂ I was defined in (5.5) and A
(ε2−i)

denotes the closed (ε2−i)-neighborhood of a set A ⊂ R. We
also write I0 = [ε, h− ε], and assume ε small enough so that x ∈ I0. Constraining the process to be in Ii at
time uiT , 1 ≤ i ≤ η−1, and applying Markov’s property at times (uiT )i≤imax

, one obtains,

(5.8) Exσ(0)L(T )

[
1{ Bs

σ(s/T )L(T )
∈[0,h], ∀ s∈[0,t] ;

Bt
σ(t/T )L(T )

∈Iη−1

} exp(− 1

T

∫ t

0

σ′(s/T )

σ2(s/T )
Bs ds

)]
≥

η−1∏
i=1

Ei ,

where Ei := 1 for i > imax, and else

Ei := inf
yi∈Ii−1

E(ui−1T,yiσ(ui−1)L(T ))

[
1{ Bs

σ(s/T )L(T )
∈[0,h], ∀ s∈[ui−1T,uiT∧t] ;

BuiT∧t

σ(ui∧(t/T ))L(T )
∈Ii

}(5.9)

× exp

(
− 1

T

∫ uiT∧t

ui−1T

σ′(s/T )

σ2(s/T )
Bs ds

)]
.

We treat those factors differently depending on i. Recall Lemma 5.2 and that t ≥θ L(T ). If i ∈ J1, then
σ′(u) ≥ 0 for all u ∈ [ui−1T, uiT ∧ t]. Moreover, one notices for yi ∈ Ii−1 and T sufficiently large that,
— if i = 1, then (y1, t ∧ (u1T ), σ(·), I1) ∈ Υ1,
— if i > 1 and t ≥ ui−1T , then (yi, t ∧ (uiT )− ui−1T, σ(· − ui−1), Ii) ∈ Υ2.
Therefore, we deduce from Lemma 5.2 that, for T larger than some T1 > 0, one has Ei ≥ e−εL(T ).

Moreover, that T1 does not depend on i ∈ J1 or σ ∈ Ssup
η .

Let us now consider i ∈ J2: in order to lighten notation, let us assume i = 1 without loss of generality. Then
we apply Girsanov’s theorem to the shifted process (Bs−hσ(s/T )L(T ))s≤u1T . Letting ρ(s) := hσ(s/T )L(T ),
one notices that, on the event {|Bs| ≤ hη−1L(T ),∀ s ≤ u1T}, one has

(5.10)

∣∣∣∣∣
∫ u1T∧t

0

ρ′(s)

σ2(s/T )
dBs

∣∣∣∣∣ ≤ 3h2η−4L(T )2

T
, and

∣∣∣∣∣
∫ u1T∧t

0

(ρ′(s))2

2σ2(s/T )
ds

∣∣∣∣∣ ≤ h2η−4L(T )2

2T
,

(this follows from an integration by parts and computations similar to those of (4.13) and (5.4), we do not
detail them again). Both those terms are o(L(T )) uniformly in σ ∈ Ssup

η ; therefore, Girsanov’s theorem
yields for y1 ∈ [0, h],

Ey1σ(0)L(T )

[
1{

Bs
σ(s/T )L(T )

∈[0,h], ∀ s∈[0,u1T∧t] ;
B(u1T )∧t

σ(u1∧(t/T ))L(T )
∈I1

} exp(− 1

T

∫ u1T∧t

0

σ′(s/T )

σ2(s/T )
Bs ds

)]

= eo(L(T ))E(y1−h)σ(0)L(T )

[
1{ Bs

σ(s/T )L(T )
∈[−h,0], ∀ s∈[0,u1T∧t] ;

B(u1T )∧t

σ(u1∧(t/T ))L(T )
+h∈ I1

}
× exp

(
− 1

T

∫ u1T∧t

0

σ′(s/T )

σ2(s/T )

[
Bs + hσ

(
s/T

)
L(T )

]
ds

)]
,
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and, by symmetry of the Brownian motion, we obtain

E1 = eo(L(T )) inf
y1∈I0

E(h−y1)σ(0)L(T )

[
1{

Bs
σ(s/T )L(T )

∈[0,h], ∀ s∈[0,u1T∧t] ;
B(u1T )∧t

σ(u1∧(t/T ))L(T )
∈(h−I1)}

× exp

(
1

T

∫ u1T∧t

0

σ′(s/T )

σ2(s/T )
Bs ds− hL(T ) log

(
σ(u1 ∧ (t/T ))

σ(0)

))]
.

Recall that we assumed i = 1 ∈ J2, so σ′(u) = −|σ′(u)| for all u ∈ [0, u1]; moreover for any y1 ∈ I0, one has
(y1, t ∧ (u1T ), σ(·), I1) ∈ Υ1. Therefore, we may apply Lemma 5.2 to deduce that, for T larger than some T0,
one has

E1 ≥ exp

(
−εL(T )− hL(T ) log

(
σ(u1 ∧ (t/T ))

σ(0)

))
.

Moreover the same lower bound holds for all i ∈ J2, i > 1, where we use that (yi, t ∧ (uiT )− ui−1T, σ(· −
ui−1), Ii) ∈ Υ2 for t ≥ ui−1T , yi ∈ Ii−1. Plugging this into (5.8), we finally obtain

Exσ(0)L(T )

[
1{ Bs

σ(s/T )L(T )
∈[0,h], ∀ s∈[0,t] ;

Bt
σ(t/T )L(T )

∈Iη−1

} exp(− 1

T

∫ t

0

σ′(s/T )

σ2(s/T )
Bs ds

)]
≥ exp

(
−η−1εL(T )−

∑
i∈J2

hL(T ) log

(
σ(ui ∧ (t/T ))

σ(ui−1 ∧ (t/T ))

))
.

Recollecting (5.6–5.7) and taking ε → 0, this concludes the proof of the lower bound. □

Proof of Lemma 5.2. Since the expectation is lower than 1, we only have to prove that the infimum is
bounded from below by some o(L(T )). Let x ∈ [ε, h− ε], t := t(T ) ∈ [0, T ], σ ∈ Sη and I ⊂ [0, h] with length
at least 2ε: for convenience we restrict ourselves to [z − ε, z + ε] ⊂ I for some z ∈ [ε, h− ε]. Moreover, if
(x, t, σ, I) ∈ Υ2, then one can always choose z such that

(5.11) |x− z| ≤ ε′ := ε(1− 2−η−1

) .

Recall from (3.1) the definition of the time-change C1-diffeomorphism J(·): in particular, (Wr)r≥0 denotes
the standard, time-homogeneous Brownian motion, and (WJ(s))s∈[0,T ] has the same law as (Bs)s∈[0,T ]. Hence,
for t ∈ [0, T ], one has

Exσ(0)L(T )

[
exp

(
− 1

T

∫ t

0

|σ′(s/T )|
σ2(s/T )

Bs ds

)
1{ Bs

σ(s/T )L(T )
∈[0,h],∀s∈[0,t] ;

Bt
σ(t/T )L(T )

∈[z−ε,z+ε]
}]

= Exσ(0)L(T )

[
exp

(
− 1

T

∫ J(t)

0

|σ′(J−1(s)/T )|
σ4(J−1(s)/T )

Ws ds

)
1{ Ws

σ(J−1(s)/T )L(T )
∈[0,h],∀s∈[0,J(t)] ;

WJ(t)
σ(t/T )L(T )

∈[z−ε,z+ε]
}]

≥ Exσ(0)L(T )

[
exp

(
−η−5

T

∫ J(t)

0

Ws ds

)
1{ Ws

σ(J−1(s)/T )L(T )
∈[0,h],∀s∈[0,J(t)] ;

WJ(t)
σ(t/T )L(T )

∈[z−ε,z+ε]
}],

where we used that σ ∈ Sη.

Recall that T 1/3 ≪ L(T ) ≪ t ≤ T by assumption. Let (τT )T>0, which satisfies, as T → +∞,

(5.12) max
(
L(T ), T

L(T )

)
≪ τT ≪ min(T, L(T )2) .

For t, T such that J(t) > 2τT , we constrain the trajectory (Ws)s∈[0,J(t)] to be valued in [
√
τT , 2

√
τT ] at times

τT and J(t)− τT , and to remain below 3
√
τT in-between; then we apply Markov’s property at times τT and

J(t)− τT . Therefore, for any t, T such that J(t) > 2τT , one has
(5.13)

Exσ(0)L(T )

[
exp

(
−η−5

T

∫ J(t)

0

Ws ds

)
1{ Ws

σ(J−1(s)/T )L(T )
∈[0,h],∀s∈[0,J(t)] ;

WJ(t)
σ(t/T )L(T )

∈[z,z+ε]
}] ≥ B1×B2×B3 ,
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where

B1 := Exσ(0)L(T )

[
exp

(
−η−5

T

∫ τT

0

Ws ds

)
1{ Ws

σ(J−1(s)/T )L(T )
∈[0,h],∀s≤τT ;WτT

∈[
√
τT ,2

√
τT ]
}] ,

B2 := inf
y∈[

√
τT ,2

√
τT ]

Ey

[
exp

(
−η−5

T

∫ J(t)−2τT

0

Ws ds

)
1{

Ws∈[0,3
√
τT ],∀s≤J(t)−2τT ;WJ(t)−2τT

∈[
√
τT ,2

√
τT ]
}] ,

B3 := inf
y∈[

√
τT ,2

√
τT ]

Ey

[
exp

(
−η−5

T

∫ τT

0

Ws ds

)
1{ Ws

σ3(s/T )L(T )
∈[0,h],∀s≤τT ;

WτT
σ(t/T )L(T )

∈[z−ε,z+ε]
}] ,

and where we wrote σ3(s/T ) := σ(J−1(s+ J(t)− τT )/T ), s ∈ [0, τT ] to lighten notation in B3. Let us bound
from below the three factors B1 B2 and B3 separately, and then detail how the case J(t) ≤ 2τT is handled.

Case J(t) > 2τT . Let us start with B2. On the event {Ws ∈ [0, 3
√
τT ],∀s ∈ [0, J(t)− 2τT ]}, (3.1) and (5.12)

imply that,

1

T

∫ J(t)−2τT

0

Ws ds ≤
3
√
τT (J(t)− 2τT )

T
≤ 3η−2√τT ≪ L(T ) ,

as T → +∞, uniformly in t and σ ∈ Sη. Hence one has,

(5.14) B2 ≥ eo(L(T )) inf
y∈[

√
τT ,2

√
τT ]

Py

(
Ws ∈ [0, 3

√
τT ],∀s ≤ J(t)− 2τT ; WJ(t)−2τT ∈ [

√
τT , 2

√
τT ]
)
,

as T → +∞. Recalling Lemma 4.4, notice that there exists a constant K > 0 such that,

∀ t′ ≥ K , inf
y∈[1,2]

Py

(
Ws ∈ [0, 3], ∀ s ≤ t′ ; Wt′ ∈ [1, 2]

)
≥ sin2(π/3)

3
exp

(
−π2

18
t′
)

.

In particular, if t(T ) satisfies J(t)−2τT
τt

≥ K, then (5.14) and the Brownian scaling property yield

(5.15) B2 ≥ eo(L(T )) × sin2(π/3)

3
exp

(
−π2

18

J(t)− 2τT
τt

)
≥ eo(L(T )) ,

where the last inequality follows the observation that J(t)−2τT
τt

= O(T/τT ) = o(L(T )) by (3.1) and (5.12),

which does not depend on t. On the other hand, if t satisfies J(t)−2τT
τt

≤ K, then the Brownian scaling
property gives

inf
y∈[

√
τT ,2

√
τT ]

Py

(
Ws ∈ [0, 3

√
τT ],∀s ≤ J(t)− 2τT ; WJ(t)−2τT ∈ [

√
τT , 2

√
τT ]
)

= inf
y∈[1,2]

P
y
√

τT
J(t)−2τT

(
Ws ∈

√
τT

J(t)−2τT
[0, 3],∀s ≤ 1 ; W1 ∈

√
τT

J(t)−2τT
[1, 2]

)
≥ inf

y∈[1,3/2]
P

y
√

τT
J(t)−2τT

(
Ws ∈

√
τT

J(t)−2τT
[0, 3],∀s ≤ 1 ; W1 ∈

√
τT

J(t)−2τT
[y, y + 1/2]

)
≥ P0

(
|Ws| ≤

√
τT

J(t)−2τT
,∀s ≤ 1 ; W1 ∈

√
τT

J(t)−2τT
[0, 1/2]

)
≥ P0

(
|Ws| ≤ 1√

K
,∀s ≤ 1 ; W1 ∈

[
0, 1

2
√
K

])
> 0 ,(5.16)

where the first inequality is obtained by splitting the interval [1, 2] into [1, 3/2] and [3/2, 2] in the infimum,
then applying the Brownian symmetry property to the second term. Recollecting (5.14) and taking the
largest lower bound from (5.15–5.16), this finally proves that B2 ≥ eo(L(T )) uniformly in t.

Let us turn to B1. Since τT ≪ T , one has on the event {Ws ≤ hσ(0)L(T ),∀s ≤ τT } that,

(5.17)
1

T

∫ τT

0

Ws ds ≤ hη−1L(T )τT
T

≪ L(T ) ,
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as T → +∞, uniformly in t and σ ∈ Sη. Hence,

(5.18) B1 ≥ eo(L(T ))Pxσ(0)L(T )

(
Ws ∈ [0, hσ(0)L(t)],∀s ≤ τT ; WτT ∈ [

√
τT , 2

√
τT ]
)
,

for T large. Let us provide the following standard estimates, which are obtained with the Brownian reflection
principle (see e.g. [16, Part 1, Ch. 4]) and some direct computations with the Gaussian distribution (details
are left to the reader):

Pxσ(0)L(T )

(
WτT ∈ [

√
τT , 2

√
τT ]
)
≥ 1√

2π
exp

(
− (xσ(0)L(T )−√

τT )2

2τT

)
,

Pxσ(0)L(T )

(
WτT ∈ [

√
τT , 2

√
τT ], inf

s≤τT
Ws ≤ 0

)
≤ 1√

2π
exp

(
− (xσ(0)L(T )+

√
τT )2

2τT

)
,

Pxσ(0)L(T )

(
WτT ∈ [

√
τT , 2

√
τT ], sup

s≤τT

Ws ≥ hσ(0)L(T )
)
≤ 1√

2π
exp

(
− ((2h−x)σ(0)L(T )−2

√
τT )2

2τT

)
.

Therefore, a union bound and (5.12) yield as T → +∞,

Pxσ(0)L(T )

(
Ws ∈ [0, hσ(0)L(t)],∀s ≤ τT ; WτT ∈ [

√
τT , 2

√
τT ]
)

≥ 1√
2π

exp
(
− (xσ(0)L(T )−√

τT )2

2τT

)
(1− o(1)) ≥ eo(L(t)) ,(5.19)

so B1 ≥ eo(L(T )) as T → +∞, uniformly in t and σ ∈ Sη.
Regarding B3, it is handled very similarly to B1 by reproducing the estimates (5.17–5.19): more precisely,

one can additionally constrain
WτT

σ(t/T )L(T ) to be lower than z+ ε/2 ≤ h− ε/2, then use the reflection principle

(we leave the details to the reader). Recollecting (5.13), this finally gives a lower bound of order eo(L(T )),
whose expression does not depend on t and σ, and holds as soon as J(t) > 2τT .

Case J(t) ≤ 2τT . For t, T satisfying J(t) ≤ 2τT , one obtains on the event {Ws ∈ [0, hL(T )σ(J−1(s)/T )],∀s ∈
[0, J(t)]} that,

1

T

∫ J(t)

0

Ws ds ≤ 2τT × hη−1L(T )

T
≪ L(T ) ,

so one may bound the l.h.s. of (5.13) from below with

(5.20) eo(L(T ))Pxσ(0)L(T )

(
Ws

σ(J−1(s)/T )L(T )
∈ [0, h],∀s ≤ J(t) ;

WJ(t)

σ(t/T )L(T )
∈ [z − ε, z + ε]

)
.

Notice that (3.1), (5.12) and the fact that J(t) ≤ 2τT imply,

(5.21) t ≤ η−2J(t) ≤ 2η−2τT ≪ T ,

for T sufficiently large; in particular (3.4) yields that the probability in (5.20) is larger than

(5.22) Pxσ(0)L(T )

(
Ws ∈ [0, h(1− ε′2)σ(0)L(T )],∀s ≤ J(t) ; WJ(t) ∈ σ(0)L(T )[z − ε′, z + ε′]

)
,

for T sufficiently large, where ε′ < ε is defined in (5.11). Here again we provide standard estimates on
the Brownian motion, which are obtained with the reflection principle and direct computations with the
Gaussian distribution. However in the following we have to distinguish whether (x, t, σ, I) is in Υ1 or Υ2. In
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general, one has

Pxσ(0)L(T )

(
WJ(t)

σ(0)L(T ) ∈ [z − ε′, z + ε′]
)

≥ 2ε′√
2πJ(t)

exp
(
− (|x−z|+ε′)2σ2(0)L(T )2

2J(t)

)
,

Pxσ(0)L(T )

(
WJ(t)

σ(0)L(T ) ∈ [z − ε′, z + ε′], inf
s≤J(t)

Ws ≤ 0
)

≤ 2ε′√
2πJ(t)

exp
(
− (x+z)2σ2(0)L(T )2

2J(t)

)
,

and Pxσ(0)L(T )

(
WJ(t)

σ(0)L(T ) ∈ [z − ε′, z + ε′], sup
s≤J(t)

Ws

σ(0)L(T ) ≥ h(1− ε′2)
)

≤ 2ε′√
2πJ(t)

exp
(
− (2h(1−ε′2)−x−z−ε′)2σ2(0)L(T )2

2J(t)

)
.

Let us first assume (x, t, σ, I) ∈ Υ1, that is t(T ) ≥ θ(T )−1L(T ): since (5.12) and (5.21) imply L(T )2

J(t) ≥
L(T )2

2τT
→ +∞, we have with a union bound that,

Pxσ(0)L(T )

(
Ws ∈ [0, h(1− ε′2)σ(0)L(T )],∀s ≤ J(t) ; WJ(t) ∈ σ(0)L(T )[z − ε′, z + ε′]

)
≥ 2ε√

2πJ(t)
exp

(
− (|x−z|+ε′)2σ2(0)L(T )2

2J(t)

)
(1− o(1))

≥ ε′

4
√
πτT

exp
(
−h2η−4

2 θ(T )L(T )
)

= eo(L(T )) ,(5.23)

for T sufficiently large, where we used that t(T ) ≥ θ(T )−1L(T ) and (5.21) imply L(T )2

J(t) ≤ η−2θ(T )L(T ). Let

us now assume (x, t, σ, I) ∈ Υ2. Then,

Pxσ(0)L(T )

(
WJ(t)

σ(0)L(T ) ∈ [z − ε′, z + ε′]
)

≥ P0

(
WJ(t)

σ(0)L(T ) ∈ [0, ε′]
)

≥ P0

(
W1 ∈

[
0, ε′σ(0)L(T )√

2τT

])
≥ ε′σ(0)L(T )

4
√
πτT

e
−

(ε′σ(0)L(T ))2

4τT ,(5.24)

where the first inequality follows from (5.11) and the symmetry property of the Brownian motion, the second
from the Brownian scaling and (5.21), and the third from a standard Gaussian estimation. By (5.12), this is
larger than eo(L(T )).

To conclude, consider the minimum between the lower bounds computed in (5.13–5.19), (5.20–5.23)
and (5.24). This yields a term of order eo(L(T )) which is uniform in L(T ) ≤θ t ≤ T ; and it bounds from
below the l.h.s. of (5.13) regardless of the sign of J(t)− 2τT and whether (x, t, σ, I) is in Υ1 or Υ2; therefore,
this concludes the proof of the lower bound. □

We now provide an upper bound on the second moment of |Asup
T,I (t)| when I = [z, h] for some z ∈ [0, h)

and t ∈ [0, T ].

Proposition 5.3 (Second moment, Super-critical). Let h > 0. One has as T → +∞,

(5.25) E
[
|Asup

T,z(t)|
2
]
≤ e(x+h−2z)L(T )+o(L(T )) ,

uniformly in t ∈ [0, T ], σ ∈ Sη, x ∈ [0, h] and z ∈ [0, h].

Remark 5.2. The proof of Proposition 5.3 relies mostly on the Many-to-two lemma (Lemma 4.3) and
the upper bound (5.1) from Proposition 5.1. Noticeably, the second moment estimates in the sub-critical
and critical cases will be obtained very similarly, by using respectively the first moment upper bounds from
Propositions 5.5 and 5.9 below.

Proof. The Many-to-two lemma (Lemma 4.3) states that

E
[
|Asup

T,z(t)|
2
]
− E

[
|Asup

T,z(t)|
]
= β0E[ξ(ξ − 1)]

∫ t

0

ds

∫ h

0

Gsup(x, y, 0, s)

(∫ h

z

Gsup(y, w, s, t) dw

)2

dy .
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Notice that
∫ h

z
Gsup(y, w, s, t)dw = E[|Ãsup

T,z(t − s)|], where Ãsup
T,z is defined similarly to Asup

T,z by replacing

the diffusion coefficient σ by σ(· − s/T ). Recall also the upper bound (5.1) from Proposition 5.1, which is
uniform in x ∈ [0, h], I ⊂ [0, h], σ ∈ Sη and t ∈ [0, T ]. Therefore, we have for any s ∈ [0, t],∫ h

0

Gsup(x, y, 0, s) dy

(∫ h

z

Gsup(y, w, s, t) dw

)2

≤ eo(L(T ))

∫ h

0

Gsup(x, y, 0, s) e2(y−z)L(T ) dy ,

where we used that the error term from (5.1) is uniform in y, z, s, t. Let K > 0 a large constant, and split
[0, h] into K intervals of length h

K . For any 0 ≤ i < K, one deduces from Proposition 5.1,∫ (i+1) h
K

i h
K

Gsup(x, y, 0, s) e2(y−z)L(T ) dy ≤ e2((i+1) h
K −z)L(T ) × e(x−i h

K )L(T )+o(L(T ))

≤ e((2+i) h
K +x−2z)L(T )+o(L(T )).

Therefore, summing over 0 ≤ i < K and integrating over s ∈ [0, t], one obtains

E
[
|Asup

T,z(t)|
2
]
− E

[
|Asup

T,z(t)|
]
≤ eo(L(T )) × e2

h
K L(T ) × t×K × e(x+h−2z)L(T ).

Taking K → +∞, and recalling that t ≤ T ≤ L(T )3 and E[|Asup
T,z(t)|] ≤ e(x−z)L(T )+o(L(T )), this yields the

expected upper bound uniformly in t, σ(·), x and z. □

We conclude this section with an estimate on the number of particles killed at the upper barrier. Recall
the definition of Rsup

T (s, t), 0 ≤ s ≤ t ≤ T from (4.6).

Proposition 5.4 (Killed particles, Super-critical). Let h > 0. Then as T → +∞, one has

(5.26) E [Rsup
T (0, T )] ≤ e−(h−x)L(T )+o(L(T )) ,

uniformly in x ∈ [0, h] and σ ∈ Sη.

Proof. Recall that we may write γsup
T as in (4.21): in particular, one has for s ∈ [0, T ],

(γsup
T )′(s) = σ(s/T ) + h(σ′)+(s/T )

L(T )

T
.

Recollect (4.14) from Lemma 4.2. On the one hand, one has for T sufficiently large, uniformly in s ∈ [0, T ]
and σ ∈ Sη, that

∂

∂u

(
γsup
T

′(u)

σ2(u/T )

)∣∣∣∣
u=s

≥ − 1

T

σ′(s/T )

σ2(s/T )
− hη−7L(T )

T 2
,

so, on the event {Bs ≤ hσ(s/T )L(T ) ,∀ s ≤ H0(B)}, one obtains

−
∫ H0(B)

0

∂

∂u

(
γsup
T

′(u)

σ2(u/T )

)∣∣∣∣
u=s

Bs ds ≤ 1

T

∫ H0(B)

0

σ′(s/T )

σ2(s/T )
Bs ds+ h2η−8L(T )

2

T
.

On the other hand, one has∫ H0(B)

0

(γsup
T

′(s))2

2σ2(s/T )
ds ≥ H0(B)

2
+ h

L(T )

T

∫ H0(T )

0

(σ′)+(s/T )

σ(s/T )
ds .

Therefore, (4.14) eventually yields

E [Rsup
T (0, T )] ≤ e−(h−x)L(T )+o(L(T ))E(h−x)σ(0)L(T )

[
1{H0(B)≤T , Bs

σ(s/T )L(T )
∈[0,h] ∀s≤H0(B)}

× exp

(
1

T

∫ H0(B)

0

σ′(s/T )

σ2(s/T )
Bs ds− h

L(T )

T

∫ H0(T )

0

(σ′)+(s/T )

σ(s/T )
ds

)]
.
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Recall that σ′(u) = (σ′)+(u) − (σ′)−(u) for all u ∈ [0, 1]. Thus, on the event {Bs ≤ hσ(s/T )L(T ) ,∀ s ≤
H0(B)}, one obtains

E [Rsup
T (0, T )] ≤ e−(h−x)L(T )+o(L(T ))E(h−x)σ(0)L(T )

[
1{H0(B)≤T , Bs

σ(s/T )L(T )
∈[0,h] ∀s≤H0(B)}

× exp

(
− 1

T

∫ H0(B)

0

(σ′)−(s/T )

σ2(s/T )
Bs ds

)]
,

and the latter expectation is bounded by 1, which concludes the proof. □

5.2. Sub-critical case. In this section we assume ∗ = sub, that is 1 ≪ L(T ) ≪ T 1/3, and recall from (4.9)
and (4.3) that we defined the lower and upper barriers, for t ∈ [0, T ], by

γsub
T (t) :=

√
1− π2

h2L(T )2
× v(t/T )T − xσ(0)L(T ) ,

and γsub
T (t) := γsub

T (t) + hσ(t/T )L(T ) for some h > x > 0. Recall (4.4–4.5): in particular, the set of
descendants remaining between the barriers and reaching an interval I ⊂ [0, h] at time t is denoted

(5.27) Asub
T,I (t) :=

{
u ∈ Nt

∣∣∣ Xu(s) ∈
[
γsub
T (s), γsub

T (s)
]
, ∀ s ∈ [0, t] ;

Xu(t)−γsub
T (t)

L(T )σ(t/T ) ∈ I
}
.

Recall also (3.3) and (4.1), where we fixed some η > 0 and θ : R+ → R∗
+ such that θ(T ) → 0 as T → +∞

and (4.2) holds.

Proposition 5.5 (First moment, Sub-critical). Let h > 0. As T → +∞, one has

(5.28) E
[
|Asub

T,I (t)|
]
≤ e(x−inf I)L(T )+o(L(T )) ,

uniformly in x ∈ [0, h], I ⊂ [0, h] a non-trivial sub-interval, σ ∈ Sη, and t = t(T ) such that 0 ≤ t(T ) ≤θ√
TL(T )3 for T sufficiently large. Moreover, as T → +∞ one also has

(5.29) E
[
|Asub

T,I (t)|
]
≥ e(x−inf I)L(T )+o(L(T )) ,

locally uniformly in x ∈ (0, h), inf I ∈ [0, h) and sup I − inf I > 0; and uniformly in σ ∈ Sη and t = t(T )

such that L(T ) ≤θ t(T ) ≤θ

√
TL(T )3 for T sufficiently large.

This proposition should be compared with Proposition 5.1 for the super-critical regime. The definitions of
“uniformly” and “locally uniformly” are the same as in Remark 5.1. Conversely to the super-critical and
critical regimes, we are not able to derive sharp moment estimates throughout the whole time interval [0, T ],

but only up to times smaller than
√

TL(T )3 ≪ T . This inconvenience actually has some consequences on
our strategy for the proof: to obtain (1.6) in Theorem 1.1, we have to decompose the full interval [0, T ] into

blocks of length o(
√

TL(T )3), on which the comparison between N -BBM and BBM with barriers holds.

Proof. Recall Lemma 4.2, in particular (4.13). Notice that (4.9) implies that for all s ∈ [0, T ], T ≥ 0,

γsub
T

′(s)

σ(s/T )
=

√
1− π2

h2L(T )2
,

which does not depend on s. On the one hand, this yields for all s ∈ [0, T ],

(5.30)

(
γsub
T

′(s)
)2

2σ2(s/T )
=

1

2
− π2

2h2L(T )2
,

On the other hand, on the event { Bs

σ(s/T )L(T ) ∈ [0, h],∀s ≤ t}, one has

(5.31)

∫ t

0

∂

∂u

(
γsub
T

′(u)

σ2(u/T )

)∣∣∣∣
u=s

Bs ds ≤ η−3

T
× hη−1L(T )× θ(T )

√
TL(T )3 = o(L(T )) ,
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uniformly in t ≤θ

√
TL(T )3 and σ ∈ Sη. Therefore, (4.13) becomes

E
[
|Asub

T,I (t)|
]
= exp

(
π2

2h2

t

L(T )2
+ o(L(T ))

)
Exσ(0)L(T )

[
exp

(
− Bt

σ(t/T )
+ xL(T )

)
(5.32)

× 1{ Bs
σ(s/T )L(T )

∈[0,h] ∀s≤t;
Bt

σ(t/T )L(T )
∈I}

]
.

We now focus on the latter expectation. It can be bounded from above with

(5.33) e(x−inf I)L(T ) Pxσ(0)L(T )

(
Bs

σ(s/T )L(T )
∈ [0, h], ∀s ≤ t

)
;

and, letting any εT → 0 as T → +∞ and adding the constraint Bt

σ(t/T )L(T ) ≤ inf I + εT , it can be bounded

from below with

(5.34) e(x−εT−inf I)L(T ) Pxσ(0)L(T )

(
Bs

σ(s/T )L(T )
∈ [0, h]∀s ≤ t;

Bt

σ(t/T )L(T )
∈ (inf I, inf I + εT )

)
.

Therefore, writing z := inf I to lighten notation, both statements of the proposition are obtained by showing

that (5.33–5.34) are of order exp((x − z)L(T ) − π2

2h2
t

L(T )2 + o(L(T ))). Once again, we achieve this via

a comparison with the standard, time-homogeneous Brownian motion (Ws)s≥0. In the following, recall
Lemma 4.4.

Upper bound. Using (3.4), the Brownian scaling property and a time change, we have

Pxσ(0)L(T )

(
Bs ∈ [0, h σ(s/T )L(T )], ∀s ≤ t

)
≤ Pxσ(0)L(T )

(
Bs ∈ [0, h (σ(0) + η−2t/T )L(T )], ∀s ≤ t

)
= P

x
σ(0)

σ(0)+η−2t/T

(
Bs ∈ [0, h], ∀s ≤ t

L(T )2(σ(0)+η−2t/T )2

)
= P

x
σ(0)

σ(0)+η−2t/T

(
Ws ∈ [0, h], ∀s ≤ t

L(T )2(σ(0)+η−2t/T )2

t

∫
0
σ2(u/T )du

)
≤ P

x
σ(0)

σ(0)+η−2t/T

(
Ws ∈ [0, h], ∀s ≤ t

L(T )2
(σ(0)−η−2t/T )2

(σ(0)+η−2t/T )2

)
.

Then, (3.4) implies that, for T sufficiently large, (σ(0)−η−2t/T )2

(σ(0)+η−2t/T )2 ≥ 1
2 uniformly in σ ∈ Sη and t ≤θ

√
TL(T )3.

Moreover Lemma 4.4 implies that there exists a constant K > 0 such that,

∀ t′ ≥ K, sup
y∈[x/2,x]

Py(Ws ∈ [0, h] ,∀ s ≤ t′) ≤ 8

π
exp

(
− π2

2h2
t′
)

,

where we also used that
∫ h

0
sin(πz/h)dz = 2h/π. For any t such that t ≥ 2KL(T )2, this yields

Px

(
Ws ∈ [0, h σ(t/T )/σ(0)], ∀s ≤ t/L(T )2

)
≤ 8

π
exp

(
− π2

2h2

t

L(T )2
(σ(0)−η−2t/T )2

(σ(0)+η−2t/T )2

)
≤ 8

π
exp

(
− π2

2h2

t

L(T )2
+

2π2η−3

h2

t2

L(T )2T

)
,(5.35)

and, by assumption, we have t2

L(T )2T ≤ θ(T )2L(T ) = o(L(T )) for T large. On the other hand if t ≤ 2KL(T )2,

then one may write | π2

2h2
t

L(T )2 | ≤
Kπ2

h2 in (5.32), and the probability in (5.33) is bounded by 1. Finally,

taking the maximum of this and (5.35), we obtain the expected upper bound uniformly in σ ∈ Sη and t(T )

such that 0 ≤ t ≤θ

√
TL(T )3.
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Lower bound. Similarly to the upper bound, we have to distinguish the cases t smaller or larger than KL(T )2

for some constant K which is determined below. We begin with the case t large.
Let εT such that 1 ≫ εT ≫ max(θ(T )

√
L(T )3T−1, L(T )−1) as T → +∞, and recall (5.34). For T

sufficiently large, this and (3.4) imply z+ εT < h and [z+ εT /3, z+2εT /3]σ(0) ⊂ [z, z+ εT ]σ(t/T ) uniformly
in σ ∈ Sη and locally uniformly in z. Thus we have the lower bound

(5.36)

Pxσ(0)L(T )

(
Bs ∈ [0, h σ(s/T )L(T )], ∀s ≤ t ; Bt ∈ [z, z + εT ]σ(t/T )L(T )

)
≥ Pxσ(0)L(T )

(
Bs ∈ [0, h σ(0)L(T )], ∀s ≤ t ; Bt ∈ [z + εT /3, z + 2εT /3]σ(0)L(T )

)
.

Define

(5.37) τ = τ(t) :=
1

σ2(0)L(T )2

∫ t

0

σ2(u/T ) du ,

in particular (3.4) and t ≤θ

√
TL(T )3 imply that

(5.38)
∣∣∣τ − t

L(T )2

∣∣∣ = T

L(T )2

∣∣∣∣∣
∫ t/T

0

(
σ(u)2

σ(0)2
− 1

)
du

∣∣∣∣∣ = O

(
θ(T )2L(T )

T

)
= o(L(T )) .

uniformly in σ ∈ Sη and t. Using the Brownian scaling property and a time change, we have

Pxσ(0)L(T )

(
Bs ∈ [0, h σ(0)L(T )], ∀s ≤ t ; Bt ∈ [z + εT /2, z + εT ]σ(0)L(T )

)
= Px

(
Ws ∈ [0, h], ∀ s ≤ τ ; Wτ ∈ [z + εT /3, z + 2εT /3]

)
.(5.39)

By Lemma 4.4, there exists a large constant K > 0 such that, for T sufficiently large, if t ≥ KL(T )2 then
τ ≥ K/2, and,

Px

(
Ws ∈ [0, h], ∀ s ≤ τ ; Wτ ∈ [z + εT /3, z + 2εT /3]

)
≥ 1

h
exp

(
− π2

2h2
τ
)
sin
(πx

h

)∫ z+2εT /3

z+εT /3

sin
(πy
h

)
dy .(5.40)

Recalling εT ≫ L(T )−1 and that sin(πw) ≥ 1
2 (w ∧ 1− w), ∀w ∈ [0, 1], we have as soon as T is sufficiently

large,

(5.41)

∫ z+2εT /3

z+εT /3

sin
(πy
h

)
dy ≥ εT

6

(
z + εT /3

h
∧
(
1− z + 2εT /3

h

))
≥ ε2T

18h
= exp(o(L(T ))), .

Plugging this and (5.38) into (5.40), this finally yields the lower bound uniformly in t ≥ KL(T )2 and σ ∈ Sη.
For t ≤ KL(T )2, we have to reproduce the computation (5.36–5.39) with a different choice of εT satisfying

L(T )−1 ≪ εT ≪ L(T )−
1
2 , then we only need to prove that (5.39) is larger than exp(o(L(T ))) (since one has

π2

2h2
t

L(T )2 ≥ 0 in (5.32)). Using standard computations on the Gaussian density, one has

(5.42) Px

(
Wτ ∈ [z + εT /3, z + 2εT /3]

)
≥ εT

3

1√
2πτ

exp

(
− (|z − x|+ εT )

2

2τ

)
≥ exp(o(L(T ))) ,

where the second inequality follows from the observation that (3.4), (5.37) and t ≥θ L(T ) imply τ−1 ≤
2θ(T )L(T ) = o(L(T )) for T sufficiently large. Moreover, we claim that

(5.43) lim inf
T→+∞

Px

(
Ws ∈ [0, h], ∀ s ≤ τ

∣∣∣Wτ ∈ [z + εT /3, z + 2εT /3]
)

> 0 ,

locally uniformly in x, z. Thus, one only needs to take the minimum between (5.40) and (5.42–5.43), then
plug it into (5.34), to obtain the announced lower bound uniformly in t(T ) and σ(·).
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To prove (5.43), we write that t ≤ KL(T )2 implies τ ≤ 2K for T large, and
(5.44)

Px

(
Ws ∈ [0, h], ∀ s ≤ τ

∣∣∣Wτ ∈ [z + εT /3, z + 2εT /3]
)

≥ Px

(
τ−

1
2

(
Wuτ − uz − (1− u)x

)
∈ [− x∧z√

2K
, h−x∨z√

2K
], ∀u ≤ 1

∣∣∣ τ− 1
2 (Wτ − z) ∈ τ−

1
2 [εT /3, 2εT /3]

)
.

Moreover, (5.37) implies τ ≥ (2θ(T )L(T ))−1 for T large, so τ−
1
2 εT → 0 as T → +∞. Therefore, the

Gaussian process (τ−
1
2 (Wuτ − uz − (1 − u)x))u∈[0,1] conditioned to W0 − x = 0, Wτ − z ∈ [εT /3, 2εT /3]

converges in law to a standard Brownian bridge (X0,0
u )u∈[0,1] as T → +∞ (see [14, Sect. 9]); more precisely,

the r.h.s of (5.44) converges to P(X0,0
u ∈ [− x∧z√

2K
, h−x∨z√

2K
],∀u ≤ 1) > 0 as T → +∞, and this convergence is

uniform in L(T ) ≤θ t ≤ KL(T )2. Since the latter probability is positive, this concludes the proof. □

We now provide an upper bound on the second moment of |Asub
T,I (t)| when I = [z, h] for some z ∈ [0, h).

Let us point out that, conversely to the super-critical case (recall Proposition 5.3), the statement below
involves an error factor O(t): in general one cannot guarantee that t ≤ eo(L(T )) in the sub-critical regime,

especially when t is close to
√
TL(T )3 and L(T ) grows very slowly in T . However this will not be an issue in

this paper, since in Sections 6–7 we shall consider interval lengths t(T ) that are at most polynomial in L(T ).

Proposition 5.6 (Second moment, Sub-critical). Let h > 0. As T → +∞, one has

(5.45) E
[
|Asub

T,z(t)|2
]
≤ e(x+h−2z)L(T )+o(L(T )) ×O(t) ,

uniformly in x ∈ [0, h], z ∈ [0, h], σ ∈ Sη and t = t(T ) such that 0 ≤ t(T ) ≤θ

√
TL(T )3 for T sufficiently

large.

Proof. This proposition is very similar to Proposition 5.3. Reproducing all arguments from its proof but
using (5.28) instead of (5.1), one obtains for K ∈ N and T sufficiently large,

E
[
|Asub

T,z(t)|2
]
− E

[
|Asub

T,z(t)|
]
≤ e2

h
K L(T )+o(L(T )) × t×K × e(x+h−2z)L(T ),

uniformly in x, z ∈ [0, h], σ ∈ Sη and 0 ≤ t ≤θ

√
TL(T )3. Taking K large, this yields the expected result. □

We conclude this section with an estimate on the number of particles killed at the upper barrier. Recall
the definition of Rsub

T (s, t), 0 ≤ s ≤ t ≤ T from (4.6).

Proposition 5.7 (Killed particles, Sub-critical). Let h > 0. Then as T → +∞, one has

(5.46) E
[
Rsub

T (0, t)
]
≤ e−(h−x)L(T )+o(L(T )) ×O

(
tL(T )−2 ∨ 1

)
,

uniformly in x ∈ [0, h], σ ∈ Sη, and t = t(T ) such that 0 ≤ t ≤θ

√
TL(T )3 for T sufficiently large.

Notice that, similarly to Proposition 5.6, we have an additional error term O(tL(T )−2 ∨ 1), which vanishes
as soon as t(T ) is at most polynomial in L(T ).

Proof. This proof relies on a comparison with the time-homogeneous case, which has already been studied
in [42, 43]. Recollect (4.14) from Lemma 4.2. Notice that (γsub

T )′(s) = (γsub
T )′(s) +O(L(T )/T ) uniformly in

s ∈ [0, T ], σ ∈ Sη. Combining this with (5.30–5.31), we deduce from (4.14) that,

E[Rsub
T (0, t)] = e−(h−x)L(T )+o(L(T ))E(h−x)σ(0)L(T )

[
exp

(
π2

2h2

H0(B)

L(T )2

)
1{H0(B)≤t}1{ Bs

σ(s/T )L(T )
≤h, ∀s≤H0(B)}

]
.
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Therefore, it only remains to bound from above the latter expectation. Using the Brownian scaling property,
we have

E(h−x)σ(0)L(T )

[
exp

(
π2

2h2

H0(B)

L(T )2

)
1{H0(B)≤t}1{ Bs

σ(s/T )L(T )
∈[0,h] ∀s≤H0(B)}

]

= E(h−x)

[
exp

(
π2

2h2
σ2(0)H0(B)

)
1{H0(B)≤t/(L(T )2σ2(0))}1{Bs∈[0,h σ(s/T )/σ(0)], ∀s≤H0(B)}

]
.

Let (Ws)s≥0 denote the standard, time-homogeneous Brownian motion, recall the definition of J(s) from (3.1),
and recall (3.4). In particular, we have for s ∈ [0, T ],

s σ2(0)
(
1− η−2 s

T

)2 ≤ J(s) ≤ s σ2(0)
(
1 + η−2 s

T

)2
.

Thus, applying the time change (3.1) gives,

E(h−x)

[
exp

(
π2

2h2
σ2(0)H0(B)

)
1{H0(B)≤t/(L(T )2σ2(0))}1{Bs∈[0,h σ(s/T )/σ(0)], ∀s≤H0(B)}

]

= E(h−x)

[
exp

(
π2

2h2
σ2(0)J−1(H0(W ))

)
1{H0(W )≤J(t/[L(T )2σ2(0)])}1{Ws∈[0,h σ(s/T )/σ(0)] ∀s≤H0(W )}

]

≤ E(h−x)

[
exp

(
π2

2h2

(
1− η−2 t

T

)−2
H0(W )

)
1{

H0(W )≤ t
L(T )2

(1+η−2t/T )2
}1{Ws∈[0,h (1+η−2t/T )] ∀s≤H0(W )}

]
.

Moreover, on the event H0(W ) ≤ 2t
L(T )2 , one has

(
1 − η−2 t

T

)−2
H0(W ) =

(
1 + η−2 t

T

)−2
H0(W ) + o(L(T ))

(recall that t ≤θ

√
TL(T )3). Then, the expectation above has already been estimated in [42, Lemma 2.2.1]

(see also [43, Lemma 7.1]): therefore, we have for some universal C > 0,

E(h−x)

[
exp

(
π2

2h2

(
1 + η−2 t

T

)−2
H0(W )

)
1{

H0(W )≤ t
L(T )2

(1+η−2t/T )2
}1{Ws∈[0,h (1+η−2t/T )] ∀s≤H0(W )}

]
≤ π t

h2L(T )2 sin
(
π h−x

h

(
1 + η−2 t

T

)−1
)
+ C h−x

h

(
1 + η−2 t

T

)−1
= O

(
tL(T )−2 ∨ 1

)
,

uniformly in σ ∈ Sη and 0 ≤ t(T ) ≤θ

√
TL(T )3, which concludes the proof. □

5.3. Critical case. In this section we assume there exists α > 0 such that L(T ) ∼ αL(T )1/3 as T → +∞.
Recall the definition and properties of Ψ from (1.4). We recollect the following result from [47].

Lemma 5.8 ([47, Lemma 2.4]). Let W a standard time-homogeneous Brownian motion, q ∈ R, 0 < a < b < 1
and 0 < a′ < b′ < 1. Then,

(5.47)

lim
t→∞

1

t
sup

x∈[0,1]

logEx

[
e−q

∫ t
0
Wsds1{Ws∈[0,1] ∀s≤t}

]
= lim

t→∞

1

t
inf

x∈[a,b]
logEx

[
e−q

∫ t
0
Wsds1{Ws∈[0,1] ∀s≤t,Wt∈[a′,b′]}

]
= Ψ(q) .

In that regime, recall from (4.10) and (4.3) that the lower and upper barriers are defined, for t ∈ [0, T ], by

γcrit
T (t) := v(t/T )T − wh,T (t/T )L(T )− xσ(0)L(T ) ,

and γcrit
T (t) := γcrit

T (t) + hσ(t/T )L(T ) for some h > x > 0, and where wh,T ∈ C1([0, 1]) is defined in (4.7).
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Remark 5.3. Let us point out that wh,T (u) ∼ π2

2α3h2 v(u) as α → 0, so that choice of upper barrier
matches the sub-critical asymptotics of the N-BBM when α is small (recall (1.11), Lemma 4.1 and that
L(T ) = o(T/L(T )2) in that case). Moreover, the relation Ψ(−q) = q +Ψ(q), q ∈ R yields

α

(
wh,T (u)− h

∫ u

0

(σ′)−(s) ds

)
−→

α→+∞

a1
21/3

∫ u

0

σ(v)1/3|σ′(v)|2/3dv ,

for all u ∈ (0, 1]. Thus, multiplying these terms by T 1/3 ∼ α−1L(T ), we see that the upper barrier matches
the super-critical asymptotics of the N -BBM when α is large; and when σ is decreasing, one also recovers
the asymptotics of Proposition 1.2.

Recalling (4.5), the set of descendants remaining between the barriers and ending in a (rescaled) interval
I ⊂ [0, h] at time t is denoted

(5.48) Acrit
T,I (t) :=

{
u ∈ Nt

∣∣∣ Xu(s) ∈
[
γcrit
T (s), γcrit

T (s)
]
, ∀ s ∈ [0, t] ;

Xu(t)−γcrit
T (t)

L(T )σ(t/T ) ∈ I
}
.

Proposition 5.9 (First moment, Critical). Let h > 0. One has, as T → +∞,

(5.49) E
[
|Acrit

T,I (t)|
]
≤ e(x−inf I)L(T )+o(T 1/3) ,

uniformly in t ∈ [0, T ], σ ∈ Sη, x ∈ [0, h], and I ⊂ [0, h] a non-trivial sub-interval. Moreover, one also has,
as T → +∞,

(5.50) E
[
|Acrit

T,I (t)|
]
≥ e(x−inf I)L(T )+o(T 1/3) ,

locally uniformly in x ∈ (0, h), inf I ∈ [0, h) and sup I − inf I > 0; and uniformly in σ ∈ Sη and t = t(T )
such that L(T ) ≤θ t(T ) ≤ T for T sufficiently large.

Here again, this proposition should be compared with Propositions 5.1 and 5.5 for the super- and sub-critical
regimes; and the definitions of “locally uniformly” and “uniformly” are the same as in Remark 5.1.

Proof. Recall (4.13) from Lemma 4.2. Notice that (4.10) implies

(5.51) γcrit
T

′(s) = σ(s/T ) + w′
h,T (s/T )

L(T )

T
= σ(s/T ) +O(T−2/3) ,

uniformly in s ∈ [0, T ] and σ ∈ Sη; more precisely, one can check that the function Ψ(·) is bounded on
[−α3h3η−2, α3h3η−2], as well as wh,T (·) and w′

h,T (·) on [0, 1], uniformly in σ ∈ Sη. In the following, we let

Ψ := sup{|Ψ(q)|, q ∈ [−α3h3η−2, α3h3η−2]} , Ψ
′
:= sup{|Ψ′(q)|, q ∈ [−α3h3η−2, α3h3η−2]} ,

which are well defined since Ψ is convex on R. Therefore, on the event { Bs

σ(s/T )L(T ) ∈ [0, h],∀s ≤ t}, one
deduces from (4.13) and a straightforward computation that,

(5.52)

E
[
|Acrit

T,I (t)|
]
= exp

(
xL(T ) +

L(T )

T

∫ t

0

w′
h,T (s/T )

σ(s/T )
ds+O(T−1/3)

)
×Exσ(0)L(T )

[
exp

(
− Bt

σ(t/T )
− 1

T

∫ t

0

σ′(s/T )

σ2(s/T )
Bsds

)
1{ Bs

σ(s/T )L(T )
∈[0,h] ∀s≤t;

Bt
σ(t/T )L(T )

∈I}

]
.

Upper bound. Let z := inf I. Let t ∈ [0, T ], and assume first that (t, T ) satisfies t ≤ T 5/6. Then, (5.52) gives

E
[
|Acrit

T,I (t)|
]
≤ e(x−z)L(T )+O(T 1/6)Pxσ(0)L(T )

(
Bs

σ(s/T )L(T ) ∈ [0, h] ,∀s ≤ t ; Bt

σ(t/T )L(T ) ∈ I
)

≤ e(x−z)L(T )+O(T 1/6) ,(5.53)

uniformly in σ ∈ Sη and t ∈ [0, T 5/6].
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For (t, T ) such that t ≥ T 5/6, let us split [0, t] into intervals of length KL(T )2, where K is a large constant
which is determined below. Writing imax := ⌊t/(KL(T )2)⌋, we let ti := iKL(T )2 for 0 ≤ i < imax, and
timax := t (notice that (timax − timax−1) ∈ [KL(T )2, 2KL(T )2]). Define for 1 ≤ i ≤ imax,

(5.54)

σi := sup
[ti−1,ti]

σ , σi := inf
[ti−1,ti]

σ ,

and σ′
i := sup

[ti−1,ti]

σ′ , σ′
i := inf

[ti−1,ti]
σ′,

and σ0 = σ0 := σ(0). Using the Markov property at times ti, 1 ≤ i < imax, one has

Exσ(0)L(T )

[
exp

(
− Bt

σ(t/T )
− 1

T

∫ t

0

Bs
σ′(s/T )

σ2(s/T )
ds

)
1{ Bs

σ(s/T )L(T )
∈[0,h] ∀s≤t;

Bt
σ(t/T )L(T )

∈I}

]
≤ e−zL(T )

imax∏
i=1

sup
y∈[0,hσiL(T )]

E(ti−1,y)

[
exp

(
− 1

T

∫ ti

ti−1

Bs
σ′
i

σ2
i

ds

)
1{Bs∈[0,hσiL(T )] ∀s∈[ti−1,ti]}

]
.(5.55)

To lighten notation, let us focus on the factor i = 1, but the following proof holds for other blocks as well
(including [timax−1, timax

]). Let ε > 0. Recalling the time-change J(s) :=
∫ s

0
σ2(r/T )dr, s ≤ T from (3.1),

and using the Brownian scaling property, we have for y ∈ [0, hσ1L(T )],

Ey

[
exp

(
− 1

T

σ′
1

σ2
1

∫ t1

0

Bsds

)
1{Bs∈[0,hσ1L(T )] ∀s≤t1}

]
(5.56)

= Ey

[
exp

(
− 1

T

σ′
1

σ2
1

∫ J(t1)

0

Ws (J
′(J−1(s)))−1ds

)
1{Ws∈[0,hσ1L(T )] ∀s≤J(t1)}

]

≤ Ey

[
exp

(
− 1

T

σ′
1

σ4
1

∫ σ2
1t1

0

Wsds

)
1{Ws∈[0,hσ1L(T )] ∀s≤σ2

1t1}

]

≤ Ey/(hσ1L(T ))

[
exp

(
− 1

T

σ′
1

σ4
1

(hσ1L(T ))
3

∫ σ2
1t1/(hσ1L(T ))2

0

Wsds

)
1{Ws∈[0,1] ∀s≤σ2

1t1/(hσ1L(T ))2}

]

≤ Ey/(hσ1L(T ))

[
exp

(
−σ′

1

σ1
α3h3(1− ε)

∫ σ2
1t1/(hσ1L(T ))2

0

Wsds

)
1{Ws∈[0,1] ∀s≤σ2

1t1/(hσ1L(T ))2}

]
,

where the last inequality holds for T sufficiently large, by recalling (3.4) and that L(T ) ∼ αT 1/3. Let ε > 0,
and recall that ti − ti−1 ≥ KL(T )2 for all i. Assume w.l.o.g that L(T ) > 0 for all T : then t1 → +∞ as
K → +∞ uniformly in T : applying Lemma 5.8, there exists Kε > 0 such that for K > Kε, one has

sup
y∈[0,1]

Ey

[
exp

(
−σ′

1

σ1
α3h3(1− ε)

∫ σ2
1t1/(hσ1L(T ))2

0

Wsds

)
1{Ws∈[0,1] ∀s≤σ2

1t1/(hσ1L(T ))2}

]

≤ exp

(
t1

h2L(T )2
σ2
1

σ2
1

[
Ψ

(
σ′
1

σ1
α3h3(1− ε)

)
+ ε

])
,

for all T ≥ 0. Then, for T sufficiently large, (3.4) and the definitions of Ψ, Ψ
′
yield,

σ2
1

σ2
1

[
Ψ

(
σ′
1

σ1
α3h3(1− ε)

)
+ ε

]
≤ Ψ

(
σ′
1

σ1
α3h3

)
+ c1Ψ

KL(T )2

T
+ εc1(Ψ

′ + 1) ,
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for some constant c1 > 0. Therefore, there exists T0(K, ε) > 0 such that, for K sufficiently large and
T ≥ T0(K, ε), (5.55) becomes

Exσ(0)L(T )

[
exp

(
− Bt

σ(t/T )
− 1

T

∫ t

0

Bs
σ′(s/T )

σ2(s/T )
ds

)
1{ Bs

σ(s/T )L(T )
∈[0,h] ∀s≤t;

Bt
σ(t/T )L(T )

∈I}

]
≤ e−zL(T ) exp

(
imax∑
i=1

(ti − ti−1)

h2L(T )2

[
Ψ

(
σ′
i

σi
α3h3

)
+ c1Ψ

KL(T )2

T
+ εc1(Ψ

′ + 1)

])
.

Using a Riemann sum approximation, there exists T0(K, ε) > 0 such that, for K very large and T ≥ T0(K, ε),
and for t ≥ T 5/6, one has

(5.57)

imax∑
i=1

(ti − ti−1)

L(T )2
Ψ

(
σ′
i

σi
α3h3

)
≤ 1

L(T )2

∫ t

0

Ψ

(
σ′(r/T )

σ(r/T )
α3h3

)
dr + ε

t

L(T )2
.

Moreover, one has

(5.58)

imax∑
i=1

(ti − ti−1)

h2L(T )2

[
Ψ
KL(T )2

T
+ ε(Ψ′ + 1)

]
= O(1) + εO(T 1/3) .

Recollect (5.52) and that L(T ) ∼ αT 1/3. Recalling the definition of wh,T from (4.7) and that 1
L(T )2 ∼ α−3 L(T )

T ,

we finally obtain that there exist some C,C ′ > 0 (depending only on η, ε and α) such that for T large enough,
one has

(5.59) E
[
|Acrit

T,z(t)|
]
≤ exp

(
(x− z)L(T ) + C + C ′εT 1/3

)
,

for all t ≥ T 5/6. Taking the maximum of (5.53) and (5.59), and letting ε → 0, this finally yields the expected
upper bound uniformly in σ(·) and t ∈ [0, T ].

Lower bound. Similarly to the upper bound, we distinguish the cases t smaller or larger than T 5/6. We
first consider the case t ≥ T 5/6, using the same time split with intervals of length KL(T )2 and notation as
above (recall (5.54)). Let 0 < a < b < h such that x ∈ (a, b), and ε > 0 such that z + ε < h. We bound the
expectation in (5.52) from below by constraining the trajectory to pass through the intervals [a, b] · σiL(T )
at times ti, 1 ≤ i ≤ imax − 1. Hence, the Markov property gives

Exσ(0)T 1/3

[
exp

(
− Bt

σ(t/T )
− 1

T

∫ t

0

Bs
σ′(s/T )

σ2(s/T )
ds

)
1{Bs∈[0,hσ(s/T )L(T )] ∀ s≤t,

Bt≥zσ(t/T )L(T )

}
]

≥ e−(z+ε)L(T )
imax−1∏
i=1

inf
y∈[a,b]·σi−1L(T )

E(ti−1,y)

[
exp

(
− 1

T

σ′
i

σ2
i

∫ ti

ti−1

Bsds

)
1{Bs∈[0,hσiL(T )] ∀s∈[ti−1,ti],

Bti
∈[aσiL(T ),bσiL(T )]

}
](5.60)

× inf
y∈[a,b]·σimax−1L(T )

E(timax−1,y)

[
exp

(
− 1

T

σ′
imax

σ2
imax

∫ timax

timax−1

Bsds

)
1{ Bs∈[0,hσimax

L(T )] ∀s∈[timax−1,t],

Bt∈[zσ(t/T )L(T ),(z+ε)σ(t/T )L(T )]

}
]
.

Let us focus on the factor i = 1 here again (others are handled similarly, including the last one). Reproducing
the time-change argument from (5.56), one has for y ∈ [a, b] · σ(0)L(T ),

Ey

[
exp

(
− 1

T

σ′
1

σ2
1

∫ t1

0

Bsds

)
1{ Bs∈[0,hσ1L(T )] ∀s≤t1,

Bt1
∈[aσ1L(T ),bσ1L(T )]

}
]

≥ Ey

[
exp

(
− 1

T

σ′
1

σ4
1

∫ J(t1)

0

Wsds

)
1{Ws∈[0,hσ1L(T )] ∀s≤J(t1),

WJ(t1)∈[aσ1L(T ),bσ1L(T )]

}
]
.
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Recall (3.4). Applying Lemma 5.8 and the Brownian scaling property, one obtains similarly to the upper
bound (we do not write the details again),

inf
y∈[a,b]·σ(0)L(T )

Ey

[
exp

(
− 1

T

σ′
1

σ4
1

∫ J(t1)

0

Wsds

)
1{Ws∈[0,hσ1L(T )] ∀s≤J(t1),

WJ(t1)∈[aσ1L(T ),bσ1L(T )]

}
]

≥ exp

[
t1

h2L(T )2
Ψ

(
σ′
1

σ1

α3h3

)
−O(L(T )2/T )− εO(1)

]
.

for some Kε > 0, K ≥ Kε and T0(K, ε) > 0, T ≥ T0(K, ε). Reproducing this lower bound for all factors
of (5.60), using a Riemann sum approximation similar to (5.57) and recollecting (5.52), we may conclude
similarly to the upper bound in the case t ≥ T 5/6.

Let us now consider the case t ≤ T 5/6. Recall the proof of the first moment lower bound in the sub-critical
case (Proposition 5.5), that is (5.34, 5.36–5.39). We define as in (5.37),

τ = τ(T ) :=
1

σ2(0)L(T )2

∫ t

0

σ2(u/T ) du ,

and (εT )T≥0 such that T−1/3 ≪ εT ≪ T−1/6 as T → +∞. Then, the Brownian scaling property and a time
change yield, similarly to the sub-critical regime,

(5.61) E
[
|Acrit

T,I (t)|
]
≥ e(x−z−εT )L(T )+o(T 1/3) Px

(
Ws ∈ [0, h], ∀ s ≤ τ ; Wτ ∈ [z + εT /3, z + 2εT /3]

)
.

It remains to prove that the probability above is larger than eo(T
1/3). Recall Lemma 4.4: proceeding similarly

to (5.40–5.41), there exists R > 0 such that,

∀ t′ ≥ R , Px

(
Ws ∈ [0, h], ∀ s ≤ t′ ; Wt′ ∈ [z + εT /3, z + 2εT /3]

)
≥ 1

h

ε2T
18h

sin
(πx

h

)
exp

(
− π2

2h2
t′
)

.

If t, T satisfy 2RL(T )2 ≤ t ≤ T 5/6, then (3.4) implies R ≤ τ ≤ 2α−2T 1/6 for T sufficiently large, uniformly

in σ ∈ Sη. In particular the r.h.s. above, evaluated at t′ = τ , is larger than eO(T 1/6), uniformly in σ ∈ Sη

and locally uniformly in x, z. On the other hand, if t, T satisfy t ≤ 2RL(T )2, then τ ≤ 4R for T sufficiently
large, uniformly in σ ∈ Sη. Moreover, one notices that t ≥θ L(T ) and εT ≪ T−1/6 imply that τ−1/2εT → 0
as T → +∞. Recalling (5.42–5.44) from the sub-critical case, we have already proven by introducing a
Brownian bridge that, under this assumption, the probability in (5.61) is larger than eo(L(T )) for T large: we
do not replicate the details of the proof here.

Therefore, we derived three lower bounds which hold respectively in the cases t ≥ T 5/6, 2RL(T )2 ≤ t ≤
T 5/6 and L(T ) ≤θ t ≤ 2RL(T )2: taking the minimum of these, we obtain a lower bound that holds uniformly
in L(T ) ≤θ t ≤ T and σ ∈ Sη, which fully concludes the proof of the proposition. □

Proposition 5.10 (Second moment, Critical). Let h > 0. As T → +∞, one has

(5.62) E
[
|Acrit

T,z(t)|2
]
≤ e(x+h−2z)L(T )+o(T 1/3) .

uniformly in x ∈ [0, h], z ∈ [0, h], σ ∈ Sη and t ∈ [0, T ].

This statement is analogous to Propositions 5.3 and 5.6 in the super- and sub-critical cases respectively.

Since its proof is identical (using the upper bound (5.49), and observing that t ≤ T = eo(T
1/3) in the critical

regime), we do not reproduce it here.
We now state the analogue of Proposition 5.7 regarding the number of particles killed by the upper barrier.

Recall from (4.6) that Rcrit
T (s, t), 0 ≤ s ≤ t ≤ T denotes the expected number of particles killed by the upper

barrier on the time interval [s, t].

Proposition 5.11 (Killed particles, Critical). Let h > 0. Then as T → +∞, one has

(5.63) E[Rcrit
T (0, T )] ≤ e−(h−x)L(T )+o(T 1/3) ,
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uniformly in x ∈ [0, h] and σ ∈ Sη.

Proof. Recollect (4.14) from Lemma 4.2. Notice that (γcrit
T )′(·) = (γcrit

T )′(·) + hσ′(·/T )L(T )
T , and recall that

γcrit
T (0) = (h − x)σ(0)L(T ). Combining this with (5.51), we deduce from (4.14) with a straightforward

computation that

E[Rcrit
T (0, T )] = e−(h−x)L(T )+O(T−1/3)E(h−x)σ(0)L(T )

[
1{H0(B)≤T}1{ Bs

σ(s/T )L(T )
∈[0,h] ∀s≤H0(B)}

× exp

(
L(T )

T

∫ H0(B)

0

w′
h,T (s/T )− hσ′(s/T )

σ(s/T )
ds+

1

T

∫ H0(B)

0

σ′(s/T )

σ2(s/T )
Bsds

)]
,

and it remains to show that the latter expectation is of order exp(o(T 1/3)). Let us apply Girsanov’s theorem
and the Brownian symmetry property to the process (hσ(s/T )L(T )−Bs)s≥0: recalling estimates from (5.10)

and setting H̃(B) := H0(B − hσ(·/T )L(T )) to lighten notation, this yields,

E(h−x)σ(0)L(T )

[
1{H0(B)≤T}1{ Bs

σ(s/T )L(T )
∈[0,h] ∀s≤H0(B)}e

L(T )
T

∫ H0(B)
0

w′
h,T (s/T )−hσ′(s/T )

σ(s/T )
ds+ 1

T

∫ H0(B)
0

σ′(s/T )

σ2(s/T )
Bsds

]

= eO(T−1/3) Exσ(0)L(T )

[
1{H̃(B)≤T}1{ Bs

σ(s/T )L(T )
∈[0,h] ∀s≤H̃(B)}e

L(T )
T

∫ H̃(B)
0

w′
h,T (s/T )

σ(s/T )
ds− 1

T

∫ H̃(B)
0

σ′(s/T )

σ2(s/T )
Bsds

]
.

Notice that the latter formula is equivalent to rewriting (4.14) in terms of γ∗
T instead of γ∗

T (details are left to

the reader). Then we split [0, T ] into intervals of length T 5/6, setting ti := iT 5/6 for 0 ≤ i < imax := ⌊T 1/6⌋
and timax

:= T . Thus we have,

Exσ(0)L(T )

[
1{H̃(B)≤T}1{ Bs

σ(s/T )L(T )
∈[0,h] ∀s≤H̃(B)}e

L(T )
T

∫ H̃(B)
0

w′
h,T (s/T )

σ(s/T )
ds− 1

T

∫ H̃(B)
0

σ′(s/T )

σ2(s/T )
Bsds

]

≤
imax−1∑
i=0

Exσ(0)L(T )

[
1{ti<H̃(B)≤ti+1}1

{
Bs

σ(s/T )L(T )
∈[0,h], ∀s≤H̃(B)

}eL(T )
T

∫ H̃(B)
0

w′
h,T (s/T )

σ(s/T )
ds− 1

T

∫ H̃(B)
0

σ′(s/T )

σ2(s/T )
Bsds

]

≤
imax−1∑
i=0

eO(T 1/6) Exσ(0)L(T )

[
1{ Bs

σ(s/T )L(T )
∈[0,h], ∀s≤iT 5/6

}eL(T )
T

∫ iT5/6

0

w′
h,T (s/T )

σ(s/T )
ds− 1

T

∫ iT5/6

0
σ′(s/T )

σ2(s/T )
Bsds

]
,

uniformly in σ ∈ Sη. Recalling (5.55–5.57) from the proof of Proposition 5.9, we have already proven that

the latter expectation is of order eo(T
1/3) as T → +∞ uniformly in 1 ≤ i ≤ imax = O(T 1/6) (we do not

reproduce the details). This concludes the proof of the proposition. □

6. Lower bound on the maximum of the N-BBM

In this section we prove Proposition 3.3 by considering a BBM between well chosen barriers and showing
that it is equal to an N−-BBM with large probability. Then, the lower bound is obtained by showing that
the maximum of the BBM between barriers is close to the upper barrier via a moment method. The following
results hold for all three regimes ∗ ∈ {sub, sup, crit}, where we use our notation from Section 4.

6.1. Estimates for the BBM between barriers. We first focus on the case κ ∈ (0, 1), and consider
a BBM between barriers starting with Nκ particles. In order to lighten upcoming formulae, we assume
that they are initially located at the origin: then, results on the process started from the initial measure
Nκδ−κσ(0)L(T ) are obtained through a direct shift of upcoming estimates.
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Since the moment estimates from Section 5.2 do not hold on the whole interval [0, T ] in the sub-critical
case, let us define

(6.1) t∗T :=

{
min

(
L(T )4, L(T )2T 1/3

)
if ∗ = sub ,

T if ∗ ∈ {sup, crit} ,
which is the time horizon we consider below: we compute a lower bound on the N -BBM at time t∗T ,
∗ ∈ {sub, sup, crit}; then, in the subcritical regime, we extend the lower bound at time T with additional
arguments.

Let η > 0, and consider a vanishing function θ(T ) → 0 as T → +∞ (depending on L(T )), such that for T
sufficiently large, one has (4.2), as well as

(6.2) L(T )3 ≤θ tsubT ≤ (L(T )3)2/3T 1/3 ≤θ

√
TL(T )3 , if ∗ = sub .

Let 0 < ε < 1 be small, and fix

(6.3) h = 1− ε , x = (1− κ)(1− ε) ∈ (0, h) .

Then, define the barriers γ∗
T , γ

∗
T for each regime ∗ ∈ {sup, sub, crit} according to (4.8), (4.9) and (4.10)

respectively, with these parameters h > x > 0; in particular they satisfy (4.3).
Recall the definitions of A∗

T,I , R
∗
T (s, t) from (4.5), (4.6), and that N = N(T ) = eL(T ). Then, moment

estimates from Propositions 5.1, 5.3, 5.5, 5.6, 5.9 and 5.10 yield for all regimes ∗ ∈ {sup, sub, crit},

Eδ0

[
|A∗

T,I(t)|
]
≤ Nx−inf I+o(1) ,(6.4)

Eδ0

[
|A∗

T,I(t)|
]
= Nx−inf I+o(1) if, additionally, t ≥θ L(T ) ,(6.5)

Eδ0

[
|A∗

T,z(t)|2
]
≤ Nx+h−2z+o(1) ,(6.6)

for some vanishing terms o(1) as T → +∞: in (6.4, 6.6), these error terms are uniform in σ ∈ S∗
η , 0 ≤ t ≤ t∗T

and x, z ∈ [0, h], I ⊂ [0, h] a non-trivial sub-interval; and in (6.5), it is uniform in σ ∈ S∗
η , L(T ) ≤θ t ≤ t∗T

and locally uniform in x, I. Let us point out that the additional error factors from Propositions 5.6 and 5.7
in the sub-critical case are absorbed into the No(1), since tsubT ≤ L(T )4 = eo(L(T )).

With those parameters and initial condition, let us first prove that the BBM between the barriers γ∗
T , γ

∗
T

does not contain more than N particles at any time in [0, t∗T ] with high probability.

Proposition 6.1. Let ε, h, x as in (6.3), and κ ∈ (0, 1). Then there exist constants c1, c2 > 0 such that,
for T sufficiently large, one has

(6.7) PNκδ0

(
∃s ≤ t∗T ; |A∗

T (s)| > N
)

≤ c1N
−c2 ,

where c1, c2 are uniform in σ ∈ S∗
η , and locally uniform in ε, κ ∈ (0, 1).

Proof. Define λ := 1− ε
2 (1− κ) ∈ (x+ κ, 1). With a union bound, we write

PNκδ0

(
∃s ≤ t∗T ; |A∗

T (s)| > N
)

≤
t∗T−1∑
k=0

PNκδ0

(
∃s ∈ [k, k + 1] ; |A∗

T (s)| > N
)

≤
t∗T−1∑
k=0

PNκδ0

(
|A∗

T (k)| > Nλ
)
+ PNκδ0

(
|A∗

T (k)| ≤ Nλ ; ∃ s ∈ [k, k + 1] , |A∗
T (s)| > N

)
,(6.8)

where we wrote t∗T − 1 instead of ⌈t∗T − 1⌉ to lighten notation. On the one hand, the additivity of |A∗
T (k)| in

the initial measure implies that
ENκδ0 [|A∗

T (s)|] = Nκ Eδ0 [|A∗
T (s)|].

One deduces from Markov’s inequality and (6.4) that for all 0 ≤ k ≤ t∗T − 1,

(6.9) PNκδ0

(
|A∗

T (k)| > Nλ
)
≤ NκN−λ Eδ0

[
|A∗

T (k)|
]
= N−(λ−x−κ)+o(1) ,

for T large, where o(1) does not depend on k or σ ∈ S∗
η .
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On the other hand, let (Zt)t≥0 denote the population size of a BBM without selection (in particular its
population size is non-decreasing in time), and let A denote the set of counting measures on R with mass at
most Nλ. Using Markov’s property and a straightforward coupling argument, one has for 0 ≤ k ≤ t∗T − 1,

PNκδ0

(
|A∗

T (k)| ≤ Nλ ; ∃ s ∈ [k, k + 1] , |A∗
T (s)| > N

)
≤ sup

µ∈A
Pµ(Z1 > N) .

Since Eµ[Z1] = e1/2µ(R) for any µ ∈ A, one has by Markov’s inequality,

Pµ(Z1 > N) ≤ N−(1−λ)e1/2 .

Recollecting (6.8, 6.9) and (6.1), we finally obtain in all regimes,

PNκδ0

(
∃s ≤ t∗T ; |A∗

T (s)| > N
)
≤ L(T )4 ×N− ε

2 (1−κ)+o(1) = N− ε
2 (1−κ)+o(1)‘ ,

which concludes the proof. □

We now bound from below the number of particles located at a given height, at a time t not too small.

Proposition 6.2. There exist c1, c2 > 0 such that, for T sufficiently large, one has

(6.10) PNκδ0

(
|A∗

T,[z,z+ε](t)| ≥ N1−ε−z
)

≥ 1− c1N
−c2 ,

where c1, c2 are uniform in σ ∈ S∗
η , t ∈ [θ(T )−1L(T ), t∗T ] and z ∈ [0, 1 − 2ε], and locally uniform in

ε, κ ∈ (0, 1).

Notice that, taking z = 1− 2ε, this proposition implies that, with large probability, there are at least Nε

particles located in the vicinity of the upper barrier γ∗
T at time t∗T .

Proof. Applying Paley-Zygmund’s inequality, we have

(6.11) PNκδ0

(
|A∗

T,[z,z+ε](t)| ≥ N1−ε−z
)
≥
(
1− N1−ε−z

ENκδ0 [|A∗
T,[z,z+ε](t)|]

)2

×
ENκδ0 [|A∗

T,[z,z+ε](t)|]
2

ENκδ0 [|A∗
T,[z,z+ε](t)|2]

.

For all M ∈ N, I ⊂ [0, h] and t ≥ 0, recall that EMδ0 [|A∗
T,I(t)|] = MEδ0 [|A∗

T,I(t)|]. Regarding the second
moment, by splitting the sum over pairs of particles u, v ∈ Nt depending on whether they come from the
same ancestor or two distinct ancestors at time 0, we obtain for any I ⊂ [0, h], t ≥ 0,

(6.12) EMδ0

[
|A∗

T,I(t)|2
]
= MEδ0

[
|A∗

T,I(t)|2
]
+M(M − 1)Eδ0 [|A∗

T,I(t)|]2.
Recalling (6.4–6.6) and the definitions of x, h from (6.3), we obtain

PNκδ0

(
|A∗

T,[z,z+ε](t)| ≥ 1
)
≥
(
1−N (1−ε−z)−κ−(x−z)+o(1)

)2 (
1 +Nx+h−2z−κ−2(x−z)+o(1)

)−1

=
(
1−N−εκ+o(1)

)2 (
1 +N−εκ+o(1)

)−1

≥ 1−N−εκ+o(1) ,

as T → +∞, uniformly in σ ∈ S∗
η and t ∈ [θ(T )−1L(T ), t∗T ], which concludes the proof. □

6.2. Proof of Proposition 3.3. We finally prove Proposition 3.3. This is achieved by coupling the BBM
between barriers with an N -BBM, through the introduction of an N−-BBM and the application of Lemma 4.6.
Recall that the point measure of the N -BBM throughout time is denoted (XN

t )t≥0. We first claim the
following, which is a consequence of Propositions 6.1 and 6.2.

Lemma 6.3. Let ∗ ∈ {sub, sup, crit}. There exists c1, c2 > 0 such that for T sufficiently large, one has

(6.13) PNκδ0

(
XN

t

[
γ∗
T (t) + (1− 2ε)σ(t/T )L(T ) , +∞

)
< Nε

)
≤ c1N

−c2 ,

and

(6.14) PNκδ−κσ(0)L(T )

(
max(XN

t∗T
) ≤ γ∗

T (t
∗
T ) + (1− 2ε)σ(t∗T /T )L(T )− κσ(0)L(T )

)
≤ c1N

−c2 ,

where c1, c2 are uniform in σ ∈ S∗
η , t ∈ [θ(T )−1L(T ), t∗T ], and locally uniform in ε, κ ∈ (0, 1).
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Proof of Lemma 6.3. Let us first prove (6.13). Denote with (XN−
t )t≥0 the point process of an BBM which

undergoes two selection mechanism: particles which are not in the N highest or that hit one of the barriers
γ∗
T , γ

∗
T are killed. Recalling Section 4.3 and Remark 4.2.(i), notice that (XN−

t )t≥0 is an N−-BBM; so
Lemma 4.6 gives for any y ∈ R,
(6.15) PNκδ0

(
XN

t∗T
([y,+∞)) < Nε

)
≤ PNκδ0

(
XN−

t∗T
([y,+∞)) < Nε

)
.

Let denote (XB
t )t≥0 the point process of a BBM killed at the barriers γ∗

T , γ
∗
T but without any other selection

mechanism. By Proposition 6.1, it has a large probability under PNκδ0 to contain fewer than N particles at

all time on [0, t∗T ], in which case its trajectory is equal to that of the process (XN−
t )t∈[0,t∗T ]. Therefore, for T

sufficiently large and y ∈ R,
(6.16) PNκδ0

(
XN−

t∗T
([y,+∞)) < Nε

)
≤ PNκδ0

(
XB

t∗T
([y,+∞)) < Nε

)
+ c1N

−c2 .

Finally, letting t ∈ [θ(T )−1L(T ), t∗T ] and y = γ∗
T (t) + (1− 2ε)σ(t/T )L(T ), and applying Proposition 6.2 with

z = 1− 2ε, this yields

PNκδ0

(
XN

t

[
γ∗
T (t) + (1− 2ε)σ(t/T )L(T ) , +∞

)
< Nε

)
≤ PNκδ0

(
|A∗

T,1−2ε(t
∗
T )| < Nε

)
+ c1N

−c2 ≤ 2c1N
−c2 ,

uniformly in σ, t, from which (6.13) follows.
Regarding (6.14), one deduces straightforwardly from (6.13) that

PNκδ0

(
max(XN

t∗T
) ≤ γ∗

T (t
∗
T ) + (1− 2ε)σ(t∗T /T )L(T )

)
≤ c1N

−c2 ,

and shifting this estimate by −κσ(0)L(T ) concludes the proof. □

With this at hand, we resume the proof of Proposition 3.3. To that end, we first claim that it suffices
to prove the following, slightly weaker statement in which the uniformity in κ ∈ [0, 1] is replaced by local
uniformity in κ ∈ (0, 1). Recall (1.10, 1.11).

Lemma 6.4. Let ∗ ∈ {sup, sub, crit}. Let λ > 0, κ ∈ (0, 1) and η > 0. Then as T → +∞, one has

(6.17) PNκδ−κσ(0)L(T )

(
1

b∗T

(
max(XN

T )−m∗
T

)
≤ −λ

)
−→ 0 ,

and the convergence is uniform in σ ∈ S∗
η , and locally uniform in κ ∈ (0, 1).

Proof of Proposition 3.3 subject to Lemma 6.4. Recall Proposition 3.2. We start with the case κ close to 1.
Let ∗ ∈ {sup, sub, crit} and λ > 0. Notice that there exists ε > 0 such that

(6.18) lim sup
T→+∞

εσ(0)L(T )

b∗T
≤ λ

3
.

Indeed, in the sub-critical regime this follows from the fact that L(T ) ≪ bsubT , and in the other cases
this holds as soon as ε ≤ (λη/3) limT→+∞(L(T )/b∗T ) (the latter limit being equal to 1, resp. α, in the
super-critical, resp. critical regime). Moreover, one has Nκδ−κσ(0)L(T ) ≻ N1−εδ−σ(0)L(T ) for κ ∈ [1− ε, 1],
so Proposition 3.2 implies that,

PNκδ−κσ(0)L(T )

(
1

b∗T

(
max(XN

T )−m∗
T

)
≤ −λ

)
≤ PN1−εδ−σ(0)L(T )

(
1

b∗T

(
max(XN

T )−m∗
T

)
≤ −λ

)
≤ PN1−εδ−(1−ε)σ(0)L(T )

(
1

b∗T

(
max(XN

T )−m∗
T

)
≤ −λ

3

)
,

where the last inequality is obtained for T sufficiently large by shifting the process upward by εσ(0)L(T ),
and by recalling (6.18). Applying Lemma 6.4 with κ = 1 − ε, this proves that (6.17) holds uniformly in
κ ∈ [1− ε, 1].

Regarding the case κ small, let ε > 0, and recall that (Nt)t≥0 denotes the set of particles in the BBM
throughout time; and let Zt := |NT |, t ≥ 0. We claim the following.
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Lemma 6.5. Let ε, ε′ > 0. One has for T sufficiently large:
(i) Pδ0(ZεL(T ) ≤ Nε/4) ≤ ε′,
(ii) Pδ0(∃ s ≤ εL(T ) , Zs ≥ N) ≤ ε′,
(iii) Pδ0(∃u ∈ NεL(T ) ; Xu(εL(T )) ≤ −2εη−1L(T )) ≤ ε′.

Those statements follow from classical results on the BBM and birth processes, we postpone their proof for
now. For ε > 0 and κ ∈ [0, ε], notice that Nκδ−κσ(0)L(T ) ≻ δ−εσ(0)L(T ); so we deduce from Proposition 3.2
and a shift that, for ε > 0 and κ ∈ [0, ε],

PNκδ−κσ(0)L(T )

(
1

b∗T

(
max(XN

T )−m∗
T

)
≤ −λ

)
≤ Pδ0

(
1

b∗T

(
max(XN

T )− εσ(0)L(T )−m∗
T

)
≤ −λ

)
.

Let ε′ > 0. We apply the Markov property at time εL(T ), noticing that Lemma 6.5 implies for T sufficiently
large,

Pδ0

XN
εL(T )

((
−∞,−2εη−1L(T )

])
= 0 ,

XN
εL(T )

([
− 2εη−1L(T ),+∞

))
≥ Nε/4

 ≥ 1− 3ε′ ,

(indeed, on the event {∀s ≤ εL(T ), Zs < N}, the particle configurations of the BBM and N -BBM at time
εL(T ) are the same). In particular, on that event we have XN

εL(T ) ≻ Nε/4δ−2εη−1L(T ). Applying Markov’s

property at time εL(T ), then Proposition 3.2 again and a shift, we obtain

PNκδ−κσ(0)L(T )

(
1

b∗T

(
max(XN

T )−m∗
T

)
≤ −λ

)
≤ 3ε′ + PNε/4δ(εL(T ),− ε

4
σ(0)L(T ))

(
1

b∗T

(
max(XN

T )− ε
(
3σ(0)/4 + 2η−1

)
L(T )−m∗

T

)
≤ −λ

)
.

Recall that (3σ(0)/4 + 2η−1)L(T ) = O(b∗T ); hence, choosing ε′ and ε = ε(λ, η) small enough, we conclude

the proof of Proposition 3.3 by applying Lemma 6.4 at time T − εL(T ) with Nε/4 initial particles. □

We now prove Lemma 6.5. Let us first recall the following classical result on pure birth processes (see
e.g. [5, Ch. III]). In the following we consider a pure birth process (Zt)t≥0 with same rate β0 and offspring
distribution ξ as our time-inhomogeneous BBM (Xt)t∈[0,T ], and with Z0 := 1; in particular, when restricted
to [0, T ], it has the same distribution as the BBM’s population size (|Nt|)t∈[0,T ] under Pδ0 .

Proposition 6.6. [5, Theorems III.7.1–2] Let Ft := σ(Zs, s ≤ t), t ≥ 0. Then, under Pδ0 , the process
(e−t/2Zt)t≥0 is a (Ft)t≥0-martingale, is non-negative and converges a.s. and in L1 to some random variable
W . Moreover, E[W ] = 1 and Pδ0(W > 0) = 1.

Proof of Lemma 6.5. Let us start with Lemma 6.5.(i–ii). We prove them for a birth process (Zt)t≥0 by using
Proposition 6.6; then these statements also hold for (|Nt|)t∈[0,T ], assuming T was taken sufficiently large.
On the one hand, for any x > 0, one has for t sufficiently large

P(Zt ≤ et/4) ≤ P(e−t/2Zt ≤ x) ≤ P(W ≤ 2x) + o(1) ,

where the second inequality comes from the L1 convergence of the martingale, i.e. P(|W − e−t/2Zt| > x) → 0
as t → +∞. Assuming x was chosen sufficiently small and replacing t with εL(T ), this proves Lemma 6.5.(i)
for T sufficiently large. On the other hand, we have by Doob’s martingale inequality that, for t ≥ 0,

P(∃ s ≤ t ; e−s/2Zs ≥ et/2) ≤ e−t/2 .

Again, letting t = εL(T ) and assuming T large enough, this implies Lemma 6.5.(ii).4

4Actually this proves a much stronger result, but we do not need it in this paper.
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We now turn to Lemma 6.5.(iii), where we let Zt := |Nt| for t ∈ [0, T ]. Let (Y i
t )t∈[0,T ], i ∈ N denote a

sequence of i.i.d. time-inhomogeneous Brownian motions with infinitesimal variance σ(·/T ). As a consequence
of Slepian’s lemma [53], one has for t ∈ [0, T ] and k ∈ N,

Pδ0

(
∃u ∈ Nt ; Xu(t) ≤ −2η−1t

∣∣Zt = k
)
≤ P0

(
∃i ≤ k ; Y i

t ≥ 2η−1t
)
= 1−

[
1−P0(Y

1
t ≥ 2η−1t)

]k
,

where we also used the Brownian symmetry property. Recall that for i ∈ N,

E0

[
(Y i

t )
2
]
=

∫ t

0

σ2(s/T ) ds ≤ η−2t,

and recall the standard Gaussian tail estimate, P0(W1 ≥ x) ≤ 1
x
√
2π

e−x2/2 for x > 1. Thus, for t sufficiently

large, one has

P0(Y
1
t ≥ 2η−1t) ≤ P0(W1 ≥ 2

√
t) ≤ 1

2
√
2πt

e−2t .

Let t = εL(T ) in the above, and recall from Proposition 6.6 that Pδ0(ZεL(T ) ≥ N(T )3ε/2) → 0 as T → +∞
(this is similar to Lemma 6.5, we do not write the details again). Therefore, we deduce for T large,

Pδ0

(
∃u ∈ NεL(T ) ; Xu(εL(T )) ≤ −2εη−1L(T )

)
≤ o(1) + 1−

[
1− 1

2
√

2πεL(T )
N(T )

−2ε

]N(T )3ε/2

= o(1) ,

which concludes the proof. □

It only remains to prove Lemma 6.4, which is a consequence of Lemmata 6.3 and 4.1. We proceed
differently depending on the regime satisfied by L(T ).

Proof of Lemma 6.4, N(T ) super-critical or critical. In the super-critical and critical regimes, the proof

is instantaneous. Indeed, in both cases one has t∗T = T ; recalling (6.3) and the notation γ∗,h,x
T (·) from

Section 4.1, one has

γ
∗,1−ε,(1−ε)(1−κ)
T (T ) + (1− 2ε)σ(1)L(T )− κσ(0)L(T )

= γ
∗,1−ε,1−ε(1−κ)
T (T )− εσ(1)L(T ) .(6.19)

Letting ε be arbitrarily small and applying Lemmata 4.1 and 6.3 (more precisely (6.14)), this gives exactly
Lemma 6.4 in both regimes. □

We now turn to the proof of Lemma 6.4 in the sub-critical regime (L(T ) ≪ T 1/3), which requires a little
more care. Since our estimates do not directly hold at time T in that regime, we split the interval [0, T ] into
blocks whose lengths are of order tsubT , apply our estimates on each of those, then use them to reconstruct a
process on [0, T ] which is dominated by the N -BBM.

First, we may always bound the N -BBM from below by having it start with fewer particles, recall
Proposition 3.2: hence, in (6.13) and in the following, we assume that ε is small and that κ = ε without loss
of generality. Moreover, it will be very convenient to work with quantiles instead of the maximal displacement.
For some particle configuration µ ∈ C, define

(6.20) qκ(µ) := inf{q ∈ R ; µ([q,+∞)) < Nκ} .
Notice that qκ is non-decreasing, i.e. for µ ≺ ν, one has qκ(µ) ≤ qκ(ν). Moreover, we clearly have
max(XN

T ) ≥ qκ(XN
T ), so it suffices to prove the lemma with max(XN

T ) replaced by qκ(XN
T ).

We now introduce an auxiliary process (XN

t )0≤t≤T . Let us define K := ⌊2T/tsubT ⌋, and for 0 ≤ k ≤ K − 1,

let tk := k
2 t

sub
T , and tK = T (so tK − tK−1 ∈ [ 12 t

sub
T , tsubT ]). The process (XN

t )0≤t≤T is defined as follows:
starting from ⌊Nκ⌋δ0 (we omit the integer part in the following), it evolves between times tk and tk+1 as the
process XN . Then, at every time tk, 1 ≤ k < K, all but the Nκ top-most particles are removed, and the
remaining particles are all set to the lowest among their positions. In other words, a configuration µ ∈ CN is
replaced by the configuration Nκδqκ(µ). By a coupling argument (recall Proposition 3.2) and an induction,
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one obtains straightforwardly a coupling such that XN

T ≺ XN
T with probability 1. In particular, the law of

qκ(X
N

T ) stochastically bounds from below the law of qκ(XN
T ), which is lower than max(XN

T ); hence it suffices

to prove (6.17) with max(XN
T ) replaced by qκ(X

N

T ).
For 1 ≤ k ≤ K, write

Xk = qκ
(
XN

tk

)
− qκ

(
XN

tk−1

)
,

so that qκ(X
N

T ) = X1 + · · ·+XK (recall that XN

0 = Nκδ0). By the definition of the process XN
and the

fact that a translation of the N -BBM is again an N -BBM started from a translated initial configuration, the
random variables X1, . . . , XK are independent.

Using that notation, we may finally prove Lemma 6.4 in the sub-critical regime. However, the proof relies
on two different methods, depending on the speed at which N(T ) diverges.

Proof of Lemma 6.4, N(T ) sub-critical and super-polynomial. Assume that N(T ) is super-polynomial, i.e.
L(T ) ≫ log(T ). Recall (6.13), which implies for 1 ≤ k ≤ K that

(6.21) P
(
Xk ≥ γsub

T (tk)− γsub
T (tk−1)− η−1L(T )

)
≥ 1− c1N

−c2 ,

for some c1, c2 locally uniform in ε = κ ∈ (0, 1). Recalling the definition of the process (XN

t )0≤t≤T , that the

Xk, 1 ≤ k ≤ K are independent and that qκ(X
N

T ) = X1 + · · ·+XK , one deduces through a direct induction
that

PNκδu0

(
qκ(X

N

T ) ≥ γsub
T (T )−Kη−1L(T )

)
≥ (1− c1N

−c2)K .

Notice that KN−c2 ≤ θ(T )T
L(T )3 e

−c2L(T ); so, under the assumption L(T ) ≫ log(T ), the latter probability goes

to 1 as T → +∞, locally uniformly in κ ∈ (0, 1). Recalling that qκ(X
N

T ) stochastically bounds from below
max(XN

T ), this finally implies

PNκδu0

(
max(XN

T ) ≤ γsub
T (T )−Kη−1L(T )

)
−→ 0

as T → +∞, locally uniformly in κ. Moreover, Kη−1L(T ) ≤ η−1 θ(T )T
L(T )2 = o(T/L(T )2) and L(T ) =

o(T/L(T )2). Hence, applying a shift −κσ(0)L(T ) to the estimate above, we deduce from Lemma 4.1 and
the same computation as (6.19) that, with ε arbitrarily small, the lower bound (6.17) holds in the case N(T )
sub-critical, super-polynomial. □

If L(T ) is too small, the decomposition above involves so many blocks that, with large probability, the

auxiliary process XN
does not satisfy the event (6.21) on some of them. However, having a small L(T ) allows

us to derive sharp moment estimates on Xk, 1 ≤ k ≤ K, then to estimate the final maximal displacement
with a second moment method.

Proof of Lemma 6.4, N(T ) sub-critical, L(T ) very small. In the following, we assume that L(T ) ≪ T 1/8 for
T sufficiently large. In particular, we are still in the sub-critical regime, and (6.1) yields tsubT = L(T )4. We
claim the following: there exist c1, c2 > 0 such that for T sufficiently large, for every k ∈ {1, . . . ,K}, we have

E[Xk] ≥ (γsub
T (tk)− γsub

T (tk−1)) · (1− c1N
−c2)− c1L(T ),(6.22)

Var
(
Xk

)
≤ c1(t

sub
T )2.(6.23)

Let us see how equations (6.22) and (6.23) imply the lemma. First note that using (6.22), we have

E[X1 + . . .+XK ] ≥ γsub
T (T )(1− c1N

−c2)− c1L(T )×K,

and, using that K ≤ 2T/tsubT = 2T/L(T )4, we get that

E[qκ(X
N

T )] = E[X1 + . . .+XK ] ≥ γsub
T (T ) + o

(
T

L(T )2

)
.
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Furthermore, by the independence of the random variables X1, . . . , Xk, we get using (6.23) that

Var(qκ(X
N

T )) =

K∑
k=1

Var(Xk) ≤ 2 c1t
sub
T T = o

((
T

L(T )2

)2
)
,

where for the last equality we used that tsubT = L(T )4 and L(T ) ≪ T 1/8. Using the Bienaymé-Chebychev
inequality, this yields that

qκ(X
N

T ) ≥ γsub
T (T ) + oP

(
T

L(T )2

)
,

with large probability, where we recall the notation oP(·) from Theorem 1.1.. Here again, applying a shift
−κσ(0)L(T ) = o(T/L(T )2) to the estimate above and letting κ, ε be small, we deduce from Lemma 4.1 and
the same computation as (6.19) that the lower bound (6.17) holds in the case L(T ) ≪ T 1/8.

It remains to prove (6.22) and (6.23). We start with (6.22). Noting that the process evolves between
times tk and tk+1 as a N -BBM with variance profile σ(tk/T + ·), it is enough to show that

(6.24) ENκδ0

[
qκ(XN

t )
]
≥ γsub

T (t) (1− c1N
−c2).

where c1, c2 are uniform in σ ∈ S∗
η and t ∈ [ 12 t

sub
T , tsubT ]. Most hard work has been done in Lemma 6.3, which

yields that, with the same notation,

(6.25) PNκδ0

(
qκ(XN

t ) < γsub
T (t)

)
≤ c1N

−c2 .

Assuming from now on that T is large enough, so that γsub
T (t) ≥ ctsubT ≥ 0 for some c > 0 and all

t ∈ [ 12 t
sub
T , tsubT ], we deduce from (6.25) that

(6.26) ENκδ0

[
qκ(XN

t ) 1{qκ(XN
t )≥0}

]
≥ γsub

T (t)PNκδ0

(
qκ(XN

t ) ≥ γsub
T (t)

)
≥ γsub

T (t) (1− c1N
−c2) ,

uniformly in t ∈ [ 12 t
sub
T , tsubT ]. On the other hand, recalling from Proposition 3.1 that we can couple XN and

X in such a way that the particles of XN form a subset of the particles of X , we have

ENκδ0

[
qκ(XN

t ) 1{qκ(XN
t )≤0}

]
≥ −ENκδ0

[
(min(Xt))− 1{qκ(XN

t )≤0}

]
,

and, using the Cauchy-Schwarz inequality and the symmetry of the Gaussian distribution, we get

(6.27) ENκδ0

[
qκ(XN

t ) 1{qκ(XN
t )≤0}

]
≥ −

√
ENκδ0

[
(max(Xt))2+

]
× PNκδ0

(
qκ(XN

t ) ≤ 0
)
.

Let us recall the following standard result on Gaussian random variables. Let us mention that we are not
aiming for optimal constants or bounds in this statement. The proof is postponed to the end of this section.

Lemma 6.7. Let t ∈ (0, T ], M ≥ 1 and (gi)1≤i≤M a centered Gaussian vector, such that each gi has variance
ρ2 ≥ 0. Then, for M ≥ 2, one has

(6.28) E
[
(max{gi , 1 ≤ i ≤ M})2+

]
≤ 4ρ2 logM .

We wish to apply Lemma 6.7 to bound ENκδ0

[
(max(Xt))

2
+

]
. To do this, condition on the branching

times and denote by Zt the number of particles at time t. Then apply the lemma with M = Zt and ρ2 =
σ2(t/T )× t and recall that σ ∈ Sη. This gives

ENκδ0

[
(max(Xt))

2
+

]
≤ 4η−2 × t× ENκδ0 [logZt].

But we have ENκδ0 [Zt] = Nκet/2 and Zt ̸= 0 almost surely, so that by Jensen’s inequality,√
ENκδ0

[
(max(Xt))2+

]
≤
√
4η−2 × t× (κ logN + t/2) ≤ CtsubT ,
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for some C > 0, using that t ≤ tsubT and logN = L(T ) = o(tsubT ). Plugging this into (6.27) and using (6.25),
we get, possibly modifying the values of c1 and c2,

(6.29) ENκδ0

[
qκ(XN

t ) 1{qκ(XN
t )≤0}

]
≥ −γsub

T (t) c1N
−c2 .

Combining (6.26) and (6.29) yields (6.24) and therefore (6.22).
The proof of (6.23) is much simpler: it suffices to prove E[X2

k ] ≤ c1(t
sub
T )2 for some c1 > 0, which

is obtained via the embedding of the N -BBM into a BBM without selection used above, together with
Lemma 6.7. Details are omitted. □

Proof of Lemma 6.7. This result is standard, but we provide a proof for completeness. For u0 > 0, bound

E
[
(max{gi , 1 ≤ i ≤ M})2+

]
=

∫ +∞

0

2uP(max{gi , 1 ≤ i ≤ M} ≥ u) du

≤ u2
0 +

∫ +∞

u0

2uP(max{gi , 1 ≤ i ≤ M} ≥ u) du .

A union bound and a standard estimation on the Gaussian tail imply that, for u > ρ,

(6.30) P(max{gi , 1 ≤ i ≤ M} ≥ u) ≤ M

√
2

π

ρ

u
exp(−u2/2ρ2) ≤ M

√
2

π
exp(−u2/2ρ2) .

Using (6.30), one has for u0 > ρ,

E
[
max{gi , 1 ≤ i ≤ M}2

]
≤ u2

0 + 2

√
2

π
Mρ2 exp(−u2

0/2ρ
2) .

Letting u0 = ρ
√
2 logM , and M ≥ 2, this concludes the proof. □

Remark 6.1. With this, the proof of Lemma 6.4 is finally completed in every regime for L(T ). Indeed, the
only case we have not treated is when the sub-critical regime alternates between the sub-cases N(T ) super-
polynomial and L(T ) smaller than T 1/8. This situation can be handled e.g. by letting L1(T ) := L(T )∧(log T )2,
L2(T ) := L(T ) ∨ (log T )2, then applying (6.17) to both cases (for which we have displayed complete proofs).
Then the l.h.s. in (6.17) for the “oscillating” L(T ) is bounded from above by the maximum of two vanishing
sequences: we leave the details to the reader.

7. Upper bound on the maximum of the N-BBM

Let ∗ ∈ {sub, sup, crit}. In this section, we prove Proposition 3.4: in a similar manner to Section 6
and the proof of Proposition 3.3, we show that the trajectory of a BBM between well-chosen barriers is
similar to that of an N+-BBM with large probability, and deduce an upper bound on the N -BBM with the
coupling argument from Lemma 4.6 and the definition of the upper barrier. However in this section we face a
noticeable complication: since we are considering a quite long time interval [0, t∗T ] (especially for the critical
and sub-critical cases: for ∗ ∈ {sub, crit}, one has t∗T ≳ L(T )3) the total population between the barriers
may grow significantly over time, and some individuals may eventually realize very large displacements
with positive probability. Thus, one cannot simultaneously guarantee that, with large probability, at least
N particles of the process remain between the barriers throughout [0, t∗T ] , and that our choice of upper
barrier does not kill any particle —which is necessary for the coupling with the N+-BBM, as opposed to the
N−-BBM (recall Lemma 4.6 and Remark 4.2). This observation is made more precise in Remark 7.1 below.

To circumvent that issue, we choose the parameters of the barriers so that the number of particles
in-between is at least N at all time with large probability, and we apply some additional “control” on the
population to prevent it from growing too much. The key idea for this purpose is the following: particles
that contribute the most to the growth of the population are those which realize “peaking” events in their
trajectory; that is, they rise close to the upper barrier at some time, then generate a large offspring in the
time span before they fall near the lower barrier. This was observed in particular in [9] when studying a
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(homogeneous) BBM with adsorption and near-critical drift: the authors introduce a killing barrier at height
L > 0, and choose a drift such that the first moment of the population size remains roughly eL for a time
L3; and in that regime, they observe that removing “peaking” particles that reach a fixed height strongly
affects the survival probability of the process on the time interval [0, L3]. Therefore in our setting, we mark
particles that rise close to the upper barrier; and, in order to control the population, we apply a slightly
stronger selection to their offspring: more precisely, we kill their children at a shifted-upward version of the
lower barrier. In this way, our choice of barriers is still lax enough to keep N surviving particles in-between
at all time, but the offspring of any peaking particle is kept in check. Overall, this ensures us a better control
on the population of the BBM between barriers, which prevents with large probability the birth of particles
that outreach the upper barrier: in turn, this finally enables the comparison with a multi-type N+-BBM,
which itself can be coupled to the N -BBM.

Let ε ∈ (0, 1) a small parameter, and fix

(7.1) h = 1 + ε , x = 1 +
2

3
ε .

Then, define once again the barriers γ∗
T , γ

∗
T for each regime ∗ ∈ {sup, sub, crit} according to (4.8), (4.9)

and (4.10) respectively, with those h, x; in particular they satisfy (4.3).
We define the “red” barriers for s ∈ [0, T ] with

(7.2) γred
T (s) := γ∗

T (s) +
ε

3
σ(s/T )L(T ) , and γred

T (s) := γ∗
T (s) +

ε

3
σ(s/T )L(T ) ,

which are slightly shifted versions of γ∗
T , γ

∗
T , so that γ∗

T (s) ≤ γred
T (s) ≤ γ∗

T (s) ≤ γred
T (s) for all s ∈ [0, T ]. We

also define the sets of “white” and “red” particles with

(7.3) Nwhite
s :=

{
u ∈ Ns

∣∣Xu(r) ∈
(
γ∗
T (r), γ

∗
T (r)

)
, ∀ r ≤ s

}
,

and

(7.4) N red
s :=

u ∈ Ns

∣∣∣∣∣∣∣
∃ v ≤ s, s.t. Xu(v) = γ∗

T (v),

Xu(r) ∈
(
γ∗
T (r), γ

∗
T (r)

)
, ∀ r ≤ v,

Xu(r) ∈
(
γred
T (r), γred

T (r)
]
, ∀ v ≤ r ≤ s

 .

In other words, we start the process with only white particles, which are killed at γ∗
T . When they reach γ∗

T ,
they are “colored” red (instead of being killed) and keep evolving; however, red particles and their offspring
are thereafter killed at the barriers γred

T and γred
T .

Recall t∗T and θ(·) from (6.1–6.2). Recall the definitions of A∗
T,I , R

∗
T (s, t) from (4.5), (4.6), which are

expressed in terms of γ∗
T and γ∗

T . Let us rewrite all estimates from Propositions 5.1, 5.3, 5.4, 5.5, 5.6, 5.7,
5.9, 5.10 and 5.11 for an initial condition (or, equivalently, both barriers) shifted by −yσ(0)L(T ), y ∈ [0, x)
(respectively shifted by +yσ(0)L(T )): this formulation is more convenient to handle all atoms from the
initial distribution µε (recall (3.2)). For all regimes ∗ ∈ {sup, sub, crit}, one has

Eδ−yσ(0)L(T )

[
|A∗

T,I(t)|
]
≤ Nx−y−inf I+o(1) ,(7.5)

Eδ−yσ(0)L(T )

[
|A∗

T,I(t)|
]
= Nx−y−inf I+o(1) if, additionally, t ≥θ L(T ) ,(7.6)

Eδ−yσ(0)L(T )

[
|A∗

T,z(t)|2
]
≤ Nx+h−y−2z+o(1) ,(7.7)

Eδ−yσ(0)L(T )

[
R∗

T (0, t
∗
T )
]
≤ N−(h+y−x)+o(1) ,(7.8)

for some vanishing terms o(1) as T → +∞: more precisely, in (7.5, 7.7, 7.8), these error terms are uniform in
σ ∈ S∗

η , 0 ≤ t ≤ t∗T and x, z ∈ [0, h], I ⊂ [0, h] a non-trivial sub-interval; and in (7.6), it is uniform in σ ∈ S∗
η ,

L(T ) ≤θ t ≤ t∗T and locally uniform in x, I.
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For ε > 0, s ∈ [0, T ], let us generalize the counting measure µε defined in (3.2), by letting

(7.9) µε,s :=

⌈ε−1⌉∑
k=0

⌈
Nkε+ ε

2

⌉
δ−kεσ(s/T )L(T ) , and µε := µε,0 ,

which is supported on [−σ(0)L(T ), 0] ⊂ (γred
T (0), γ∗

T (0)), and notice that δ0 ≺ µε and µε([−σ(0)L(T ), 0]) ≥
N1+ ε

2 . In the remainder of this section we will assume that ε−1 ∈ N and omit all integer parts, in order to
lighten all formulae.

7.1. Estimates for the BBM between barriers. We start the branching-selection process with only
white particles distributed according to µε, and prove that, with large probability, the following three claims
hold:

(C-1) there are at least N (white) particles above γred
T at all time t ∈ [0, t∗T ],

(C-2) no particle reaches γred
T throughout [0, t∗T ],

(C-3) the distribution of particles between the barriers at time t ≲ t∗T is close to µε,t.
Let us mention that the third claim (C-3) is actually not needed to prove Theorem 1.1; however it is

needed for Proposition 1.4, and it relies on moment methods similar to (C-1) and (C-2), so we included its
proof in this section.

Lower bound on the number of living particles. Let us first prove (C-1), which ensures us that no particle
from (Nwhite

s ∪N red
s )s∈[0,t∗T ] killed either by γ∗

T or γred
T is among the N highest of the process at any time.

Proposition 7.1. Let ε ∈ (0, 1) and h, x as in (7.1). Then there exist constants c1, c2 > 0 such that, for T
sufficiently large, one has

(7.10) Pµε

(
∃s ≤ t∗T ; |A∗

T, ε3
(s)| < N

)
≤ c1N

−c2 ,

where c1, c2 are uniform in σ ∈ S∗
η , and locally uniform in ε ∈ (0, 1).

The proof uses the following lemma, which bounds from below the survival probability, for a time shorter
than L(T )3, of a single particle between γred

T and γ∗
T . Recall that θ(T ) is defined in (6.1–6.2).

Lemma 7.2. Let t′(T ) := θ(T )(L(T )3 ∧ T ). Then

Pδ−σ(0)L(T )

(
∃u ∈ Nt′ ; ∀s ≤ t′ , Xu(s) ∈ [γred

T (s), γa
T (s)]

)
≥ e−o(L(T )) ,

as T → +∞, uniformly in σ ∈ S∗
η and locally uniformly in ε ∈ (0, 1).

Proof of Lemma 7.2. Recall Lemma 4.5, which ensures us that we may tighten the barriers on a short time

interval. More precisely let K > 3 a large constant, and recall Lemma 4.5 and the notation γ∗,h′,x′

T , γ∗,h′,x′

T

for h′ > x′ > 0. Then, the lemma and a vertical shift of the process yield

Pδ−σ(0)L(T )

(
∃u ∈ Nt′ ; ∀s ≤ t′ , Xu(s) ∈ [γred

T (s), γ∗
T (s)]

)
≥ Pδ0

(
∃u ∈ Nt′ ; ∀s ≤ t′ , Xu(s) ∈

[
γ
∗, ε

K , ε
2K

T (s), γ
∗, ε

K , ε
2K

T (s)
])

,

Recall the definition of A∗
T (·) from (4.5), and let us extend it to a generic pair of barriers γ∗,h′,x′

T , γ∗,h′,x′

T ,
for h′ > x′ > 0, by writing for s ∈ [0, T ],

A∗,h′,x′

T (s) :=
{
u ∈ Nt

∣∣∣ Xu(s) ∈
[
γ∗,h′,x′

T (s), γ∗,h′,x′

T (s)
]
, ∀ s ∈ [0, t]

}
.

Then, Paley-Zygmund’s inequality gives

Pδ0

(
∃u ∈ Nt′ ; ∀s ≤ t′ , Xu(s) ∈

[
γ
∗, ε

K , ε
2K

T (s), γ
∗, ε

K , ε
2K

T (s)
])

= Pδ0

(∣∣A∗, ε
K , ε

2K

T (t′(T ))
∣∣ ≥ 1

)
≥

(
1− 1

Eδ0

[∣∣A∗, ε
K , ε

2K

T (t′(T ))
∣∣]
)

Eδ0

[∣∣A∗, ε
K , ε

2K

T (t′(T ))
∣∣]2

Eδ0

[∣∣A∗, ε
K , ε

2K

T (t′(T ))
∣∣2] .
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Recalling the moment estimates (7.5–7.7) for the triplet of parameters (h′, x′, y) = ( ε
K , ε

2K , 0), one obtains

as T → +∞,5

Eδ0

[∣∣A∗, ε
K , ε

2K

T (t′(T ))
∣∣] = N

ε
2K +o(1) , and Eδ0

[∣∣A∗, ε
K , ε

2K

T (t′(T ))
∣∣2] ≤ N

3ε
2K +o(1) .

Therefore, one finally deduces that

Pδ−σ(0)L(T )

(
∃u ∈ Nt′ ; ∀s ≤ t′ , Xu(s) ∈ [γred

T (s), γ∗
T (s)]

)
≥ N− ε

K +o(1) ,

as T → +∞; letting K → +∞, this finishes the proof of the lemma. □

Proof of Proposition 7.1. Since one has µε ≻ N1+ ε
2 δ−σ(0)L(T ), we only have to prove (7.10) for the latter

initial measure; then the proposition follows from a direct monotonic coupling argument.
We prove this proposition with a union bound, splitting the time interval [0, t∗T ] into a first part of length

t′(T ) := θ(T )(L(T )3 ∧ T ), and the remainder into intervals of length 1. Thus,

P
N1+ ε

2 δ−σ(0)L(T )

(
∃s ≤ t∗T ; |A∗

T, ε3
(s)| < N

)
≤ P

N1+ ε
2 δ−σ(0)L(T )

(
∃s ≤ t′(T ) ; |A∗

T, ε3
(s)| < N

)
+

t∗T−1∑
k=t′(T )

P
N1+ ε

2 δ−σ(0)L(T )

(
∃s ∈ [k, k + 1] ; |A∗

T, ε3
(s)| < N

)
,(7.11)

where, again, we respectively wrote t′(T ), t∗T − 1 instead of ⌊t′(T )⌋, ⌈t∗T − 1⌉ to lighten notation. Notice that
the sum may be empty in the super-critical regime.

We start with the first term in (7.11). Let M denote the number of individuals from the initial population
which have at least one descendant surviving between γred

T and γ∗
T until time t′ := t′(T ). For a single initial

particle in −σ(0)L(T ), we write,

pT := Pδ−σ(0)L(T )

(
∃u ∈ Nt′ ; ∀s ≤ t′ , Xu(s) ∈ [γred

T (s), γ∗
T (s)]

)
≥ e−o(L(T )) ,

where the last inequality is the content of Lemma 7.2. In particular, one has,

pT = Pδ−σ(0)L(T )
(M = 1) = 1− Pδ−σ(0)L(T )

(M = 0) .

Starting from an initial population of N1+ ε
2 particles, recall that they have independent offspring. Therefore,

under P
N1+ ε

2 δ−σ(0)L(T )
, one has that M is a binomial random variable with parameters (N1+ ε

2 , pT ). Moreover,

bounding the first term in (7.11) from above by killing particles at γred
T , we have,

P
N1+ ε

2 δ−σ(0)L(T )

(
∃s ≤ t′(T ) ; |A∗

T, ε3
(s)| < N

)
≤ P

N1+ ε
2 δ−σ(0)L(T )

(M < N) .

Then, Paley-Zygmund’s inequality yields,

P
N1+ ε

2 δ−σ(0)L(T )
(M ≥ N) ≥

(
1− N

E
N1+ ε

2 δ−σ(0)L(T )
[M ]

)2 E
N1+ ε

2 δ−σ(0)L(T )
[M ]2

E
N1+ ε

2 δ−σ(0)L(T )
[M2]

=
(
1−N− ε

2 p−1
T

)2 N1+ ε
2 pT

1− pT +N1+ ε
2 pT

.

This implies P
N1+ ε

2 δ−σ(0)L(T )
(M < N) ≤ N− ε

2+o(1) as T → +∞, uniformly in σ ∈ S∗
η , which is the announced

upper bound for the first term in (7.11).
We now turn to the second term in (7.11). Recall (4.5): in particular, let D(s) denotes the set of white

particles that end in the interval [γred
T (s) + ε

2σ(s/T )L(T ), γ
∗
T (s)− ε

2σ(s/T )L(T )] at time s, that is,

D(s) := A∗
T,[ 5ε6 ,h− ε

2 ]
(s) .

5Recall that we can ensure L(T ) ≤θ t′(T ) (which is required to apply (7.6)), by choosing θ(·) decaying arbitrarily slowly
in (6.1–6.2), so that L(T ) ≤θ t′(T ) ≤θ T .
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Then, we bound each term of the sum with an union bound, for k ≥ t′(T ),
(7.12)
P
N1+ ε

2 δ−σ(0)L(T )

(
∃s ∈ [k, k + 1] ; |A∗

T, ε3
(s)| < N

)
≤ P

N1+ ε
2 δ−σ(0)L(T )

(
|D(k)| < N1+ ε

4

)
+ P

N1+ ε
2 δ−σ(0)L(T )

(
|D(k)| ≥ N1+ ε

4 ; ∃s ∈ [k, k + 1] ; |A∗
T, ε3

(s)| < N
)

We handle those two terms separately. Applying Paley-Zygmund’s inequality, we have

(7.13) P
N1+ ε

2 δ−σ(0)L(T )

(
|D(k)| ≥ N1+ ε

4

)
≥

(
1− N1+ ε

4

E
N1+ ε

2 δ−σ(0)L(T )

[
|D(k)|

])2 E
N1+ ε

2 δ−σ(0)L(T )

[
|D(k)|

]2
E
N1+ ε

2 δ−σ(0)L(T )

[
|D(k)|2

] .
Then, since k ≥ t′(T ) ≥θ L(T ), (7.6) implies that

Eδ−σ(0)L(T )
[|D(k)|] = N− ε

6+o(1),

as T → +∞. Moreover, (7.7) yields

Eδ−σ(0)L(T )

[
|D(k)|2

]
≤ N1+o(1),

as T → +∞. Noticing that the first moment of |D(k)| is additive in the initial measure, applying the
development (6.12) to its second moment and plugging these estimates into (7.13), we finally obtain

(7.14) P
N1+ ε

2 δ−σ(0)L(T )

(
|D(k)| ≥ N1+ ε

4

)
≥
(
1−N− ε

12+o(1)
)2 (

1 +N− ε
6+o(1)

)−1

= 1−N− ε
12+o(1) ,

where o(1) denotes a term vanishing as T → +∞ uniformly in t′(T ) ≤ k ≤ t∗T and σ ∈ S∗
η .

Regarding the second term in (7.12), let A denote the set of counting measures supported on [γred
T (k) +

ε
2σ(k/T )L(T ), γ

∗
T (k)− ε

2σ(k/T )L(T )] with total mass at least N1+ ε
4 . Using the Markov property at time k,

we have

P
N1+ ε

2 δ−σ(0)L(T )

(
|D(k)| ≥ N1+ ε

4 ; ∃ s ∈ [k, k + 1] , |A∗
T, ε3

(s)| < N
)

≤ sup
µ∈A

Pµ

(
∃ s ≤ 1 , |Ã∗

T, ε3
(s)| < N

)
,

with Ã∗
T, ε3

(·) being defined similarly to the event A∗
T, ε3

(·) for barriers γ∗
T , γ

∗
T shifted in time by k. Since

adding particles to the initial measure µ only decreases the probability in the r.h.s. above (this is follows
from a direct coupling argument), on can restrict the supremum to measures µ with total mass exactly N1+ ε

4 .
If the total population decreases from N1+ ε

4 to N at some time s ≤ 1, this implies that, among the initial
particles, at least N1+ ε

4 −N of them have no living descendant at time 1. Hence, a union bound yields

(7.15) sup
µ∈A

Pµ

(
∃ s ≤ 1 , |Ã∗

T, ε3
(s)| < N

)
≤
(

N1+ ε
4

N1+ ε
4 −N

)
×
(
sup
y

Pδy

(
|Ã∗

T, ε3
(1)| = 0

))N1+ ε
4 −N

,

where the supremum is taken over y ∈ [γred
T (k) + ε

2σ(k/T )L(T ), γ
∗
T (k)− ε

2σ(k/T )L(T )]. For any such y, we
may couple the N -BBM starting from y with a Brownian motion (Bs)s≥0 without reproduction, by looking
at an arbitrary descendant of y. If the N -BBM starting from δy goes extinct, the coupled Brownian motion
crosses one of the barriers γred

T , γ∗
T on the time interval [0, 1]. To do so, it must travel a distance at least

ε
4σ(0)L(T ), uniformly in y: therefore, there exists c, C > 0 such that,

sup
y

Pδy

(
|Ã∗

T, ε3
(1)| = 0

)
≤ sup

y
Py

(
∃ s ≤ 1 , |Bs − y| > ε

4σ(0)L(T )
)

≤ Ce−cL(T )2 ,

where the last inequality follows from standard computations on the Brownian motion. Plugging this
into (7.15) and using that

(
a
b

)
≤ aa−b for any a, b ∈ N, the second term in (7.12) is bounded from above by

N−O(L(T )N). Recollecting (7.14) and summing over O(t∗T ) terms in (7.11), we finally obtain the announced
upper bound. □
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Number of particles killed by the upper barrier. Let us now turn to the second claim (C-2). We provide an
estimate on the number of particles reaching the upper barriers before time t∗T : first we bound from above
the number of white particles that reach γ∗

T (i.e. white particles which are colored red); and then, for each
particle reaching γ∗

T for the first time, the number of (red) particles from its offspring that reach γred
T . Recall

the definition of R∗
T (0, t

∗
T ) from (4.6) as well as (7.8).

Claim 7.3. One has, as T → +∞,

(7.16) Eµε
[|R∗

T (0, t
∗
T )|] ≤ N

ε
6+o(1),

uniformly in σ ∈ S∗
η and locally uniformly in ε ∈ (0, 1).

Claim 7.4. Let t0 ∈ [0, t∗T ), and consider a BBM starting from one (red) particle in time-space location
(t0, γ

∗
T (t0)). Then one has, as T → +∞,

(7.17) Eδ(t0,γ∗
T

(t0))

∣∣∣∣∣∣
⋃

t0≤s≤t∗T

{
u ∈ Nr

∣∣∣∣∣Xu(r) ∈ (γred
T (r), γred

T (r))∀ t0 ≤ r < s,

Xu(s) = γred
T (s)

}∣∣∣∣∣∣
 ≤ N− ε

3+o(1),

where o(1) vanishes as T → +∞ uniformly in t0 ∈ [0, t∗T ) and σ ∈ S∗
η , and locally uniformly in ε ∈ (0, 1).

Proof of Claims 7.3, 7.4. The first result is a direct corollary of (7.8) and the additivity in the initial measure:
indeed, one has for any 0 ≤ k ≤ ε−1,

E
Nkε+ ε

2 δ−kεσ(0)L(T )
[R∗

T (0, t
∗
T )] = Nkε+ ε

2Eδ−kεσ(0)L(T )
[R∗

T (0, t
∗
T )] ≤ N (kε+ ε

2 )−(kε+ ε
3 )+o(1) = N

ε
6+o(1) ,

so Claim 7.3 follows by summing over k. Regarding Claim 7.4, it also follows from (7.8) applied to a time-
and space-shifted BBM on the time interval [t0, t

∗
T ], killed at the barriers γred

T , γred
T , and starting from a

single particle at distance ε
3σ(t0/T )L(T ) from the upper barrier γred

T (we do not write the details again). □

Remark 7.1. Let us point out that the upper bound in Claim 7.3 is larger than 1, and it is expected that
there exist white particles which reach γ∗

T before time t∗T with positive probability. The reader can check
that, in the sub-critical and critical regimes, there does not exist a choice of barrier parameters (h, x) and
initial configuration µε which yields simultaneously Proposition 7.1, and a moment estimate lower than 1 in
Claim 7.3. Nonetheless let us mention that, in the super-critical regime, The proof of Proposition 7.1 can be
simplified (especially (7.11)), because the time interval length is “short” tsupT = T ≪ L(T )3; and this allows
for a proof of Proposition 3.4 which does not use a multi-type N+-BBM.

Following these observations, we may finally prove that γred
T does not kill any particle with high probability.

Let Rred
T (0, t) denote the number of particles killed by γred

T . In particular, they remained above γ∗
T until some

time τu ≤ t∗T upon which they reached γ∗
T and were colored red; then they remained above γred

T throughout
[τu, t

∗
T ] and reached γred

T at some time r ∈ [τu, t] (upon which they are killed).

Proposition 7.5. One has, as T → +∞,

(7.18) Eµε

[
Rred

T (0, t∗T )
]
≤ N− ε

6+o(1),

uniformly in σ ∈ S∗
η and locally uniformly in ε ∈ (0, 1).

With this proposition at hand, claim (C-2) is obtained by applying Markov’s inequality to Rred
T (0, t∗T ).

Proof. This result is a consequence of Claims 7.3, 7.4 and a bit of stopping lines theory6, which extends
Markov stopping time theory to branching Markov processes. In our setting, define

L :=
{
(u, s) ; Xu(r) ∈ (γ∗

T (r), γ
∗
T (r)) ∀ r < s and Xu(s) = γ∗

T (s)
}
,

6For conciseness we do not write every detail here, but the reader can refer to [13, 24, 38] to learn more about this.
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which is a (random) stopping line. Let

FL := σ



∀r ≤ s,Xu(r) > γ∗

T (r) ,

∀r < s,Xu(r) < γ∗
T (r) ,

Xu(s) ∈ A

 ; s ≥ 0, u ∈ Ns, A ∈ Bor(R)

 .

Informally, FL is the sigma-algebra containing all information about white particles. Then the strong
branching property [38, Theorem 4.14] states that, conditionally on FL, the sub-trees of the process rooted
at the pairs (u, s) ∈ L are independent with respective distributions Pδ(s,Xu(s))

= Pδ(s,γ∗
T

(s))
.

Notice that Claim 7.3 implies |L| = R∗
T (0, t

∗
T ) < +∞, Pµε

-almost surely. Moreover, any particle in
Rred

T (0, t∗T ) almost surely has a single ancestor (u, τ) ∈ L —in particular this ancestor u was colored red at
time τ . Therefore, we obtain by conditioning with respect to FL and applying the strong branching property,

Eµε

[
Rred

T (0, t∗T )
]

= Eµε

Eµε

 ∑
(u,τ)∈L

∣∣∣∣∣ ⋃
τ≤r≤t∗T

{
v ∈ Nr, v ≽ u

∣∣∣∣∣Xv(s) ∈ (γred
T (s), γred

T (s)) ∀ s ∈ [τ, r),

Xv(r) = γred
T (r)

}∣∣∣∣∣
∣∣∣∣∣∣FL


= Eµε

 ∑
(u,τ)∈L

Eδ
(τ,γsub

T
(τ))

∣∣∣∣∣∣
⋃

τ≤t≤t∗T

{
v ∈ Nr

∣∣∣∣∣Xv(s) ∈ (γred
T (s), γred

T (s))∀ s ∈ [τ, r),

Xv(r) = γred
T (r)

}∣∣∣∣∣∣
 ,

where v ≽ u means that v ∈ Nr is a descendant of u ∈ Nτ , τ ≤ r. Plugging Claims 7.3, 7.4 into this, we
finally obtain

Eµε

[
Rred

T (0, t∗T )
]
≤ Eµε

[
N− ε

3+o(1) ×
∣∣L∣∣] = N− ε

3+o(1) ×N
ε
6+o(1) = N− ε

6+o(1),

which concludes the proof. □

Particle distribution at the final time. Finally, we prove the third statement (C-3). We first provide the
following two estimates, respectively for white and red particles.

Lemma 7.6. The following statements hold uniformly in σ ∈ S∗
η and locally uniformly in ε ∈ (0, 1).

(i) For 0 ≤ j, k ≤ ε−1, one has, as T → +∞,

(7.19) inf
s∈[θ(T )−1L(T ),t∗T ]

P
Nkε+ ε

2 δ−kεσ(0)L(T )

(
N (j+1)ε ≤

∣∣∣A∗
T,[h−(j+1)ε,h−jε](s)

∣∣∣ ≤ N (j+2)ε
)
≥ 1−N− ε

6+o(1) .

(ii) Let t0 ∈ [0, t∗T ), and consider a BBM starting from one (red) particle in time-space location (t0, γ
∗
T (t0)).

Then for 0 ≤ j ≤ ε−1, one has, as T → +∞,

(7.20) sup
s∈[t0,t∗T ]

Eδ(t0,γ∗
T

(t0))

[∣∣∣∣∣
{
u ∈ Ns

∣∣∣∣∣Xu(r) ∈ (γred
T (r), γred

T (r)) ∀ t0 ≤ r < s,

Xu(s)−γ∗
T (s)

σ(s)L(T ) ∈ [h− (j + 1)ε, h− jε]

}∣∣∣∣∣
]

≤ N (j+1)ε+o(1) .

From these results, the claim (C-3) follows naturally: let (Xwhite−red
s )s∈[0,t∗T ] denote the empirical mass

measure on R of the process defined by white and red particles, that is

(7.21) Xwhite−red
s :=

∑
u∈Nwhite

s ∪N red
s

δXu(s) , s ∈ [0, t∗T ] .

Recall (7.9). In order to have a condensed statement, let us write µ
(y)
ε,s for the counting measure µε,s shifted

upward by y, that is µ
(y)
ε,s(·) := µε,s(· − y), for s ∈ [0, T ], y ∈ R.

Proposition 7.7. Let ε > 0. Then one has as T → +∞,

(7.22) inf
s∈[θ(T )−1L(T ),t∗T ]

Pµε

(
µ
(γ∗

T (s)−εσ(s)L(T ))
ε,s ≺ Xwhite−red

s ≺ N
5
2 εµ

(γ∗
T (s))

ε,s

)
≥ 1−N− ε

6+o(1) ,

uniformly in σ ∈ S∗
η and locally uniformly in ε ∈ (0, 1).
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Proof of Lemma 7.6. (i) Recall (7.1) and (7.5–7.7). On the one hand, Markov’s inequality gives

P
Nkε+ ε

2 δ−kεσ(0)L(T )

(∣∣∣A∗
T,[h−(j+1)ε,h−jε](s)

∣∣∣ > N (j+2)ε
)

≤ Nkε+ ε
2N−(j+2)εEδ−kεσ(0)L(T )

[∣∣∣A∗
T,[h−(j+1)ε,h−jε](s)

∣∣∣]
≤ Nkε+ ε

2N−(j+2)εNx−kε−h+(j+1)ε+o(1) = N− 5
6 ε+o(1),

for 0 ≤ k, j ≤ ε−1, s ≤ t∗T and T large. On the other hand, Paley-Zygmund’s inequality and (7.5), (7.7)
yield for s ∈ [θ(T )−1L(T ), t∗T ], (we leave the details to the reader),

P
Nkε+ ε

2 δ−kεσ(0)L(T )

(∣∣∣A∗
T,[h−(j+1)ε,h−jε](s)

∣∣∣ ≥ N (j+1)ε
)

≥
(
1−N− ε

6+o(1)
)2 (

1 +N− ε
6+o(1)

)−1

≥ 1−N− ε
6+o(1) ,

for some c1, c2 > 0 and T sufficiently large, which concludes the proof of (7.19).
(ii) Similarly to Claim 7.4, this follows from (7.5) applied to a time- and space-shifted BBM on the

time interval [t0, t
∗
T ], killed at the barriers γred

T , γred
T , and starting from a single particle at distance

(h− ε
3 )σ(t0/T )L(T ) from the lower barrier γred

T (we leave the details to the reader). □

Proof of Proposition 7.7. Recall Claim 7.3 and (7.20). Using the strong branching property [38, Theo-
rem 4.14], one deduces uniformly in 0 ≤ j ≤ ε−1, s ∈ [θ(T )−1L(T ), t∗T ],

Eµε

[∣∣∣{u ∈ N red
s ;

Xu(s)−γ∗
T (s)

σ(s)L(T ) ∈
[
− (j + 1)ε,−jε

]}∣∣∣] ≤ N
ε
6+(j+1)ε+o(1) .

Hence, a union bound and Markov’s inequality yield,

Pµε

(
∃ 0 ≤ j ≤ ε−1 ;

∣∣∣{u ∈ N red
s ;

Xu(s)−γ∗
T (s)

σ(s)L(T ) ∈ [−(j + 1)ε,−jε]
}∣∣∣ > N (j+2)ε

)
≤ N− 5

6 ε+o(1) .

Moreover, a union bound and (7.19) yield that, uniformly in s ∈ [θ(T )−1L(T ), t∗T ],

Pµε

(
∃ 0 ≤ j ≤ ε−1 ;

∣∣∣{u ∈ Nwhite
t∗T

;
Xu(t

∗
T )−γ∗

T (t∗T )
σ(t∗T )L(T ) ∈

[
− (j + 1)ε,−jε

]}∣∣∣ /∈ (ε−1 + 1)
[
N (j+1)ε, N (j+2)ε

])
≤

ε−1∑
j=0

ε−1∑
k=0

sup
s∈[ 12 t

∗
T ,t∗T ]

P
Nkε+ ε

2 δ−kεσ(0)L(T )

(∣∣∣A∗
T,[h−(j+1)ε,h−jε](s)

∣∣∣ /∈ [N (j+1)ε, N (j+2)ε
])

≤ N− ε
6+o(1) ,

for T large. Therefore, there exists Tε > 0 such that for T ≥ Tε, with large Pµε
-probability, for all

0 ≤ j ≤ ε−1, there are between N (j+1)ε and N (j+3)ε particles (white or red) ending in the interval
γ∗
T (s) + σ(s)L(T )[−(j + 1)ε,−jε] at time s, uniformly in s ∈ [θ(T )−1L(T ), t∗T ]. Recalling (7.9), this directly

implies the proposition. □

7.2. Proof of Proposition 3.4. We may finally display the proof of Proposition 3.4. It shares several
similarities to that of Lemma 6.4, notably with the sub-critical case needing additional work (since our
moment estimates do not hold until time T ). Recall that the point measure of the N -BBM throughout time
is denoted (XN

t )t≥0. Let ε ∈ (0, 1), ∗ ∈ {sub, sup, crit}, and recall (6.1), (7.1) and the definitions of γ∗
T , γ

∗
T

from (4.8–4.10).

Lemma 7.8. Let ε ∈ (0, 1) and ∗ ∈ {sub, sup, crit}. There exists c1, c2 > 0 such that for T sufficiently large,
one has

(7.23) inf
t∈[0,t∗T ]

Pµε

(
max(XN

t ) ≤ γred
T (t)

)
≥ 1− c1N

−c2 ,

and

(7.24) inf
t∈[θ(T )−1L(T ),t∗T ]

Pµε

(
XN

t ≺ µ
(γ∗

T (t)+3εσ(t/T )L(T ))
ε,t

)
≥ 1− c1N

−c2 ,

where c1, c2 are uniform in σ ∈ S∗
η and locally uniform n ε ∈ (0, 1).
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Let us mention that the proof of Theorem 1.1 only requires (7.23); however (7.24) is obtained with the
same method and is needed to prove Proposition 1.4 in Section 8.

Proof of Lemma 7.8. Let us start with (7.23). Recall from (7.3–7.4) and (7.21) that (Xwhite−red
s )s≥0 denotes

the empirical mass measure of the process containing both white and red particles. Notice that Proposition 7.5
and Markov’s inequality imply that, as T → +∞,

(7.25) Pµε

(
∃s ∈ [0, t∗T ] , ∃u ∈ Nwhite

s ∪N red
s ; Xu(s) = γred

T (s)
)

≤ c1N
−c2 ,

for some c1, c2 > 0, uniform in σ ∈ S∗
η and locally uniform in ε ∈ (0, 1). Furthermore, Proposition 7.1

implies that, with probability larger than 1− c1N
−c2 , there are N particles above γred

T (·) at all time t ≤ t∗T .
Recalling Lemma 4.6 and Remark 4.2, on the intersection of these two events, (Xwhite−red

s )s≥0 matches the
trajectory of a (multi-type) N+-BBM with large Pµε

-probability. This implies that, for some c1, c2 > 0,

Pµε

(
max(XN

t ) > γred
T (t)

)
≤ Pµε

(
max(Xwhite−red

t ) > γred
T (t)

)
+ 2c1N

−c2 = 2c1N
−c2 ,

for T sufficiently large, uniformly in t ≤ t∗T ; this proves (7.23).
Furthermore, the same coupling argument and Proposition 7.7 yield

inf
s∈[ 12 t

∗
T ,t∗T ]

Pµε

(
XN

s ≺ N
5
2 εµ

(γ∗
T (s))

ε,s

)
≥ 1− 3c1N

−c2 ,

for large T , uniformly in σ ∈ S∗
η and locally uniformly in ε ∈ (0, 1). Moreover, XN

s contains at most N
particles by definition, whereas µε,s contains strictly more. Hence, recalling the definition of µε,s (7.9) and
shifting it upward by 3εσ(s/T )L(T ), this finally implies (7.24). □

Proof of Proposition 3.4, N(T ) super-critical or critical. In the super-critical and critical regimes, Proposi-
tion 3.4 follows directly from Lemma 7.8 (more precisely (7.23)) and Lemma 4.1. Indeed, recall (7.1–7.2)

and that t∗T = T in those regimes (see (6.1)). Recalling the notation γ∗,h,x
T , h > x > 0, one has

γred
T (T ) = γ

∗,1+ε,1+ 2ε
3

T (T ) +
ε

3
σ(1)L(T ) .

Letting ε arbitrarily small and applying Lemmata 7.8 and 4.1, this implies Proposition 3.4 in both regimes. □

We now turn to the sub-critical regime. In a similar manner to Section 6.2, we split the interval [0, T ]
into blocks of length 1

2 t
sub
T : more precisely, let K := ⌊2T/tsubT ⌋, and for 0 ≤ k ≤ K − 1, let tk := k

2 t
sub
T ,

and tK = T (so tK − tK−1 ∈ [ 12 t
sub
T , tsubT ]). However, conversely to Section 6.2, a first moment method is

sufficient to prove Proposition 3.4 (no second moment estimate is required), and this proof holds throughout
the sub-critical regime (so there is no need to handle the super-polynomial case separately).

Proof of Proposition 3.4, N(T ) sub-critical. We define an auxiliary process (X̂N
t )t∈[0,T ] as follows: it starts

from Nδ0 and evolves as the process XN between times tk and tk+1. Then at each time tk, all particles are
displaced to the highest among their positions: in other words, a configuration µ is replaced with Nδmax(µ)

(notice that X̂N always contains exactly N particles). By a coupling argument (recall Proposition 3.2) and

an induction, one may construct a coupling such that XN
T ≺ X̂N

T with probability 1. In particular, it is

sufficient to prove the proposition with max(X̂N
T ) instead of max(XN

T ).
For 1 ≤ k ≤ K, let us define

Yk := max(X̂N
tk
)−max(X̂N

tk−1
) ,

so that max(X̂N
T ) = Y1 + · · ·+ YK . Let us prove that, for 1 ≤ k ≤ K, one has

(7.26) E[Yk] ≤ γsub
T (tk)− γsub

T (tk−1) + c1L(T ) ,

for some c1 > 0, and we claim that the Proposition 3.4 follows. Indeed, this implies

E[max(X̂N
T )] ≤ γsub

T (T ) + c1L(T )×K .
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Recalling that K ≤ 2T/tsubT and that tsubT ≫ L(T )3 (see (6.2)), Markov’s inequality yields that

max(X̂N
T ) ≤ γsub

T (T ) + oP

(
T

L(T )2

)
.

Recall (4.9) and that max(X̂N
T ) dominates stochastically max(XN

T ): hence, letting ε → 0 and applying
Lemma 4.1, this finally yields (3.7).

Let us prove (7.26). Notice that the process X̂N evolves between times tk and tk+1 as the N -BBM with

variance profile σ(tk/T + ·), and that X̂N
tk

= Nδmax(X̂N
tk

) for all 0 ≤ k < K. Thus it is enough to show that

(7.27) ENδ0 [maxXN
t ] ≤ Eµε

[maxXN
t ] + η−1L(T ) ≤ γsub

T (t) + c1L(T ) ,

for some c1 > 0 uniform in σ ∈ Sη and t ∈ [ 12 t
sub
T , tsubT ]. The first inequality in (7.27) is obtained by writing

µε ≻ Nδ−η−1L(T ) and translating the N -BBM by η−1L(T ), so we only have to prove the second one. Recall

from Proposition 3.1 that there exists a coupling between XN and a BBM (Xt)t∈[0,T ] without selection, such

that XN
t ⊂ Xt a.s. for all t ∈ [0, T ]. Thus for t ∈ [ 12 t

sub
T , tsubT ], one has

(7.28) Eµε

[
maxXN

t

]
≤ Eµε

[
maxXN

t 1{maxXN
t ≤γred

T (t)}
]
+ Eµε

[
maxXt 1{maxXN

t >γred
T (t)}

]
.

The first term from (7.28) is clearly bounded by γred
T (t) ≤ γsub

T (t) + η−1L(T ), so it remains to bound the
second term. Let C > 0 a large constant: then one has

Eµε

[
maxXt 1{maxXN

t >γred
T (t)}

]
≤ C(tsubT )2 Pµε

(
maxXN

t > γred
T (t)

)
+ Eµε

[
maxXt, 1{maxXt>C(tsubT )2}

]
.

Recalling Lemma 7.8, more precisely (7.23), the first term in the r.h.s. above is bounded by C(tsubT )2×c1N
−c2

uniformly in t ∈ [ 12 t
sub
T , tsubT ]. Moreover, (6.1) implies that tsubT ≤ L(T )4, so this term vanishes when T

becomes large.
Finally, let us prove that Eµε

[maxXt 1{maxXt>C(tsubT )2}] also vanishes as T → +∞, uniformly in t ∈
[ 12 t

sub
T , tsubT ] and locally uniformly in ε. Recalling Proposition 3.2, it is sufficient to prove this for a BBM

starting from the configuration N2δ0 ≻ µε. Moreover, we claim that for any M ≥ 2, A ≥ 1, and (gi)1≤i≤M a
centered Gaussian vector such that each gi has variance ρ2 > 0, one has

(7.29) E
[
max(gi, 1 ≤ i ≤ M) 1{max(gi,1≤i≤M)≥A}

]
≤ Mρ√

2π

(
1 + ρ2/A2

)
e−A2/2ρ2

.

This result is standard, and can be proven similarly to Lemma 6.7 by writing for A ≥ 0 and any real random
variable Y ,

E[Y 1{Y≥A}] = AP(Y ≥ A) +

∫ +∞

A

P(Y ≥ x) dx .

For the sake of conciseness we leave the details to the reader. Therefore, conditioning X with respect to its
branching epochs and letting Zt denote its population size at time t ∈ [ 12 t

sub
T , tsubT ], we obtain

EN2δ0

[
maxXt 1{maxXt>C(tsubT )2}

]
≤ EN2δ0

[
maxXt 1{maxXt>C(tsubT )2}

]
≤ c1 × EN2δ0

[
Zt

]
× tsubT e−c2(t

sub
T )2 ,

for some c1, c2 > 0, where the first inequality follows from Proposition 3.2. Moreover, one has EN2δ0 [Zt] =

N2et/2 ≤ N2et
sub
T , so this concludes the proof of (7.27). □

8. Proofs of complementary results

In this section we complete the proofs of all remaining statements from Section 1, by showing Propo-
sitions 1.2, 1.4, 1.5 (the latter and (1.16) implying Theorem 1.6), and finally Theorem 1.7. All of these
are either obtained through refinements of arguments from the proof of Theorem 1.1 presented before; or
they are direct applications of Theorem 1.1, coupling propositions or other results from previous sections.
Therefore, let us warn the reader that most of the upcoming proofs are not presented in full details. Indeed,
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the authors believe that understanding the pivotal arguments from the proof of Theorem 1.1, specifically
Proposition 3.2 and the main ideas from Sections 6–7, is vital before moving to other results. Hence, the
focus of this section is put on additional, new arguments which are to be combined with those presented
before.

8.1. Super-critical L(T ), decreasing variance (Proposition 1.2). Let σ ∈ C2([0, 1]) be strictly decreas-
ing, let L(T ) = logN(T ) ≫ T 1/3 (so the regime is super-critical), and consider the initial configuration δ0.
In [46], the authors study the speed of a time-inhomogeneous BBM (Xt)t∈[0,T ], without selection and with
strictly decreasing variance. Recall that a1 denotes the absolute value of the largest zero of Ai. Starting
from a single particle in 0 (so QT (δ0) = 0), they prove in [46, Theorem 1.1] that, under those assumptions,

(8.1)

(
max(XT )− v(1)T +

a1
21/3

T 1/3

∫ 1

0

σ(u)1/3|σ′(u)|2/3 du+ σ(1) log(T )

)
T≥0

is tight.

Thus, Proposition 1.2 can be deduced from the couplings from Propositions 3.1 and 3.2, by comparing
the super-critical N -BBM with a critical BBM on the one hand, and with a BBM without selection on the

other hand. For α ∈ R, recall the definitions of mcrit
T = mcrit

T (α) and msup-d
T from (1.11). Then, recalling the

asymptotic properties of Ψ(·) (see (1.4)) and that σ′(·) is negative, one notices that,

lim
α→+∞

lim sup
T→+∞

T−1/3
∣∣∣mcrit

T (α)−msup-d
T

∣∣∣ = 0 .

Define Mα(T ) := exp(αT 1/3): for T sufficiently large, one has Mα(T ) ≤ N(T ). By Propositions 3.1–3.2, for
T large, one can construct two couplings with an Mα(T )-BBM and a BBM without selection (all started
from δ0), such that

XMα(T )
s ≺ XN(T )

s ≺ Xs , ∀ s ∈ [0, T ] .

Recall that, for λ > 0, Proposition 3.3 yields

lim
T→+∞

Pδ0

(
T−1/3

(
max

(
XMα(T )

T

)
−mcrit

T (α)
)
≤ −λ

)
= 0 .

Moreover, the result (8.1) directly implies,

(8.2) lim
T→+∞

Pδ0

(
T−1/3

(
max(XT )−msup-d

T

)
≥ λ

)
= 0 .

Combining these estimates with the coupling above, and assuming that α was chosen sufficiently large

(depending on λ), we conclude that T−1/3
(
max(XN(T )

T ) − msup-d
T

)
converges to 0 in Pδ0-probability as

T → +∞. □

Remark 8.1. Let us mention that [46] makes strong assumptions (σ strictly decreasing and initial con-
figuration δ0) in order to obtain a sharp result in (8.1). If the convergence (8.2) were to be proven with σ
non-increasing and a generic initial configuration, then Proposition 1.2 and its proof would immediately
extend to those more general assumptions. This is further discussed in the proof of Proposition 1.5 below.

8.2. Final-time distribution for the critical and super-critical regimes (Proposition 1.4). Let
∗ ∈ {crit, sup} (in particular t∗T = T ) and η > 0 throughout this section. We first prove (1.13), then we use
it to deduce (1.14).

Let λ > 0, recall the couplings from Propositions 3.1, 3.2, and recall from Section 3.3 how they imply
Theorem 1.1 subject to Propositions 3.3, 3.4. The same coupling method can be used to deduce (1.13) from
the following lemma.

Lemma 8.1. Let ∗ ∈ {crit, sup}, and λ, η > 0. Then, one has

(8.3) lim
ε→0

lim sup
T→+∞

sup
σ∈S∗

η

Pµε

(
∃ y ∈ [0, 1] ; XN(T )

T

([
m∗

T − yσ(1)L(T ),+∞
))

≥ N(T )y+λ
)

= 0 ,
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and, for any fixed r ∈ (0, 1),

(8.4) lim
T→+∞

sup
κ∈[0,1]

sup
σ∈S∗

η

PNκδ−κσ(0)L(T )

(
∃ y ∈ [r, 1] ; XN(T )

T

([
m∗

T − yσ(1)L(T ),+∞
))

≤ N(T )y−λ
)

= 0 .

Proof of (1.13) subject to Lemma 8.1. Using arguments very similar to the ones from the proof of Theo-
rem 1.1 in Section 3.3, we obtain from Lemma 8.1 that for every fixed r ∈ (0, 1), as T → ∞

(8.5) sup
y∈[r,1]

∣∣∣∣∣ logXN(T )
T ([QT (µT ) +m∗

T − yσ(1)L(T ),+∞))

L(T )
− y

∣∣∣∣∣ −→ 0 , in PµT
-probability.

In particular, we have XN(T )
T ([QT (µT ) +m∗

T − rσ(1)L(T ),+∞)) ≥ 1 with high probability, so that we can
replace log by log+. It remains to consider y ∈ [0, r]. We have

sup
y∈[0,r]

∣∣∣∣∣ log+ XN(T )
T ([QT (µT ) +m∗

T − yσ(1)L(T ),+∞))

L(T )
− y

∣∣∣∣∣
≤

log+ XN(T )
T ([QT (µT ) +m∗

T − rσ(1)L(T ),+∞))

L(T )
+ r,

so that (8.5) implies that the latter goes to 2r in PµT
-probability. Letting r → 0, we obtain the result. □

Proof of Lemma 8.1. We first prove (8.3), i.e. the upper bound on the final-time distribution of the process.
Let ε ∈ (0, 1), λ > 0 and recall the definition of µε,s, s ∈ [0, T ] from (7.9), and of m∗

T from (1.11). By
Lemma 4.1, one has for ε sufficiently small and T large that,

(8.6)
1

L(T )

∣∣γ∗,1+ε,1+ 2
3 ε

T (T )−m∗
T

∣∣ ≤ λ

2
,

where we wrote the parameters of the barrier γ∗
T explicitly. Then, recall Proposition 7.7, and that we showed

in (7.24) that it implies for T sufficiently large,

inf
σ∈S∗

η

Pµε

(
XN

T ≺ µ
(γ∗

T (T )+3εσ(1)L(T ))
ε,T

)
≥ 1− c1N

−c2 ,

where c1, c2 are constants depending locally uniformly on ε; and γ∗
T (·) is defined in (4.8) and (4.10) (with

parameters h = 1 + ε, x = 1 + 2
3ε). In particular, for λ > 0,

sup
σ∈S∗

η

Pµε

(
∃y ∈ [0, 1] ; XN

T

([
m∗

T − yσ(1)L(T ),+∞
))

≥ N(T )y+λ
)

(8.7)

≤ sup
σ∈S∗

η

Pµε

(
∃y ∈ [0, 1] ; µ

(γ∗
T (T )+3εσ(1)L(T ))

ε,T

([
m∗

T − yσ(1)L(T ),+∞
))

≥ N(T )y+λ
)
+ c1N

−c2 ,

Finally, for y ∈ [0, 1], one has

µ
(γ∗

T (s)+3εσ(s/T )L(T ))
ε,s

([
m∗

T − yσ(1)L(T ),+∞
))

=

ε−1∑
k=0

Nkε+ ε
2 1{γ∗

T (s)+3εσ(s/T )L(T )−kεσ(1)L(T )≥m∗
T−yσ(1)L(T )}

≤
yε−1+3η−2+ε−1 λ

2∑
k=0

Nkε+ ε
2 ≤ (ε−1(1 + λ/2) + 3η−2)Ny+4η−2ε+λ

2 ,

where we used (8.6). Assuming ε is sufficiently small above (depending on λ and η), this implies that the
r.h.s. of (8.7) is equal to c1N

−c2 for T sufficiently large: this completes the proof of (8.3) in the super-critical
and critical regimes.
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We now turn to (8.4). Quite similarly to Proposition 3.3, let us first prove that the convergence holds
locally uniformly in κ ∈ (0, 1), then extend it to κ ∈ [0, 1] via coupling arguments (recall Lemma 6.4 from
Section 6.2). Let ε ∈ (0, 1), h = 1− ε, x = (1− ε)(1−κ), and recall Proposition 6.2. Replicating the coupling
arguments from Section 6.2, more precisely (6.15–6.16), one obtains for 1 ≤ j ≤ ε−1 and T sufficiently large,

PNκδ0

(
XN

T

([
γ∗
T (T )− jεσ(1)L(T ),+∞

))
≥ N jε

)
≥ 1− c1N

−c2 ,

where c1, c2 > 0 are constants uniform in σ ∈ S∗
η , 1 ≤ j ≤ ε−1, and locally uniform in ε, κ ∈ (0, 1) (we do

not reproduce the details). Writing a union bound, this yields

(8.8) PNκδ0

(
∀ 1 ≤ j ≤ ε−1 , XN

T

([
γ∗
T (T )− jεσ(1)L(T ),+∞

))
≥ N jε

)
≥ 1− ε−1c1N

−c2 .

Let ε′ > 0: recalling (1.11) and Lemma 4.1, one has for ε sufficiently small and T large that,

(8.9)
1

L(T )

∣∣γ∗,1−ε,(1−ε)(1−κ)
T (T )− κσ(0)L(T )−m∗

T

∣∣ ≤ ε′ ,

where we used that γ
∗,1−ε,(1−ε)(1−κ)
T (T ) − κσ(0)L(T ) = γ

∗,1−ε,1−ε(1−κ)
T (T ). Moreover, for y ∈ [ε + ε′η, 1],

there exists 1 ≤ j ≤ ε−1 such that (y − ε′η−1)ε−1 ∈ [jy, jy + 1); thus we deduce that,{
∃ y ∈ [ε+ ε′η−1, 1] ; XN

T

([
m∗

T − yσ(1)L(T ),+∞
))

< Ny−λ
}

⊂
{
∃ 1 ≤ j ≤ ε−1 ; XN

T

([
γ
∗,1−ε,(1−ε)(1−κ)
T (T )− κσ(0)L(T )− jεσ(1)L(T ),+∞

))
< N (j+1)ε+ε′η−1−λ

}
.

Assume that ε′, ε are sufficiently small so that ε+ ε′η−1 ≤ min(r, λ). Then, shifting the initial distribution
in (8.8) by −κσ(0)L(T ), this implies

(8.10) PNκδ−κσ(0)L(T )

(
∃ y ∈ [r, 1] ; XN

T

([
m∗

T − yσ(1)L(T ),+∞
))

< Ny−λ
)

≤ ε−1c1N
−c2 ,

uniformly in σ ∈ S∗
η and locally uniformly in κ ∈ (0, 1), which is the expected result.

To finish the proof of Lemma 8.1, it remains to extend (8.10) to κ close to 0 or 1, which is achieved very
similarly to the proof of Proposition 3.3 subject to Lemma 6.4 in Section 6.2. For the case κ large, assume
without loss of generality that 0 < r < ε < λ, then recall Proposition 3.2, and that for any κ ∈ [1− εη−2, 1],

one has N1−εη−2

δ−σ(0)L(T ) ≺ Nκδ−κσ(0)L(T ). Hence,

PNκδ−κσ(0)L(T )

(
∃ y ∈ [r, 1] ; XN

T

([
m∗

T − yσ(1)L(T ),+∞
))

< Ny−λ
)

≤ PN(1−εη−2)δ−(1−εη−2)σ(0)L(T )

(
∃ y ∈ [r, 1] ; XN

T

([
m∗

T − yσ(1)L(T ) + εη−2σ(0)L(T ),+∞
))

< Ny−λ
)

≤ PN(1−εη−2)δ−(1−εη−2)σ(0)L(T )

(
∃ y ∈ [r − ε, 1] ; XN

T

([
m∗

T − yσ(1)L(T ),+∞
))

< Ny−(λ−ε)
)
,

where we also shifted the process upward by εη−2σ(0)L(T ) in the first inequality. Applying (8.10) to the
latter (with κ = 1− εη−2), this proves that the convergence also holds uniformly in κ close to 1.

Finally, it only remains to treat the case κ small. Recall Lemma 6.5, which implies that, for an N -BBM
started from δ0, one has XN

εL(T ) ≻ Nε/4δ−2εη−1L(T ) with Pδ0 -probability close to 1. Letting κ ∈ [0, ε], writing

δ−εσ(0)L(T ) ≺ Nκδ−κσ(0)L(T ) and applying the Markov property at time εL(T ), one can again extend the
convergence uniformly to κ ∈ [0, ε] through Proposition 3.2: since this is a carbon copy of arguments
presented in Section 6.2, we leave the details to the reader. □

Remark 8.2. Let us mention that the proof above can be applied to the sub-critical regime, yielding an
estimate on the distribution of the process at any time t ∈ [θ(T )−1L(T ), tsubT ]. Unfortunately, the error term
o(T/L(T )2) in our maximal displacement result renders this obsolete at time T . If one manages to compute
sharper estimates on the maximal displacement of the N -BBM with sub-critical population (with an error at
most o(L(T ))), the arguments above can be adapted straightforwardly. However, it seems very unlikely that
such a sharp limit estimate would be non-random: instead we expect it to be obtained through martingale
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methods or similar arguments, with a non-trivial dependency on the realization of the process near time t = 0
and on the “peaking” events throughout the trajectory (i.e. when a particle rises and reproduces significantly:
see [43] for a study of those in the case of an N -BBM with constant N , time-homogeneous variance and in a
meta-stable regime).

Proof of (1.14). We start with the lower bound on the diameter. Let δ > 0, and notice that Theorem 1.1
implies for ∗ ∈ {crit, sup},

PµT

(
max(XN(T )

T )−min(XN(T )
T ) ≤ (1− δ)σ(1)L(T )

)
≤ PµT

(
min(XN(T )

T ) ≥ m∗
T − (1− δ/2)σ(1)L(T )

)
+ o(1)

= PµT

(
XN(T )

T

(
[m∗

T − (1− δ/2)σ(1)L(T ),+∞)
)
≥ N

)
+ o(1) ,

and by (1.13), the latter goes to 0 as T goes to +∞, for any δ > 0.
Regarding the upper bound on the diameter, it suffices to prove that

(8.11) PµT

(
min(XN(T )

T ) ≥ m∗
T − (1 + δ)σ(1)L(T )

)
= o(1)

as T → +∞ for any δ > 0, and the result follows similarly from Theorem 1.1. Recall the couplings from
Propositions 3.1 and 3.2.

Lemma 8.2. Let ∗ ∈ {crit, sup}, and consider XN(T )
T−δ3L(T ) the particle configuration of the N -BBM at time

T − δ3L(T ). If δ is sufficiently small, then with probability close to 1, no particle below m∗
T − (1+ δ)σ(1)L(T )

at time T − δ3L(T ) has a living descendant in XN(T )
T .

With this lemma at hand, the proof of (8.11) is straightforward. Write

(8.12) A := XN(T )
T−δ3L(T ) ∩

[
m∗

T − (1 + δ)σ(1)L(T ),+∞
)
.

Applying the Markov property at time T − δ3L(T ) and Lemma 8.2, one has

PµT

(
min(XN(T )

T ) ≥ m∗
T − (1 + 2δ)σ(1)L(T )

∣∣XN(T )
T−δ3L(T )

)
= P

(T−δ3L(T ),XN(T )

T−δ3L(T )
)

(
min(XN(T )

T ) ≥ m∗
T − (1 + 2δ)σ(1)L(T )

)
= PA

(
min(X̃N(T )

δ3L(T )) ≥ m∗
T − (1 + 2δ)σ(1)L(T )

)
+ o(1) ,

where X̃N(T ) is an N -BBM with diffusion σ(s/T + 1− δ3L(T )/T ), s ∈ [0, δ3L(T )].
In Proposition 3.2.(iii), we proved that the N -BBM started from A dominates stochastically a collection

(Bi
t)t≥0, 1 ≤ i ≤ #A of (non-branching) independent Brownian motions started from Bi

0 = m∗
T − (1 +

δ)σ(1)L(T ) with the same diffusion function. Notice that in general, having µ ≺ ν, µ, ν ∈ C does not allow
for a comparison between min(µ) and min(ν); however, with a direct adaptation of the coupling therein,

one can prove that min(X̃N(T )
δ3L(T )) started from A dominates stochastically min(Bi

δ3L(T ), i ≤ N) started from

Nδm∗
T−(1+δ)σ(1)L(T ) (we leave the details to the reader). By standard Gaussian estimates, one has

P
(
∃i ≤ N(T ) , Bi

δ3L(T ) −Bi
0 ≤ −δL(T )

)
≤ N(T )P(Bi

δ3L(T ) −Bi
0 ≤ −δL(T ))(8.13)

≤ eL(T ) × c
√

δ/L(T ) e−cδ−1L(T ) ,

for some c > 0 uniform in σ ∈ Sη, and this vanishes as T → +∞ as soon as δ > 0 is small enough. This
concludes the proof of (8.11), and thus of (1.14) subject to Lemma 8.2. □

Proof of Lemma 8.2. Let us define, similarly to (8.12),

A1 := XN(T )
T−δ3L(T ) ∩

[
m∗

T − (1 + δ/3)σ(1)L(T ),+∞
)
,

and A2 := XN(T )
T−δ3L(T ) ∩

(
−∞,m∗

T − (1 + δ)σ(1)L(T )
]
,
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and let us consider two BBMs X̃ 1, X̃ 2 without selection started respectively from A1 and A2. Then we
prove that the following claims hold with large probability:

(i) Throughout [0, δ3L(T )] the line m∗
T − (1 + 2δ/3)σ(1)L(T ) is crossed by no particle from X̃ 1 or X̃ 2.

(ii) At time δ3L(T ), X̃ 1 contains more than N particles.
Then Lemma 8.2 follows naturally. Indeed, recall the coupling between the N -BBM and BBM from
Proposition 3.1: reproducing that construction procedure, it is clear from (i) and (ii) that, when the process

X̃1 reaches a population of N particles, all descendants from X̃2 have been selected out of the N -BBM in
the procedure.

Let us first prove (i) for X̃ 2 (and the proof for X̃ 1 is obtained by symmetry). Recalling Proposition 3.2.(i),
it is sufficient to prove it for an initial configuration Nδm∗

T−(1+δ)σ(1)L(T ) ≻ A2. To lighten notation, let us

shift the initial configuration by m∗
T − (1+2σ/3)(1)L(T ), and let R0 denote the number of particles from the

BBM X̃ 2 that reach 0 before δ3L(T ). Then, using a union bound, Markov’s property and the Many-to-one
lemma [36, Theorem 4.1], one has

PNδ−δσ(1)L(T )/3
(∃s ≤ δ3L(T ), max(X̃ 2

s ) ≥ 0) ≤ N E−δσ(1)L(T )/3[R0]

≤ N eδ
3L(T )/2 P−δσ(1)L(T )/3(∃s ≤ δ3L(T ), Bs ≥ 0)

= N eδ
3L(T )/2 P0(|Bδ3L(T )| ≥ δσ(1)L(T )/3) ,

where B is a time-inhomogeneous Brownian motion with diffusion σ(s/T + 1− δ3L(T )/T ), s ∈ [0, δ3L(T )].
Reproducing standard Gaussian estimates as in (8.13) (we do not write the details again), the latter
probability is smaller than N(T )−2 for T large, provided δ was chosen small enough. This finishes the proof
of (i).

Regarding (ii), notice that there exists c > 0 such that, for T sufficiently large and all σ ∈ Sη,

|m∗
T −m∗

T−δ3L(T )| ≤ c δ3L(T ) , and σ(1)− σ(1− δ3L(T )/T ) ≤ cδ3L(T )/T.

Therefore, Lemma 8.1 (more specifically (8.4)) implies that, with large probability, A1 contains at least N1−δ4

particles. Recalling Proposition 6.6, one deduces from standard arguments on birth processes that, with

large probability, X̃ 1
δ3L(T ) contains much more than N particles: this yields (ii) and finishes the proof. □

8.3. Adaptation of the proof to deterministic branching times (Proposition 1.5). In this section we
do not present a full proof of Proposition 1.5: instead we detail how all our previous results and proofs can be

adapted to the time-inhomogeneous BBMdb. Throughout this section, we let (X̃t)t∈[0,T ] (resp. (X̃N
t )t∈[0,T ])

denote the particle configurations of the BBMdb (resp. N -BBMdb). We first focus on adapting Theorem 1.1,
more precisely Sections 3 through 7.

Section 3. We start with the N -BBMdb construction and the coupling statements. Recall Section 3.1, as
well as Proposition 3.2 and its proof. The two main differences which appear with deterministic branching
times are:

— one has to replace the exponential variables in the definitions of the BBMdb and N -BBMdb, as well
as the Poisson point process (tk)k≥1 on [0, 1] in the proof of Proposition 3.2.(ii), with a fixed sequence of
branching epochs (2k logEξ)k≥1.

— at each branching epoch, all individuals have to branch simultaneously. This only affects which particles
are kept in the N -BBMdb after the branching epoch, and the selection procedure is still well-posed (breaking
ties arbitrarily, as we did with the standard N -BBM).

From this, we may construct the N -BBMdb rigorously, and we conclude that Propositions 3.1 and 3.2
also hold for the BBMdb and N -BBMdb. Thus, it remains to prove that Propositions 3.3 and 3.4 also hold
for the deterministic-branching variants, then the same arguments as in Section 3.3 show that Theorem 1.1
also holds for the N -BBMdb.



MAXIMAL DISPLACEMENT OF A TIME-INHOMOGENEOUS N(T)-BBM 67

Sections 4 and 5. All definitions and notation from Section 4.1 are unchanged. The main differences are in
Section 4.2, more precisely in the statements of the Many-to-one and Many-to-two lemmas. On the one hand,

recall that |Nt| denotes the population size of the BBM at time t ∈ [0, T ], and let |Ñt| denote that of the
BBMdb. Then the Many-to-one lemma still holds for the BBMdb, subject to replacing Eδ0 [|Nt|] = et/2 with,

Eδ0 [|Ñt|] =
(
Eξ
)⌊t/2 log Eξ⌋

,

in Lemma 4.2 (the equality above is proven by induction). Notice that this is of order et/2+O(1), so that
change does not affect the resulting first moment estimates up to constant factors. On the other hand, we
provide a new version of the Many-to-two lemma for deterministic branching (it is obtained by decomposing

pairs of individuals according to their most recent common ancestor). Let G̃(·), Ã∗
T,z(·) be defined similarly

to G(·), A∗
T,z(·) respectively in (4.4–4.5), where we replace the BBM with a BBMdb.

Lemma 8.3 (Many-to-two lemma, deterministic branching). Let ∗ ∈ {sup, sub, crit}. Let t ≤ T , γ∗
T , γ

∗
T ∈

C1([0, T ]) which satisfy (4.3), and z ∈ [0, h). Then, one has,

Eδ0

[
|Ã∗

T,z(t)|2
](8.14)

= Eδ0

[
|Ã∗

T,z(t)|
]
+ E[ξ(ξ − 1)]

⌊t/(2 log Eξ)⌋−1∑
k=0

∫ h

0

G̃∗(x, y, 0, (2 logEξ)k)
(∫ h

z

G̃∗(y, w, (2 logEξ)k, t)dw
)2

dy.

This lemma follows naturally from the Markov property (we leave the details to the reader). Replacing
Lemma 4.3 with Lemma 8.3 in the proofs of Propositions 5.3, 5.6 and 5.10, and using the adaptation of
Lemma 4.2 discussed above in all the other propositions from Section 5, we obtain exactly the same moment
estimates for the BBMdb and BBM between barriers, in all regimes.

Finally, it remains to adapt Lemma 4.6 from Section 4.3. An N−-BBMdb (resp. N+-BBMdb) can be
defined very similarly to the N−-BBM (resp. N+-BBM), by applying its selection mechanism to a BBMdb
instead of a BBM. Then, we can reproduce the adaptations discussed above for Section 3 to the proof of the
coupling in Lemma 4.6 (from [43]). In order not to overburden this paper, we do not further detail it.

Sections 6 and 7. All statements in these sections immediately hold for the N -BBMdb: indeed, the proofs in
these sections are entirely based on the moment estimates from Section 5, as well as some technical results
on the barriers (such as Lemma 4.5) which are not affected by the choice of branching mechanism. Therefore,
this finishes the adaptation of Propositions 3.3 and 3.4 to the N(T )-BBMdb, proving that the results of
Theorem 1.1 also hold for that process.

Super-critical regime, decreasing variance. Recall the proof of Proposition 1.2 from Section 8.1. To the
authors knowledge, there is currently no equivalent to (8.1) for the BBMdb (or BRW) in the literature,
however [47] has proven that (8.2) holds for a large class of discrete-time, time-inhomogeneous BRW’s,
among which Gaussian BRW’s, see [47, Theorem 1.3]. Therefore, replacing Propositions 3.1 and 3.2 with the
coupling arguments discussed above for the (N -)BBMdb, and applying [47, Theorem 1.3] to the BBMdb at
its final time, the adaptation of Proposition 1.2 to deterministic branching times is straightforward (we do
not replicate the proof).

Remark 8.3. Let us mention that [47, Theorem 1.3] also holds for σ non-increasing, hence so does (1.12) for
the superscript sup-d in the N -BBMdb. This provides a slightly more complete statement for the N -BBMdb
and N -CREM than Proposition 1.2 (where we assumed σ strictly decreasing), however one still requires an
initial configuration δ0 when quoting [47].

Final-time distribution Regarding (1.13), it is sufficient to prove that Lemma 8.1 also holds for the N -BBMdb

X̃N . A thorough inspection of the proof shows that all arguments therein can be adjusted to deterministic
branching times, with no more work than what has already been presented for the adaptation Theorem 1.1
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above. In order not to overburden this paper, we do not repeat those arguments here. In the proof of (1.14),
there is one occurrence of the Many-to-one lemma which has to be replaced with the N -BBMdb version as
above, and the rest of the proof is unchanged. This fully concludes the proof of Proposition 1.5. □

8.4. N-BBM with time-inhomogeneous selection (Theorem 1.7). Let ℓ ∈ C1([0, 1]), L̂(T ) → +∞
as T → +∞ and L(·, T ) defined as in (1.20). In this section we first consider the super-critical and critical

regimes (L̂(T ) ≫ T 1/3 or L̂(T ) = T 1/3): we prove (1.23) and (1.25) simultaneously, then (1.24) and (1.26).

Finally, we prove (1.23) in the sub-critical regime (L̂(T ) ≪ T 1/3).
Before that, let us comment on the definition and construction of the branching Brownian motion with

time-inhomogeneous selection (N(·, T )-BBM). In this system, a particle is killed at time t ∈ [0, T ] if it is not
in the N(t, T ) highest ones. This may happen in one of two ways:

— t is the epoch of a branching event,
— the integer part of N(t, T ) realizes a negative jump at t.

On the one hand, the t’s corresponding to branching events are described by the very same point process on
[0, T ] that is involved in the construction of the N(T )-BBM in Section 3.1. On the other hand, the t’s for
which ⌊N(t, T )⌋ changes are deterministic for T fixed; and since we assumed that ℓ is C1, there are finitely
many of them for almost all T ≥ 0. Therefore, the construction of the N(T )-BBM from Section 3.1 can be
adapted very directly to the process with time-inhomogeneous selection.

Moreover, recall Propositions 3.1 and 3.2: these couplings may also be constructed for processes with
inhomogeneous selection. More precisely, in the proof of Proposition 3.2.(ii) it suffices to augment the
Poisson point process with the (finite) sequence of deterministic epochs when ⌊N(t, T )⌋ decreases: then the
the rest of the proof follows from arguments that we discussed above, so we do not write the details here.

Proposition 8.4. Let T ≥ 0 fixed. Let N1(·, T ), N2(·, T ) two positive functions on [0, T ] such that
N1(t, T ) ≤ N2(t, T ) for all 0 ≤ t ≤ T . Assume that their integer parts change finitely many times in

t ∈ [0, T ]. Let µ1 ∈ CN1(0,T ) and µ2 ∈ CN2(0,T ) which satisfy µ1 ≺ µ2: then there exists (XN1(·,T )
t )t∈[0,T ] and

(XN2(·,T )
t )t∈[0,T ], respectively an N1(·, T )- and an N2(·, T )-BBM, such that XN1(·,T )

0 = µ1, XN2(·,T )
0 = µ2

and XN1(·,T )
t ≺ XN2(·,T )

t for all t ∈ [0, T ] with probability 1.
Moreover, there also exists a coupling with a time-inhomogeneous BBM without selection started from µ1,

such that XN1(·,T )
t ≺ Xt for all t ∈ [0, T ] with probability 1.

Let us now return to the proof of Theorem 1.7, starting with (1.23) and (1.25) in the critical and
super-critical regimes.

Proof of (1.23) and (1.25), super-critical and critical regimes. Recall the definition of QT (·) from (1.3), and
let us extend it into

(8.15) Qs
T (µ) := sup

{
q ∈ R

∣∣ ∃κ ∈ [0, 1] , µ
(
[q − κσ(s/T )L(T ),+∞)

)
≥ N(T )κ

}
, s ∈ [0, T ].

Recall Proposition 1.4: then we have the following.

Lemma 8.5. Let ∗ ∈ {crit, sup} and η > 0. Let µT ∈ CN , and denote with XN(T ) an N(T )-BBM (with
time-homogeneous selection) started from µT , T ≥ 0, with infinitesimal variance σ2(·/T ), σ ∈ S∗

η . Then as
T → +∞, one has

(8.16) sup
σ∈S∗

η

1

L(T )

∣∣∣QT
T (X

N(T )
T )−QT (µT )−m∗

T

∣∣∣ −→ 0 , in PµT
-probability.

Proof of Lemma 8.5. This is a direct corollary of Proposition 1.4 —more precisely Lemma 8.1— and the

definition (8.15). Indeed, the upper bound on QT
T (X

N(T )
T ) follows from the fact that (8.3) provides an upper

bound on XN(T )
T

(
[m∗

T − yσ(1)L(T ),+∞)
)
holding for all y ∈ [0, 1] with large probability; the lower bound

is obtained through a direct application of (8.4). Finally, as stated in Lemma 8.1, the result is uniform in
σ ∈ S∗

η . □
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With Proposition 8.4 and Lemma 8.5 at hand, Theorem 1.7 is obtained quite naturally in the critical
and super-critical regimes, by writing a block decomposition of the process. Indeed, let us first consider

the critical regime, i.e. L̂(T ) = T 1/3. Recall the definition of m̂crit
T from (1.22). Let ε > 0 small (assume

ε−1 ∈ N for the sake of simplicity), and part [0, T ] into ε−1 intervals of length εT . Define for 1 ≤ i ≤ ε−1,

ℓi := inf{ℓ(u) ; u ∈ [(i− 1)ε, iε]} , and ℓi := sup{ℓ(u) ; u ∈ [(i− 1)ε, iε]} ,
and define similarly σi, σi, σ

′
i and σ′

i. Define also,

N i(T ) := exp(ℓiT
1/3) , and N i(T ) := exp(ℓiT

1/3) .

Finally, we let for 1 ≤ i ≤ ε−1,

mi,ε := T

∫ iεT

(i−1)εT

σ(u)du + ε T 1/3 inf

{
σ

ℓ
Ψ

(
−ℓ3

σ′

σ

)
; σ ∈ [σi, σi], σ

′ ∈ [σ′
i, σ

′
i], ℓ ∈ [ℓi, ℓi]

}
,

mi,ε := T

∫ iεT

(i−1)εT

σ(u)du + ε T 1/3 sup

{
σ

ℓ
Ψ

(
−ℓ3

σ′

σ

)
; σ ∈ [σi, σi], σ

′ ∈ [σ′
i, σ

′
i], ℓ ∈ [ℓi, ℓi]

}
.

Using a Riemann sum approximation and that σ ∈ S∗
η , ℓ ∈ C1([0, 1]), one observes that

(8.17) lim
ε→0

T−1/3

∣∣∣∣∣m̂crit
T −

ε−1∑
i=1

mi,ε

∣∣∣∣∣ = lim
ε→0

T−1/3

∣∣∣∣∣m̂crit
T −

ε−1∑
i=1

mi,ε

∣∣∣∣∣ = 0 .

Let (Fs)s∈[0,T ] denote the natural filtration of the N(·, T )-BBM. Following from Proposition 8.4, there exists

an N i(T )- and a N i(T )-BBM, both starting from the initial measure XN(·,T )
(i−1)εT at time (i− 1)εT , such that,

(8.18) PµT

(
XNi(T )

iεT ≺ XN(·,T )
iεT ≺ XNi(T )

iεT

∣∣∣F(i−1)εT ; XNi(T )

(i−1)εT = XN(·,T )
(i−1)εT = XNi(T )

(i−1)εT

)
= 1 .

Moreover, Lemma 8.5 states that, for λ > 0, there exists T0 > 0 (depending only on η, ε, λ) such that for
T ≥ T0,

(8.19)

PµT

(
1

T 1/3

(
QiεT

T

(
XNi(T )

iεT

)
−Q

(i−1)εT
T

(
X

N(i−1)(T )

(i−1)εT

)
−mi,ε

)
< −ελ

∣∣∣∣F(i−1)εT

)
≤ ε2 ,

and PµT

(
1

T 1/3

(
QiεT

T

(
XNi(T )

iεT

)
−Q

(i−1)εT
T

(
XN(i−1)(T )

(i−1)εT

)
−mi,ε

)
> ελ

∣∣∣∣F(i−1)εT

)
≤ ε2 .

Recalling Theorem 1.1, one obtains similarly for T ≥ T0,

(8.20)

PµT

(
1

T 1/3

(
max

(
XNi(T )

iεT

)
−Q

(i−1)εT
T

(
X

N(i−1)(T )

(i−1)εT

)
−mi,ε

)
< −ελ

∣∣∣∣F(i−1)εT

)
≤ ε2 ,

and PµT

(
1

T 1/3

(
max

(
XNi(T )

iεT

)
−Q

(i−1)εT
T

(
XN(i−1)(T )

(i−1)εT

)
−mi,ε

)
> ελ

∣∣∣∣F(i−1)εT

)
≤ ε2 .

Apply the Markov property at times (i− 1)εT , 1 ≤ i ≤ ε−1 − 1, one deduces with a union bound and (8.18),

PµT

 1

T 1/3

(
max

(
XN(·,T )

T

)
−QT (µT )−

ε−1∑
i=1

mi,ε

)
< −λ


≤

ε−1−1∑
i=1

PµT

(
1

T 1/3

(
QiεT

T

(
XNi(T )

iεT

)
−Q

(i−1)εT
T

(
X

N(i−1)(T )

(i−1)εT

)
−mi,ε

)
< −ελ

∣∣∣∣XNi(T )

(i−1)εT = XN(·,T )
(i−1)εT

)
+ PµT

(
1

T 1/3

(
max

(
XN ε−1 (T )

T

)
−Q

(1−ε)T
T

(
X

N(ε−1−1)(T )

(1−ε)T

)
−mε−1,ε

)
< −ελ

∣∣∣∣XNε−1 (T )

(1−ε)T = XN(·,T )
(1−ε)T

)
,

for T ≥ T0(η, λ, ε); and by (8.19–8.20), the latter sum is bounded by ε. Recalling (8.17) and letting ε → 0,
this finally proves the lower bound in (1.23); and the upper bound is obtained similarly. Moreover, (1.25) is
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obtained with an analogous computation, by applying Proposition 1.4 instead of (8.20) to the last block
(i = ε−1) of the decomposition above. This concludes the proof of Theorem 1.7 in the critical regime.

Regarding the super-critical case, it is proven by replicating the proof above mutatis mutandis: that

is, replacing T 1/3 with L̂(T ) ≫ T 1/3, m̂crit
T with m̂sup

T , and adapting the definitions of mi,ε, mi,ε above
accordingly. This is very straightforward, so we leave the details to the reader. □

Proof of (1.24). This is immediate: recall that, in the super-critical regime with decreasing variance, the

convergence (1.24) does not depend on the specifics of ℓ(·), L̂(T ). Hence the super-critical N(·, T )-BBM can
still be coupled with, on the one hand a critical Mα(T )-BBM with population size Mα(T ) := exp(αT 1/3) ≪
inf{N(s, T ), 0 ≤ s ≤ T}, α > 0; and on the other hand a BBM without selection (see Proposition 8.4).
Therefore, the proof of Proposition 1.2 above fully accommodates to super-critical, time-inhomogeneous
selection. We leave the details to the reader. □

Proof of (1.26). This is also straightforward: recalling the proof of (1.23, 1.25), it suffices to estimate

min(XN(·,T )
T ) in the last block of the decomposition. One can estimate both min(XNε−1

T ) and min(XNε−1

T )
by using (1.14) and Theorem 1.1; and reproducing the coupling arguments from the proof of (1.14) (we
do not write the details again, but let us recall that they do not immediately follow from the definition of

stochastic domination), this gives the expected estimate on min(XN(·,T )
T ). □

Proof of (1.23), sub-critical regime. In that regime there is no equivalent to Proposition 1.4 or Lemma 8.5,
so one cannot split the interval [0, T ] into blocks of length εT ; however, the proofs of Lemma 6.4 (for the lower
bound) and Proposition 3.4 (upper bound), in the sub-critical regime, already rely on a block decomposition:
so Theorem 1.7 can be obtained by approximating the N(·, T )-BBM by a process with piecewise-constant
selection, and reproducing the arguments from the proof of Theorem 1.1.

More precisely, let us first discuss the lower bound. Let K = ⌊2T/tsub⌋ and for 0 ≤ k ≤ K − 1, tk = k
2 t

sub
T ,

and tK = T . Let Nk = inf{N(s, T ), tk−1 ≤ s ≤ tk}, and recall the construction of the auxiliary process XN

from Section 6.2: let us tweak it such that (1) at times tk, 1 ≤ k ≤ K, all particles but the ⌊Nk⌋ top-most
ones are removed, and the remaining particles are set to the lowest among their positions; and (2) on the

interval [tk−1, tk], the process XN
evolves like an Nk-BBM, where Nk is constant. Therefore, this process is

still stochastically dominated by the N -BBM, and the remainder of the proof from Section 6.2 still holds for
this process (since the selection is constant on each interval [tk−1, tk]), both for the super-polynomial N(T )
and small L(T ) cases. We deduce from this a lower bound on the maximal displacement of the N(·, T )-BBM,
and a Riemann sum approximation (analogous to (8.17)) finally shows that it is of order m̂sub

T − o(T/L(T )2)
for T large. Since all these adaptations are very straightforward, and rely on arguments that were already
applied in other parts of the paper, we leave the remaining details to the reader. Finally, the upper bound is
obtained with analogous arguments. □

Remark 8.4. Let us point out that Theorem 1.7 assumes that the “regime” for the selection (i.e. L̂(T ))
remains the same throughout [0, T ]. If the regime changes finitely many times, e.g. at some tk, 1 ≤ k ≤ K,

one can derive similar results by induction: indeed, (1.25) and Lemma 8.5 provide an estimate on Qtk
T (XN(·,T )

tk
)

if the regime is critical or super-critical on [tk−1, tk]; and in the sub-critical case L̂k(T ) ≪ T 1/3, one has,

Qtk
T (XN(·,T )

tk
) = Qtk

T (δ
maxXN(·,T )

tk

) +O(L̂k(T )).

Then, one can apply Theorem 1.7 on each interval [tk−1, tk] iteratively. We do not write any statement or
proof for this fact, since this is a direct replication of arguments presented above.
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Henri Poincaré, Probabilités et Statistiques, 52(3), Aug 2016.
[47] B. Mallein. Maximal displacement of a branching random walk in time-inhomogeneous environment. Stochastic Processes

and their Applications, 125(10):3958–4019, 2015.

[48] H. P. McKean. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl.
Math., 28(3):323–331, 1975.

[49] J. Nolen, J.-M. Roquejoffre, and L. Ryzhik. Power-Like Delay in Time Inhomogeneous Fisher-KPP Equations. Communi-

cations in Partial Differential Equations, 40(3):475–505, dec 2014.
[50] R. Pemantle. Search cost for a nearly optimal path in a binary tree. Ann. Appl. Probab., 19(4):1273–1291, 2009.

[51] M. I. Roberts. Fine asymptotics for the consistent maximal displacement of branching brownian motion. Electronic Journal

of Probability, 20:1–26, sep 2015.
[52] T. H. Savits. The explosion problem for branching Markov process. Osaka Math. J., 6:375–395, 1969.

[53] D. Slepian. The one-sided barrier problem for Gaussian noise. Bell System Tech. J., 41:463–501, 1962.

Universite Claude Bernard Lyon 1, ICJ, CNRS UMR 5208, Ecole Centrale de Lyon, INSA Lyon, Université Jean
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