
HAL Id: hal-04448117
https://hal.science/hal-04448117

Submitted on 9 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A language-parametric test coverage framework for
executable domain-specific languages

Faezeh Khorram, Erwan Bousse, Antonio Garmendia, Jean-Marie Mottu,
Gerson Sunyé, Manuel Wimmer

To cite this version:
Faezeh Khorram, Erwan Bousse, Antonio Garmendia, Jean-Marie Mottu, Gerson Sunyé, et al.. A
language-parametric test coverage framework for executable domain-specific languages. Journal of
Systems and Software, 2024, 211, pp.111977. �10.1016/j.jss.2024.111977�. �hal-04448117�

https://hal.science/hal-04448117
https://hal.archives-ouvertes.fr

A Language-Parametric Test Coverage Framework for
Executable Domain-Specific Languages

Faezeh Khorrama,∗, Erwan Bousseb, Antonio Garmendiac, Jean-Marie Mottub, Gerson Sunyéb, Manuel Wimmerd

aCNRS, University of Rennes, Rennes, France
bIMT Atlantique, Nantes Université, École Centrale Nantes, France

cDepartamento de Ingenierı́a Informática, Universidad Autónoma de Madrid, Spain
dCDL-MINT, Institute of Business Informatics - Software Engineering, Johannes Kepler University Linz, Austria

Abstract

Test coverage is an effective technique to measure test case quality and to enable fault localization. However, for Executable
Domain-Specific Languages (xDSLs), coverage metrics and associated tools are currently manually defined for each xDSL resulting
in costly, error-prone, and non-reusable work.

To address this problem, we propose a novel language-parametric test coverage framework for xDSLs. We define two coverage
metrics adapted to xDSLs: model element and branch coverage. For performing coverage measurements, we propose a generic
technique which can be used out-of-the-box by domain experts using any xDSL to define, execute, and test models. In addition, the
coverage of model elements and branches can be parameterized for a given xDSL through the definition of coverage rules using a
dedicated language. We showcase two test coverage applications for xDSLs: measuring the quality of test suites for executable
models and localizing the models’ faults using Spectrum-Based Fault Localization techniques. We evaluate our approach using
four different xDSLs. Results show that (i) we can generate meaningful coverage measurements for all investigated models, (ii) the
provided coverage rule language enables framework parameterization for all xDSLs, and (iii) the computed coverage measurements
are useful in identifying defects of the models.

Keywords: Model Testing, Model Coverage, Branch Coverage, Fault Localization, Executable Domain-Specific Languages,
Executable Models

1. Introduction

Domain-Specific Languages (DSLs) are commonly associ-
ated with a modeling workbench allowing the language users to
define models. Using such workbenches, a common task is to
describe the dynamic aspects of a system in terms of behavioral
models. To confirm that these models fulfill their expectations,
dynamic Verification and Validation (V&V) techniques are used.
Such techniques require the possibility to execute a model, and
thus, are only suitable for DSLs with execution semantics. We
refer to such DSLs as executable DSLs (xDSLs), which are the
focus of this paper.

Testing, as a prevalent dynamic V&V technique, checks
whether a system shows the expected behavior during its execu-
tion. Nowadays, testing frameworks for most General-purpose
Programming Languages (GPLs) are available, and different
testing approaches have already been proposed for xDSLs as
well—some tailored for a specific xDSL [1, 2, 3, 4] and some
providing generic solutions to be compatible with a wide range

∗Corresponding author
Email addresses: faezeh.khorram@inria.fr (Faezeh Khorram),

erwan.bousse@ls2n.fr (Erwan Bousse), antonio.garmendia@uam.es
(Antonio Garmendia), jean-marie.mottu@ls2n.fr (Jean-Marie Mottu),
gerson.sunye@ls2n.fr (Gerson Sunyé), manuel.wimmer@jku.at
(Manuel Wimmer)

of xDSLs [5, 6, 7, 8, 9]. Yet, in addition to defining and exe-
cuting test cases, two important concerns must be considered:
(i) evaluating the quality of a given test suite and (ii) localizing
the defects revealed by failed test cases. A popular solution
for these concerns is test coverage, which aims at measuring
which parts of a system were executed by a given test suite. It
is both a metric for test quality evaluation [10] and an enabler
for automatic fault localization, e.g., see Spectrum-Based Fault
Localization (SBFL) [11].

To measure the coverage of test cases of programs defined by
GPLs, different techniques exist, one of those, using the control-
flow graph of a program along with program instrumentation for
computing statement and branch coverage [10]. Unfortunately,
as these techniques rely on concepts specific to the domain
of GPLs (e.g., statements, conditionals, etc.), they cannot be
directly transposed to DSLs which follow diverse computation
paradigms (e.g., consider states and transitions of state machine
based DSLs). Proposing new test coverage techniques for each
new xDSL from scratch again and again is tedious and error-
prone, hence a more reusable but at the same time adaptable
solution supporting a wide range of xDSLs is required.

In this paper, we propose a novel language-parametric test
coverage framework for xDSLs. The main contributions of this
work include:

• Two coverage metrics for xDSLs: model element coverage

Preprint submitted to Journal of Systems and Software February 9, 2024

and model branch coverage, measuring to which extent
each model element and “branch” of the model was ex-
ecuted by a given test suite, respectively. Our proposed
measurement technique constructs the coverage matrices
of a test suite by analyzing the execution traces of its model
under test.
• A dedicated Model Coverage Language (MoCL) that allows

a language engineer to define a set of coverage rules for a
given xDSL. These rules parameterize the framework for
the xDSL by specifying what types of model elements and
branches must be considered when computing the coverage
of its conforming models.
• A showcase of two test coverage applications for xDSLs:

measuring the quality of a test suite for an executable model,
and localizing faults in an executable model by calculating
the suspiciousness-based ranking of the model elements
using existing SBFL formulas [12].

The proposed framework is implemented for the Eclipse
GEMOC Studio [13], a language and modeling workbench for
xDSLs. We conducted an empirical evaluation for four different
xDSLs, totally 301 test cases for 21 executable models with
sizes ranging from 7 to 571 elements and 1252 mutants gen-
erated by injecting faults into the models. We observed that
for all the examined test suites, meaningful model element and
model branch coverage measurements can be automatically con-
structed. The proposed language also enabled us to parameterize
the framework for all considered xDSLs as well as to reproduce
a set of existing code coverage tools. In addition, the model
element coverage measurements allowed the application of ex-
isting SBFL techniques for tracking the faulty model elements
(introduced by mutations). We also measured the effectiveness
of the different SBFL techniques for the context of executable
models by calculating the required effort for finding the faulty el-
ement of a model in the best-case, average-case, and worst-case
scenarios. The results show that the different techniques provide
varying performance for the considered xDSLs which makes the
selection of the appropriate techniques out of the available ones
for an xDSL necessary.

Please note that this paper is an extended and thoroughly
improved version of our previous work [14]. New contents in-
clude proposing the model branch coverage metric along with its
measurement technique, an extension of the proposed model cov-
erage language to support conditional and branch coverage rules.
This is a challenging problem because languages have different
syntax and semantics which makes the analysis of branches com-
plicated on a general level. To the best of our knowledge, there
is no existing approach that proposes such a generic approach
going beyond a specific language. Furthermore, we provide
an extended evaluation to (i) assess the branch coverage com-
putation and definition effort; (ii) measure the effectiveness of
different SBFL techniques in the context of xDSLs; and (iii)
compare our approach with two additional code coverage tools.

The rest of the paper is organized as follows. We provide
the background and a running example in Section 2. Section 3
introduces an overview of the proposed framework which is
then detailed in two follow-up sections (Sections 4 and 5). The

supporting tool is presented in Section 6 and Section 7 describes
the performed evaluation. Finally, related work is given in Sec-
tion 8 and Section 9 presents the conclusions of the paper with
an outlook on future work.

2. Background

In this section, we present the required background and a
running example that will be used throughout the paper.

2.1. Running Example: Arduino
Arduino1 is an open-source company that offers hardware

boards with embedded CPUs, and with different modules (e.g.,
sensors, LEDs, actuators) that can be attached to a board. An
Integrated Development Environment (IDE) is available to de-
velop programs (called sketches) for such boards in C or C++.
However, an xDSL specifically defined for Arduino can help
in developing the Arduino programs using dedicated concepts
rather than technical C instructions. In this paper, we use a
sample xDSL designed for modeling Arduino boards along with
their behaviors as a running example. Next, we present the def-
inition and usage of this Arduino xDSL based on the required
language engineering artefacts.

2.2. Executable Domain-Specific Languages
A DSL with execution semantics is commonly referred to as

an executable DSL (xDSL). We call executable model a model
that conforms to an xDSL. It is essentially a program written
using an xDSL, and which can be executed according to the
xDSL semantics. Please note that the term “model” from now
on refers to an executable model. Additionally, we refer with
the term “language engineer” to the person who is in charge of
defining an xDSL, and finally, with the term “domain expert” to
the person using the xDSL.

In the scope of this paper, we consider an xDSL has at least
two parts: (i) an abstract syntax specifying the domain concepts
along with the relationships between them; and (ii) an execution
semantics enabling the execution of the models.

2.2.1. Abstract Syntax
Figure 1(a) presents an excerpt of the abstract syntax defini-

tion of an Arduino xDSL2 using the Ecore language [15] which
is similar to the core of UML Class Diagrams. The root element
of the Arduino xDSL is a Project which may contain several
Board and Sketch elements. A Board represents an Arduino
physical board. It contains several DigitalPin each associated
with one Module such as LED, PushButton, InfraRedSensor,
and Buzzer. The DigitalPin has a level attribute which repre-
sents the state of its Module. For instance, when the level for a
DigitalPin connected to a PushButton is equal to 1, it means the
button is being pressed.

The intended behavior of the boards must be defined using
Sketch elements. A Sketch may contain a Block that may

1https://www.arduino.cc/
2Inspired from https://github.com/mbats/arduino

2

<<imports>>

a

Execution rules:
detect(InfraRedSensor) press(PushButton)
changeLevel(DigitalPin) execute(If)
execute(Sketch) execute(ModuleAssignment)

b

Figure 1: An excerpt of an xDSL defined for Arduino

comprise several Instructions such as ModuleAssignment for
changing the state of a Module, and Control instructions to
define conditional behaviors (e.g.,, using If or While).

Figure 2 shows a sample Arduino model, defined by instanti-
ating abstract syntax elements. At the top, there is an Arduino
Board with 14 DigitalPins, four of them connected to Module
instances: a PushButton, an InfraRedSensor, an LED, and
a Buzzer. The behavior of the board is defined in a Sketch
instance (shown in the bottom of Figure 2) as: “if button is
pressed, the LED turns on (i.e., activating the alarm system),
and then if infrared sensor detects an obstacle, the buzzer
alternates between noise/silence two times (i.e., reporting an
intrusion). Otherwise, the LED turns off”. Note that (i) pressing
a button and sensing an obstacle by a sensor means the level
of their DigitalPins is equal to 1; and that (ii) turning on/off an
LED and a buzzer are ModuleAssignment instances—‘LED=1’,
‘buzzer=1’, ‘LED=0’, and ‘buzzer=0’ notations in Figure 2.
As the model contains several conditional elements (i.e., if and
else elements), its execution can enter into different branches.
We intentionally inject a defect in this model where buzzer

should be set to 0 but it is mistakenly set to 1, meaning that
the buzzer turns on but does not alternate between noise/silence
states (highlighted in red in Figure 2).

2.2.2. Execution Semantics
The execution semantics of an xDSL defines the possible

runtime states of a model under execution as well as a set of
execution rules specifying how such a runtime state varies over
time. As aforementioned, the DigitalPin has a level attribute
which represents the state of its Module, such as whether the
button is pressed or the LED is on. This feature defines the
runtime state of an Arduino model because its value may change
during the execution.

Figure 1(b) lists some of the execution rules for the Arduino

if button == 1

if infrared sensor == 1
else

buzzer = 1 buzzer = 1 buzzer = 1buzzer = 0LED = 1 LED = 0

LED

buzzer

button

infrared sensor

Figure 2: An example xArduino model representing a basic intrusion alarm
system. It has a defect since the buzzer is not ringing as expected (it is highlighted
in red where buzzer is mistakenly set to 1).

xDSL. In general, for every class of the xDSL’s abstract syntax
that has a runtime behavior, at least one execution rule must be
defined to implement such behavior. For example, the press
rule implements the behavior of pressing a PushButton. In
accordance with the relationships between the classes of the
abstract syntax, the execution rules may call each other as well
to complement the model execution.

The execution of a model can be captured in an execu-
tion trace that specifies which execution rules of the xDSL’s
semantics are called by which elements of the model [16,
17]. For example, if we execute the xArduino model of
Figure 2 with the initial runtime state button.level = 1,
sensor.level = 1, the resulting trace would be as follows:
press(button), execute(sketch), execute(if), execute(LED= 1),
changeLevel(LEDPin(level= 1)), detect(infrared sensor), exe-
cute(if), execute(buzzer= 1), changeLevel(buzzerPin(level=1)),
execute(buzzer= 0), changeLevel(buzzerPin(level=0)), exe-
cute(buzzer= 1), changeLevel(buzzerPin(level=1)), execute
(buzzer= 1).

2.2.3. Language and Modeling Workbench
A language workbench offers a set of facilities to develop

new DSLs, and a modeling workbench allows using the DSL in
practice [18]. The Eclipse GEMOC Studio is both a language
and a modeling workbench for xDSLs, and we use it in this
paper to specify and tool up xDSLs [13]. However, it must be
noted that our considerations for xDSL development also apply
to other xDSL engineering platforms. We would also like to
stress that a seminal evaluation and comparison study [19] shows
that the aspect of test coverage support has not yet been in focus
of language workbenches.

2.3. Testing for xDSLs

When a model describes the dynamic aspects of a system
(known as behavioral model), we need to ensure that it repre-
sents the correct behavior by applying V&V techniques such as
testing. For example, we previously proposed a generic testing
framework for xDSLs in [9]. Using this approach, we can write
a test case for the Arduino model of Figure 2 similar to Figure 3.
This test case is defined as a scenario of exchanging messages

3

Test
Component

SUT
(xArduino model)

detect (infrared sensor)

changeLevel (buzzerPin == 1)
changeLevel (buzzerPin == 0)

press (button)
changeLevel (LEDPin == 1)

changeLevel (buzzerPin == 1)
changeLevel (buzzerPin == 1)

Figure 3: An example test case for the Arduino model of Figure 2

between the test component—i.e., the test executor—and the Sys-
tem Under Test (SUT)—in our case the Arduino model. When
the sender is the test component, the exchanged message carries
test input data, and the messages sent by SUT are assertions that
carry the expected output. This test case checks whether the
LED turns on when the button is pressed and whether the buzzer
alternates between noise/silence periods when the sensor detects
an obstacle. Due to the defect of the Arduino model, the first
three assertions pass but the last one fails; their corresponding
arrows in Figure 3 are highlighted in green and red, respectively.

2.4. Test Coverage

Coverage is a popular measurement technique that analyzes
how much of the SUT is exercised by a given test case based
on a given criterion. There are many coverage criteria in the
literature, each observing the system execution from a different
perspective. For example, in the context of GPLs, statement
coverage metric computes the percentage of the program’s state-
ments that are executed, and branch coverage metric measures
which possible branches of the control-flow structure of the pro-
gram are followed [10]. Test coverage is highly used in the
literature as both a metric for test quality evaluation [10] and an
ingredient for automatic fault localization [11].

2.5. Spectrum-Based Fault Localization (SBFL)

SBFL is a popular automatic fault localization technique ca-
pable of locating different kinds of bugs, except those caused
by missing code. It uses the results of test cases and their corre-
sponding code coverage measurements to estimate the likelihood
of each program component of being faulty by using specific
arithmetic formulas [20]. Depending on the program’s language
and how the coverage is computed (i.e., the chosen coverage
metric), the examined components can be different. For instance,
when SBFL uses statement coverage for a given Java program,
it calculates the probability of each statement of this program
having a fault [11]. In Section 5.2, we provide more details on
how SBFL works.

3. Objectives, Approach Overview, and Assumptions

In this section, we first talk about the motivation and the
objectives of this paper (Section 3.1). Then, we present an
overview of our proposed test coverage framework (Section 3.2)
along with precise definition for the key concepts it relies on
(Section 3.3). In the end, we further clarify the assumptions of
the proposed approach (Section 3.4).

3.1. Motivation and Objectives
Measuring test coverage can lead to improving test efficiency

as it provides both, a metric for test quality evaluation and
enables fault localization in case of test failure. Despite
the outstanding advancements in measuring test coverage
for GPLs, providing test coverage for xDSLs is yet studied
for only a few specific domains [21]. The main reason is
the difficulty of adapting existing code coverage metrics
for xDSLs, which originated from the dependency of their
measurement techniques on the specific syntax and semantics
of each language. For example, to compute branch coverage
for a given program, we first need to identify the conditional
constructs of its conforming language. Moreover, due to the
huge amount of xDSLs for many existing [22, 23, 24] and
emerging domains [25], there is a strong incentive to conceive a
generic test coverage framework that could be used to provide
test quality evaluation and fault localization means for any
xDSL.

Regardless of the xDSL used for the definition of a model,
every model can be formally defined as a specific kind of graph
in which model elements are nodes, and different types of edges
exist to specify relationships between elements such as contain-
ment, inheritance, and cross-references [26]. When executing a
model, the result can systematically be captured in an execution
trace, using a fixed and generic format, which keeps track of
the model’s exercised elements. Based on this perspective, and
through an analysis of the xDSL definition itself, it is apparent
that we can adapt the node coverage metric—from structural
graph coverage criteria [10]—for the context of xDSLs, hence
reasoning about the model coverage in a generic way. We can
thus define a coverage metric that generally considers model
elements as components to be covered, to be called model ele-
ment coverage metric. Therefore, to offer a generic test coverage
framework for xDSLs, our first objective is as follows:

Objective 1: A generic model element coverage metric to
compute the coverage of elements of a model during the
execution of a test suite.

In addition to model element coverage, further test coverage
measures can be computed from other perspectives (i.e., based
on other metrics). In the software testing area, branch coverage
is one of the most popular metrics which is highly used in test
case generation and amplification approaches [27]. A generic
test coverage framework would allow a domain expert to com-
pute branch coverage of its models under test without specifying
what are branches in these models. In the same way, language

4

reads

Model Fault
Localization

conforms to

Run tests on models

defines

Language
Engineer

imports

Execution
semantics

Abstract syntax

Executable DSL
(xDSL)

Executable Model
under test

verifies Test Cases

Test
Execution Engine

refers to

Execution Traces Test Results

refers to runs

defines

Language
User

uses

Manually-
defined Artefact

Generated
Artefact

Existing
Component

Proposed
Component

depends on

produces

user action

Legend

reads

Suspiciousness
ranking

uses

imports

DSL-specific
coverage rules

(optional)

Model Coverage
Computation

reads

Executable model and its tests

uses

Analysis
Tools

uses
Test Quality
Evaluator

uses Fault
Localizer

Generic measurement

uses

DSL-specific measurement

MoCL languageconforms to Branch
coverage

Element
coverage

Coverage matrices

Extended or
updated parts
of this paper

1

2

5

63

4

7 8

Figure 4: Approach overview (stars show which parts are improved as part of an extension of our previous work [14])

engineers expect help to only specify how to identify branches
for their xDSLs, without requesting them to implement how to
compute the branch coverage. Hence, while identifying the exe-
cution branches of the model totally depends on the definition of
its conforming xDSL, test coverage framework may generically
provide help to define and compute the branch coverage for any
xDSL. Accordingly, we consider the following objective for our
proposed framework:

Objective 2: A generic model branch coverage metric to
compute the coverage of branches of a model during the
execution of a test suite.

Such preliminary computation requests the identification of
what elements can be considered as “branches” given the seman-
tics of the xDSL. Measuring test coverage based on the xDSL
definition and the model execution traces may not always meet
the specific coverage aspects of model elements of a particular
xDSL. For instance, it is required to define what elements ought
to be ignored from the coverage computation. Thus, we also aim
for the following objective:

Objective 3: Making the requested metrics language-
parameterizable by extending and analyzing the xDSL speci-
fication to deal with the language specifics in computing the
coverage of its conforming models.

With coverage measurements at hand, we can use them for
test quality evaluation as well as fault localization of models
using existing SBFL techniques. Hence, we defined our last
objective as:

Objective 4: An environment that (i) computes test quality
based on the model element coverage and the model branch
coverage metrics; and (ii) supports localizing faulty model
elements by computing their suspiciousness-based ranking
using the model element coverage measurements.

3.2. Approach Overview

Figure 4 displays an overview of our proposed framework.
Two actors are involved: a language engineer (at the top left
corner) who defines an xDSL according to the definitions given
in Section 2.2, and a domain expert (at the top right corner)
who defines models (using the xDSL) and test cases for them.
We assume there is an existing testing framework (label 1) that
(i) provides facilities for writing and executing test cases for
models; and (ii) produces the results of the test cases along
with the resulting execution trace for the tested model (such as
proposed in our previous work [9]).

Test coverage is computed in two phases realized by the Model
Coverage Computation component of the framework. The first
phase, called Generic measurement, computes test coverage
based on the model element coverage criterion (label 2). It is an
off-the-shelf approach that only requires two existing sources
of information. First, from the definition of the given xDSL, it
recognizes which classes of the abstract syntax are used by each
execution rule of the execution semantics. This is required to
recognize what are the “traceable” elements of the model, i.e.,
elements whose execution will be captured in the trace. Second,
it analyzes the execution trace of the tested model to extract
the model elements that are captured in the trace, meaning that
they are covered by the test case. Accordingly, the “traceable”
elements that are not captured in the trace are indeed not-covered
by the test case. The final output is an element coverage matrix
i.e., a list of model elements with their coverage status (label 7).

5

The second phase, called DSL-specific measurement, allows
the language engineers to define DSL-specific coverage rules
for their xDSLs (label 3) using the Model Coverage Language
(MoCL). Two main types of rules can be defined for a given
xDSL: customization rules to achieve an intended model element
coverage measurement, and specification rules to adapt branch
coverage metric for the xDSL. The proposed approach computes
DSL-specific measurements (label 4) by applying the coverage
rules on the generic coverage measurements and produces one
coverage matrix per coverage rule-set: updating elements cover-
age (label 7) and returning branch coverage (label 8).

Lastly, we showcase possibilities offered by coverage mea-
surements in two ways: (i) test quality evaluation by calculating
the coverage percentage for each constructed coverage matrix
and visualizing the results for the domain expert (label 5); and
(ii) model fault localization based on SBFL techniques (label 6)
by calculating the suspiciousness-based ranking of the model’s
elements using the test results produced by the test execution en-
gine and the element coverage matrix constructed by our Model
Coverage Computation component. This ranking may help to de-
bug the model since possible failures are shown with an ordered
ranking from highest to lowest probability.

3.3. Metamodel of Key Concepts
Among the concepts used in our framework, some must be

precisely adapted for the context of this paper. As mentioned
above and also illustrated in Figure 4 (label 1), any existing test
execution engine that runs test cases on models and produces
the model execution traces along with the test execution results
can potentially be integrated into our test coverage framework.
Both to clarify these requirements and to provide the structure of
the elements manipulated or constructed by the approach (e.g.,
coverage matrices) we provide a precise definition of the key
concepts using an Ecore metamodel shown in Figure 5.

Considering a TestLanguage which allows defining Test-
Suites each containing a set of TestCases, once the test suites
are executed on a model, we expect the result to be captured as a
TestSuiteResult and a TestCaseResult (with a ‘PASS’ or ‘FAIL’
verdict), for each TestSuite and TestCase, respectively. Each
TestCaseResult should provide a reference to the execution
Trace of its tested model. A Trace is a set of ExecutionStep,
each specifying what execution rule of the xDSL’s semantics is
called by which object of the tested model.

If the test execution finishes without any problem meaning
that the test engine provides the test results and the execution
traces properly, our proposed Model Coverage Computation
component measures the test coverage and constructs the cover-
age matrices as follows. For each coverage matrix constructed
for an executed test suite, we generate a TestSuiteCoverage
comprising one TestCaseCoverage per each executed test case.
Both of them have a list of ModelObjectCoverageStatus in-
stances, each specifying the coverage status of one model object
for the test case/test suite. More specifically, for the model
element coverage matrices, there is one ModelObjectCoverage-
Status instance per model element. Similarly, for the model
branch coverage matrices, there is one ModelObjectCoverage-
Status for each branching root object. This object contains

Figure 5: Metamodel of the key concepts required by the framework

several ModelObjectCoverageStatus instances. Each instance
defines the coverage status of one of its originating branches
The coverage status of an element is either ‘COVERED’, ‘NOT-
COVERED’, ‘PARTLYCOVERED’, or ‘NOSTATUS’. We will
explain their meaning in the following sections.

3.4. Critical Reflection on Main Assumptions

In Section 2.2, we presented the used foundations for the defi-
nition of xDSLs for this paper. However, xDSLs can still differ
in several other aspects which may affect the applicability of our
proposed approach. For example, analogous to programming
languages, there are both declarative and imperative xDSLs, or
the execution semantics of an xDSL can be translational (i.e.,,
compiled xDSL) or operational (i.e., interpreted xDSL). What
matters for the applicability our proposed approach is if the given
xDSL meets two main conditions. First, the execution traces
of its conforming models are known and available. This means
that for a model’s execution, the xDSL must determine which
model elements can be executed (i.e., are “traceable”) among
those which are indeed executed. The provided execution trace
must be expressible in the format described in Section 3.3. For
instance, to support a translational xDSL, the execution traces
of the target language must be translated to the execution traces

6

of the source language, i.e.,, the xDSL. Second, there must be a
test execution engine supporting (i) the execution of test cases
on the xDSL’s conforming models; and (ii) generating the test
execution results as described in Section 3.3.

We consider the proposed test coverage framework as being
generic, even if the definition of DSL-specific coverage rules is
unsurprisingly language-specific. Indeed, the Model Coverage
Computation component (Figure 4) is only defined once and
is available for any xDSL. In addition, the DSL-specific cover-
age rules are optional and a default model element coverage
is already provided out-of-the-box. Moreover, the framework
provides a language to define the DSL-specific coverage rules,
only describing how to consider the coverage of the elements
modeled in the abstract syntax, without requesting the language
engineer to implement any coverage rules.

4. Test Coverage Measurement

This section describes the two proposed coverage computation
approaches, the generic approach in Section 4.1 and the DSL-
specific approach in Section 4.2.

4.1. Generic Coverage Computation

In this section, we introduce an off-the-shelf coverage com-
putation approach for the context of xDSLs. This approach
computes coverage for any model regardless of the xDSL used
for its definition. To do this, information is required about the
model execution which can be accessed from two main sources:
the xDSL definition and the model execution traces.

Algorithm 1: Finding the traceable types of an xDSL
Input:
xDSL.syntax: the abstract syntax of the xDSL,
xDSL.semantics: the execution semantics of the xDSL
Output :
traceableTypes: classes of the xDSL’s abstract syntax for which the
execution of their objects can be traced

1 begin
2 foreach rule ∈ xDSL.semantics do
3 traceableTypes.add (rule.class)

4 foreach class ∈ xDSL.syntax do
5 if class < traceableTypes
6

∧
class.allSuperClasses→ exists (c | c ∈ traceableTypes)

then
7 traceableTypes.add (class)

4.1.1. Analyzing the xDSL Definition
As explained in Section 2.2, a model conforming to a given

xDSL is executed by calls to the execution rules of the xDSL’s
semantics. Each execution rule is defined for a specific class of
the xDSL’s abstract syntax. This means that the execution of
those individual elements will be captured in the trace if there
is at least one execution rule defined for either their direct or
inherited type. Therefore, by analyzing the definition of an
xDSL, we can identify the classes of its abstract syntax for
which instances can be considered traceable, and thus, whose

coverage by a test case can be detected using an execution trace.
Algorithm 1 shows this analysis with an xDSL as input and a
list of classes namely traceableTypes as output. Its output is
used for computing the element coverage of the models which
are defined by its input xDSL. For example, for the Arduino
xDSL (Figure 1), the traceableTypes are: InfraRedSensor,
PushButton, If, Sketch, and ModuleAssignment.

4.1.2. Computing Element Coverage Using Models Execution
Traces

After running a test case against a model, we compute the
element coverage of the test case using the traceable types (i.e.,
identified by Algorithm 1) and the model’s execution trace. As
shown in Algorithm 2, the model elements captured in the trace
are covered by the test case (lines 2-4), the rest of the traceable
elements are not-covered (lines 5-6), and for the not-traceable
elements, no coverage status can be assigned (lines 7-8).

Algorithm 2: Computing model element coverage
Input:
traceableTypes: the output of Algorithm 1,
model: the tested executable model,
trace: list of model elements captured by the execution trace
Output :
elementsCoverages: a mapping of the model elements and their
coverage status

1 begin
2 foreach element ∈ model.objects do
3 if element ∈ trace then
4 elementsCoverages.put(element, COVERED)

5 else if element.type ∈ traceableTypes then
6 elementsCoverages.put(element, NOTCOVERED)

7 else
8 elementsCoverages.put(element, NOSTATUS)

For example, if we run the test case of Figure 3 on the Arduino
model of Figure 2, it results in running the Arduino model
itself by calling the rules of the Arduino semantics (part (b) of
Figure 1) as follows. When the test case sends a request for
pressing button, first the press(button) rule is called, which
results in a set of consecutive calls: execute(sketch), execute(if),
and execute(LED=1) that turns on the LED by calling change-
Level(LEDPin (level=1)) because the button is pressed.

Next, the test case requests to put the infrared sensor

in the state of detecting an obstacle. This results in a call
of detect(infrared sensor) which triggers the sequence exe-
cute(if), execute(buzzer=1) that turns on the alarm (by calling
the changeLevel(buzzerPin (level = 1))), execute(buzzer=0)
that turns off the alarm (by calling the changeLevel(buzzerPin
(level = 0))), execute(buzzer=1), that turns on the alarm for
the second time, and execute(buzzer=1), that must turn off the
alarm for the second time but due to the defect it does not.

This sequence of calls is captured in an execution trace as
shown on the top of Figure 6. Using this trace, we can construct
the element coverage matrix of the test case of Figure 3. As
displayed on the bottom of Figure 6:

7

Execu�on Trace
press (button) >> execute (sketch) >> execute (if) >> execute (LED = 1)
>> changeLevel (LEDPin (level=1)) >> detect (infrared sensor) >> execute (if)
>> execute (buzzer = 1) >> changeLevel (buzzerPin (level=1)) >> execute (buzzer = 0)
>> changeLevel (buzzerPin (level=0)) >> execute (buzzer = 1)
>> changeLevel (buzzerPin (level=1))>> execute (buzzer = 1)

Figure 6: The element coverage of the Arduino model of Figure 2 by the test case
of Figure 3 based on its execution trace (covered, not-covered, and not-traceable
elements are highlighted in green, red, and blue, respectively.)

• the elements captured by the trace are “covered” (high-
lighted in green);
• the traceable elements that are not captured by the trace are

“not-covered” (highlighted in red); and
• the not-traceable elements do not have any status (high-

lighted in blue).

At the end, we generate a complete element coverage matrix
for the model’s test suite by merging those produced for each
of its test cases. The matrix can be persisted as a XMI file,
conforming to the metamodel presented in Figure 5 (as presented
later, Section 6).

4.1.3. Limitations of the Generic Coverage Computation
The coverage matrix produced by the generic approach may

not be what the tester (i.e., the language user) expects. For
example, the generated element coverage matrix for the running
example (shown at the bottom of Figure 6), unexpectedly defines
different coverage statuses for a DigitalPin and its connected
Module (such as the button, covered and highlighted in green,
whereas its Digital Pin 2 is uncovered and highlighted in
red). It also considers the Expression elements (e.g., button ==
1) without any coverage status while it is reasonable to consider
them as covered because their container Control element is
covered (the if).

This unexpected result is due to the dependency of the ap-
proach on the definition of the xDSL’s execution semantics.
More specifically, depending on the classes of the abstract syn-
tax for which execution rules are defined, and on how these rules
call each other, the execution trace of a conforming model com-
prises different information, hence its element coverage matrix
may be more precise. While changing the xDSL’s definition
could solve the issue, it may also affect other dependent tools
such as model debuggers [28].

In addition, as already mentioned in Section 3.1, we can
benefit from the power of branch coverage metric in the context
of xDSLs if the language engineers specify how to identify
branches for their xDSLs. Meaning that particular techniques
are needed to specify how to adapt branch coverage for a given
xDSL. In the following subsection, we propose a new approach
to address both challenges without any need for changing the
xDSL definition.

4.2. DSL-Specific Coverage Computation

The generic coverage computation approach decides if an
element is covered based on what we were able to observe in
the execution, i.e., captured in a trace. However, we may also
be able to deduce that other elements, such as referenced or
contained by the elements in the trace, are covered as well. In
addition, if we can deduct what is an execution branch for a
model based on its conforming xDSL, we can then leverage the
branch coverage metric for the xDSL. To provide this customiz-
ability, our framework allows a language engineer to define a set
of DSL-specific coverage rules for a given xDSL (as shown in
Figure 4 (label 3)).

4.2.1. Defining DSL-Specific Coverage Rules
We propose a dedicated language for defining coverage rules

for a given xDSL whose concepts are presented in Figure 7.
Given the abstract syntax of an xDSL in the form of a meta-
model, a DomainSpecificCoverage can be defined for different
Contexts each pointing to a metaclass of the xDSL’s abstract
syntax. For each Context, several Rules can be defined and we
are currently considering three families of rules:

• Inclusion rules: a covered element, may induce that other
elements are covered as well (see CoverageOfReferenced
and CoverageByContent rule types).
• Exclusion rules: an element is ignored from coverage com-

putation under a certain condition (see Ignore and Limited-
Ignore rule types).
• Branch Specification rules: specifying if an element orig-

inates different execution branches of the model. By this
rule, the language engineer determines how to compute
branch coverage for a model’s test suite.

It is allowed to define conditional rules using Object Con-
straint Language (OCL) constraints by assigning a Condition
element to the rules. Accordingly, given an element conforming
to a Context (directly or by inheritance) that satisfies the rule’s
condition (if any), each type of the rule acts as follows:

CoverageOfReferenced Inclusion Rule. From the cover-
age of the given element, we infer the coverage of its referenced
elements (i.e., the value of its reference feature). Accordingly,
the type of the reference will be added to the list of traceable-
Types (i.e., output of Algorithm 1).

CoverageByContent Inclusion Rule. Inferring the cover-
age of the given element from the coverage of its contained
elements (i.e., the value of its containmentReference feature).
The element is covered if:

8

Figure 7: Abstract syntax of the Model Coverage Language (MoCL) to define DSL-Specific coverage rules

• multiplicity= ALL of its contained elements are cov-
ered.
• multiplicity= ONE of its contained elements is covered.
• multiplicity= ANY of its direct or indirect contained

elements are covered.

This rule also updates the list of traceableTypes by adding
the metaclass of the Context to it.

Ignore Exclusion Rule. The element will be ignored from
coverage computation, by changing its status to NO-STATUS,
except when the rule specifies not to ignore the element if it
conforms to the subclasses of the context (ignoreSubtypes=
false).

LimitedIgnore Exclusion Rule. The element will be ig-
nored from coverage computation, by changing its status to
NO-STATUS if it is:

• type= containedBy an element that conforms to one of
the containerMetaclasses.
• type= notContainedBy an element that conforms to any

of the containerMetaclasses.

BranchSpecification Rule The element is a branching root
element if it originates one to many execution branches. For
instance, modeling a “while” with one branch, an “if..then..else”
with two branches, a “Case” with several branches. A Branch
can be of the following types:

• ExplicitBranch: A particular element of the model repre-
sents the execution branch and can be retrieved using an
OCL query. Therefore, we can specify the coverage of the
branch based on the coverage of its representative element.
• ImplicitBranch: There is an execution branch that cannot be

specified by an element of the model (e.g., when an xDSL
allows modeling “if..then” without “else”). In Section 4.2.2,
we explain how to compute its coverage status.

For example, Listing 1 shows some of the rules we have
defined for customizing the model element coverage for the Ar-
duino xDSL. The Arduino metamodel is imported first (line 2)
to get access to its metaclasses and their features. To infer

1 ruleset ArduinoModelElementCoverage{

2 import metamodel arduino

3 context Block{ covered when ONE instructions iscovered },

4 context If{ covers ^condition },

5 context While{ covers ^condition },

6 //ignore physical-related elements from coverage computation

7 context Board{ ignore (subtypes true) },

8 context Pin{ ignore (subtypes true) },

9 context Module{ ignore (subtypes true) }

10 }

Listing 1: Model element coverage rules for the Arduino xDSL

the coverage of the Block elements, we defined a CoverageBy-
Content rule (line 3). It specifies a Block element is covered
if at least ONE of its contained instruction elements is cov-
ered. In the definition of the Arduino xDSL (Figure 1), the
Expression elements are executed once their container Control
element is executed. According to this information, we define
two CoverageOfReferenced rules (lines 4 and 5) specifying
whenever an If or a While element is covered, their condition
that is an Expression is also covered. Finally, we define several
Ignore rules (lines 7-9) to ignore those elements representing
the physical Arduino elements from the element coverage com-
putation.

Our proposed language allows defining several Domain-
SpecificCoverage instances and importing one in another (using
the Import concept of the language). This enables the language
engineers to reuse the already defined coverage rules when spec-
ifying new coverage rulesets. For example, we defined a sec-
ond set of coverage rules for the Arduino xDSL for computing
branch coverage of the Arduino models. As presented in List-
ing 2 (line 3), it imports the previously defined coverage rules
of Listing 1.

We defined two BranchSpecification rules for the If context
with different Conditions (lines 5-12). The first rule applies on
the If elements having an elseBlock (line 5) and the second one
on those without any elseBlock (line 9). Both rules specify two
Branches. Their first branch is the same and is an ExplicitBranch

9

1 ruleset ArduinoBranchCoverage{

2 import metamodel arduino

3 import ruleset ArduinoModelElementCoverage

4 context If{

5 when "self.elseBlock <> null"{

6 branch "self.block",

7 branch "self.elseBlock"

8 },

9 when "self.elseBlock = null"{

10 branch "self.block",

11 branch else

12 }

13 }

14 }

Listing 2: Branch coverage rules for the Arduino xDSL

(lines 6 and 10). It determines that the block of the If elements
represents an execution branch of the Arduino models. For the
second branch, the first rule considers the elseBlock elements as
execution branches (line 7) while for the second rule that applies
on the If elements without any elseBlock, an ImplicitBranch is
defined (line 11).

4.2.2. Executing DSL-Specific Coverage Rules
Given a test case executed against a model that conforms to

an xDSL providing a coverage ruleset, by applying the coverage
rules, we construct between one and two coverage matrices
for the test case: an element coverage matrix when there are
Inclusion and Exclusion rules, and branch coverage matrix when
there are BranchSpecification rules.

Algorithm 3 describes the computation. The required inputs
are the coverage ruleset provided by the language engineer, the
element coverage matrix constructed by the generic coverage
computation approach (using Algorithm 2) to be used as the
initial element coverage matrix (line 2), and the execution trace
of the tested model (it is needed for computing branch coverage).

For each Context of the coverage ruleset (line 4), we repeat
the following steps until a fixed point is reached i.e., until the
coverage matrix becomes steady (line 5). For each Rule of the
Context (line 6), we first select those model elements conform-
ing to its context metaclass and satisfying its Condition (if any),
referred to as valid elements (line 7). Next, according to the type
of the Rule, different computations should be performed. For
example, if the rule is a CoverageOfReferenced (line 8), the
coverage status of each valid element is considered as the cover-
age status of its referenced element (lines 10), and if it is covered,
the execution trace will be modified by adding the referenced
element after the valid element (lines 11-12). Modifying the
trace by adding new covered elements is necessary for branch
coverage computation because our proposed approach relies on
trace information (details are given subsequently). As another
example, if the rule is a BranchSpecification (line 13), we keep
the valid elements (lines 14) for computing branch coverage
(lines 17).

Algorithm 3: Computing DSL-specific coverage
Input:
coverageRuleset: the DSL-specific coverage rules,
elementsCoverages: the output of Algorithm 2,
trace: list of model elements captured by the execution trace,
Output :
updatedCoverages: a mapping of the model elements and their
DSL-specific coverage status

1 begin
2 updatedCoverages← elementsCoverages
3 branchRule contextObjs← ∅
4 foreach context ∈ coverageRuleset.contexts do
5 while updatedCoverages changes do
6 foreach rule ∈ context.rules do
7 validObjs← elementsCoverages. f ilter(o | o

con f ormsTo context.metaclass
∧

o satis f ies
rule.condition)

8 if rule is CoverageOfReferenced then
9 foreach obj ∈ validObjs do

10 updatedCoverages←(obj.reference,
coverage(obj))

11 if coverage(obj) == COVERED then
12 trace.addA f ter(obj.reference, obj)

13 else if rule is BranchSpecification then
14 branchRule contextObjs←(rule, validObjs)

15 else if rule is <other rule types> then
16 ...

17 computeBranchCoverage(branchRule contextObjs, trace)

Branch Coverage Computation. The context elements defined
by BranchSpecification rule are roots of a branch. Having this
information along with the final execution trace of the model
(both provided by Algorithm 3), we compute the branch cover-
age (see Algorithm 3 line 17). Figure 8 shows some examples
of the branch coverage computation on a role model which acts
as an example template for discussing the different cases.

We start by checking whether branching root elements are cap-
tured in the trace. If the branching root element is not captured,
it means none of the contained branches are covered neither
their explicit nor implicit branches. In Figure 8(a), the object
b1 was not captured by the trace, thus, neither of its branches.
However, if there is at least one occurrence of the root element
of the branch, then, we check the coverage status of its branches.

As mentioned in Section 4.2.1, a BranchSpecification rule
specifies how to detect branches from the root of a branch. In
particular, some branches are Explicit model elements and can
be identified by running an OCL query on the root element.
Of course, an explicit branch is covered if its representative
model element is captured in the trace after the occurrence of
the root element. Once identified, we compute their coverage
status based on their occurrence in the execution trace. Figure 8
(b) shows an example in which the explicit branch i.e.,, object
e1, is not covered because its branching model element with a
connection to the successor object e1, i.e.,, the explicit branch,
are not captured in the trace. The opposite example is illustrated
in Figure 8) (c), in which the branching model element as well
as the representative model element of the explicit branch are
both captured in the execution trace.

10

MEx

BR

MEy

MEz

…

Role Model Trace Conditions on Execution Steps

(a) NOT-Covered Branching Model Element → NOT-Covered Explicit & Implicit Branches

b1:BR

(b) NOT-Covered Explicit Branch, Covered Implicit Branch

b1:BR e1:MEy

(c) Covered Explicit Branch, NOT-Covered Implicit Branch

b1:BR e1:MEy e2:MEz b2:BR e3:MEz

…

b2:BR e2:MEz

(d) Covered Explicit and Implicit Branches

b1:BR e1:MEy e2:MEz b2:BR e3:MEz
…

Legend

ME … Model Element
BR … Branching Root

e1:ME

Element of type ME
exists in trace with
certain conditions

e1:ME

Element of type ME
does not exist in trace
with certain conditions

…
Transitive relationship

…

…

Explicit
Branch

Implicit
Branch

Figure 8: Branch coverage computation for a model based on its execution trace

In addition to explicit branches, we also consider that there
might be at most one Implicit branch from a root which has no
representative element in the model (such as in a Java program
where if statements always originate two branches whether or
not an else block comes after). An implicit branch is covered if
there is at least one captured root element in the execution trace
without a following explicit branch element. We compute their
coverage status based on the occurrences of both root elements
and the explicit branches in the execution trace. For instance,
in Figure 8 (b) the implicit branch is covered i.e.,, element e2
with root object b2. It can be seen as an opposite example
in Figure 8 (c), in which the branching model element with a
successor connection to the branch merging element is not part
of the trace.

After examining all branches, the coverage status of its branch-
ing root element is computed. The status of the root element is
determined as follows:

• Not-covered when all of its branches are not-covered (see
Figure 8(a)).
• Partly-covered when it has both covered and not-covered

branches. It can be seen two examples in Figure 8 (labels
(b) and (c)).
• Covered when all of its branches are covered. Figure 8(d)

shows an example in which explicit and implicit branches
are covered.

It is worth mentioning that, for each set of DSL-specific cov-
erage rules (i.e., each DomainSpecificCoverage instance), we
generate a new coverage matrix for the test case.

DSL-Specific Coverage Computation for the Running Exam-
ple. Considering the running example (the test case of Figure 3
executed against the Arduino model of Figure 2), the result of
applying the Arduino-specific coverage rules of Listing 1 is an
element coverage matrix constructed as follows. As presented
in Table 1: (1) the button element is considered as covered

Table 1: An excerpt of the DSL-specific coverage computation for the running
example which uses the generic coverage computation result (changes in bold)

Object Type
Generic
element
coverage

DSL-specific
element
coverage

button PushButton Covered No-Status
if If Covered Covered

button==1 Expression No-Status Covered

LED=1 Module-
Assignment Covered Covered

block Block No-Status Covered

LED=0 Module-
Assignment

Not-
Covered Not-Covered

elseBlock Block No-Status Not-
Covered

after trace analysis (generic coverage), but is then ignored after
applying the coverage rule in line 9 of Listing 1; (2) the if

element is covered based on the trace analysis (generic cover-
age); (3) the button==1 Expression does not have any status at
first (generic coverage) but it is then considered as covered after
running the coverage rule in line 4 of Listing 1 as it defines that
coverage of an if element implies the coverage of its condition
element; (4) the LED=1 ModuleAssignment is covered based on
the trace analysis (generic coverage); (5) the block of the if

element has no status at first (generic coverage) but after run-
ning the coverage rule in line 3 of Listing 1, it is considered as
covered since its inner instruction (i.e.,, LED=1) is covered; (6)
the LED=0 ModuleAssignment is not-covered by the test case
(generic coverage); and, (7) the elseBlock of the if element
has no status at first (generic coverage) but since none of its
inner instructions (i.e.,, LED=0) are covered, it is considered
as not-covered (DSL-specific coverage); In the end, the final
DSL-specific coverage matrix is equivalent to the content of
Table 1 column 3.

11

Table 2: An excerpt of the branch coverage matrix for the running example
Branching root Branches Branch coverage
if (button == 1) Partly-Covered

block Covered
elseBlock Not-Covered

if (infrared sensor
== 1) Covered

block Covered
Implicit branch Covered

We also executed the coverage rules of Listing 2 for the run-
ning example. As it imports the coverage rules of Listing 1, the
coverage status of the model’s elements will be the one presented
in Table 1. In addition, since it has BranchSpecification rules,
we computed the branch coverage of the running example as fol-
lows. According to Listing 2, there are two BranchSpecification
rules for the If Context. The first one applies on the If elements
having an elseBlock such as the If element of the Arduino model
(Figure 2) checking the level of the button. The second rule
applies to the If elements without any elseBlock such as the If
element checking the level of the infrared sensor. The result
of running the rules on these elements is presented in Table 2.
Using the coverage of the Arduino model’s elements (Table 1),
our proposed approach identified the first If element as partly-
covered and the other as covered.

4.2.3. Validating DSL-Specific Coverage Rules
Our proposed language validates the DSL-specific coverage

rules concerning their consistency. We define static validation
i.e., constraints are validated at compile time and dynamic val-
idation i.e., performed at runtime during the execution of the
rules.

Static Validation. Exclusion and Inclusion rules are opposite
to each other. The former ignores model elements from the
coverage computation while the latter specifies how to compute
the coverage of the elements. The proposed language does not
allow defining both Inclusion and Exclusion rules for the same
Context through the OCL constraint of Listing 3.

1 context Context

2 def: hasInclusionRule : Boolean = self.rules-> exists(r | r.

oclIsTypeOf(InclusionRule))

3 def : hasExclusionRule : Boolean = self.rules-> exists(r | r.

oclIsTypeOf(ExclusionRule))

4 inv repeatedContextIncExcCriteria (’The same context cannot have

both Inclusion and Exclusion rules’):

5 not (hasInclusionRule and hasExclusionRule)

Listing 3: An OCL constraint for validating Exclusion and Inclusion coverage
rules

According to the metamodel of the language (Figure 7), each
BranchSpecification rule needs at least one Branch. We ex-
plained in Section 4.2.2 that the coverage of an ImplicitBranch is

computed based on the coverage of the ExplicitBranches. There-
fore, there must be at least one ExplicitBranch and at most one
ImplicitBranch in the definition of each BranchSpecification
rule, as expressed by the OCL constraint of Listing 4.

1 context BranchSpecification

2 inv atLeastOneExplicitBranch (’BranchSpecification rule must have

at least one ExplicitBranch’):

3 self.branches -> exists(b | b.oclIsTypeOf(ExplicitBranch))

4 inv onlyOneImplicitBranch(’BranchSpecification rule must have at

most one ImplicitBranch’):

5 self.branches -> select(b | b.oclIsTypeOf(ImplicitBranch))->

size() <= 1

Listing 4: An OCL constraint for validating BranchSpecification coverage rules

Dynamic Validation. As described in Section 4.2.2, we com-
pute the branch coverage of a model using the coverage of
its elements. As the Inclusion and Exclusion rules update the
coverage status of the models’ elements, they must be applied
first—before applying the BranchSpecification rules. Moreover,
when a Context has several BranchSpecification rules, they
must have non-overlapping Conditions. This ensures that each
rule will be applied to a unique set of elements, hence avoiding
any potential conflict. To perform this validation, we retrieve
the valid context elements for each rule (by keeping the context
elements satisfying the rule’s Condition) and we check if their
conjunction is empty.

5. Test Coverage Usage

Among different use cases of utilizing test coverage measure-
ments, this paper focuses on test quality evaluation and model
fault localization presented in Sections 5.1 and 5.2, respectively.

5.1. Test Quality Evaluation

A well-known approach for improving test efficiency is im-
proving the quality of the tests by considering a criterion such
as test coverage. Usually, the higher the coverage is for a test
suite implies that the test suite exercises more parts of its model
under test, so has a higher quality.

To perform quality evaluation for a given test suite, a coverage
percentage must be calculated for each of its computed coverage
matrices. In this paper, we compute the coverage percentage for
each supported metric as follows:

Element coverage % =
o f covered elements

o f traceable elements

Branch coverage % =
o f covered branches

o f traceable branches

As can be seen, the not-traceable elements (i.e., the ones with
NO-STATUS coverage status) must be reduced from the total

12

number of elements when calculating the coverage percentage.
For example, the coverage percentages for the running example
(having a total of 35 elements) are:

• model element coverage computed by the generic approach:
14/19 = 73.68 %
• model element coverage computed by the DSL-specific

approach: 16/18 = 88.89 %
• model branch coverage computed by the DSL-specific ap-

proach: 3/4 = 75 %

5.2. Model Fault Localization
When a test case fails, it is unfortunately often challenging

to localize the defect causing the failure. In order to provide
dedicated support for this step, a multitude of fault localization
techniques have been proposed in the past such as SBFL which
is based on utilizing the computed coverage measurements of
different test executions [11]. As our proposed model coverage
metrics are generic with respect to the supported xDSLs, it
allows us to offer SBFL for any xDSL as well.

In the realm of software testing, SBFL is usually applied at the
statement level, i.e., it uses the statement coverage of the tested
program and calculates the suspiciousness of each statement of
the program [11]. In this work, we adapt SBFL for xDSLs by
substituting the notion of statement with the generic concept of
model element. Accordingly, considering a test suite of a model,
our proposed Model Fault Localization component uses the
execution result and the model element coverage matrix of the
test suite (i.e., generated by our Model Coverage Computation
component) to calculate the suspiciousness-based ranking of the
model’s elements using SBFL techniques.

In the current state-of-the-art SBFL, each SBFL technique
introduces a dedicated formula that is based on a set of values
(note that we adapted them for the context of models) which are
computed from the test results and coverage information:

• NCF: number of failed test cases that cover the element
• NUF: number of failed test cases that do not cover the

element
• NCS: number of successful test cases that cover the element
• NUS: number of successful test cases that do not cover the

element
• NS: total number of successful test cases
• NF: total number of failed test cases
• NC: total number of test cases that cover an element
• NU: total number of test cases that do not cover an element

For instance, a well-known formula is Tarantula [29] which is
(NCF/NF)/(NCF/NF + NCS/NS). It is indeed based on two
main assumptions: (i) elements which are executed by more
failed test cases are more likely to be faulty, and (ii) the ones
which are executed by more passed test cases are less likely to
have a fault. In the current implementation of our approach, we
support 18 existing formulas. The details on the realization of
each formula can be found in the Appendix A.

It should be noted that since our proposed model fault local-
ization technique is currently solely based on SBFL, it is not able

to detect faults due to missing elements as it is a shortcoming
of the SBFL approach (as already mentioned in Section 2.5).
For localizing those kinds of faults, other techniques must be
applied, which is left to future work.

6. Tool Support

To provide tool support of our proposed approach for a given
xDSL, we need: (1) an API to manipulate the abstract syntax
and the execution semantics of the xDSL (i.e., needed for the
xDSL analysis step); (2) an API to manipulate the conforming
models; (3) facilities to execute the models and produce their
execution traces; and (4) an API to manipulate the execution
traces to deduce what was covered. Considering the genericity
objective regarding the supported xDSLs, we needed a language
and modeling workbench that support all these features for any
xDSL. As Eclipse GEMOC studio meets these expectations,
we implemented a prototype of our proposed framework for
the Eclipse GEMOC Studio [13]. However, the prototype is
potentially adaptable (with some effort) to another environment
that can provide all the mentioned characteristics.

To address the need for an existing testing framework, we
used our previous work [9] which itself uses a generic execution
trace management for xDSLs proposed by Bousse et al. [16, 17].
All the components of the framework (the Model Coverage
Computation, the Model Fault Localization, and the Analysis
Tools components as shown in Figure 4), are implemented in Java
and are connected using the Eclipse extension point mechanism.
In particular, for the proposed language, its abstract syntax is
defined using an Ecore metamodel, its textual concrete syntax is
implemented as an Xtext grammar along with scope providers
and static validators, and its execution semantics is implemented
in Java.

The suspiciousness computation implementation is based on
a previous work provided by Troya et al. [12] for fault local-
ization in model transformations. We have adapted their work
for general model elements in order to support any xDSL. In
the current realization, our tool supports 18 SBFL techniques
but adding new ones is possible in our framework by dedicated
means. By taking a look at the literature, there are approximately
over 30 SBFL techniques [20, 11, 30] available. What they have
in common is that they all use the same set of variables, as ex-
plained in Section 5.2 (i.e.,, NCF, NCS, NS, NF), to compute
the suspiciousness-based ranking. This means that any existing
formula that is based on the aforementioned variables can be
added to the framework.

Figure 9 shows a screenshot of our tool running in the Eclipse
GEMOC Studio modeling workbench, after executing a test
suite against the running example. The source code is accessible
from a Zenodo repository [31]. In the project explorer on the
left, there are two projects, one containing the Arduino model
(shown in Figure 2) and another containing a test suite written
for it using our testing framework [9]. The constructed coverage
matrices can be persisted as XMI files conforming to the format
presented in Figure 5 upon the request of the user—the user can
select the related options in the run configuration. For example,
Label 1 in Figure 9 indicates the generated coverage files.

13

1

2

3

4

6

5

7

Figure 9: Screenshot of the provided tool support based on the Eclipse GEMOC Studio showing the coverage and the fault localization views for the running example
of this paper.

We also provided a graphical view (label 2) to display the
coverage measures computed for the test cases and for their test
suite (at the center) based on a selected coverage metric (label 3).
In the Coverage Metrics Filters, there is one entry for the generic
model element coverage computed based on the execution traces,
and one entry per coverage ruleset of the xDSL that the model
under test conforms to. For example, as the Arduino xDSL has
a coverage ruleset for computing branch coverage (presented in
Listing 2), we can select the corresponding filter (label 3) and
see (i) the coverage status of both the branching root elements
and their branches—green for COVERED, red for NOTCOV-
ERED, and yellow for PARTLYCOVERED status—and (ii) the
coverage percentage at the last row (label 4) for the running ex-
ample. The user can also use two other filter options, one to find
all the elements with a specific coverage status (Coverage Status
Filters), and another to find the coverage status for a specific
type of the elements (Type of Model Element filter).

To run SBFL on the tested model, we developed a tool titled
“Fault Localization” providing a graphical interface for the user
(on the bottom). It shows the traceable elements of the tested
model, their coverage status by each test case, and the test exe-
cution result (in the last row). The view has a drop-down list of
the 18 supported SBFL techniques (Label 5). When a technique
is selected, the tool calculates the suspiciousness score and the
rank for all the model elements and shows the results in the last
two columns (label 6). Such ranking assists users in debugging
their models by providing direct links to the locations of the
faulty elements.

For instance, if we chose Phi as the concrete SBFL technique,

the tool calculates the first rank for the third ModuleAssignment
of the second if condition of the Arduino model of Figure 2
where the defect is located (label 7). For this case, the first
ranked element is the faulty element, thus the rank for the faulty
element is correctly calculated. However, please note that there
are also other elements with the same rank. This is a common
result of existing SBFL techniques, due to the so-named tied
elements [11]. One common tie-breaking strategy for software
programs is ordering based on line numbers in a text editor [11]
and we support ordering based on model element position in a
tree editor (i.e., provided by Ecore model editor).

7. Evaluation

In this section, we report on the performed empirical study
to evaluate our proposed framework. In particular, we aim to
answer the following research questions:

RQ1: How much parameterization is required by our framework
to realize the intended coverage computation for selected
xDSLs?

RQ2: To what extent our approach can reproduce the results of
existing coverage computation approaches?

RQ3: What is the performance of existing SBFL techniques when
they are used to localize faults in executable models con-
sidering the computed element coverage measurements?

7.1. Experiment Setup
We describe in the following the setup we considered for

answering each research question.

14

Table 3: Evaluation setup data at a glance
xFSM xArduino xPSSM xMiniJava Total

xDSL Abstract syntax size (n. of EClasses) 3 59 39 76 -
Execution semantics size (LoC) 111 768 975 1,042 -

Tested
models

Number of tested models 5 6 4 6 21
Size range of tested models (n. of EObjects) 7-133 18-59 61-154 31-571 7-571

Test
artifacts

Total number of test cases 49 22 153 77 301
Test case numbers range of test suites 7-16 3-4 22-81 4-25 3-81

Mutation
analysis

Number of mutation operators 5 36 30 113 184
Number of generated mutants 289 458 324 181 1,252
Number of killed mutants 194 457 308 120 1,079

Setup for RQ1. For RQ1, we investigate whether the proposed
framework can be parameterized for different xDSLs without
considerable effort. Accordingly, we chose four existing xDSLs
from different domains showing different characteristics:

• xFSM: A small language for developing Finite State Ma-
chines for processing String values.
• xArduino: A language for simulating Arduino boards and

their execution logic (we already described this language
in Section 2.1).
• xPSSM: A partial implementation of the Precise Seman-

tics of UML State Machines (PSSM) [32] which supports
modeling of discrete event-driven behavior.
• xMiniJava: An implementation of a Java subset based on

the MiniJava project [33], allowing the definition of simple
Java programs that can be directly executed by an execution
engine in addition to the JVM. Note that it is not a typical
xDSL and is defined just for experimental purposes of this
evaluation which also allows a comparison with mature
tools as we will see in the following.

As presented in Table 3, the considered xDSLs have different
sizes as the number of classes specifying their abstract syntax
and the number of Lines of Code (LoC) of their execution se-
mantics. On average, we defined 5 differently sized models
using each xDSL, ranging from 7 to 571 number of objects. In
addition, using an existing testing framework [9] in the Eclipse
GEMOC Studio, we defined a set of test cases per model, alto-
gether, 301 test cases for 21 models. The number of test cases
for each model ranges from 3 to 81.

Concerning the intended coverage computations for the se-
lected xDSLs, we have to note that unfortunately there is no
“gold standard” available to which we can compare, except for
xMiniJava for which mature coverage tools are available. The
latter aspect is particularly focused on answering RQ2. Thus, for
the other xDSLs, the authors have discussed and evaluated differ-
ent coverage options and selected a commonly agreed intended
coverage for the given xDSLs and provided models.

For answering RQ1, we select as dedicated metrics the number
and types of the required coverage rules for achieving both,
element and branch coverage. To provide an estimate of the
effort required to develop these rules, we also measure the Lines
of Code (LoC) necessary to develop the DSL-specific coverage
support for the chosen languages.

Setup for RQ2. For answering RQ2, we compare our cover-
age computation component with existing code coverage tools.
As xMiniJava is a Java-based xDSL, each xMiniJava model is
indeed a Java program, and test cases of the xMiniJava models
can be defined as JUnit tests for the equivalent Java programs.
This allows us to compare our coverage computation approach
with existing well-known Java coverage tools. For this com-
parison, we have chosen JaCoCo [34], CodeCover [35], and
OpenClover [36] as they are open-source coverage tools support-
ing JUnit tests of Java programs. Among different code coverage
metrics supported by them, we use statement coverage as it is
the closest to our model element coverage metric, as well as
branch coverage.

We reused the Java programs provided by the MiniJava
project [33]. For the comparison with JaCoCo, we had to per-
form two minor modifications on them. First, as some of the
closed brackets that are in a separate line of code are counted
by JaCoCo when computing statement coverage (e.g., the clos-
ing curly bracket of if statements), we put them next to their
last precedent statement. Second, we transformed compound
expressions of the conditional elements (e.g., if(a && b){}) to
a set of atomic expressions (e.g., if(a){if(b){}}) to make the Ja-
CoCo branch coverage metric similar to a decision coverage
metric [37]. Finally, we transformed the test cases of xMini-
Java models—according to Table 3, 77 tests for 6 xMiniJava
models—to JUnit tests for equivalent Java programs.

In each performed comparison, we investigate whether the
coverage status of each Java statement/branch is the same as
for its equivalent xMiniJava element/branch. In case there are
deviations, we document these deviations and investigate if there
is a parameterization option in our proposed framework, i.e.,, a
dedicated coverage rule, which counteracts the deviation.

It has to be noted that we could not find any existing cover-
age computation tool for the other xDSLs. Consequently, our
evaluation for RQ2 is limited to xMiniJava. However, we would
like to emphasize that for this xDSL, we have the opportunity to
compare against mature coverage tools.

Setup for RQ3. RQ3 targets the utilization of the model ele-
ment coverage measurements for subsequent fault localization
activities. As our proposed fault localization approach relies on
SBFL techniques, we answer this question from two viewpoints.
First, we need to assess whether our fault localization approach
correctly localizes the faulty element of a model i.e., gives it

15

the first rank among all the elements of the model. Second, as
there are plenty of SBFL formulas for suspiciousness ranking
measurement—18 of which are currently supported by our tool—
we aim to evaluate the effectiveness of each formula for the
context of executable models.

Answering RQ3 first requires running the fault localization
component on each considered model. To do this, there must be
at least one defect in the model and at least one of its related test
cases must be failing. A well-known technique for producing
faulty programs is mutation analysis, in which small syntactic
faults are injected into a program using so-called mutation op-
erators. The result is a set of mutants that each is the program
including some defects. For the scope of this evaluation, we
used WODEL [38], a generic mutation analysis framework that
provides facilities to define mutation operators for an xDSL, then
it automatically generates mutants for the models conforming to
that xDSL.

As Table 3 presents, we defined in total 184 mutation opera-
tors for our considered xDSLs. Thereafter, WODEL generated a
total of 1252 mutants for our 21 models. Afterward, we filtered
the generated mutants by keeping those killed by their related
test cases; a mutant is killed if at least one of its related test cases
fails it. Among 1252 mutants, 1079 of them were killed by our
written test suites. To know the exact location of their injected
fault, we used a tool named EMF Compare [39] to automatically
find the faulty element of each mutant by comparing it with the
original model.

For effectiveness measurement of SBFL techniques, there is a
well-known metric in the literature called EXAM score [40]. It
measures the percentage of the elements that have to be exam-
ined to reach the first faulty element of the model (a value in the
range (0,1]):

EXAM S core =
o f examined elements

o f all elements

Therefore, an SBFL formula with a lower EXAM score is
considered more effective in fault localization. However, SBFL
formulas may calculate the same suspiciousness score for several
elements, hence tying them to the same position in the ranking.
Therefore, one strategy for effectiveness measurement is consid-
ering the Best Case (BC), the Average Case (AC), and the worst
case (WC) scenarios [11]. In the BC and WC scenarios, the
faulty element is inspected first and last in the tie, respectively.
For example, considering the xArduino model of Figure 2, the
total number of elements in the model element coverage ma-
trix is 18 (as mentioned in Section 5.1). If an SBFL formula
correctly gives the first rank to the faulty element, but also to
3 other elements (i.e., 4 elements in a tie), the BC EXAM score
is 1

18 = 0.055, the WC EXAM score is 4
18 = 0.222, and the AC

EXAM score is 2
18 = 0.111. It means to find the faulty element

of the model, 5 % of its elements must be examined in the best
case, 22 % in the worst case, and 11 % in the average case. In
the presented subsequent analysis, we measure EXAM scores
for all BC, WC, and AC scenarios.

Evaluation data. We published our evaluation data in a Zenodo
repository [31].

7.2. Evaluation Result
In the following, we present the evaluation results to answer

the aforementioned research questions. In particular, we present
the main results summarized in a respective table for each re-
search question.

Answering RQ1. In the first research question, we aim to eval-
uate the effort for using the proposed framework for a set of
selected xDSLs. Specifically, we are questioning the level of
required parameterization for each xDSL to realize the intended
coverage measurements for their conforming models. The over-
all result of our evaluation is presented in Table 4.

After running the test cases on the available models—a total
of 301 test cases on 21 models—we observed that the generic
coverage computation approach successfully computed the ele-
ment coverage for all the test cases. Nevertheless, the computed
element coverage for the xArduino, xPSSM, and xMiniJava
models was limited due to the reasons already mentioned in Sec-
tion 4.1.3. To lift the limitations, we defined a set of Inclusion
and Exclusion coverage rules for their corresponding xDSLs,
totally 17 and 9 rules, respectively. We already explained some
of the rules defined for the xArduino in the Listings 1 and 2 of
Section 4.2.1. For xPSSM and xMiniJava, several rules were
defined to infer the coverage of a container element from the
coverage of its contained elements (using CoverageByContent
Inclusion rule type). For example, in xPSSM models, a State
element is covered if at least one of its outgoing Transition ele-
ments is covered and a Class element in an xMiniJava model is
covered if any of its contained elements are covered. We further
explain the coverage rules for xMiniJava later in providing the
answer to RQ2.

Moreover, as all the considered xDSLs have the notion of
branching in their definition, we instantiated a set of Branch-
Specification rules for each of them (a total of 9 rules). Interest-
ingly, for both state machine-based languages, only one branch
specification rule was necessary because execution branching
occurs only from States with more than one outgoing Transi-
tion. For xArduino and xMiniJava we needed to define 3 and 4
rules, respectively, because they have several branching concepts
(i.e., If, While, and For elements) with the possibility of having
Implicit branches (i.e., If elements without else blocks).

It is also worth mentioning that, in some cases, we needed to
define new Inclusion and Exclusion coverage rules to be able
to compute branch coverage. For example, as discussed in Sec-
tion 4.2.1 for the xArduino, the Block elements contained by If
elements represent explicit branches, thus their coverage status
is needed to compute also the xArduino branch coverage. How-
ever, the generic coverage measurement (i.e., without applying
any coverage rule) was not able to set any coverage status for
the Block elements. Using MoCL, we were able to define a cov-
erage rule to infer their coverage status based on their contained
Instruction elements (as shown in Table 1).

Altogether, we have implemented 35 coverage rules consist-
ing of altogether 98 LoC for 4 xDSLs using MoCL. Through
the application of this set of coverage rules, we successfully
computed the intended model element coverage and the model
branch coverage for all considered test cases. Thus, we conclude

16

Table 4: Evaluation result at a glance
xFSM xArduino xPSSM xMiniJava Total

#of tests with computed coverage 49 22 153 77 301

D
SL

-S
pe

ci
fic

C
ov

er
ag

e

co
ve

ra
ge

ru
le

s #of Inclusion rules 0 5 10 2 17

#of Exclusion rules 0 3 0 6 9
#of Branch Specification rules 1 3 1 4 9
Total #of rules 1 11 11 12 35
DSL-specific coverage size (LoC) 5 31 28 34 98

Model element coverage % 100% 100% 100% 97.5%-100% -
Branch coverage % 100% 100% 100% 91.7%-100% -

SBFL #of fault localized mutants 194 452 304 119 1,069

that an efficient realization of the intended coverage computa-
tion for xDSLs is possible with MoCL, supporting both model
element coverage and model branch coverage.

Answering RQ2. This research question targets the repro-
ducibility of specifically developed coverage computation ap-
proaches by our proposed Model Coverage Computation com-
ponent. To answer this question, we compared the coverage
matrices generated by our proposed component for the xMini-
Java tests with those generated by the three considered code
coverage tools for the equivalent JUnit tests. A summary of our
comparison is presented in Table 5.

According to our investigation, each of the considered cov-
erage tools has its own considerations for computing coverage,
including (i) Java classes are considered as statements by Ja-
CoCo but not by CodeCover and OpenClover; (ii) contrary to
JaCoCo and OpenClover, CodeCoder does not count conditional
and looping statements (e.g., if, for, and while) when computing
statement coverage [41]; and (iii) the body of a looping state-
ment is not counted as a branch by CodeCover [42] while it is
considered by JaCoCo and OpenClover.

Comparing our model element coverage measurements with
statement coverage results produced by each tool, we achieved
the same result as:

• JaCoCo when applying a CoverageByContent rule for the
class elements;
• CodeCover when applying Ignore rules for the if, for, and

while elements;
• OpenClover without any need for model element coverage

rules.

Moreover, we achieved the same result for the branch cover-
age measurements with:

• JaCoCo and OpenClover when applying Branch-
Specification rules for the looping elements (i.e., for and
while elements);
• CodeCover when not considering the BranchSpecification

rules for the looping elements.

In each performed comparison, we manually verified that the
coverage status of each Java statement/branch by each JUnit

test is the same for its equivalent xMiniJava element/branch by
its related test, meaning that our approach provides the same
result for the user. This result demonstrates that our approach
can reproduce the measurements of different coverage tools by
defining a few coverage rules for the xMiniJava DSL using the
MoCL, hence showing the flexibility of our parametrization
approach.

Answering RQ3. To answer this research question, we aim to
evaluate the utilization of our model element coverage metric
for fault localization tasks. For this, we first have to investi-
gate whether our Model Fault Localization component correctly
finds the faulty element of each mutant. Thus, we executed
the supported SBFL techniques (18 techniques as presented
in Appendix Appendix A) on the 1079 killed mutants and
checked the rank of the mutants’ faulty element calculated by
each SBFL technique. We observed that for 1069 examined mu-
tants (i.e., 99 %), there is at least one SBFL technique supported
by our framework that calculated the rank of its faulty element
as first. This result emphasizes the general usefulness of our
model element coverage measurement as a foundation for SBFL
techniques.

Second, we calculated the EXAM score of each supported
SBFL technique to assess their effectiveness in the context of
localizing faults in executable models. Table 6 shows EXAM
scores of each technique in the BC, AC, and WC scenarios for
the considered xDSLs both individually and altogether. Overall,
it is evident that the AC EXAM score of most of the SBFL
techniques is between 0.25 and 0.35. Some have AC EXAM
scores above 0.35 up to 0.66 which indicates a low performance
for localizing the actual faulty element.

As can be seen in Table 6, Arithmetic mean [40] is performing
well in the BC scenario, with 0.038 average EXAM score, but
it does not perform well in the AC and WC scenarios relative
to other techniques. This technique results in many ties in the
ranking, which harms the AC and WC scenarios. As we see
for all investigated techniques, there are relatively large spans
between the BC and WC, meaning that the problem of having
many ties of SBFL techniques [43] also occurs for executable
models. The most effective approaches when considering all the
scenarios and xDLS are in order (1) Rogers & Tanimoto [44] and
Simple matching [11], with the third lowest BC score (0.113) and

17

Table 5: Reproducing three Java code coverage tools for the xMiniJava DSL
Reproduction of JaCoCo CodeCover OpenClover

statement coverage by
model element coverage

✓with a CoverageByContent
rule for Class elements

✓with Ignore rules for
conditional, and looping
elements

✓without any rule for Class,
conditional and looping
elements

code branch coverage
by model branch
coverage

✓with BranchSpecification
rules for looping elements

✓without BranchSpecification
rules for looping elements

✓with BranchSpecification
rules for looping elements

Table 6: EXAM scores (AC, BC, and WC values) for investigated SBFL techniques: language-specific and overall performance results.
xFSM xArduino xMiniJava xPSSM Overall

Technique AC BC WC AC BC WC AC BC WC AC BC WC AC BC WC
Arithmetic Mean 0.387 0.074 0.699 0.318 0.066 0.628 0.340 0.057 0.622 0.392 0.013 0.772 0.333 0.038 0.627

Barinel 0.203 0.086 0.322 0.314 0.140 0.569 0.391 0.145 0.638 0.214 0.080 0.348 0.246 0.079 0.414
Baroni et al. 0.448 0.321 0.576 0.241 0.077 0.428 0.236 0.092 0.379 0.420 0.234 0.606 0.306 0.147 0.465

Braun-Banquet 0.449 0.322 0.577 0.253 0.070 0.445 0.233 0.088 0.378 0.428 0.239 0.616 0.317 0.149 0.485
Cohen 0.279 0.173 0.385 0.295 0.101 0.569 0.262 0.088 0.435 0.307 0.185 0.430 0.265 0.111 0.419
DStar 0.550 0.412 0.687 0.504 0.286 0.643 0.363 0.216 0.510 0.458 0.271 0.646 0.405 0.244 0.566

Kulcynski2 0.446 0.318 0.573 0.251 0.070 0.445 0.228 0.083 0.373 0.426 0.239 0.613 0.314 0.147 0.481
Mountford 0.494 0.347 0.641 0.455 0.231 0.643 0.288 0.108 0.468 0.427 0.238 0.616 0.384 0.179 0.588

Ochiai 0.446 0.319 0.574 0.250 0.070 0.445 0.230 0.085 0.375 0.424 0.237 0.611 0.314 0.147 0.481
Ochiai2 0.407 0.219 0.594 0.308 0.099 0.599 0.273 0.090 0.456 0.392 0.165 0.620 0.322 0.115 0.529

Op2 0.384 0.320 0.499 0.262 0.094 0.444 0.221 0.080 0.361 0.348 0.266 0.429 0.288 0.172 0.403
Phi 0.278 0.172 0.384 0.295 0.101 0.569 0.261 0.087 0.435 0.307 0.184 0.430 0.265 0.111 0.419

Pierce 0.731 0.525 0.937 0.576 0.265 0.918 0.635 0.319 0.950 0.680 0.482 0.879 0.655 0.394 0.915
Rogers & Tanimoto 0.311 0.225 0.398 0.260 0.082 0.448 0.274 0.120 0.428 0.209 0.120 0.299 0.242 0.113 0.371

Russel-Rao 0.515 0.312 0.718 0.392 0.081 0.668 0.279 0.053 0.504 0.480 0.255 0.703 0.413 0.165 0.661
Simple Matching 0.311 0.225 0.398 0.260 0.082 0.448 0.274 0.120 0.428 0.209 0.120 0.299 0.242 0.113 0.371

Tarantula 0.478 0.323 0.633 0.264 0.100 0.503 0.277 0.101 0.453 0.426 0.218 0.634 0.324 0.142 0.506
Zoltar 0.446 0.318 0.573 0.251 0.070 0.445 0.228 0.083 0.373 0.427 0.240 0.613 0.324 0.142 0.506

the lowest AC (0.242) and WC (0.371) scores; (2) Barinel [45]
with the second lowest BC (0.079) and AC (0.246) scores, and
the third least DC (0.414) score; (3) Phi [46] and Cohen [47]
with slightly higher BC (0.111), AC (0.265), and DC (0.419)
scores; and (4) Op2 [47] which although is the fourth most
effective approach in the BC scenario (0.172), has a reasonable
AC (0.288) and the second least WC (0.403) scores.

Moreover, there are also less performant approaches on the
overall level, respectively, Pierce [11], DStar [48], Russel-
Rao [49], and Mountford [50] because of having very high
EXAM scores in all the scenarios.

For the rest of the approaches (i.e., Ochiai2 [51], Taran-
tula [29], Ochiai [52], Baroni-Urbani & Buser [50], Kulczyn-
ski2 [47], Zoltar [53], and Braun-Banquet [11]), the EXAM
scores are almost in the same range in all the scenarios; BC =
[0.115, 0.149], AC = [0.306, 0.324], WC = [0.465, 0.529]. In
comparison to other techniques, they presented a medium level
of effectiveness for model fault localization.

Interestingly, for different xDSLs we have different winning
techniques such as Barinel for xFSM, Baroni et al. for xArduino,
Op2 for xMiniJava, and Rogers & Tanimoto as well as Simple
matching for xPSSM. This shows that depending on the given
xDSL, it makes sense to use particular SBFL techniques for fault
localization.

7.3. Threats to Validity
In this subsection, we identify threats to validity according to

the four main categories defined by Wohlin et al. [54] and how

we mitigated them as follows.

Construct Validity. The validity of our coverage computation
approaches was compared with three existing well-known cover-
age tools. Nevertheless, there are still other tools available such
as Cobertura [55] which can be used for further comparisons
and we left this as future work. However, considering three ex-
isting approaches which are used in practice should give enough
evidence that the validity for the investigated cases is given. As
we did not have a pre-existing gold standard for the coverage
information for the used executable models, we developed our
own reference understanding about intended coverage measure-
ments. We performed several iterations and used discussions in
the author team to come to a common understanding. Further-
more, we also took inspiration from the existing coverage tools
for Java programs. However, we cannot make any claims that
someone may not have a different understanding of coverage
measurements for the given xDSLs and used models. With the
parametric approach, we have also a mechanism to reflect differ-
ent understandings by developing new or customizing existing
coverage rules for the four used xDSLs.

Internal Validity. As SBFL is incapable of locating bugs that
are caused by missing code, we did not make use of mutation
operators that define faults as the removal of existing model ele-
ments. This threatens the internal validity of our study. However,
to overcome this threat, extensions of our framework with addi-
tional fault localization techniques which can deal with missing

18

elements are required as future work. Furthermore, we have
performed minor code modifications in order to deal with con-
crete textual syntax peculiarities of Java code coverage tools. To
mitigate any negative impact such as changing the semantics of
the programs, we carefully performed the modifications and did
regression testing using the available test cases.

External Validity. In evaluating the parameterization effort for
our framework, we only considered four languages, so there
is an external threat that the framework might not work as ex-
pected for other xDSLs. However, we aimed to use different
kinds of languages ranging from well-known modeling stan-
dards (xPSSM) over specific modeling languages for particular
hardware (xArduino) to more general programming languages
(xMiniJava). However, we cannot state any conclusions which
go beyond the paradigms of the used xDSLs. Also, we assessed
the reproducibility of our framework by only considering xMini-
Java as we were not able to find relevant coverage computation
tools for other xDSLs which we could compare to. Addition-
ally, we defined our framework on top of the Eclipse GEMOC
Studio as a reference for xDSL implementations. As there are
other language workbenches [19] available, additional studies
are required to validate the portability of our proposed approach.

Conclusion Validity. By investigating RQ3, we observed the
performance of SBFL techniques in localizing the faulty ele-
ment of models and we did a comparison between them based
on the well-defined EXAM score in the AC, BC, and WC sce-
narios. However, it is still an open question whether there is
a relationship between the context of an xDSL and the most
effective SBFL technique for the fault localization of its con-
forming models. Nevertheless, such an analysis requires a more
detailed empirical evaluation. Currently, we can only provide
some recommendations based on the specific results we got
for the different xDSLs, used models, and applied mutations to
simulate the faults.

8. Related Work

With respect to the contributions of this paper, we discuss
three threads of related work. First, we discuss existing work on
model coverage. Second, we elaborate on frameworks allowing
the development or customization of the coverage tools. Finally,
we elaborate on existing approaches for fault localization in
models. We also acknowledge that there are related fields such
as compiler testing [56, 57] or testing of interpreters [58] which
may be complementary used for testing the implementation of
xDSLs. However, in the scope of this work, we only focus on
testing the executable models realized in xDSLs.

8.1. Model Coverage Approaches
Several research efforts have proposed the usage of existing

coverage techniques for specific modeling languages, e.g., see
logic coverage for State Machines [59], data-flow coverage for
executable UML models [60], branch coverage for activity di-
agrams [61], among many others. However, to the best of our
knowledge, there is no generic coverage criterion for models.

Also, this topic is not yet discussed within the context of lan-
guage workbenches [19].

8.2. Customizable Code Coverage

Some approaches focus on the use of program transformations
to ease the construction of code coverage tools. The approach
presented in [62] is about the specification of test probes, using
the Rule Specification Language provided by Semantic Designs3

(DMS). The presented approach is exemplified by implementing
branch coverage rules for C programs. Following this idea, Yue
& Gray [63] propose a DSL called SPOT (Specifying PrOgram
Transformation). The goal of SPOT is to reduce complexity in
defining source-to-source transformations. The feasibility of the
approach is demonstrated by implementing statement coverage
and branch coverage of C programs. These two aforementioned
approaches ease the program transformation to install the test
probes, but additional tooling is needed such as a visited vector
as well as an engine to collect the coverage results. Our tool does
not need additional tooling—by default we provide views to visu-
alize the coverage information—but also provide customization
points through a dedicated DSL for defining language-specific
coverage measurements.

Other proposals are related to the implementation of test cov-
erage frameworks [64, 65, 66]. For example, Misurda et al. [64]
propose a tool called Jazz for testing Java programs and com-
puting coverage measures based on the corresponding execution
paths. Bordin et al. [65] introduce their tool Couverture which
is able to measure structural coverage by providing a virtualized
execution platform. Sakamoto et al. [66] propose an extensible
tool called Open Code Coverage Framework (OCCF), which
supports a set of code coverage criteria. In addition, OCCF
supports the addition of new code coverage metrics as well as
customization for new programming languages. OCCF targets
a similar goal as our approach, however, we rely on top of an
existing tracing framework, which allows us to directly compute
coverage measurements without instrumenting the models.

A broad range of existing code coverage tools exists for Java
applications, such as JaCoCo [34], OpenClover [36], Code-
Cover [35], or Cobertura [55]. To the best of our knowledge,
these tools mostly lack mechanisms to add new languages except
OpenClover [67] and CodeCover [68]. The OpenClover tool has
an extensibility mechanism, but the precondition to use it is that
the new programming language must be somehow mapped to the
Java/Groovy-like program structure (i.e.,, class files, methods,
and statements). Therefore, languages that do not fulfill this
requirement, cannot benefit from this tool. In the case of the
CodeCover tool, the new language must provide a parser based
on JavaCC [69], and implement a set of interfaces. This is a
similar approach to ours, but we provide the language engineer
with a compact DSL and dedicated tool support.

In summary, current approaches for coverage computation are
mainly defined for GPLs. In this sense, with our framework,
we aim to fulfill the need for generic approaches for DSLs by
proposing new coverage metrics and measurement techniques

3www.semdesigns.com

19

that are adaptable to DSLs. In particular, we propose two generic
coverage metrics, including model element coverage and model
branch coverage. Moreover, our framework can be customized
for a given DSL by using our dedicated model coverage lan-
guage. The resulting coverage computation support can be used
in subsequent steps and in this paper, we applied it for test quality
evaluation and model fault localization.

8.3. Fault Localization for Models

There are several research efforts proposing the application of
SBFL to specific modeling languages [21]. For instance, some
studies detect the faulty element in model transformations [12,
70]. Troya et al. [12] present an approach to apply SBFL to
locate the faulty rule in a model transformation and evaluate
the effectiveness of their approach by comparing a large set of
different state-of-the-art SBFL techniques, which is also reused
in the context of our work. Li et al. [70] propose an optimization
strategy of SBFL by adding weight values to the test models as
well as statistical coverage information. Raselimo & Fischer [71]
present the usage of SBFL methods for context-free grammars
based on a modified parser that collects grammar spectra, i.e.,,
the covered rules for parsing a test case. We leave the application
of our proposed framework for such domains subject to future
work.

In addition to the approaches that target fault localization in
model transformations, some approaches are aiming for find-
ing faulty elements in models. Wang et al. [72] propose the
application of fault localization techniques for declarative mod-
els implemented in Alloy. Another line of research aims for
detecting errors in models with the use of evolutionary algo-
rithms. BLiMEA [73] and Ebro [74] detect errors in models
with the help of evolutionary algorithms. Arcega et al. [75] com-
pare these proposed tools for bug localization and show that the
combination of these tools outperforms existing approaches. A
very recent work presented in [76] aims for specific support for
fault localization by using evolving simulations to locate bugs
in models of video games. However, none of these mentioned
approaches consider the execution semantics of modeling lan-
guages to detect errors or the support of multiple languages, thus,
our approach can be considered complementary to the others,
and vice versa.

9. Conclusions and Future Work

In this paper, we proposed a novel language-parametric test
coverage framework for xDSLs. It offers (i) two generic cov-
erage metrics, including model element coverage and model
branch coverage; (ii) a language allowing language engineers to
parameterize coverage metrics for a given xDSL; (iii) generic
techniques for computing model coverage based on the proposed
metrics; and (iv) two applications of the coverage measurements
including test quality evaluation and automatic fault localization.
In our evaluation, we observed that an automated and language-
parametric framework for coverage computation enriches the
DSL definitions with further V&V techniques at a reasonable
cost.

In future work, we consider the following lines of research:
defining new coverage metrics such as path coverage, provid-
ing further support for the definition of DSL-specific coverage
rules, e.g.,, by analyzing the execution semantics, adopting other
coverage-related testing techniques, such as test case genera-
tion and test amplification, and developing optimized SBFL
techniques for specific xDSLs. We also consider to investigate
how to import traces generated with other interpreters, e.g.,,
pure Java/EMF-based interpreters. In addition, we will explore
how our presented concepts can be transferred to other lan-
guage engineering approaches, potentially following different
computing paradigms such as term rewriting as used in the K
framework [77].

Acknowledgement

This work has received funding from the European Union’s
Horizon 2020 research and innovation program under the Marie
Skłodowska Curie grant agreement No 813884, by the Aus-
trian Science Fund (P 30525-N31), and by the Austrian Federal
Ministry for Digital and Economic Affairs and the National
Foundation for Research, Technology and Development (CDG).
Special gratitude to Javier Troya for putting his implementa-
tion of SFBL for model transformations as open source, and
to Pablo Gómez-Abajo for his active support of the WODEL
model mutation testing tool.

References

[1] S. Mijatov, T. Mayerhofer, P. Langer, G. Kappel, Testing functional re-
quirements in uml activity diagrams, in: J. C. Blanchette, N. Kosmatov
(Eds.), Tests and Proofs, Springer, 2015, pp. 173–190.

[2] T. Kos, M. Mernik, T. Kosar, Test automation of a measurement system
using a domain-specific modelling language, Journal of Systems and
Software 111 (2016) 74 – 88.

[3] D. Lübke, T. van Lessen, Bpmn-based model-driven testing of service-
based processes, in: Enterprise, Business-Process and Information Systems
Modeling, Springer, 2017, pp. 119–133.

[4] J. Iqbal, A. Ashraf, D. Truscan, I. Porres, Exhaustive simulation and test
generation using fuml activity diagrams, in: P. Giorgini, B. Weber (Eds.),
Advanced Information Systems Engineering, Springer, 2019a, pp. 96–110.

[5] H. Wu, J. Gray, M. Mernik, Unit testing for domain-specific languages,
in: W. M. Taha (Ed.), Domain-Specific Languages, Springer, 2009, pp.
125–147.

[6] B. Meyers, J. Denil, I. Dávid, H. Vangheluwe, Automated testing support
for reactive domain-specific modelling languages, in: Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language
Engineering, ACM, 2016, pp. 181–194.

[7] F. Khorram, E. Bousse, J.-M. Mottu, G. Sunyé, Adapting tdl to provide
testing support for executable dsls, Journal of Object Technology 20 (3)
(2021) 6:1–15.

[8] P. C. Cañizares, P. Gómez-Abajo, A. Núñez, E. Guerra, J. de Lara, New
ideas: automated engineering of metamorphic testing environments for
domain-specific languages, in: SLE’21: 14th ACM SIGPLAN Interna-
tional Conference on Software Language Engineering, ACM, 2021, pp.
49–54.

[9] F. Khorram, E. Bousse, J.-M. Mottu, G. Sunyé, Advanced Testing and
Debugging Support for Reactive Executable DSLs, Software and Systems
Modeling (2022).

[10] P. Ammann, J. Offutt, Introduction to software testing, Cambridge Univer-
sity Press, 2016.

[11] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, A survey on software
fault localization, IEEE Transactions on Software Engineering 42 (8)
(2016) 707–740.

20

[12] J. Troya, S. Segura, J. A. Parejo, A. Ruiz-Cortés, Spectrum-based fault
localization in model transformations, ACM Transactions on Software
Engineering and Methodology (TOSEM) 27 (3) (2018) 1–50.

[13] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni, B. Combe-
male, Execution framework of the gemoc studio (tool demo), in: Proceed-
ings of the 2016 ACM SIGPLAN International Conference on Software
Language Engineering, 2016, pp. 84–89.

[14] F. Khorram, E. Bousse, A. Garmendia, J.-M. Mottu, G. Sunyé, M. Wimmer,
From coverage computation to fault localization: A generic framework for
domain-specific languages, in: Proceedings of the 15th ACM SIGPLAN
International Conference on Software Language Engineering, SLE 2022,
Association for Computing Machinery, New York, NY, USA, 2022, p.
235–248. doi:10.1145/3567512.3567532.

[15] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: eclipse model-
ing framework, Addison-Wesley, 2008.

[16] E. Bousse, T. Mayerhofer, B. Combemale, B. Baudry, A generative ap-
proach to define rich domain-specific trace metamodels, in: G. Taentzer,
F. Bordeleau (Eds.), Modelling Foundations and Applications, Springer,
2015, pp. 45–61.

[17] E. Bousse, T. Mayerhofer, B. Combemale, B. Baudry, Advanced
and efficient execution trace management for executable domain-
specific modeling languages, Software and Systems Modeling (2019)
1–37doi:10.1007/s10270-017-0598-5.
URL https://hal.inria.fr/hal-01614377

[18] A. Iung, J. Carbonell, L. Marchezan, E. Rodrigues, M. Bernardino, F. P.
Basso, B. Medeiros, Systematic mapping study on domain-specific lan-
guage development tools, Empirical Software Engineering 25 (5) (2020)
4205–4249. doi:10.1007/s10664-020-09872-1.
URL https://doi.org/10.1007/s10664-020-09872-1

[19] S. Erdweg, T. van der Storm, M. Völter, L. Tratt, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P. J. Molina,
M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. Vergu,
E. Visser, K. van der Vlist, G. Wachsmuth, J. van der Woning, Evaluating
and comparing language workbenches: Existing results and benchmarks
for the future, Computer Languages, Systems & Structures 44 (2015)
24–47. doi:10.1016/j.cl.2015.08.007.
URL http://www.sciencedirect.com/science/article/pii/

S1477842415000573

[20] H. A. de Souza, M. L. Chaim, F. Kon, Spectrum-based software fault
localization: A survey of techniques, advances, and challenges, arXiv
preprint arXiv:1607.04347 (2016).

[21] M. L. Mohd-Shafie, W. M. N. W. Kadir, H. Lichter, M. Khatibsyarbini,
M. A. Isa, Model-based test case generation and prioritization: a sys-
tematic literature review, Software and Systems Modeling (2021) 1–
37doi:10.1007/s10270-021-00924-8.
URL https://doi.org/10.1007/s10270-021-00924-8

[22] R. Bendraou, B. Combemale, X. Crégut, M.-P. Gervais, Definition of an
eXecutable SPEM 2.0, in: Proceedings of the 14th Asia-Pacific Software
Engineering Conference (APSEC), IEEE Computer Society, 2007, pp.
390–397.

[23] OASIS, Web services business process execution language version 2.0
(2007).
URL http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.

html

[24] O. M. G. (OMG), Semantics of a foundational subset for executable
uml models, https://www.omg.org/spec/FUML/, (last accessed in
September 2022) (2022).

[25] T. Mayerhofer, B. Combemale, The tool generation challenge for exe-
cutable domain-specific modeling languages, in: M. Seidl, S. Zschaler
(Eds.), Software Technologies: Applications and Foundations, Springer,
2018, pp. 193–199.

[26] E. Biermann, C. Ermel, G. Taentzer, Precise semantics of emf model
transformations by graph transformation, in: Proceedings of the 11th
International Conference on Model Driven Engineering Languages and
Systems, MoDELS’08, Springer, 2008, p. 53–67.

[27] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, B. Baudry,
A snowballing literature study on test amplification, Journal of Systems
and Software 157 (2019) 110398.

[28] E. Bousse, D. Leroy, B. Combemale, M. Wimmer, B. Baudry, Omniscient
Debugging for Executable DSLs, Journal of Systems and Software 137
(2018) 261–288. doi:10.1016/j.jss.2017.11.025.

URL https://hal.inria.fr/hal-01662336

[29] J. A. Jones, M. J. Harrold, Empirical evaluation of the tarantula automatic
fault-localization technique, in: Proceedings of the 20th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE’05, ACM,
2005, p. 273–282. doi:10.1145/1101908.1101949.
URL https://doi.org/10.1145/1101908.1101949

[30] L. Naish, H. J. Lee, K. Ramamohanarao, A model for spectra-based soft-
ware diagnosis, ACM Transactions on software engineering and methodol-
ogy (TOSEM) 20 (3) (2011) 1–32.

[31] F. Khorram, A. Garmendia, A Language-Parametric Test Coverage Frame-
work for DSLs: Artefacts (2023). doi:10.5281/zenodo.7709671.
URL https://doi.org/10.5281/zenodo.7709671

[32] Object Management Group, Precise semantics of uml state machines
(2019).
URL https://www.omg.org/spec/PSSM/1.0/

[33] J. Cangussu, J. Palsberg, V. Samanta, Modern Compiler Implementa-
tion in Java: the MiniJava Project, https://www.cambridge.org/

resources/052182060X, [Online; accessed 28-February-2023] (2023).
[34] E. team, Jacoco java code coverage library, [Online; accessed 28-February-

2023] (2023).
URL https://github.com/jacoco/jacoco

[35] CodeCover, Codecover glass-box testing tool, [Online; accessed 28-
February-2023] (2023).
URL http://codecover.org

[36] OpenClover, Openclover code coverage tool for java and groovy, [Online;
accessed 28-February-2023] (2023).
URL https://openclover.org/

[37] E. Mandrikov, What kind of branching coverage is measured by jacoco,
[Online; accessed 28-February-2023] (2023).
URL https://groups.google.com/g/jacoco/c/b8bAWaWPl6I/m/

eMKixUpMCAAJ

[38] P. Gómez-Abajo, E. Guerra, J. de Lara, M. G. Merayo, Wodel-test: a model-
based framework for language-independent mutation testing, Software and
Systems Modeling 20 (2020) 1–27.

[39] E. Compare, EMF Compare, https://www.eclipse.org/emf/

compare, [Online; accessed 28-February-2023] (2023).
[40] X. Xie, T. Y. Chen, F.-C. Kuo, B. Xu, A theoretical analysis of the risk

evaluation formulas for spectrum-based fault localization, ACM Trans.
Softw. Eng. Methodol. 22 (4) (oct 2013). doi:10.1145/2522920.2522924.
URL https://doi.org/10.1145/2522920.2522924

[41] CodeCover, Codecover measurement under java: Statement coverage,
[Online; accessed 28-February-2023] (2023).
URL http://codecover.org/documentation/references/

javaMeasurement.html#StatementCovereage

[42] CodeCover, Codecover measurement under java: Branch coverage,
[Online; accessed 28-February-2023] (2023).
URL http://codecover.org/documentation/references/

javaMeasurement.html#BranchCovereage

[43] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, L. Zhang, An empirical study of
fault localization families and their combinations, IEEE Trans. Software
Eng. 47 (2) (2021) 332–347. doi:10.1109/TSE.2019.2892102.
URL https://doi.org/10.1109/TSE.2019.2892102

[44] X. Mao, Y. Lei, Z. Dai, Y. Qi, C. Wang, Slice-based statistical
fault localization, Journal of Systems and Software 89 (2014) 51–62.
doi:10.1016/j.jss.2013.08.031.
URL https://www.sciencedirect.com/science/article/pii/

S0164121213002185

[45] R. Abreu, P. Zoeteweij, A. J. van Gemund, Spectrum-based multiple fault
localization, in: 2009 IEEE/ACM International Conference on Automated
Software Engineering, 2009, pp. 88–99. doi:10.1109/ASE.2009.25.

[46] A. Maxwell, A. Pilliner, Deriving coefficients of reliability and agreement
for ratings, British Journal of Mathematical and Statistical Psychology
21 (1) (1968) 105–116. doi:10.1111/j.2044-8317.1968.tb00401.x.

[47] L. Naish, H. J. Lee, K. Ramamohanarao, A model for spectra-based
software diagnosis, ACM Trans. Softw. Eng. Methodol. 20 (3) (aug 2011).
doi:10.1145/2000791.2000795.
URL https://doi.org/10.1145/2000791.2000795

[48] W. E. Wong, V. Debroy, R. Gao, Y. Li, The dstar method for effective
software fault localization, IEEE Transactions on Reliability 63 (1) (2014)
290–308. doi:10.1109/TR.2013.2285319.

[49] Y. Qi, X. Mao, Y. Lei, C. Wang, Using automated program repair for eval-

21

uating the effectiveness of fault localization techniques, in: Proceedings
of the 2013 International Symposium on Software Testing and Analysis,
ISSTA 2013, Association for Computing Machinery, New York, NY, USA,
2013, p. 191–201. doi:10.1145/2483760.2483785.
URL https://doi.org/10.1145/2483760.2483785

[50] W. E. Wong, V. Debroy, Y. Li, R. Gao, Software fault localization using
dstar (d*), in: 2012 IEEE Sixth International Conference on Software
Security and Reliability, 2012, pp. 21–30. doi:10.1109/SERE.2012.12.

[51] F. Y. Assiri, J. M. Bieman, Fault localization for automated program repair:
effectiveness, performance, repair correctness, Software Quality Journal
25 (1) (2017) 171–199. doi:doi:10.1007/s11219-016-9312-z.
URL https://doi.org/10.1007/s11219-016-9312-z

[52] R. Abreu, P. Zoeteweij, R. Golsteijn, A. J. van Gemund, A practical evalua-
tion of spectrum-based fault localization, Journal of Systems and Software
82 (11) (2009) 1780–1792, sI: TAIC PART 2007 and MUTATION 2007.
doi:10.1016/j.jss.2009.06.035.
URL https://www.sciencedirect.com/science/article/pii/

S0164121209001319

[53] T. Janssen, R. Abreu, A. J. van Gemund, Zoltar: A spectrum-based fault
localization tool, in: Proceedings of the 2009 ESEC/FSE Workshop on
Software Integration and Evolution @ Runtime, SINTER ’09, Associ-
ation for Computing Machinery, New York, NY, USA, 2009, p. 23–30.
doi:10.1145/1596495.1596502.
URL https://doi.org/10.1145/1596495.1596502

[54] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in software engineering, Springer Science & Business
Media, 2012.

[55] Cobertura, A code coverage utility for java, [Online; accessed 28-February-
2023] (2023).
URL http://cobertura.github.io/cobertura/

[56] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, B. Xie, Learning to prioritize
test programs for compiler testing, in: S. Uchitel, A. Orso, M. P. Robillard
(Eds.), Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017,
IEEE / ACM, 2017, pp. 700–711. doi:10.1109/ICSE.2017.70.
URL https://doi.org/10.1109/ICSE.2017.70

[57] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, L. Zhang, A
survey of compiler testing, ACM Comput. Surv. 53 (1) (2021) 4:1–4:36.
doi:10.1145/3363562.
URL https://doi.org/10.1145/3363562

[58] W. Cazzola, L. Favalli, The language mutation problem: Leveraging
language product lines for mutation testing of interpreters, J. Syst. Softw.
195 (2023) 111533. doi:10.1016/J.JSS.2022.111533.
URL https://doi.org/10.1016/j.jss.2022.111533

[59] M. El qortobi, A. Rahj, J. Bentahar, R. Dssouli, Test generation tool for
modified condition/decision coverage: Model based testing, in: Proceed-
ings of the 13th International Conference on Intelligent Systems: Theories
and Applications, 2020, pp. 1–6.

[60] T. Waheed, M. Z. Z. Iqbal, Z. I. Malik, Data flow analysis of uml action
semantics for executable models, in: European Conference on Model
Driven Architecture-Foundations and Applications, Springer, 2008, pp.
79–93.

[61] P. N. Boghdady, N. L. Badr, M. A. Hashim, M. F. Tolba, An enhanced test
case generation technique based on activity diagrams, in: Proceedings of
the International Conference on Computer Engineering & Systems, IEEE,
2011, pp. 289–294.

[62] I. Baxter, Branch coverage for arbitrary languages made easy: Transfor-
mation systems to the rescue, IW APA TV2/IC SE2001. http://techwell.
com/sites/default/files/articles/XUS1173972file1 0. pdf (2001).

[63] S. Yue, J. Gray, SPOT: A DSL for extending fortran programs with
metaprogramming, Adv. Softw. Eng. 2014 (2014) 917327:1–917327:23.

[64] J. Misurda, J. A. Clause, J. L. Reed, B. R. Childers, M. L. Soffa, Demand-
driven structural testing with dynamic instrumentation, in: Proceedings of
the 27th International Conference on Software Engineering (ICSE), IEEE,
2005, pp. 156–165.

[65] M. Bordin, C. Comar, T. Gingold, J. Guitton, O. Hainque, T. Quinot, J. De-
lange, J. Hugues, L. Pautet, Couverture: an innovative open framework for
coverage analysis of safety critical applications, Ada User Journal 30 (4)
(2009) 248–255.

[66] K. Sakamoto, K. Shimojo, R. Takasawa, H. Washizaki, Y. Fukazawa, Occf:
A framework for developing test coverage measurement tools supporting

multiple programming languages, in: 2013 IEEE Sixth International Con-
ference on Software Testing, Verification and Validation, IEEE, 2013, pp.
422–430.

[67] OpenClover, Using clover for other programming languages, [Online;
accessed 28-February-2023] (2023).
URL https://openclover.org/doc/manual/latest/

hacking--using-openclover-for-other-programming-languages.

html

[68] CodeCover, Add a new programming language, [Online; accessed
28-February-2023] (2023).
URL http://codecover.org/development/

programming-language.html

[69] JavaCC, Java compiler compiler, [Online; accessed 28-February-2023]
(2023).
URL https://javacc.github.io/javacc/

[70] P. Li, M. Jiang, Z. Ding, Fault localization with weighted test model in
model transformations, IEEE Access 8 (2020) 14054–14064.

[71] M. Raselimo, B. Fischer, Spectrum-based fault localization for context-
free grammars, in: Proceedings of the 12th ACM SIGPLAN International
Conference on Software Language Engineering, 2019, pp. 15–28.

[72] K. Wang, A. Sullivan, D. Marinov, S. Khurshid, Fault localization for
declarative models in alloy, in: Proceedings of the 31st International
Symposium on Software Reliability Engineering (ISSRE), IEEE, 2020, pp.
391–402.

[73] L. Arcega, J. Font, Ø. Haugen, C. Cetina, An approach for bug localization
in models using two levels: model and metamodel, Software and Systems
Modeling 18 (6) (2019) 3551–3576.

[74] L. Arcega, J. Font, C. Cetina, Evolutionary algorithm for bug localiza-
tion in the reconfigurations of models at runtime, in: Proceedings of the
21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, 2018, pp. 90–100.

[75] L. Arcega, J. F. Arcega, Ø. Haugen, C. Cetina, Bug localization in model-
based systems in the wild, ACM Transactions on Software Engineering
and Methodology (TOSEM) 31 (1) (2021) 1–32.

[76] R. Casamayor, L. Arcega, F. Pérez, C. Cetina, Bug localization in game
software engineering: evolving simulations to locate bugs in software
models of video games, in: E. Syriani, H. A. Sahraoui, N. Bencomo,
M. Wimmer (Eds.), Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems, MODELS 2022,
Montreal, Quebec, Canada, October 23-28, 2022, ACM, 2022, pp. 356–
366.

[77] K-Framework, K semantic framework, [Online; accessed 18-October-
2023] (2023).
URL https://kframework.org/

22

Appendix A. SBFL Techniques

We implemented in our framework 18 existing formulas that
are listed in Table A.7. These formulas were reused from the
work of Troya et al. [12] who investigated a large set of primary
studies proposing concrete SBFL techniques, and applied them
to locate faulty rules in model transformations.

Table A.7: SBFL techniques adapted for model element suspiciousness measure-
ment

Technique Formula
Arithmetic
Mean [40]

2(NCF × NUS − NUF × NCS)
(NCF + NCS) × (NUS + NUF) + (NCF + NUF) × (NCS + NUS)

Barinel [45] 1 −
NCS

NCS + NCF
Baroni-Urbani &
Buser [50]

√
NCF × NUS + NCF

√
NCF × NUS + NCF + NCS + NUF

Braun-
Banquet [11]

NCF

max(NCF + NCS ,NCF + NUF)
Cohen [47] 2 × (NCF × NUS − NUF × NCS)

(NCF + NCS) × (NUS + NCS) + (NCF + NUF) × (NUF + NUS)
DStar [48] (NCF)∗

NCS + NF + NCF

Kulczynski2 [47] 1
2
× (

NCF

NCF + NUF
+

NCF

NCF + NCS
)

Mountford [50] NCF

0.5 × ((NCF × NCS) + (NCF × NUF)) + (NCS × NUF)
Ochiai [52] NCF

√
NF × (NCF + NCS)

Ochiai2 [51] NCF × NUS
√

(NCF + NCS) × (NUS + NUF) × (NCF + NUF) × (NCS + NUS)
Op2 [47] NCF −

NCS

NS + 1

Phi [46] NCF × NUS − NUF × NCS
√

(NCF + NCS) × (NCF + NUF) × (NCS + NUS) × (NUF + NUS)
Pierce [11] (NCF × NUF) + (NUF × NCS)

(NCF × NUF) + (2 × NUF × NUS) + (NCS × NUS)
Rogers &
Tanimoto [44]

NCF + NUS

NCF + NUS + 2(NUF + NCS)
Russel-Rao [49] NCF

NCF + NUF + NCS + NUS
Simple
Matching [11]

NCF + NUS

NCF + NCS + NUS + NUF

Tarantula [29]
NCF
NF

NCF
NF
+

NCS
NS

Zoltar [53] NCF

NCF + NUF + NCS +
10000×NUF×NCS

NCF

23

