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Highlights 

 Lexical production (LP) relies on the interplay between domain-general and semantic 

processes throughout life. 

 DMN (Default Mode Network) suppression cooperates with FPN (Fronto-Parietal 

Network) integration to maintain LP performance at a minimal cost. 

 Midlife marks a neurocognitive shift, with reduced DMN suppression prompting a more 

cost-efficient compensatory strategy that prioritizes homeostasis over LP performance. 
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Abstract 

Healthy aging is associated with a heterogeneous decline across cognitive functions, typically 

observed between language comprehension and language production (LP). Examining 

resting-state fMRI and neuropsychological data from 628 healthy adults (age 18-88) from the 

CamCAN cohort, we performed state-of-the-art graph theoretical analysis to uncover the 

neural mechanisms underlying this variability. At the cognitive level, our findings suggest 

that LP is not an isolated function but is modulated throughout the lifespan by the extent of 

inter-cognitive synergy between semantic and domain-general processes. At the cerebral 

level, we show that DMN (Default Mode Network) suppression coupled with FPN (Fronto-

Parietal Network) integration is the way for the brain to compensate for the effects of 

dedifferentiation at a minimal cost, efficiently mitigating the age-related decline in LP. 

Relatedly, reduced DMN suppression in midlife could compromise the ability to manage the 

cost of FPN integration. This may prompt older adults to adopt a more cost-efficient 

compensatory strategy that maintains global homeostasis at the expense of LP performances. 

Taken together, we propose that midlife represents a critical neurocognitive juncture that 

signifies the onset of LP decline, as older adults gradually lose control over semantic 

representations. We summarize our findings in a novel SENECA model (Synergistic, 

Economical, Nonlinear, Emergent, Cognitive Aging), integrating connectomic and cognitive 

dimensions within a complex system perspective. 

 

Keywords: language, aging, reorganization, connectomics, cognition, graph theory, SENECA 
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1. Introduction 

The crucial need to comprehend the mechanisms that uphold normal cognitive functioning 

during aging arises from the significant increase in the proportion of older individuals (United 

Nations, 2023). A gradual decline in cognitive abilities typically accompanies aging. 

However, this decline is heterogeneous across cognitive functions, and some of them, such as 

language, semantic memory, and vocabulary, tend to be preserved longer (Loaiza, 2024). 

Therefore, this study aims to shed light on the neural mechanisms that underpin this 

variability, jointly exploring the functional brain architecture at rest and language-related 

performance. Specifically, we hypothesize that changes in language function across the 

lifespan are subserved by the reorganization of the language neurocognitive architecture 

within the framework of an inter-cognitive interaction between language, long-term memory, 

and executive functions. 

From a cognitive standpoint, language decline under the effect of age is not uniform (Baciu et 

al., 2021). Although overall language performances tend to be preserved, some linguistic 

operations may be impaired with age (Ramscar et al., 2014; Wlotko et al., 2010). Indeed, 

while language comprehension (LC) demonstrates higher resilience to the effects of aging 

(Diaz et al., 2016; Rossi & Diaz, 2016), language production (LP), which involves lexical 

retrieval and generation (Baciu et al., 2016, 2021), tends to be more significantly impaired 

with age (Evrard, 2002; Ramscar et al., 2014). This is particularly obvious in tip-of-the-

tongue situations, where individuals experience knowing the meaning of a word but struggle 

to recall and produce the word form (Burke et al., 1991; Condret-Santi et al., 2013). This 

discrepancy between LC and LP during aging can be attributed to the advantages of semantic 

context and the accumulation of semantic knowledge throughout the lifespan (Jongman & 

Federmeier, 2022; Salthouse, 2019). 
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From a cerebral perspective, brain networks interact with one another, reflecting how 

language adapts to socio-communicative contexts by drawing memories, knowledge, and 

beliefs from long-term memory (Duff & Brown-Schmidt, 2012; Horton, 2007) under the 

control of executive functions (Corballis, 2019; Hertrich et al., 2020). While long-term 

memory provides ‘traffic’ content and coherency, executive functioning provides top-down 

flexibility and coordination to focus, plan, accomplish tasks, and control emotions. In a 

previous teamwork (Roger, Banjac, et al., 2022), our team proposed a theoretical framework 

that conceptualizes the inter-cognitive synergy between language, long-term memory, and 

executive functions at the cognitive level, L∪M (i.e., Language/union/Memory), and 

suggested that functional connectivity-based interactions may implement this synergy at the 

neural level.  

Indeed, a data-driven analysis highlighted that the language neurocognitive architecture based 

on extrinsic brain activity (Roger, Rodrigues De Almeida, et al., 2022) comprises four 

spatially non-overlapping subsystems, each probabilistically mapping onto known resting-

state brain networks (i.e., RSNs; Ji et al., 2019): core Language (Net1), Control-Executive 

(Net2), Conceptual (Net3), and Sensorimotor (Net4). Interestingly, these findings indicate that 

age-related decline in language production impacts extra-linguistic components (Net2 and 

Net3) beyond the typical core language network (Hertrich et al., 2020). This suggests that 

language performances in older adults could be determined by synergistic processing (Gatica 

et al., 2021), that is the cooperation between control-executive and conceptual/associative 

processes. In line with (Luppi et al., 2024), we refer to synergistic processing as the joint 

information that exceeds the sum of each subsystem’s functional connectivity changes. In 

light of the effect that the reorganization of the language connectome has on language 

function, we also proposed adopting a ‘cognitomic’ perspective (Roger et al., 2018), 
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emphasizing the constraints that connectomic architecture places on cognitive performances 

across the lifespan.  

Within this perspective, graph theory (Bullmore & Sporns, 2009; Bullmore & Bassett, 2011; 

Rubinov & Sporns, 2010) is appropriate to describe the connectomic underpinnings of 

language. Specifically, the brain network can be characterized in terms of integration and 

segregation properties (Cohen & D’Esposito, 2016; Genon et al., 2018) at different 

topological levels (i.e., whole-brain/system-level, modular/subsystem-level, and region/nodal-

level) (Farahani et al., 2019; Fornito et al., 2016). Across the lifespan, cognitive efficiency is 

supported by a balance between integrated and modular information processing (Bullmore & 

Sporns, 2012; Meunier et al., 2010; van den Heuvel & Sporns, 2013). In other words, optimal 

coordination of neural activity is based on global homeostasis – the ability to adapt and 

maintain stability in the face of changing conditions (see also the notion of metastability: Naik 

et al., 2017; Tognoli & Kelso, 2014). 

In line with our previous findings (Roger, Rodrigues De Almeida, et al., 2022), a recent 

systematic review of resting-state data studies reported that reduced local efficiency at the 

system level, along with reduced segregation and enhanced integration within and between 

RSNs at the subsystem level, are the connectomic fingerprints of healthy aging with an 

inflection point in midlife (Deery et al., 2023). However, a crucial challenge resides in 

understanding the neural mechanisms that bridge reduced segregation with enhanced 

integration (Stumme et al., 2020), and how these mechanisms induce a neurocognitive 

dynamic that reflects the changes in cognitive performance as age advances.  

Indeed, studies report contradictory findings depending on the topological level of analysis. 

At a system level, age-related enhanced integration (Battaglia et al., 2020) would be generally 

associated with a dedifferentiated system that fails to alternate efficiently between integrative 
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and segregation states of connectivity (Chan et al., 2014; Chan et al., 2017), thus highlighting 

a maladaptive process. At a subsystem or brain network level, brain regions would undergo 

similar dedifferentiation processes translating to reduced functional specialization (Goh et al., 

2010; Park et al., 2004). This is primarily reflected by reduced segregation and enhanced 

integration in the sensorimotor and higher-order associative and control networks (Deery et 

al., 2023; Wig, 2017). However, in contrast with the system level, enhanced integration has 

been shown to be compensatory (Cabeza et al., 2018) with direct benefits for cognitive 

efficiency (Bertolero et al., 2015; Meunier et al., 2010). Specifically, increased coupling 

between default-mode (DMN) and fronto-parietal (FPN) networks correlated with better 

global cognitive performance (Spreng et al., 2018; Spreng & Turner, 2019). Moreover, it 

appears that the ability to deactivate DMN regions may be a key ingredient of cognitive 

resilience (capacity to mitigate the deleterious effect of dedifferentiation) across the lifespan 

(Deery et al., 2023; Grady et al., 2016; Singh-Manoux et al., 2012; Varangis et al., 2019). 

Indeed, older adults show reduced DMN deactivation (Spreng & Turner, 2019), potentially 

impacting the interaction between semantic and control-executive processes, as observed for 

LP (Baciu et al., 2021) and verbal fluency (Muller et al., 2016; Whiteside et al., 2016). 

The main objective of this study is to investigate how the age-related reorganization of the 

language connectome explains the discrepancy between LC and LP performances across the 

lifespan. By assuming that language is a complex function working in synergy with long-term 

memory and executive processes, we aimed to model the neural mechanisms that support this 

inter-cognitive functioning. To address this objective, we leveraged a population-based 

resting-state fMRI dataset from the CamCAN cohort (Cam-CAN et al., 2014) and applied 

graph theory analyses to evaluate the reorganization of the language connectome in terms of 

integration and segregation properties at multiple topological scales of analysis. 
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2. Materials & Methods 

2.1. Participants 

We included 652 healthy adults from the Cambridge Center for Ageing and Neuroscience 

project cohort (Cam-CAN et al., 2014). Further recruitment information can be found in 

Taylor et al. (2017). Our analysis focused exclusively on functional fMRI brain data obtained 

during a resting state period. After careful examination, we excluded 24 participants and had a 

final sample size of 628 participants (age range: 18-88; 320 females; 208 males). The 24 

participants were excluded from the analysis for various reasons, including missing functional 

imaging data (N = 4), incomplete volume acquisition (N = 4; however, one of the four 

subjects has been retained with 74% (194/261) of the total number of volumes), unreliable 

CSF mask (N = 9), and having 10% or more outlying volumes after preprocessing (M = 13.6, 

SD = 3.2, N = 8). We chose eight cognitive tasks for brain-cognition analyses to span a 

continuous spectrum from a high to a low degree of synergy between language, long-term 

memory, and executive functions (Table 1). The sample of 628 participants was further 

reduced to 613 due to missing cognitive data. Specifically, we excluded participants with 

more than 3 missing neuropsychological scores (N = 15). Then, we replaced any missing 

score of the remaining 613 participants with the appropriate median of their age decile. 
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Cognitive Task Processes involved 
 (from high to low amount of inter-cognitive synergy) 

 

Naming 

(Clarke et al., 2013) 

Language (phonological access & semantic memory) 

Verbal Fluency 

(Lezak et al., 2012) 

Language (phonological, semantic) & Executive function (EF) 

Proverb comprehension 

(Huppert et al., 1994) 

EF (abstraction) & Language (comprehension) 

Tip-of-the-tongue 

(R. Brown & McNeill, 1966) 

Language (retrieval) & EF (error monitoring) 

Hotel task 

(Shallice & Burgess, 1991) 

EF (planning & multitasking) 

Cattell task 

(Cattell & Cattell, 1960) 

EF (Fluid intelligence) 

Story recall 

(Tulsky et al., 2003) 

Long-term memory 

Sentence comprehension 

(Rodd et al., 2010) 

Language (syntactic, semantic) 

Table 1. General presentation of the eight cognitive tasks. A detailed description of each task is presented in 

Table S1 and Appendix S1. 

 

2.2. MR acquisition 

For information regarding the MR acquisition and the resting state protocol applied in this 

study, please refer to Appendix S1. Further details are provided by Cam-CAN et al. (2014), as 

the data was sourced from the Cambridge Center for Ageing and Neuroscience project cohort. 

2.3. Resting-state fMRI data analysis 

2.3.1. Data Preprocessing 

The rs-fMRI data underwent preprocessing using SPM12 (Welcome Department of Imaging 

Neuroscience, UK, http://www.fil.ion.ucl.ac.uk/spm/) within MATLAB R2020b (MathWorks 

Inc., Sherborn, MA, USA). We employed a standard preprocessing pipeline (including 

realignment, reslicing, co-registration, segmentation, normalization, and smoothing) similar to 

that described in our previous work (see Roger et al., 2020) with specific details mentioned in 

Appendix S1.  

 

http://www.fil.ion.ucl.ac.uk/spm/
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2.3.2. Cerebral parcellation: the LANG connectome atlas 

The LANG connectome atlas, referred to as the LANG atlas, comprises a collection of 131 

regions of interest (ROI) derived from a panel of 13 language fMRI tasks (see Roger, 

Rodrigues De Almeida, et al., 2022). Each ROI is represented by a spherical region with a 

diameter of 6 mm, centered on the MNI coordinates proposed by Power et al. (2011). To 

transform the LANG atlas, which is based on extrinsic fMRI activation, into a resting-state 

LANG (rs-LANG) atlas consisting of ROIs derived from the intrinsic activity, we labeled all 

LANG regions according to their primary resting-state network (RSN) based on the Cole-

Anticevic Brainwide Net Partition (CAB-NP; Ji et al., 2019). We utilized a publicly available 

volumetric version of the CAB-NP that was converted to standard MNI space. By overlaying 

the volumetric RSN map onto the 131 regions (see Banjac et al., 2021), we determined the 

number of voxels overlapping each region and each RSN. This approach ensured accurate 

voxel-based labeling of each region to their primary RSN (see Appendix S3 for detailed 

results). When examining the modular organization of rs-LANG (see Figure 1), the RSN 

composition of a given subsystem was weighted by the mean percentage of overlap between 

each region and their primary RSN. This improvement led to a 12% increase in mean 

accuracy. 

2.3.3. Resting-state LANG connectomes 

Using the CONN toolbox (version 21.a; Nieto-Castanon, 2020), we conducted an ROI-to-ROI 

analysis and generated a connectivity matrix of dimensions 131x131 for each participant 

using Fisher-transformed bivariate correlation coefficients. These connectivity matrices were 

subsequently employed for network analysis. We disregarded negative correlations by setting 

them to zero, consistent with previous studies (Chong et al., 2019; Martin et al., 2022; Wang 

et al., 2011). Additionally, we applied thresholding to each matrix at five sparsity levels (10, 
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12, 15, 17, and 20%). This step aimed to reduce the presence of spurious connections and was 

based on the most likely sparsity levels known to produce a small-world organization (see 

Appendix S2), as outlined by Achard and Bullmore (2007). Correspondingly, the thresholded 

matrices were binarized to generate five undirected graphs for each participant. 

2.4. Resting-state LANG network analysis 

The network or graph analysis measured the information flow within each connectome 

(Rubinov & Sporns, 2010). Specifically, we assessed (i) the balance between functional 

integration and segregation at the system level, (ii) the modularity at the subsystem level, and 

(iii) the information transfer at the nodal level by evaluating the topological role of each 

region. 

2.4.1. System-level analysis: integration vs. segregation balance assessment 

Using the Brain Connectivity Toolbox (BCT) implemented in MATLAB 2020b and available 

at https://www.nitrc.org/projects/bct/ (Bullmore & Sporns, 2009), we extracted three key 

graph metrics: (1) global efficiency (Eglob), (2) local efficiency (Eloc), and (3) clustering 

coefficient (Clustcoeff). Globally, Eglob was calculated as the inverse of the shortest path lengths 

or the average of unweighted efficiencies across all pairs of nodes (Latora & Marchiori, 

2001). This metric quantifies the efficiency of parallel information transmission across the 

global network (Bullmore & Bassett, 2011). Locally, Eloc is similar to Eglob but on node 

neighborhoods. When averaged at the system level, it illustrates the segregation property of a 

network in processing information (Latora & Marchiori, 2001). For each node, the clustering 

coefficient (Clustcoeff) was calculated as the fraction of a node’s neighbors that are also 

neighbors of each other (Rubinov & Sporns, 2010), and averaged at the system level. We 

visually inspected Eglob and Clustcoeff across the five sparsity levels and determined that the 

optimal threshold that balances integrated and modular processing was 15% (Figure S3, 

https://www.nitrc.org/projects/bct/
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Appendix S2). We further ensured that this threshold was optimal by repeating the procedure 

for each age decile. Following this, we reduced all graphs to a fixed number of edges by 

retaining the top 15% (2554 edges). Additionally, we verified that the reduced connectomes 

maintained full connectivity and were sufficiently devoid of isolated nodes, meaning that the 

largest connected component (LCC) included at least 80% of all nodes. After thresholding at 

15%, we characterized the balance between functional integration and segregation at the 

system level by determining the relative predominance of global (Eglob) versus local efficiency 

(Eloc). A higher balance reflects a higher predominance of integration or higher 

integrative/global efficiency. 

                                                   
           

          
 

2.4.2. Subsystem-level analysis: modularity assessment 

To examine the modular organization of rs-LANG, we employed the Louvain community 

detection algorithm (Blondel et al., 2008) with a resolution parameter set to γ = 1.295, aiming 

to align with the RSNs identified in the CAB-NP Atlas (Ji et al., 2019). As different runs of 

the algorithm can yield varying optimal partitions, we implemented a consensus clustering 

approach (Lancichinetti & Fortunato, 2012). This approach involves iteratively clustering co-

assignment matrices until convergence, aggregating the frequency of node assignments to the 

same module. To reduce spurious node assignments, we applied a threshold of τ = 0.5 to the 

co-assignment matrices (Jiang et al., 2021). If a node did not consistently belong to the same 

module in at least 50% of the iterations, its co-assignment weight was set to zero. We 

executed the algorithm 1000 times for each subject and repeated the entire process 1000 times 

to generate a group-level consensus partition based on the subject-level partitions. We 

ensured that this consensus partition accurately represented all individuals across different 
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ages, confirming its suitability for statistical analysis (refer to Appendix S2 for further 

information). 

2.4.3. Nodal-level analysis: topological roles 

At the nodal level, we investigated the topological reorganization of each connectome by 

defining four distinct topological roles: Connector, Provincial, Satellite, and Peripheral 

(Bertolero et al., 2015; Guimerà & Amaral, 2005). Therefore, the composition of each 

individual’s language connectome is represented by four percentages which add up to 100%. 

To assign each role to a node (i.e., a region), we employed two graph metrics: (i) the Within-

Module Z-score (WMZ; Latora & Marchiori, 2001), which quantifies connectivity within 

subsystems (short-range), and (ii) the normalized Participation Coefficient (PC; Pedersen et 

al., 2019) which measures connectivity between subsystems (long-range) while removing the 

bias associated with the number of nodes in each module. Consistent with prior research 

(Roger, Rodrigues De Almeida, et al., 2022; Schedlbauer & Ekstrom, 2019), we standardized 

both metrics (WMZ and zPCnorm) for each individual and assigned a topological role to each 

node. In relation to the entire set of 131 regions, a Connector node displays a high proportion 

of both short- and long-range connections (zPCnorm >= 0, WMZ >= 1e-5). A Provincial node 

displays a high proportion of short-range connections (zPCnorm < 0, WMD >= 1e-5). A 

Satellite node displays a high proportion of long-range connections (zPCnorm >= 0, WMZ < 

1e-5). A Peripheral node, on the other hand, is functionally withdrawn from the network 

(zPCnorm < 0, WMZ < 1e-5). 

2.5. Statistics 

We conducted statistical analysis in two steps. First, at a connectomic level, we examined the 

evolution of the relative proportion of topological roles across the lifespan (i.e., quantitative 

analysis). Subsequently, we modeled the neural mechanisms driving this evolution using a 
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probabilistic framework (i.e., qualitative analysis). This approach allowed us to uncover the 

patterns and principles governing the age-related connectivity changes in the language 

connectome. Second, at a neurocognitive level, we employed canonical correlation analysis 

(CCA) to examine the many-to-many relationships between these neural mechanisms and the 

changes in cognitive performances across the lifespan. We controlled for mean FC, gender, 

and total intracranial volume in all models (Eikenes et al., 2023). Mean FC was calculated by 

averaging the positive weights of the unthresholded upper triangular connectivity matrix. 

2.5.1. Connectomic dynamic across the lifespan 

To evaluate the age-related topological changes of the language connectome, we examined 

how the relative proportions of four topological roles (connector, provincial, satellite, 

peripheral) evolve across the lifespan. Due to the inherent limitations of percentage-based 

statistics (which sum up to 100%), namely, high correlation and dependence on pairwise 

covariance – we applied a log-based transformation to the data (Smith et al., 2016). This 

transformation, analogous to a log odds transformation, removes the lower (0%) and upper 

(100%) boundaries of the original metric (i.e., removing the unit-sum constraint), thus 

remaining relatively easy to interpret: 

                       
 

   
  

Here, X represents the percentage-based proportion of either Connector, Provincial, Satellite, 

or Peripheral nodes. To handle undefined logarithms for zero entries, we imputed percentages 

using Bayesian non-parametric multiplicative replacement with the package zCompositions in 

R (Martín-Fernández, 2003; Palarea-Albaladejo & Martín-Fernández, 2015).  

Quantitative analysis. Following this transformation, the effect of age was examined using 

generalized additive models (GAM; mgcv package in R; Wood, 2006, 2017) at a system and 
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subsystem level, using a 3-knot spline to mitigate overfitting concerns. Factor-smooth 

interactions were applied at a subsystem level, and p values were corrected at the False 

Discovery Rate (q < 0.05).  

Qualitative analysis. To elucidate the neural mechanisms driving quantitative topological 

changes in the language connectome, we identified the most likely topological role that a 

region may occupy within younger (18-44), middle-aged (45-55), and older (>55) individuals. 

We chose these age groups to stay consistent with the quantitative results reported in section 

3.2.  

This involved 3 steps. (i) First, we determined the frequency at which each region is assigned 

each topological role for each age group. For example, among younger adults, a region may 

be considered a connector node for 75% of participants but a satellite node for the remaining 

25%. (ii) Second, we took the outer product of all the younger and middle-aged frequency 

values to calculate the probability of all 16 possible trajectories between roles. For example, if 

a region has a 75% probability of being a provincial node in younger adults and 30% a 

connector node in middle-aged adults, then the resulting provincial-to-connector trajectory 

has an occurrence probability of 22.5% (0.75*0.3). (iii) Third, we repeated this calculation 

between these 16 trajectories and the frequency values and the older age group (16*4 = 64 

trajectories in total).  

Finally, we selected the most likely trajectory of a region as the one with the highest 

probability (e.g., provincial-to-connector-to-connector). To account for the inter-individual 

variability within each age group, we also included the trajectories whose probability fell 

within a 5% range from the highest one for each region. Using this approach, we captured the 

most likely transitions of topological roles between age groups for each region while also 

considering the variability within each age group. 
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2.5.2. Neurocognitive Dynamic: Canonical Correlation Analysis 

To identify the many-to-many relationships between brain functional connectivity changes 

and neuropsychological scores, we conducted a canonical correlation analysis (CCA). CCA 

works by finding the linear combinations within the brain and cognitive set of variables that 

maximize the correlation between the two sets (Wang et al., 2020). 

CCA setup. We organized the data into a brain-functional (X) and cognitive (Y) matrix to set 

up the CCA. For X and Y, scores were z-scored. Additionally, we prepended two orthogonal 

contrasts in the cognitive dataset that we set between three age groups: (contrast #1) 56-60 > 

45-50 + 51-55, (contrast #2) 51-55 > 45-50. These contrasts ensured that the model could also 

account for nonlinear relationships with age reported in section 3.2. CCA analysis produces as 

many canonical functions as the number of variables within the smaller set (i.e., 8 cognitive 

scores + 2 age contrasts). Each canonical function is composed of a cognitive and a brain 

variate comparable to latent variables (Sherry & Henson, 2005). The robustness of the results 

was assessed using a 10-fold cross-validation with 1,000 bootstrap resamples. 

CCA interpretation. At a cognitive level, we report CCA results using structure coefficients 

(r) – the correlation between an observed variable and its corresponding variate. Thus, the 

higher the correlation, the greater the contribution of said variable to said variate. At a 

neurocognitive level, given that the neural mechanisms represent our unit of interest, we 

computed the difference between the structure coefficients associated with each variable of a 

given mechanism.  Considering a reconfiguration from a provincial to a connector role as an 

example, we subtracted the provincial variable's structure coefficient from the connector one. 

Importantly, we reported the cross-correlations between the brain variables and the cognitive 

variates. The resulting coefficient served as a proxy for the correlation between said 
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mechanism and said cognitive variate, providing an intuitive understanding of how a neural 

mechanism affects age-related cognitive performance. 
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3. Results 

3.1. Modular organization of the Language connectome at rest (rs-LANG) 

Applying modularity analysis to the resting-state Language connectome (rs-LANG) 

uncovered four main subsystems. Figure 1 provides a visual representation of these 

subsystems. Appendix S2 provides a detailed comparison with the task-based modular 

organization of the same connectome, described by Roger, Rodrigues De Almeida, et al. 

(2022). 

Considering the composition, the largest subsystem, RS NET1 (40 regions), comprises 66.4% 

of DMN regions involved in higher-level cognitive function and can thus be regarded as the 

associative subsystem. The second largest subsystem, RS NET2 (34 regions), is saturated by 

sensorimotor regions (SMN; 77.1%) along with contributions from CON regions (15.3%) and 

can thus be regarded as the sensorimotor subsystem. The third largest subsystem, RS NET3 

(32 regions), engages the cingulo-opercular network (CON; 56.4%), which can thus be 

regarded as the bottom-up attentional subsystem (Dosenbach et al., 2024; Wallis et al., 2015). 

The smallest subsystem, RS NET4 (22 regions), is saturated by FPN regions (63.1%), with 

nontrivial contributions from CON regions as well (17.2%), and can thus be regarded as the 

top-down control-executive subsystem. Interestingly, all 11 regions of the conventional 

language network defined by Ji et al. (2019) coalesce with the associative (5 regions) and 

bottom-up attentional subsystems (4 regions) while the remaining 2 regions form crucial 

short-range connections with the top-down control-executive subsystem. This suggests that 

core language processing at rest is functionally clustered with subsystems that support both 

semantic access and top-down/bottom-up cognitive control (see Appendix S3 for details). 
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Figure 1. Illustration of the modular organization of the language connectome at rest. Each RS NET is a 

subsystem obtained from the consensus clustering procedure (see the method section 2.4.2). An additional 3-

region module (black) associated with the VMM (Ventral Multi-Modal) network was also identified but not 

considered for analysis due to its instability as a stand-alone module across the lifespan. Abbreviations: LH (left 

hemisphere); RH (right hemisphere); RS NET1 (40 regions, red), RS NET2 (34 regions, orange), RS NET3 (32 

regions, yellow), RS NET4 (22 regions, blue). DMN (Default Mode Network); FPN (Fronto-Parietal Network); 

CON (Cingulo-Opercular Network); SMN (Sensorimotor Network). Brain visualization was done with the 

package ggseg in R (Mowinckel & Vidal-Piñeiro, 2020) and projected on a multimodal cortical (HCP_MMP1.0; 

Glasser et al., 2016) and subcortical parcellation (Fischl et al., 2002). For details, please refer to Figure S1 and 

S2 in Appendix S2, and Appendix S3. 

 

3.2. Connectomic dynamics of the language connectome 

Quantitative changes. At the system level, we found that healthy aging is associated with 

reduced local efficiency (t = -10.08, p < .001,     = .15, 95% CI [.11; Inf]) and preserved 

global efficiency (p = .53), which tilts the balance between integration and segregation 

towards a higher integrative efficiency as age increases (t = 9.4, p < .001,     = .13, 95% CI 

[.09; Inf]) (Figure 2A). We also found that healthy aging is associated with a decrease in the 

proportion of provincial nodes (b = -0.08 95% CI [-0.1; -0.05]; F(1, 624) = 47.2; p < .001;   
  

= .07) and satellite nodes (b = -0.02 95% CI [-0.03; -0.01]; F(1, 624) = 4.7; p = .03;   
  = .01), 

which is contrasted by an increase in the proportion of connector nodes (b = 0.05 95% CI 
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[0.03; 0.06]; F(1, 624) = 27.9; p < .001;   
  = .04) and peripheral nodes (b = 0.03 95% CI 

[0.02; 0.05]; F(1, 624) = 16.8; p < .001;   
  = .03) (Figure 2B).  

At the subsystem level (Figure 2C), we found two patterns of coordinated changes between 

subsystems: (i) First, we observed that a major loss of satellite nodes in RS NET1 was 

coordinated with a major loss of provincial nodes in RS NET4 (F = 22.05/28, p < .001/.001, 

edf = 1/1), and conversely with more moderate losses (F = 6.07/3, p = .015/.042, edf = 

1.29/1.32). Of note, we also found a moderate loss of provincial nodes in RS NET2 (F = 6.8, 

p = .009, edf = 1). (ii) Second, we observed coordinated nonlinear changes in the proportion 

of connector (u-shape) and peripheral nodes (inverted u-shape) in RS NET1 with an inflection 

point at age 55 (F = 3.61/3.8, p = .02/.02, edf = 1.88/1.87). Interestingly, we found the same 

anticorrelation pattern in RS NET2 (F = 2.7/2.8, p = .047/.045, edf = 1.78/1.79) but this 

pattern was mirrored compared to the one observed in RS NET1 and highlighted an inflection 

point at age 60.  

Of note, several tendential associations with age suggest that some mechanisms could be 

underpinned by (unmodeled) age-invariant factors: a linear decrease of satellite nodes in RS 

NET2 (p = .23); a coordinated pattern between connector (p = .08) and provincial/peripheral 

nodes in RS NET3 (p = .13/.09); a linear increase and decrease respectively in connector (p = 

.12) and peripheral nodes (p = .18) in RS NET4. 
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Figure 2. System-level topological dynamics across the lifespan. (A) Illustrates normalized efficiencies (y-axis) 

as a function of age (x-axis). Eloc = Local efficiency; Eglob = Global efficiency; Balance = dominance of global 

efficiency calculated as (Eglob – Eloc) / (Eglob + Eloc). (B and C) Evolution of the relative proportion of 

topological roles (y-axis) with age (x-axis). For the subsystem level (Panel C), changes with a tendential 

statistical significance are indicated by a star next to the label. Abbreviations: RS NET (subsystems of the 

language connectome at rest); RS NET1 (Associative); RS NET2 (Sensorimotor); RS NET3 (Bottom-up 

attentional); RS NET4 (Top-down control-executive). Please refer to Figure 1 for the composition of each RS 

NET. Connector (High integration/High segregation); Provincial (Low integration/High segregation); Satellite 

(High integration/Low Segregation); Peripheral (Low integration/Low segregation). 

 

In sum, analyses at the system and subsystem level revealed that midlife is a critical period 

for functional brain reorganization of the language connectome. Specifically, changes in RS 

NET1 are pivotal: (i) the loss of satellite nodes in RS NET1 is coupled with the loss of 

provincial nodes in RS NET4; (ii) the amount of connector and peripheral nodes are 

anticorrelated within a given subsystem, and this anticorrelation pattern tends to be mirrored 

between RS NET1 and the other subsystems (see Figure 2C).  

Qualitative changes. To clarify the mechanisms driving the topological changes reported 

above, we conducted a probabilistic analysis. Overall, we found that 35.1% (46 regions) of 

the language connectome undergoes a topological reorganization, suggesting that some 
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regions occupy different roles throughout life. Across subsystems, 50% of RS NET4, 50% of 

RS NET2, and 34% of RS NET1 regions reconfigure, whereas regions in RS NET3 are more 

inflexible (24.3%). A web app is available to explore the reconfiguration cross-sectionally: 

https://lpnc-lang.shinyapps.io/seneca/. To account for inter-individual variability, we consider 

17 additional trajectories (see section 2.5.1 for details on the calculations), which amounts to 

63 (46 regions that reconfigure + 17) trajectories. 

In line with the previous results, healthy aging was associated with a substantial gain of 

connector (53.9% of all reconfigurations; 34 regions) and peripheral nodes (19%; 12 regions). 

We observed that this topological reorganization was achieved in two ways: either (i) 

reallocating short-range connections within subsystems or (ii) reallocating long-range 

connections between subsystems. Figure 3 depicts these two dynamics. Table S1 and S2 in 

Appendix S2 summarize the following results. 

On the one hand, we observed a dynamic governed by the loss and gain of new short-range 

connections via provincial-to-peripheral (9.5% of all trajectories; 6 regions) and satellite-to-

connector reconfigurations (20.6%: 13 regions). From early to middle adulthood, we observed 

that RS NET1 (right MTG; 92% FPN, right BA44; 72% DMN) and RS NET4 (left MFG; 

99% FPN) are the most likely to lose these connections, while from middle to older 

adulthood, this impacted  RS NET2 (right SMA; SMN, left paracentral lobule; 74% DMN) 

and RS NET1 (left insula; 72% DMN). Interestingly, we note that the integration of these 

short-range connections occurs mainly from middle to older adulthood (69.2%; 9 out 13 

regions) within all subsystems: in the left middle cingulate cortex (RS NET1; 11.1%), left 

supramarginal gyrus and left postcentral area (RS NET2; 22.2%), left superior temporal gyrus 

(RS NET3; 11.1%), and left precentral/middle frontal regions in RS NET4 (22.2%). 

Additionally, we noticed the key role of subcortical areas (33.3%; left/right thalamus, left 

https://lpnc-lang.shinyapps.io/seneca/
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putamen; RS NET3) which also undergo unique peripheral-to-connector reconfigurations (left 

and right putamen) from middle to older adulthood. Given that changes in 

peripheral/connector proportions in RS NET3 were only tendentially related to age in the 

previous section, this suggests that integration via these subcortical regions could also be 

dependent on age-invariant factors. 

On the other hand, we found a dynamic governed by the loss and gain of long-range 

connections via satellite-to-peripheral (9.5% of trajectories; 6 regions) and provincial-to-

connector reconfigurations (30.1%: 19). While the integration is driven by FPN regions in RS 

NET 4 (45%) and in left frontal/precentral/postcentral regions (SMN) in RS NET2 (55%) 

from early to middle adulthood, we noticed that it is almost exclusively implemented by RS 

NET2 from middle to older adulthood (SMN: SMA and pre/post-central regions). 

Interestingly, this coincides with our previous observation that some FPN regions in RS 

NET4, which integrate long-range connections in early adulthood, shift to short-range 

connections in older adulthood (i.e., left MFG and left precentral). Interestingly, this shift co-

occurs with a similar transition in RS NET 1 in middle age (age 45-55). Indeed, while RS 

NET1 undergoes a “deactivation” process (i.e., satellite-to-peripheral) from early to middle 

adulthood, losing long-range connections (left fusiform area DAN/DMN; left paracentral 

lobule DMN; left pCC DMN; 83.3% of all deactivations), it begins integrating connections 

from middle to older adulthood.  

Our results also show that short-range connections may become increasingly more scarce as 

age increases, compromising both dynamics of integration. Indeed, we observed that (i) 

regions in RS NET1 (left IFG DMN; left aCC CON/DMN), RS NET2 (left SFG CON/SMN; 

right Rolandic Op SMN/CON), and RS NET 4 (left insula FPN/CON) are likely to lose the 

short-range connections integrated earlier in life (i.e., connector-to-satellite reconfigurations), 
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but also that (ii) the number of provincial-to-satellite reconfiguration increases, showing that 

the older adult brain is less likely to maintain connector properties especially in right superior 

frontal areas in RS NET1 (DMN) and left parahippocampal lobule in RS NET2 (SMN). 

 

Figure 3. Probabilistic topological model of age-related integration. Two dynamics of integration across the 

lifespan are proposed: (i) “energy-costly” dynamic based on long-range connections between subsystems, 

highlighting the flexible DMN-FPN coupling in younger adulthood, and (ii) “energy-efficient” dynamic based 

on short-range connections within subsystems, highlighting a less flexible DMN-FPN coupling in older 

adulthood. Abbreviations: RS NET (subsystems of the language connectome at rest); RS NET1 (Associative); 

RS NET2 (Sensorimotor); RS NET3 (Bottom-up attentional); RS NET4 (Top-down control-executive). Please 

refer to Figure 1 for the composition of each RS NET. Connector (High integration/High segregation); 

Provincial (Low integration/High segregation); Satellite (High integration/Low Segregation); Peripheral (Low 

integration/Low segregation). DMN (Default Mode Network); FPN (Fronto-Parietal Network); CON (Cingulo-

Opercular Network); SMN (Sensorimotor Network). Labels under brain illustrations are the names of the regions 

following the labeling proposed by Glasser et al. (2016). Brain visualization was done with the package ggseg in 

R (Mowinckel & Vidal-Piñeiro, 2020) and projected on a multimodal cortical (HCP_MMP1.0; Glasser et al., 

2016) and subcortical parcellation (Fischl et al., 2002). 

 

In sum, our observations suggest that the shift reported in midlife (45-55) is triggered by a 

reduced deactivation in RS NET1 (i.e., satellite-to-peripheral) coupled with a reduced 

integration of long-range connections in RS NET4 (i.e., provincial-to-connector).  
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3.3. Neurocognitive Dynamics: Canonical Correlation Analysis 

To evaluate the neural mechanisms that support healthy cognitive aging, we employed 

canonical correlation analysis (CCA). CCA yielded two significant canonical functions, each 

composed of a cognitive and brain variate that maximize the correlation between the brain 

and cognitive set of variables (Wilks’ Λ = .68,     = .33;      = 11%, p < .001; Wilks’ Λ = 

.76,     = .27;      = 7%, p = .04). Below, we first describe the results at a cognitive level 

and then at a neurocognitive level. 

Cognitive level. Figures 4A & 4C show that Variate I was associated with a steady decline 

with age (F = 388.7, p < .001, edf = 1.51; r_constrastolder > middle + younger = -.71, r_constrastmiddle 

> younger = -.49). This primarily impacted performances in language-related tasks recruiting 

executive functions such as multitasking (r = .56), lexical production (.49), fluid intelligence 

(i.e., Cattell = .48), verbal fluency (.48), tip-of-the-tongue (.38) and semantic abstraction (i.e., 

proverb task = .34) (see Figure 4A and 4B). Variate II was nonlinearly associated with age (F 

= 90.1, p < .001, edf = 1.99; constrastmiddle > younger = .62), marked by a transition in midlife in 

line with our previous findings. Interestingly, this correlated with better overall semantic 

performances (semantic abstraction = .43; sentence comprehension = .21), which was also 

associated with better naming (.40) and marginally better verbal fluency (.11). These changes 

were also proportional to increased fluid-related challenges (-.32), suggesting that heightened 

semantic knowledge in midlife could help maintain lexical production abilities in the face of 

fluid processing decline.  

Lexical production (naming) was highly correlated with both variates (see Figure 4C). Verbal 

fluency and semantic abstraction were also highly correlated with both variates, although the 

former was preferentially correlated with cognitive control (Variate I) and the latter with 

semantic performance (Variate II). This suggests that age-related decline in these tasks (see 
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Table 1, section 2.1) stems from cognitive control and semantic cognition (i.e., semantic 

control). 

 

Figure 4. Age-related neurocognitive dynamics of language. (A and B) Illustrate the age-related trajectory of 

the cognitive variate and the corresponding neural mechanisms according to the results. The bar above the x-axis 

reports age points with a significant second-order derivative for most trajectories, reflecting a neurocognitive 

transition in midlife. (C and D) Illustrate the structure coefficients with the cognitive variates, the correlations 

(cognitive variable-cognitive variate), or cross-correlations (brain mechanism-cognitive variate). The red star 

indicates that naming and DMN suppression are highly covariant with each variate, thus showing that DMN 

suppression underpins naming performances during healthy aging. 

Neurocognitive level. Functional deactivation (i.e., gain in peripheral nodes) and functional 

integration (i.e., gain in connector nodes) were largely anticorrelated with Variate I. This 

suggests that the dynamics of integration based on the reallocation of long or short-range 

connections may help mitigate executive function deficits as age increases. 

We also found that the joint trajectory of DMN deactivation and FPN integration fit the 

predicted trajectory of naming performances (t(611) = 245.15, p < .001): 

 (i) The loss of long-range connections of RS NET1 regions (i.e., DMN deactivation) was 

both anticorrelated with Variate I (-.20) and correlated with Variate II (.12), indicating that 
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this mechanism is crucial for mitigating fluid processing decline with heightened semantic 

representations as age increases. Considering the cognitive changes reported above, this 

certainly contributes to delaying the onset of difficulties in naming, verbal fluency, and 

semantic abstraction. In line with this, from middle to older adulthood (see Figure 4B & 4D), 

high correlation with Variate II (i.e., above the median) confirms that reduced deactivation 

(0.14), and correspondingly enhanced functional integration of long-range connections in RS 

NET1 (-0.09), compromises the ability to compensate fluid processing decline (-.32) with 

semantic knowledge (i.e., reduced semantic abstraction; proverb task = .43), with implications 

on naming performances (.40). 

(ii) The integration of long-range connections in RS NET4 (i.e., FPN regions) had a 

comparable effect. Nonetheless, it was preferentially correlated with executive function 

mitigation (Variate I: -.22; Variate II: .06). Considering the cognitive changes reported above, 

this mechanism may primarily enhance verbal fluency and the cognitive control component of 

lexical production (naming). 

Additionally, increased peripheral-to-connector reconfigurations in RS NET3 (0.23) were 

mostly associated with Variate II (.23). In line with our probabilistic results, this mechanism 

peaked slightly after midlife (see Figure 4B). This suggests that, despite reduced DMN 

deactivation, integration in the bottom-up attentional system (RS NET3), specifically in the 

bilateral thalamus and left putamen (please refer to section 3.2), could promote semantic 

abstraction in addition to the semantic component of lexical production (naming). 
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4. Discussion 

Healthy aging is associated with a heterogeneous decline across cognitive functions, including 

language. Specifically, language production (LP) declines more rapidly than language 

comprehension (LC). The neural mechanisms underlying this variability still need to be 

understood. In this study, we leveraged resting-state fMRI and neuropsychological data from 

the population-based CamCAN cohort (Cam-CAN et al., 2014) to investigate the functional 

reorganization of the language connectome and its association with age-related cognitive 

variability. Employing state-of-the-art graph theoretical analysis, we developed a data-driven 

pipeline that integrates both cerebral and cognitive dimensions of analysis. Our findings can 

be summarized at two levels: brain and cognitive.  

At a brain level, we show that aging is associated with a large-scale reorganization of the 

language connectome based on simultaneous reduced functional specialization, increased 

integration, and deactivation of several subnetworks. These changes enhance the overall 

efficiency of language processing while minimizing the brain’s energy expenditure. At a 

neurocognitive level, we show that LP can be characterized as an inter-cognitive function 

influenced by the dynamic interaction between domain-general and language-specific (i.e., 

semantic) processes. Furthermore, our findings unveil that the emergence of LP decline 

during midlife may result from a decreased ability to reduce DMN activity. This reduction 

could impact older adults' ability to retrieve semantic representations in a goal-directed 

manner, leading to difficulties suppressing irrelevant semantic associations during LP. 

Accordingly, our findings can be formalized as a novel model titled SENECA (Synergistic, 

Economical, Nonlinear, Emergent, Cognitive Aging), integrating connectomic (SE) and 

cognitive (CA) dimensions within a complex system perspective (NE) (Hancock et al., 2022). 
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From a connectomic perspective, our results align with previous work (Roger, Rodrigues De 

Almeida, et al., 2022), suggesting that language processes at rest depend on a large network 

composed of associative (RS NET1), sensorimotor (RS NET2), bottom-up attentional (RS 

NET3), and top-down control-executive (RS NET4) subnetworks. Within a lifespan 

perspective, we replicate previous findings showing that reduced segregation, reflected by a 

reduction of provincial nodes (Guimerà & Amaral, 2005), in control-executive, associative, 

and sensorimotor subnetworks (M. Y. Chan et al., 2014; Grady et al., 2016; R. Pedersen et al., 

2021), can be considered a hallmark of aging, with a critical inflection point in midlife. Thus, 

this study confirms that midlife is a pivotal period for brain functional reorganization of the 

language connectome (Irwin et al., 2018; Lachman, 2015; Park & Festini, 2016). 

Our results shed light on the neural mechanisms underlying lifespan functional changes. 

Specifically, we found that as individuals age, dedifferentiation, involving the over-

recruitment of brain regions and reduced specialization (Fornito et al., 2015; Park et al., 

2004), is consistently associated with enhanced functional integration and functional 

deactivation, which may constitute a compensatory strategy. 

First, enhanced functional integration within the fronto-parietal (FPN) control network can be 

related to improved information transfer (Bagarinao et al., 2020), task processing flexibility 

(Bertolero et al., 2015; Tang et al., 2023), and overall better cognitive performance (Deery et 

al., 2023; Setton et al., 2021; Stanford et al., 2022). Through their precise adjustments of 

connectivity among adjacent regions (Bertolero et al., 2018), connector hubs imbue the 

network with integrative and flexible properties, thereby offsetting any decrease in 

specialization (as suggested by Cabeza et al., 2018). Consistent with this compensation 

account, our findings prove that the age-related integration of the FPN is not detrimental, as 

noted by Wu & Hoffman (2023). Instead, it serves as a beneficial mechanism, mitigating 
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declines in executive functions during demanding cognitive tasks, particularly bolstering 

performance in multitasking, fluid intelligence, and language processing. Our study supports 

the idea that recruiting additional neural resources may represent a scaffolding response, 

actively fostering resilience in language processing throughout the lifespan (Park & Reuter-

Lorenz, 2009; Reuter-Lorenz & Park, 2023).  This also emphasizes that network 

dedifferentiation and compensatory integration are interrelated across the lifespan (Deery et 

al., 2023; Stumme et al., 2020). 

Secondly, as individuals age, the increase in functional efficiency provided by integration 

appears to be closely intertwined with deactivation – the functional withdrawal of specific 

brain areas, including the left paracentral lobule, fusiform, posterior cingulate area (pCC), 

insula, and right IFG of the default-mode network (DMN; Alves et al., 2019; Menon, 2023). 

This deactivation or suppression of the DMN is a label given to the accumulation of 

peripheral nodes and has been well-established as an indicator of externally oriented attention, 

supporting demanding tasks by suppressing internal distractions like mind-wandering 

(Anticevic et al., 2012) and, more broadly, reducing task-irrelevant processes (Buckner & 

DiNicola, 2019). Specifically, the PCC has been emphasized as a hub between the DMN and 

FPN (Leech & Sharp, 2014), especially in tasks requiring controlled semantic access 

(Krieger-Redwood et al., 2016). Similarly, the right IFG has been linked with studies on age-

related semantic fluency (Martin, Williams, et al., 2022; Meinzer et al., 2009, 2012). Thus, 

DMN suppression could mitigate age-related decline in goal-directed behavior, especially the 

semantic retrieval processes necessary for LP. 

Our findings indicate the synergistic relationship between DMN suppression and FPN 

integration in the aging brain, reflecting a trade-off between functional efficiency and 

reorganization cost (Barabási et al., 2023; Barbey, 2018). This aligns with the brain’s wiring 
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economy principle (Achard & Bullmore, 2007; Bullmore & Sporns, 2012; Shine & Poldrack, 

2018), aiming to maximize the benefits of compensatory functional integration while 

minimizing energy expenditure through deactivation. In this context, our study proposed a 

probabilistic model to elucidate the functional mechanisms responsible for this "economic" 

reorganization throughout the lifespan, as illustrated in Figure 3. 

Overall, our model shows a transition occurring in midlife within the language connectome, 

that is a shift from a more "energy-intensive" (costly) dynamic of compensation to a more 

"energy-efficient" one. Indeed, our research indicates that younger adults are more capable of 

accommodating the metabolic demands associated with sustaining long-range neural 

connections (Li et al., 2023; Liang et al., 2013; Tomasi et al., 2013). In comparison, older 

adults seem to adopt a more "energy-efficient" approach, substituting the reallocation of long-

range connections between subsystems with short-range connections within subsystems, thus 

lowering the metabolic demands needed to achieve compensatory integration. This joins 

previous evidence showing reduced functional connectivity of long-range connections in 

older adults (Sala-Llonch et al., 2014) and may offer a metabolic explanation for the onset of 

cognitive decline observed in midlife in most cognitively demanding tasks (e.g., see Ceballos 

et al., 2024 for a study on the costs of brain dynamics). 

At a brain network level, this shift is driven by a reduced synergy between DMN suppression 

and FPN integration as shown in Figure 4B. Indeed, compared to older adults, we found that 

younger adults capitalize on the cooperation or synergy between the DMN and FPN to 

enhance cognitive efficiency (Luppi et al., 2024; Xia et al., 2022). This is consistent with 

studies suggesting that the communication between higher-order networks on the 

sensorimotor-associative hierarchy, such as the DMN and FPN (Margulies et al., 2016), is 

more efficient at handling the high metabolic demands associated with long-range or rich club 
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connectivity (Ceballos et al., 2024; Roy et al., 2017). Relatedly, our results are also consistent 

with the DECHA model (Spreng & Turner, 2019), proposing that reduced DMN suppression 

may result in a more inflexible modulation of the connectivity between the DMN and FPN in 

response to task challenges, a fortiori mediating cognitive decline in older adults, especially 

in lexical production. 

While previous studies agree that DMN suppression is a vital element for regulating task-

relevant dynamics (Leonards et al., 2023), as reflected by an increased metabolic response 

during tasks (Stiernman et al., 2021), the link between reduced DMN suppression and 

inflexible DMN-FPN coupling in older adults remains unclear. In this context, our study may 

bring elements of response by suggesting that reduced DMN suppression may raise the 

metabolic costs of maintaining long-range connectivity in the brain and that the inflexible 

DMN-FPN coupling is the consequence of older adults dealing with this increased cost. 

Supporting this, previous research showed that flexibly allocating attentional resources from 

DMN to control regions, especially to the dlPFC as observed in our study (i.e., BA45 and 

inferior frontal sulcus areas), promotes fluid-related performances (Lu et al., 2022) 

maintaining a state of “global energy homeostasis” (Ramchandran et al., 2019), that is 

offsetting the cost of FPN integration as observed in our study. Consequently, reduced DMN 

suppression in older adults could raise the cost of FPN integration, momentarily disrupting 

this homeostasis. In response, older adults may thus prioritize allocating attentional resources 

through low-cost/short-range connections to restore the brain's homeostatic balance, further 

supporting the shift from an “energy-costly” to a more "energy-efficient" integration around 

midlife. Interestingly, Ramchandran et al. (2019) also noted that homeostasis may be secured 

through “local cost-efficiency trade-offs,” thus being consistent with the discrepancy between 



 

 

34 

a declining local efficiency but a preserved global efficiency across the lifespan (Cao et al., 

2014; Song et al., 2014). 

From a neurocognitive perspective, our results offer specific insights into the brain functional 

dynamics that uphold inter-cognitive functioning, specifically considering lexical production 

(LP), verbal fluency, and semantic abstraction. The main message is that the synergistic 

relationship between DMN suppression and FPN integration, characterized by flexible 

allocation of attentional resources via long-range connections, is a compensatory strategy that 

upholds inter-cognitive functioning in the aging brain. This compensatory dynamic aligns 

with a recent study suggesting that a youth-like network architecture that successfully 

balances integrative and segregation properties offers core resilience within the DMN and 

FPN networks (Stanford et al., 2022), translating to better semantic word-retrieval abilities 

(Krieger-Redwood et al., 2016; Martin, Williams, et al., 2022). 

Importantly, our results show that LP (mainly lexical generation) is subserved by two distinct 

components, one Domain-General (DG) and one Language-Specific (LS), as posited by the 

LARA model (Lexical Access and Retrieval in Aging; Baciu et al., 2021). This confirms that 

LP can be viewed as an inter-cognitive function and the product of intra-(LS) and extra-(DG) 

linguistic processes (Gordon et al., 2018; Roger, Banjac, et al., 2022; Roger, Rodrigues De 

Almeida, et al., 2022). 

On the one hand, the DG component, underpinned by multitasking, LP, and fluid-related 

abilities, was anti-correlated with DMN suppression and FPN integration across the lifespan. 

At a cognitive level, this aligns well with evidence linking the speed of retrieval and the 

generation of lexical predictions to fluid processing abilities (Brothers et al., 2017; Strijkers et 

al., 2011), further confirming that LP is a demanding task. At a neurocognitive level, this 
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shows that reduced DMN suppression in older adults may compromise the ability to allocate 

resources from DMN to FPN regions cost-effectively, as discussed previously. 

On the other hand, the LS component, underpinned by semantic performances and DMN 

suppression, peaked around midlife before declining in late life. While this confirms that 

individuals tend to accumulate semantic knowledge over their lives (Salthouse, 2019), this 

highlights that reduced DMN suppression in older adults also negatively impacts semantic 

abstraction performances, which is the ability to generalize semantic knowledge for efficient 

prediction (Moran et al., 2014), with implications for LP. Specifically, the increase in 

semantic performances in LS was proportional to the decline in fluid abilities. Given the 

constraint fluid processing places on LP, such accrual of semantic knowledge from younger to 

middle adulthood could represent a compensatory "semantic strategy" that maintains LP 

performance as fluid processing declines (Baciu et al., 2021; Wu & Hoffman, 2023). 

Crucially, our results indicate that DMN suppression may capture the interplay between DG 

and LS as it covaries with both components. A reduction of this interplay could reflect how 

reduced DMN suppression in older adults compromises the ability to retrieve semantic 

knowledge in a goal-directed manner, manifesting at a cognitive level the difficulties in 

managing the cost of flexibly allocating attentional resources through long-range connections. 

Said differently, DMN suppression could index the controlled search and retrieval of semantic 

knowledge necessary for LP (i.e., DG-LS interplay) (Krieger-Redwood et al., 2019; Martin, 

Saur, et al., 2022). This is consistent with the notion that semantic cognition depends on both 

representational and control neural systems (Hoffman & MacPherson, 2022; Wu & Hoffman, 

2023), with top-down processes regulating access to semantic representations (i.e., the DG-LS 

interplay; see also the Controlled Semantic Cognition framework proposed by Ralph et al. 

(2017). 
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As mentioned earlier, we suggested that the decrease in DMN suppression signifies a 

transition from a more "energy-costly" state to an "energy-efficient" one to maintain a global 

homeostatic balance within the brain. This transition aligns well with the lower control 

demands usually associated with the higher prevalence of "semanticized" cognition in older 

adults (Spreng & Turner, 2021). This also aligns with intriguing results revealing that older 

adults up until age 70 could continue to allocate (low-level) attentional resources, further 

delaying LP difficulties. 

Indeed, after reduced DMN suppression in midlife, additional recruitment of the thalamus and 

the left putamen led to better semantic abstraction and LP performance (see Figure 4B). This 

is in line with studies showing that thalamic circuitry (Wolff et al., 2021; Wolff & Vann, 

2019) facilitates functional interactions between multiple cortical networks (Badke D’Andrea 

et al., 2023; Gordon et al., 2022; Greene et al., 2020; Hwang et al., 2017), specifically 

maintaining stable representations at the semantic-lexical interface (Crosson, 2021). 

Importantly, both the thalamus and putamen showed high spatial concordance with the 

cingulo-opercular network (CON), whose benefits for word recognition have been 

emphasized in prior work (Vaden et al., 2013). This benefit could be attributable to the 

distinct role FPN and CON regions play in cognitive control (Sestieri et al., 2014; Wallis et 

al., 2015): the former managing externally guided/top-down control, selecting sensory cues 

from the environment, and the latter managing memory-guided/bottom-up control, providing 

sufficient flexibility for comparing sensory inputs to long-term memory traces (R. M. Brown 

et al., 2022). Thus, a synergy between CON and DMN connectivity changes could contribute 

to the more “energy-efficient” dynamic observed in older adulthood (Dosenbach et al., 2024; 

Han et al., 2023). 

SENECA: a novel integrative and connectomic model 
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To synthesize, our study extends theoretical accounts on neurocognitive aging, revealing that 

(i) LP draws from domain-general and language-specific processes; and (ii) the synergistic 

coupling between DMN suppression and FPN integration upholds inter-cognitive functioning 

across the lifespan while minimizing the brain’s energy expenditure. 

As Livneh (2023) suggests, we combine the connectomic and cognitive levels of analysis 

within a single integrative model: SENECA. The SE-NE-CA model articulates a connectomic 

(SE) and cognitive (CA) dimension, which embraces a complex system perspective (NE). We 

borrow the name from the Seneca effect, generally found in complex systems, and describe "a 

slow rise followed by an abrupt decline” (Bardi, 2017), thus reflecting the dynamic of inter-

cognitive functioning across the lifespan.  

Along the connectomic dimension (S-synergistic; E-economical), we show that the 

synergistic relationship between DMN suppression and FPN integration provides the 

efficiency and flexibility necessary to compensate for reduced specialization while remaining 

economical – preserving global energy homeostasis. Along the cognitive dimension (C-

cognitive; A-aging), we show that the onset of LP difficulties in midlife stems from reduced 

semantic control – the ability to exert control on accumulated semantic knowledge in a goal-

directed manner – which may translate into poorer filtering of irrelevant semantic associations 

(Badre & Wagner, 2007; Barba et al., 2010; Jefferies, 2013). 

Unifying both dimensions (N-nonlinear; E-emergent), reduced DMN suppression 

compromises the ability to manage the cost of FPN integration, prompting older adults to 

adopt a more "energy-efficient" strategy that preserves homeostasis at the expense of inter-

cognitive functioning. This emphasizes that midlife is the turning point of a nonlinear and 

emergent neurocognitive dynamic marked by (i) a shift towards an increasingly semantic 

cognition to meet executive function decline (Spreng & Turner, 2021), and (ii) a shift towards 
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a less synergistic coupling between DMN and FPN regions (Spreng & Turner, 2019). 

Importantly, SENECA aligns with a recent framework for cognition, suggesting that 

integration can be considered synergistic or redundant (Luppi et al., 2024; Mediano et al., 

2022). Synergistic integration may correspond to "integration-as-cooperation" between 

networks as observed up to midlife (i.e., "energy-costly,” flexible DMN-FPN coupling). 

Redundant integration may correspond to "integration-as-oneness" within each network as 

observed beyond midlife (i.e., "energy-efficient," inflexible DMN-FPN coupling). 

In terms of clinical perspective, the SENECA model provides insights into the potential use of 

age-related neural mechanisms as biomarkers in midlife for predicting late-life 

neurodegenerative pathologies. Two hypotheses may be proposed: (i) Pathological word-

finding difficulties before midlife may indicate increased maintenance cost of long-range 

connections, making them vulnerable to damage, as seen in pathological aging (Crossley et 

al., 2014). (ii) Beyond midlife, these difficulties may reflect challenges in securing a more 

"energy-efficient" compensatory integration strategy, compromising the brain's homeostatic 

balance. 

Limitations of the study 

Our study has several limitations: (A) Cross-sectional data & Inter-individual variability: The 

neural mechanisms identified in this study rely on probabilities derived from cross-sectional 

data, limiting their ability to account for inter-individual variability, especially in older 

adulthood (Stumme et al., 2020). Longitudinal studies would therefore be more appropriate to 

capture all the regions potentially underlying each mechanism. Future research should also 

investigate age-invariant mechanisms associated with high cognitive reserve for a more 

graceful language processing decline as age advances (Brosnan et al., 2023; Oosterhuis et al., 

2023; Wen & Dong, 2023; Wulff et al., 2022). Further studies should specify the factors 
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associated with the recruitment of subcortical structures, like the bilateral thalamus and left 

putamen, in late adulthood. (B) Higher-order interactions: Current graph theory methods 

assume dyadic relationships capture functional connectivity patterns of interest, but complex 

cognitive functions, such as language processing, involve higher-order interactions 

(Gazzaniga et al., 2019; Giusti et al., 2016). Modeling these interactions should be considered 

given the robust statistical and topological evidence (Schneidman et al., 2006; Yu et al., 2011; 

Gardner et al., 2021; Giusti et al., 2015). While SENECA does not explicitly address higher-

order interactions, its predictions align with theoretical and empirical works showing age-

related changes in synergistic interactions and their impact on cognitively demanding tasks 

(Gatica et al., 2021; Luppi et al., 2022; Rosas et al., 2022; Varley et al., 2023). (C) Density 

thresholding & Atlas selection: Sophisticated techniques are needed to account for the 

diversity of neuroimaging datasets and reduce intra-individual variability while preserving 

neurobiologically meaningful edges (Jiang et al., 2023). Proportional thresholding may 

exclude weaker edges, warranting exploration of data-driven filtering schemes like OMST 

(Orthogonal Minimum Spanning Tree; Dimitriadis et al., 2017) in understanding how older 

adults balance cognitive efficiency and reorganization cost. The SENECA model of 

neurocognitive aging pertains to the language connectome, but further investigation with 

whole-brain atlases is crucial, considering the impact of parcellations on reproducibility 

(Jiang et al., 2023; Ran et al., 2020). 

5. Conclusion 

This study aimed to elucidate the brain’s functional mechanisms responsible for the variation 

observed in language-related tasks as individuals age.  Our findings highlight that, compared 

to language comprehension, the maintenance of lexical production (LP) depends on the 

synergistic relationship between suppression within the Default Mode Network (DMN) and 
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integration within the Fronto-Parietal Network (FPN) in the language connectome. This 

relationship extends to support inter-cognitive tasks that draw upon both domain-general and 

semantic processes. Crucially, we propose that midlife represents a critical neurocognitive 

juncture that signifies the onset of LP decline, as older adults gradually lose exert control over 

semantic representations. This transition could stem from reduced DMN suppression which 

compromises the ability to manage the cost of FPN integration, prompting older adults to 

adopt a more cost-efficient compensatory strategy that maintains global homeostasis at the 

expense of LP performances. In summary, we encapsulate these findings in a novel 

integrative and connectomic model called SENECA, which articulates both cerebral (S- 

synergistic E- economical) and cognitive (C- cognitive A- aging) dimensions within the 

framework of complex systems (N- nonlinear E- emergent). 
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