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Multivariate point processes (MPPs) are widely applied to model the occurrences of events, e.g., natural disas-
ters, online message exchanges, financial transactions or neuronal spike trains. In the Hawkes process model, the
probability of occurrences of future events depend on the past of the process. This model is particularly popular
for modelling interactive phenomena such as disease expansion. In this work we consider the nonlinear multivari-
ate Hawkes model, which allows to account for excitation and inhibition between interacting entities. We provide
theoretical guarantees for applying nonparametric Bayesian estimation methods in this context. In particular, we
obtain concentration rates of the posterior distribution on the parameters, under mild assumptions on the prior
distribution and the model. These results also lead to convergence rates of Bayesian estimators. Another object
of interest in event-data modelling is to infer the graph of interaction - or Granger causal graph. In this case, we
provide consistency guarantees; in particular, we prove that the posterior distribution is consistent on the graph
adjacency matrix of the process, as well as a Bayesian estimator based on an adequate loss function.

MSC2020 subject classifications: Primary 62G20, 62G05; secondary 60G65
Keywords: nonlinear Hawkes processes; nonparametric Bayesian inference; Granger-causal Graph

1. Introduction

1.1. Nonlinear Hawkes processes

The Hawkes model is a popular temporal point process (PP) for modelling the occurrences of event-
type phenomena. Extending the Poisson cluster process (Møller and Rasmussen, 2005), this model
allows the probability of occurrence of a new event to depend on the history of the process. The first
construction by Hawkes (1971) aimed at modelling the self-excitatory behaviour of earthquakes’ strikes
with aftershocks, and is called the linear Hawkes process. Since then, it has been extensively used,
partly due to its interpretable parameters and branching structure representation (Reynaud-Bouret and
Roy, 2007). This notably leads to tractable inference and simulation methods (Bacry et al., 2020; Chen,
Witten and Shojaie, 2017; Hansen, Reynaud-Bouret and Rivoirard, 2015).

Hawkes processes have been largely and successfully applied in various contexts of correlated event-
data, including online social popularity (Farajtabar et al., 2015), stock prices moves (Embrechts, Lin-
iger and Lin, 2011), topic modelling (Du et al., 2015), DNA motifs occurrences (Carstensen et al.,
2010; Gusto and Schbath, 2005; Reynaud-Bouret and Schbath, 2010), and neuronal activity modelling
(Chornoboy, Schramm and Karr, 1988; Lambert et al., 2017; Reynaud-Bouret et al., 2014). They are
used to infer both diffusion phenomena on networks and the structure of time-dependent networks
(Miscouridou, Caron and Teh, 2018). Related and extended models include the mutually-regressive
PP (Apostolopoulou et al., 2019), the age-dependent (Raad, Ditlevsen and Löcherbach, 2020) and
marked (Karabash and Zhu, 2015) Hawkes processes, the dynamic contagion process (Dassios and
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Zhao, 2011), the reactive PP (Ertekin, Rudin and McCormick, 2015), the self-correcting PP (Isham
and Westcott, 1979) and the Dirichlet-Hawkes process (Du et al., 2015). More recently, neural point
processes inspired by the Hawkes model have also been proposed, e.g., by Du et al. (2016); Mei and
Eisner (2017).

In a multivariate temporal PP, each dimension represents an entity, a location or a type of event - it
is equivalent to a marked point process with finite mark space. For K ∈�\{0}, the PP can be described
as a counting process N = (Nt)t = (N1

t , . . . ,N
K
t )t⩾0, where Nk

t denotes the number of events that have
occurred until time t at location k. Its dynamics are characterised by a conditional intensity function
(λt)t = (λ1

t , . . . , λ
K
t )t⩾0, which is informally the infinitesimal rate of event conditionally on the past of

the process, i.e, for k = 1, . . . ,K, λk
t dt = �

[
Nk

t has a jump in [t, t + dt]|Gt
]
, where Gt is the history of

the process up to time t. In the nonlinear Hawkes model, only one dimension Nk of the process can
jump at each time t and the intensity process has the following form

λk
t = ϕk

νk +

K∑
l=1

∫ t−

−∞

hlk(t − s)dNl
s

 , k = 1, . . . ,K. (1)

In (1), the parameter νk > 0 denotes the background - or spontaneous - rate of events, and models ex-
ogeneous influences. The endogenous effects on the process are parametrised by interaction functions
(hlk)K

l,k=1 - or triggering kernels. More precisely, for (l, k) ∈ [K]2, the function hlk :�→� models the
influence of component Nl onto component Nk. It can be decomposed into an excitating contribution
(h+lk = max(hlk,0)) and an inhibiting contribution (h−lk = max(−hlk,0)). Finally, the link or activation
function ϕk :�→�+ ensures that the intensity is a non-negative process, and is generally chosen to be
monotone non-decreasing. If all the interaction functions hlk are non-negative and all the link functions
equal the identity functions, (1) corresponds to the linear Hawkes model.

The dependence on past events in the intensity (1) leads to a notion of causality. For Hawkes pro-
cesses, a Granger-causal relationship between two components of the process corresponds to a non-
null interaction function (Eichler, Dahlhaus and Dueck, 2017). We can define the connectivity graph
parameter δ ∈ {0,1}K

2
such that for each (l, k), δlk = 1 if the function hlk in (1) is non null and δlk = 0

otherwise. We note that this parameter is redundant with (hlk)K
l,k=1.

To the best of our knowledge, the estimation of the parameters of nonlinear Hawkes processes
ν = (νk)k, h = (hlk)K

l,k=1, δ = (δlk)K
l,k=1 - as well as additional parameters of the link functions (ϕk)k

has not been theoretically analysed, neither in the frequentist nor in the Bayesian frameworks. In the
nonparametric setting, the existing results apply to linear Hawkes processes for the estimation of (ν,h)
(Donnet, Rivoirard and Rousseau, 2020) and for the estimation of the connectivity graph δ (Hansen,
Reynaud-Bouret and Rivoirard, 2015; Chen, Witten and Shojaie, 2017). In the nonlinear model, Chen
et al. (2017) study the estimation of the cross-covariances of the process, and Wang et al. (2016) esti-
mate a piecewise-constant link function assuming a parametric form on the interaction functions.

In this work, we analyse the theoretical properties of Bayesian methods for estimating ν, h, δ and
additional parameters of the nonlinear functions (ϕk)k. We consider a prior distribution on the param-
eters, say Π, and our aim is to study posterior concentration rates in such models. More precisely, we
wish to determine ϵT = o(1) and conditions on the model and on Π such that

� f0 [Π(d( f , f0) > ϵT |N)] −−−−−→
T→∞

1,

where f = (ν,h), d(., .) is some loss function on the parameter space, and Π(.|N) denotes the posterior
distribution given an observation of the process on [0,T ]. In the last equation, we assume that the data N
is generated by a Hawkes process with true parameter f0, and we denote � f0 its generating distribution
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and � f0 the associated expectation. In particular, a consequence of such result is the construction of
estimators on ν,h which converge in the frequentist sense at the rate ϵT . We also obtain posterior
consistency results on the graph parameter δ, and construct a consistent risk-minimising estimator.

1.2. Related works

There is a rich literature on Hawkes processes in probability, statistics, and more recently in machine
learning and deep learning. The stability properties of the nonlinear Hawkes model have been stud-
ied under several assumptions (Brémaud and Massoulié, 1996; Karabash, 2012), together with the
rate of convergence to the stationary solution (Brémaud, Nappo and Torrisi, 2002) and the Bartlett
spectrum (Massoulié, 1998). Regenerative properties of Hawkes processes were investigated for the
models with finite (Costa et al., 2020) and infinite (Graham, 2021; Raad, 2019) memory. Recently
Bacry et al. (2013); Gao and Zhu (2018a,b) derived functional central limit theorems and large devia-
tions principles for ergodic processes. Malliavin-Stein calculus was applied by Torrisi (2016, 2017) to
establish Gaussian and Poisson approximations of functionals of the linear Hawkes process, and later
by Hillairet et al. (2021) to obtain Berry-Esséen bounds. Stationary distributions of high dimensional
Hawkes processes were also studied, notably in the mean-field limit (Delattre and Fournier, 2016;
Delattre, Fournier and Hoffmann, 2016; Raad, Ditlevsen and Löcherbach, 2020).

Many statistical works have been dedicated to designing robust and efficient estimation procedures
in the linear Hawkes model. In the seminal work of Ogata (1988), the interaction functions are given
in a parametric form and estimated by maximising the likelihood function. In parametric models, an
Expectation-Maximisation algorithm was proposed in Veen and Schoenberg (2008) to compute the
maximum likelihood estimator while MCMC methods were designed for sampling from the posterior
distribution (Rasmussen, 2013). The EM algorithm was extended by Lewis and Mohler (2011) to
nonparametric Hawkes models using a penalised likelihood objective. Another nonparametric approach
was introduced by Reynaud-Bouret and Schbath (2010) for the linear univariate model by using a
model selection strategy. In the multivariate Hawkes model, Lasso-type estimates were designed by
Hansen, Reynaud-Bouret and Rivoirard (2015). Still for linear models, Bayesian approaches have also
been implemented for nonparametric Hawkes models, see for instance Du et al. (2015). In Donnet,
Rivoirard and Rousseau (2020) the authors study asymptotic properties of the posterior distribution in
the linear model.

Causality graphs for discrete-time events were introduced by Granger (1969) and extended to marked
point processes by Didelez (2008), with an explicit definition in the case of multivariate Hawkes pro-
cesses by Eichler, Dahlhaus and Dueck (2017). In linear parametric models, some approaches optimise
a least-square objective based on the intensity process (Bacry et al., 2020, 2013). For nonparametric
Hawkes processes, Xu, Farajtabar and Zha (2016) apply an EM algorithm based on a penalized likeli-
hood objective leading to temporal and group sparsity. Still in the linear model, Lasso-type estimates
proposed by Hansen, Reynaud-Bouret and Rivoirard (2015) for nonparametric Hawkes processes nat-
urally lead to sparse connectivity graphs. This procedure has been generalised to high-dimensional
processes by Chen, Witten and Shojaie (2017) by adding an edge screening step.

1.3. Our contributions

This paper considers a general multivariate Hawkes model with a nonlinear and nonparametric form of
the intensity function, and provides theoretical guarantees on Bayesian estimation methods. We cover
a large range of link functions ϕk, which covers most of the nonlinear Hawkes models considered in
the literature (Costa et al., 2020; Hansen, Reynaud-Bouret and Rivoirard, 2015; Gerhard, Deger and
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Truccolo, 2017; Carstensen et al., 2010; Chen et al., 2017; Menon and Lee, 2018; Mei and Eisner,
2017; Deutsch and Ross, 2022; Truccolo et al., 2005), such as the ReLU ϕk(x) = (x)+ = max(x,0),
clipped exponentials ϕk(x) = min(ex,Λ), the sigmoid ϕk(x) = (1 + e−x)−1, and the softplus ϕk(x) =
log(1+ ex). These models have been notably introduced for neuronal spike-train data modelling, where
intense-activity periods alternate with resting states called refractory periods1. The ReLU function
directly extends the original linear Hawkes model to handle negative interaction functions. In Hansen,
Reynaud-Bouret and Rivoirard (2015); Costa et al. (2020) it is called the standard nonlinear Hawkes
model, as it is the closest to the linear Hawkes process. Exponential and sigmoidal functions appear in
several applied works (Gerhard, Deger and Truccolo, 2017; Carstensen et al., 2010), where smoothness,
saturation and thresholding effects are desirable properties. The softplus function is often preferred in
machine learning algorithms as a soft approximation of ReLU (Mei and Eisner, 2017).

The first question to answer is the identifiability of f = (ν,h), which is treated in Section 2.2. Building
on these results, we study posterior concentration rates in terms of the L1-norm on f in Section 3.1.
Our aim is to describe the posterior concentration rates in terms of conditions on the prior Π and on
the true parameter f0 = (ν0 = (νk)k,h0 = (h0

lk)l,k) which are simple to verify and under rather weak
assumptions on the link functions. Interestingly, we eventually reduce the problem to conditions on the
prior and the f0 similar to those found in the literature on density and nonlinear regression estimation
(see Theorem 3.2), which makes them easy to verify in a wide range of prior models. From this we
derive convergence rates of Bayesian estimators of f0 (Corollary 3.8) and posterior consistency on δ0
(Theorem 3.9), with δ0 the true graph parameter associated to h0.

We also extend our results to the case where the link functions are partially unknown, in the special
case of shifted ReLU link functions. More precisely we consider models in the form ϕk(x) = θk + (x)+,
with θk > 0 unknown. For such models we show identifiability of the parameters ( f , θ), θ = (θk)1⩽k⩽K
and derive a general posterior concentration rate result similar to Theorem 3.2 on both f and θ.

To the best of our knowledge, these results are the first theoretical properties on the nonparametric
estimation of both f0 and δ0 in the frequentist and Bayesian literature of nonlinear Hawkes processes.
Besides, for partially known link functions, in the particular setting of the shifted ReLU model, we also
provide the first result on the estimation of the additional parameter θ. We note that recently, compu-
tational methods for a related setting have been developed in Zhou et al. (2021a,b); Malem-Shinitski,
Ojeda and Opper (2022); Zhou et al. (2022). In the latter works, a sigmoidal nonlinear Hawkes model
is defined with ϕk(x) = θk(1+ e−x)−1 and unknown parameter θ = (θk)k. However, although the theoret-
ical analysis of the latter model is beyond the scope of this paper, it is similar in spirit to our models. In
fact, our techniques could potentially be applied to this multiplicative parametrisation, which we leave
for future work.

Our results are related to those of Donnet, Rivoirard and Rousseau (2020), obtained in the case of
linear Hawkes processes. However, the analysis of the process and our proofs for estimating the pa-
rameter rely on renewal properties, newly introduced by Costa et al. (2020) in the univariate ReLU
nonlinear Hawkes model. One key novelty of our work is to leverage the concept of excursions in
the context of statistical analysis. This concept allows to decompose the trajectory of the process into
independent, observable subintervals, and also to analyse the process on specific events where the pa-
rameter estimation is simplified. Developing these tools for nonlinear processes is fundamental since
classical technical arguments used for linear Hawkes processes and based on Poisson branching struc-
tures cannot be applied in this case. We believe that these new proof techniques have an interest in
themselves, in addition to weakening some of the assumptions on the prior distribution considered in
Donnet, Rivoirard and Rousseau (2020).

1A refractory period is a time interval during which a neuron is unlikely to emit a spike train.
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The rest of the paper is organised as follows. In Section 2, we define the multivariate stationary
nonlinear Hawkes process, present the identifiability results and describe the Bayesian framework.
Section 3 presents the posterior concentration results on f and θ and consistency on δ results. Section 4
is dedicated to the construction of prior distributions that satisfy the assumptions of the theorems.
The most novel aspects of the proofs are reported in Section 5. Appendix A contains some technical
lemmas. Finally, supplementary proofs and results can be found in the Supplementary Material (Sulem,
Rivoirard and Rousseau, 2023).

Notations. For a function h, we denote ∥h∥1 =
∫
�
|h(x)|dx the L1-norm, ∥h∥2 =

√∫
�

h2(x)dx the
L2-norm, ∥h∥∞ = sup

x∈�
|h(x)| the supremum norm, and h+ = max(h,0), h− = max(−h,0) its positive and

negative parts. For a K ×K matrix A, we denote r(A) its spectral radius and ∥A∥ its spectral norm. For a
vector u ∈�K , ∥u∥1 =

∑K
k=1 |uk |. The notation k ∈ [K] is used for k ∈ {1, · · · ,K}. For a set B and k ∈ [K],

we denote Nk(B) the number of events of Nk in B and Nk |B the point process measure restricted to

the set B. For random processes, the notation L= corresponds to equality in distribution. We also denote
N(u,H0,d) the covering number of a set H0 by balls of radius u w.r.t. a metric d. For any k ∈ [K], let
µ0

k =�0[λk
t ( f0)] be the mean of λk

t ( f0) under the stationary distribution �0. For a set Ω, its complement
is denoted Ωc. We also use the notations uT ≲ vT if |uT /vT | is bounded when T →∞, uT ≳ vT if |vT /uT |

is bounded and uT ≍ vT if |uT /vT | and |vT /uT | are bounded.

2. Problem setup

2.1. Definition and stationary distribution

In this section, we first recall the formal definition of a multivariate Hawkes process. We consider a
probability space (X,G,�) and a MPP N = (Nt)t∈� = (N1

t , . . . ,N
K
t )t∈�. Let {Gt}t∈� be the filtration such

that Gt = σ(Ns, s ⩽ t) and for T > 0, we assume that GT ⊂ G. We say that (Nt)t is a multivariate Hawkes
process with parameter f = ((νk)K

k=1, (hlk)K
l,k=1, (θk)K

k=1) adapted to G if

i) almost surely, ∀k, l ∈ [K], (Nk
t )t and (Nl

t )t never jump simultaneously;
ii) for all k ∈ [K], the Gt-predictable intensity process of Nk at t ∈� is given by

λk
t ( f ) = ϕk

νk +

K∑
l=1

∫ t−

−∞

hlk(t − s)dNl
s

 , k = 1, . . . ,K.

We consider finite-memory Hawkes processes for which interaction functions have a bounded support
included in [0,A] with A > 0 known - chosen arbitrarily large in practice. We recall that in (1), if for all
k, ϕk is the identity function and for all l, hlk is non-negative, this PP model corresponds to the classical
linear Hawkes process with parameter ν = (νk)K

k=1 and h = (hlk)K
k,l=1 and intensity process:

λ̃k
t (ν,h) := νk +

K∑
l=1

∫ t−

t−A
hlk(t − s)dNl

s. (2)

With this notation, the nonlinear intensity can be written as λk
t ( f ) = ϕk(λ̃k

t (ν,h)). For a nonlinear
Hawkes process, the existence and uniqueness of a stationary distribution is proved under some as-
sumptions on the parameters f and the link functions ϕ = (ϕk)k. In the following lemma, we provide
two sufficient conditions, which are variants of existing work. We recall that a function ϕ is L-Lipschitz,
if for any (x, x′) ∈�2, |ϕ(x) − ϕ(x′)| ⩽ L|x − x′|.
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Lemma 2.1. Let N be a Hawkes process with parameter f and link functions (ϕk)k such that for any
k ∈ [K], ϕk :�→�+ is monotone non-decreasing and L-Lipschitz, with L > 0. If one of the following
conditions is satisfied:

(C1) The matrix S + with entries S +lk = L
∥∥∥h+lk

∥∥∥
1 satisfies r(S +) < 1;

(C2) For any k ∈ [K], ϕk is bounded, i.e., ∃Λk > 0,∀x ∈�, ϕk(x) ⩽Λk.

then there exists a unique stationary version of the process N with finite average.

In the previous lemma, the second stationarity condition (C2) directly comes from Theorem 7 by
Brémaud and Massoulié (1996) and is applied to our (less general) context of Lipschitz and non-
decreasing link functions. The first condition (C1) is obtained in Theorem 1 of Deutsch and Ross
(2022), in a more restricted Hawkes model where ϕk(x) = (x)+ and the interaction functions are of
the form hlk = Klkg(t) with g ⩾ 0 and Klk ∈ �, but the same arguments can be applied to prove the
stationarity of the process in our more general nonlinear model. However, in the context of inference,
we will consider a slightly stronger condition:

(C1bis) The matrix S + with entries S +lk = L
∥∥∥h+lk

∥∥∥
1 satisfies

∥∥∥S +
∥∥∥ < 1.

From now on, we will assume that we observe on a window [−A,T ] a stationary Hawkes process
with link functions (ϕk)k and true parameters f0 = ((ν0

k)K
k=1, (h

0
lk)K

l,k=1). We denote �0 the stationary
distribution of N and �0(.|G0) its conditional distribution given G0. We note that �0 is a well-defined
transformation of the probability distribution � (through its alternative definition in Lemma S10.2
of the Supplementary Material (Sulem, Rivoirard and Rousseau, 2023)). For f = ((νk)K

k=1, (hlk)K
l,k=1)

satisfying the assumptions of Lemma 2.1, the log-likelihood of the processs on [0,T ] conditionally on
G0 (i.e., conditionally on N |[−A,0)) is given by

LT ( f ) :=
K∑

k=1

[∫ T

0
log(λk

t ( f ))dNk
t −

∫ T

0
λk

t ( f )dt
]
.

Then, for any parameter f , we define the conditional distribution � f from the likelihood function

d� f (.|G0) = eLT ( f )−LT ( f0)d�0(.|G0). (3)

We denote �0 (resp. � f ) the expectation associated with �0 (resp. � f ).

2.2. Identifiability of the parameters

In this section, we provide some conditions on the model which ensure that the parameters of the
nonlinear Hawkes model defined in (1) are identifiable. To do so we consider the following weak
assumption.

Assumption 2.2. For f = (ν,h), there exists ε > 0 such that for any k ∈ [K], ϕk restricted to Ik =

(νk −max
l∈[K]

∥∥∥h−lk
∥∥∥
∞
− ε, νk +max

l∈[K]

∥∥∥h+lk
∥∥∥
∞
+ ε) is injective.

Proposition 2.3. Let N be a nonlinear Hawkes process as defined in (1) with link functions (ϕk)k and
parameter f = (ν,h) satisfying the conditions of Lemma 2.1 and Assumption 2.2. If N′ is a Hawkes
processes with the same link functions (ϕk)k and parameter f ′ = (ν′,h′), then if N and N′ have the

same distribution, i.e., N L= N′, then ν = ν′ and h = h′.
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Note that if the ϕk’s are injective on �, which holds in particular for the sigmoid and the softplus
functions, then Assumption 2.2 is verified for all f . However our result is more general and also covers
link functions which are only injective on a sub-interval of � such as ReLU or shifted ReLU (ϕk(x) =
θk + max(x,0)) and clipped exponentials (ϕk(x) = min(ex,Λk) ). In this case, Assumption 2.2 holds
over a restricted parameter space for f . More precisely, ϕk needs to be injective over an interval which
includes all the possible values of νk + hlk(s), for any l ∈ [K] and s ∈ [0,A].

Remark 2.4. One consequence of Assumption 2.2 is that for any t > 0 such that N[t − A, t) ⩽ 1, then
λk

t ( f ) > 0 (since ϕk is non-negative and monotone non-decreasing) for all k ∈ [K]. However, Assump-
tion 2.2 still allows to model the refractory periods of biological neurons, i.e., when the neurons cannot
or are very unlikely to fire again during a period after firing. Indeed, one can have λk

t ( f ) very small for
t such that Nk[t − A, t) = 1, depending on f and ϕk.

Proposition 2.3 supports the feasibility of the parameter estimation when the nonlinear functions
ϕk’s are fully known. It can however be extended to the setup where the link functions are partially
known. In the next proposition, we consider the case of ϕk(x) = θk + ψk(x) where ψk is a function such
that lim

x→−∞
ψk(x) = 0 and θk ⩾ 0 is an unknown parameter, for each k ∈ [K]. In this case, we denote

λt( f , θ) the intensity process.

Proposition 2.5. Let N be a Hawkes process with parameter f = (ν,h) and link function ϕk(x; θk) =
θk + ψk(x) with θk ⩾ 0 for any k ∈ [K] satisfying the conditions of Lemma 2.1 and Assumption 2.2. We
also assume that for all k ∈ [K], lim

x→−∞
ψk(x) = 0 and

∃l ∈ [K], x1 < x2, such that h−lk(x) > 0, ∀x ∈ [x1, x2]. (4)

Then if N′ is a Hawkes processes with link functions ϕk(x; θ′k) = θ′k + ψk(x), θ′k ⩾ 0 and parameter
f ′ = (ν′,h′),

N L= N′ =⇒ ν = ν′, h = h′, and θ = θ′, θ = (θk)K
k=1, θ′ = (θ′k)K

k=1.

Besides, in this case we have � f [inf
t⩾0

λk
t ( f , θ) = θk] = 1.

The proofs of Propositions 2.3 and 2.5 are reported in Section S8 in the Supplementary Material
(Sulem, Rivoirard and Rousseau, 2023). In Proposition 2.5, the condition (4) implies that each compo-
nent k receives some inhibition (i.e., ∃l, h−lk , 0). In particular, we will use this condition in the shifted
ReLU model where ψk(x) = (x)+. We note that θk is not identifiable when no inhibition is received by
Nk (i.e., when ∀l, h−lk = 0). More precisely, the following lemma - proved in Section S8 in the Sup-
plementary Material (Sulem, Rivoirard and Rousseau, 2023) - states that in a mutually-exciting ReLU
model, the parametrisation of the process is not unique. Informally, our models present a singularity at
the parameter “h− = 0”.

Lemma 2.6. Let N be a Hawkes process with parameter f = (ν,h) and link functions ϕk(x; θk) = θk +

(x)+, θk ⩾ 0, k ∈ [K] satisfying Assumption 2.2, and let k ∈ [K]. If ∀l ∈ [K],hlk ⩾ 0, then for any θ′k ⩾ 0
such that θk+νk−θ

′
k > 0, let N′ be the Hawkes process driven by the same underlying Poisson process Q

as N (see Lemma Lemma S10.2 in the Supplementaty Material (Sulem, Rivoirard and Rousseau, 2023))
with parameter f ′ = (ν′,h′) and link functions ϕk(x; θ′k) = θ′k + (x)+, k ∈ [K] with ν′ = (ν1, . . . , νk + θk −

θ′k, . . . , νK) , ν, h′ = h, and θ′ = (θ1, . . . , θ
′
k, . . . , θK) , θ. Then for any t ⩾ 0,λk

t ( f , θ) = λk
t ( f ′, θ′), and

therefore N L= N′.
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2.3. Bayesian inference

We can now present our Bayesian estimation framework. We assume that the observed Hawkes process
N satisfies the conditions of Lemma 2.1, i.e., the link functions ϕk’s are monotone non-decreasing, L-
Lipschitz with L > 0 and either we consider a bounded model ϕk(x) ⩽Λ,∀k,Λ > 0 (condition (C2)) or
we assume

∥∥∥S +0
∥∥∥ < 1 (condition (C1bis)) with S +0 = (L

∥∥∥h0+
lk

∥∥∥
1)l,k∈[K]2 . We define the parameter space

for f = ((νk)K
k=1, (hlk)K

l,k=1) and the functional space as follows. Let

H ′ = {h : [0,A]→�; ∥h∥∞ <∞} , H =
{
h = (hlk)K

l,k=1 ∈H
′K2

; (h, ϕ) satisfy (C1bis) or (C2)
}
,

F =
{
f = (ν,h) ∈ (�+\{0})K ×H ; f satisfies Assumption 2.2

}
.

We recall that for an unbounded link function, condition (C1bis) corresponds to
∥∥∥S +

∥∥∥ < 1 with S + =
(L

∥∥∥h+lk
∥∥∥

1)l,k∈[K]2 . We also recall that A > 0 is fixed. In the graph estimation problem (see Section 3.2),

the parameter of interest is δ0 ∈ {0,1}K
2

where h0
lk = 0 ⇐⇒ δ0

lk = 0. With a slight abuse of notations,

we sometimes write f = ((νk)k, (hlk)l,k)k, (δlk)l,k) with δ ∈ {0,1}K
2
.

Remark 2.7. With ReLU-type link functions, we have H = {h = (hl,k) ∈ (H ′)K2
;
∥∥∥S +

∥∥∥ < 1} and F =
{ f ∈ (�+\{0})K ×H ;

∥∥∥h−lk
∥∥∥
∞
< νk, (l, k) ∈ [K]2}. With clipped exponential links ϕk(x) =min(ex,Λk), we

haveH =H ′K
2

and F =
{
f ∈�+\{0}K ×H ′K

2
; νk +

∥∥∥h+lk
∥∥∥
∞
< logΛk, (l, k) ∈ [K]2

}
.

We now define our metric on the parameter space F . For any f = (ν,h), f ′ = (ν′,h′) ∈ F , we define
the following L1-distances:

∥∥∥ν − ν′∥∥∥1 =

K∑
k=1

|νk − ν
′
k |,

∥∥∥h − h′
∥∥∥

1 =

K∑
l=1

K∑
k=1

∥hlk − h′lk∥1, ∥ f − f ′∥1 =
∥∥∥ν − ν′∥∥∥1 +

∥∥∥h − h′
∥∥∥

1 .

Finally, we consider a prior distribution Π on F and define the posterior distribution on B ⊂ F as

Π(B|N) =

∫
B exp(LT ( f ))dΠ( f )∫
F

exp(LT ( f ))dΠ( f )
=

∫
B exp(LT ( f ) − LT ( f0))dΠ( f )∫
F

exp(LT ( f ) − LT ( f0))dΠ( f )
=:

NT (B)
DT

, (5)

denoting NT (B) and DT our numerator and denominator of the posterior with the form above.

3. Main results

In this section, we state our most important results on the posterior distribution on the parameter f and
the restriction on the connectivity graph δ, leading respectively to convergence rates and consistency
of some Bayesian nonparametric estimators.

3.1. Posterior concentration rates

We first prove that under mild assumptions on the link functions and the true parameter, we can describe
the posterior concentration rate ϵT with respect to the L1-distance on F defined in Section 2.3, in terms
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of standard conditions on the prior. We then consider the case where the link functions ϕk depend
on an unknown parameter, in the special case of shifted ReLU: ϕk(x; θ0

k ) = θ0
k + (x)+, for which we

prove posterior concentration on both f0 and θ0. To do so, we use the following assumption on the true
parameter, which is a strengthening of the identifiability condition in Assumption 2.2.

Assumption 3.1. For f0 = (ν0,h0), we assume that there exists ε > 0 such that for any k ∈ [K], ϕk
restricted to Ik = (ν0

k −max
l∈[K]

∥∥∥h0−
lk

∥∥∥
∞
− ε, ν0

k +max
l∈[K]

∥∥∥h0+
lk

∥∥∥
∞
+ ε) is bijective from Ik to Jk = ϕk(Ik) and its

inverse is L′- Lipschitz on Jk, with L′ > 0. We also assume that one of the two following conditions is
satisfied:

i) For any k ∈ [K], inf
x∈�

ϕk(x) > 0.

ii) For any k ∈ [K], ϕk > 0 and
√
ϕk and logϕk are L1-Lipschitz with L1 > 0 .

The first part of Assumption 3.1, which is a slight strengthening of Assumption 2.2, holds in all
cases described previously. The second part considers two cases: (i) the ϕk’s are lower bounded by
a positive constant, which holds for instance when ϕk(x; θk) = θk + ψk(x) with θk > 0 and ψk ⩾ 0 and
(ii) the ϕk’s can approach 0 but satisfy an additional smoothness condition which holds in particular
if the derivatives ϕ′k are bounded and the functions logϕk’s are Lipschitz. It is notably the case for the
commonly used Hawkes models (Costa et al., 2020; Hansen, Reynaud-Bouret and Rivoirard, 2015;
Gerhard, Deger and Truccolo, 2017; Carstensen et al., 2010; Chen et al., 2017; Menon and Lee, 2018;
Mei and Eisner, 2017), see Example 1 below. Note that this assumption excludes the standard ReLU
function ϕk(x) = (x)+, which we will treat separately in Proposition 3.5.

Example 1. The following nonlinear models verify Assumption 3.1. Let s, t,Λ > 0.

• Positive or shifted ReLU-type functions: ϕ1(x) = max(sx, t) ⩾ t > 0, which is injective on
[t/s,+∞), s-Lipschitz and its inverse on [t,+∞), ϕ−1

1 (x) = s−1x is s−1-Lipschitz.
• Clipped exponential functions: ϕ2(x) = min(esx,Λ), which is injective on (−∞, s−1 logΛ] and

sΛ-Lispchitz. Its inverse on (0,Λ], ϕ−1
2 (x) = s−1 log x is Lipschitz on any compact of (0,Λ]

and
√
ϕ2(x) =

√
min(esx,Λ) = min(esx/2,

√
Λ) and logϕ2 = min(sx, logΛ) are respectively sΛ–

Lispchitz and s-Lipchitz;
• Sigmoid functions: ϕ3(x) = (1 + e−s(x−t))−1, which is injective on � and s-Lipschitz. Its inverse

ϕ−1
3 (x) = t+ 1

s log x
1−x is Lipschitz on any compact of (0,1),

√
ϕ3 is s-Lipschitz and

ϕ′3(x)
ϕ3(x) ⩽ s thus

logϕ3 is s-Lipschitz;
• Softplus functions: ϕ4(x) = log(1 + es(x−t)), which is injective on �, s-Lipschitz and its inverse
ϕ−1

4 (x) = 1
s log(ex − 1) + t is Lipschitz on any compact of �∗+ . Finally

√
ϕ4 and logϕ4 are s-

Lipschitz.

To state our first result, we also define the following neighbourhoods in f0 in supremum and L2-
norms respectively, for B > 0:

B∞(ϵT ) = { f ∈ F ; ν0
k ⩽ νk ⩽ ν

0
k + ϵT , h0

lk ⩽ hlk ⩽ h0
lk + ϵT , (l, k) ∈ [K]2}.

B2(ϵT ,B) = { f ∈ F ; max
k
|νk − ν

0
k | ⩽ ϵT , max

l,k
∥hlk − h0

lk∥2 ⩽ ϵT , max
l,k
∥hlk∥∞ < B}.

In particular, B∞(ϵT ) is chosen so that for any f ∈ B∞(ϵT ), k ∈ [K] and t ⩾ 0, the intensities verify
λk

t (ν,h) ⩾ λk
t (ν0,h0). Finally we define

κT = 10(log T )r (6)
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with r = 0 if (ϕk)k satisfies Assumption 3.1 (i), r = 1 if (ϕk)k satisfies Assumption 3.1 (ii).

Theorem 3.2. Let N be a Hawkes process with known link functions ϕ = (ϕk)k and parameter f0 =
(ν0,h0) such that (ϕ, f0) satisfy Assumption 3.1. Let ϵT = o(1/

√
κT ) be a positive sequence verifying

log3 T = O(T ϵ2
T ) and Π be a prior distribution on F . We assume that the following conditions are

satisfied for T large enough.
(A0) There exists c1 > 0 such that Π(B∞(ϵT )) ⩾ e−c1T ϵ2

T .

(A1) There exist subsets HT ⊂ H and c2 > 0 such that, with ΥT = {ν = (νk)k, 0 < νk ⩽ ec2T ϵ2
T , ∀k},

Π(Hc
T ) +Π(Υc

T ) = o(e−(κT+c1)T ϵ2
T ).

(A2) There exist ζ0 > 0 and x0 > 0 such that logN (ζ0ϵT ,HT , ||.||1) ⩽ x0T ϵ2
T .

Then, for M > 0 large enough, we have

�0
[
Π
(
∥ f − f0∥1 > M

√
κT ϵT

∣∣∣N)]
= o(1). (7)

The proof of Theorem 3.2 is provided in Section 5.2.

Remark 3.3. In Theorem 3.2, if we replace B∞(ϵT ) by B2(ϵT ,B) for some B > 0 in (A0), then the
concentration rate in (7) is

√
log log TκT ϵT instead of

√
κT ϵT . Replacing B∞(ϵT ) by B2(ϵT ,B) can be

useful for some families of priors, as seen in the case of mixtures of Beta distributions in Section S5.1
in the Supplementary Material (Sulem, Rivoirard and Rousseau, 2023).

Remark 3.4. Our concentration rate in (7) holds under the stationary distribution �0, implying in
this case that the “initial condition” N |[−A,0] ⊂ G0 also comes from the stationary law. However, in
practice, one might observe a process on [−A,T ] with an arbitrary distribution on [−A,0]. Under the
conditions of Lemma 2.1, the dynamics of the resulting process are stable (in the sense of Definition 1
of Brémaud and Massoulié (1996)), using the results in Brémaud and Massoulié (1996). In particular,
its distribution �0(.|G0) converges exponentially fast to the stationary distribution �0. Therefore, we
expect that (7) would still hold under �0(.|G0), i.e., under a more general initial distribution on [−A,0].

An interesting aspect of Theorem 3.2 is that the assumptions on the prior (A0), (A1) and (A2), are
similar to those of simpler estimation problems like density estimation, regression or linear Hawkes
processes. This allows to directly derive explicit forms of the posterior concentration rates in the nonlin-
ear Hawkes model under common families of priors, such as Gaussian processes, hierarchical Gaussian
processes, basis expansions or mixture models (see van der Vaart and van Zanten (2009, 2008); Arbel,
Gayraud and Rousseau (2013); Rousseau (2010) or Section 2.3.2 of Donnet, Rivoirard and Rousseau
(2020) ). In Section 4, we illustrate this using splines and mixture models. Additionally, our Theorem
3.2 avoids the unpleasant assumption on the prior in Theorem 3 of Donnet, Rivoirard and Rousseau
(2020) which requires that for some u0 > 0, Π(∥S ∥ > 1− u0(log T )1/6ϵ1/3

T ) ⩽ e−2c1T ϵ2
T . This is thanks to

our novel proof techniques using regeneration times under the true model �0 (see Section 5.1).
Theorem 3.2 provides posterior concentration rates for a large class of link functions, as discussed

earlier. In particular, it covers the case of shifted ReLU link functions, i.e, ϕk(x) = θk+(x)+ where θk > 0
is a baseline rate, which can be arbitrarily small. This link function can be seen as an alternative to the
exponential function with positive baseline rate in Gerhard, Deger and Truccolo (2017) In Gerhard,
Deger and Truccolo (2017), neurons firing rates are modelled using nonlinear Hawkes processes with
a positive link function, which still allows to account for the refractory periods of neurons (for which
the firing rate is small). Moreover, while in the case of the shifted ReLU model, Theorem 3.2 assumes
that the baseline rates θ = (θk)k are known, we show in the next proposition that we can also estimate
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θ. Besides, we additionally provide a posterior concentration result when using the standard ReLU
function ϕk(x) = (x)+, under a stronger assumption on the model. We note that for this latter choice
of link function, the intensity function is only non-negative and the likelihood function is equal to 0
in parts of neighbourhoods of h0, which causes several issues in the control of the Kullback-Leibler
divergence.

Before stating our results, we define neighbourhoods in θ0, also in supremum and L2-norms, respec-
tively BΘ∞(ϵT ) = {θ ∈ Θ; ∥θ − θ0∥∞ ⩽ ϵT } and BΘ2 (ϵT ,B) = {θ ∈ Θ; ∥θ − θ0∥2 ⩽ ϵT }, and in this case we
define κT = 10(log T )r with r = 0 in the shifted ReLU model (Case 2 of the following proposition) and
r = 2 in the standard ReLU model (Case 1).

Proposition 3.5. Let N be a nonlinear Hawkes process with link functions (ϕk)k and parameter f0 =
(ν0,h0) satisfying Assumption 2.2. Let ϵT = o(1/

√
κT ) be a positive sequence verifying log3 T =O(T ϵ2

T )
and Π be a prior distribution on F .

• Case 1 (Standard ReLU): ϕk(x) = (x)+, for all k ∈ [K]. Under the Assumptions (A0), (A1) and
(A2) of Theorem 3.2, if f0 verifies the following additional assumption

lim sup
T→∞

1
T
�0

∫ T

0

1λk
t ( f0)>0

λk
t ( f0)

dt
 < +∞, k ∈ [K], (8)

then for M > 0 large enough, (7) holds.
• Case 2 (Shifted ReLU with θ0 unknown): ϕk(x; θ0

k ) = θ0
k + (x)+, θ0

k > 0, for all k ∈ [K]. Let Πθ
be a prior distribution on Θ = {θ = (θk)k; θk > 0}. If the Assumptions (A0), (A1) and (A2) of
Theorem 3.2 are satisfied when replacing B∞(ϵT ) by B∞(ϵT ) ∩ BΘ∞(ϵT ) for T large enough, and
if (4) is verified, then for M > 0 large enough,

�0

[
Π
(
∥ f − f0∥1 + ∥θ − θ0∥1 > M

√
κ′T ϵT

∣∣∣N)]
= o(1).

Remark 3.6. In Case 1 of Proposition 3.5 only, B∞(ϵT ) cannot be replaced by B2(ϵT ) in assumption
(A0). This is due to the fact that we need to consider parameters f such that the likelihood at f is
positive (i.e., exp(LT ( f )) > 0) in order to control the Kullback-Leibler divergence (see Lemma A2
and Lemmas S7.1 and S7.3 in the Supplementary Material(Sulem, Rivoirard and Rousseau, 2023)).
In this argument, we also need the additional assumption (8). The latter is a non trivial condition on
the intensity of the true model, which we do not expect to hold in many situations. For instance it
does not hold if λ̃t( f0) is Lipschitz in a neighbourhood of t such that λ̃t( f0) = 0. We expect that this
can happen with significant probability as soon as one interaction functions h0

lk is Lipschitz and h0−
lk is

non-null. It is however not clear if this condition is sharp, i.e., if Bayesian or other likelihood-based
methods would be suboptimal without this assumption (from our construction of tests, it is easy to
construct frequentist estimates of f which converge at the rate

√
ϵT defined by the testing condition

in Ghosal and van der Vaart (2007)). This also motivates the study of the shifted ReLU model, as
an alternative of interest for modelling positive intensity functions. Nonetheless, in Lemma 4.3, we
provide sufficient conditions in a finite-histogram model so that (8) holds. Finally, we note that using
Theorem 1.2 of Costa et al. (2020) and notation τ1, τ2 for the regeneration times defined in Lemma 5.1,

(8) is equivalent to �0

(∫ τ2
τ1

1
λk

t ( f0)>0

λk
t ( f0)

dt
)
< +∞.
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Remark 3.7. In Theorem 3.2, we in fact obtain the posterior concentration rate on ((ϕk(νk))k,h), i.e.,

�0

Π
∑

k

|ϕk(νk) − ϕk(ν0
k)| + ∥h − h0∥1 > M

√
κT ϵT

∣∣∣N
 = o(1),

for M a large enough constant. Moreover, if the ϕk’s are partially known of the form ϕk(x; θk) = θk+ψ(x)
where θk ⩾ 0 and ψ is given, then we obtain

�0

Π( ∥h − h0∥1 +
∑

k

|θk + ψ(νk) − θ0
k − ψ(ν0

k)| > M
√
κT ϵT

∣∣∣N) = o(1).

In the next corollary, we deduce from the previous results the convergence rate of the posterior means

(ν̂, ĥ) =�Π[ f |N] =
∫
F

f dΠ( f |N), and θ̂ =�Π[(θ)|N] when θ0 is unknown (in the shifted ReLU model).

Corollary 3.8. Under the assumptions of Theorem 3.2 or Case 1 of Proposition 3.5, if
∫
F
∥ f ∥1 dΠ( f ) <

+∞, then for M > 0 large enough, it holds that

�0
[
∥ν̂ − ν0∥1 + ∥ĥ − h0∥1 > M

√
κT ϵT

]
= o(1).

Under the assumptions of Case 2 of Proposition 3.5, we have

�0
[
∥ν̂ − ν0∥1 + ∥ĥ − h0∥1 + ∥θ̂ − θ0∥1 > M

√
κT ϵT

]
= o(1).

The proof of Theorem 3.2 can be found in Section 5.2, and the proofs of Proposition 3.5 and
Corollary 3.8 are reported in Section S1 and S4 in the Supplementary Material (Sulem, Rivoirard
and Rousseau, 2023).

3.2. Consistency on the connectivity graph

In this section, we state our consistency results on the connectivity or Granger causality graph δ ∈

{0,1}K
2
, which characterises the fact that interaction functions between pairs of dimensions are null or

not, i.e., δlk = 0 ⇐⇒ hlk = 0, (l, k) ∈ [K]2. We note that the definition of Granger causality graph for
the linear Hawkes model (see for instance Definition 3.3 in Eichler, Dahlhaus and Dueck (2017)) also
holds for the nonlinear model. This leads us to consider the following hierarchical spike-and-slab prior
structure. Writing hlk = δlkhlk = δlkS lkh̄lk, with S lk = ∥hlk∥1 and h̄lk such that

∥∥∥h̄lk
∥∥∥

1 = 1, we define a
family of priors:

δ ∼ πδ, I(δ) = {(l, k) ∈ [K]2; δlk = 1},

(hlk, (l, k) ∈ I(δ))|δ ∼Πh|δ(·|δ) and ∀(l, k) < I(δ), hlk = 0, (9)

with πδ a probability distribution on {0,1}K
2
. We can either determine Πh|δ as a distribution on the set

of (hlk, (l, k) ∈ I(δ)) and obtain the marginal distribution of S = (S lk)lk, or construct it as in Donnet,
Rivoirard and Rousseau (2020) - see also the prior construction in Section 4. Adapting (A0) to the
above structure, we recall that δ0 corresponds to the true connectivity parameter and we consider the
following assumption

(A0’) Π(B∞(ϵT )|δ = δ0) ⩾ e−c1T ϵ2
T /2, πδ(δ = δ0) ⩾ e−c1T ϵ2

T /2.
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For instance, one can choose πδ = B(p)K2
with 0 < p < 1, implying that the δlk’s are i.i.d. Bernoulli

random variables. Then for any fixed p, (A0’) is verified as soon as Πh|δ(B∞(ϵT )|δ = δ0) ⩾ e−c1T ϵ2
T /2

holds. This formalism allows us to consider the posterior distribution of δ which is a key object to infer
the connectivity graph. The next theorem is our posterior consistency result, which is a consequence of
Theorem 3.2 and Proposition 3.5 and holds for all previously considered link functions ϕ.

Theorem 3.9. Let N be a Hawkes process with function ϕ = (ϕk)k and parameter f0 = (ν0,h0), ϵT =
o(1/
√
κT ) be a positive sequence and Π be a prior distribution on F satisfying the conditions of

Theorem 3.2 or Proposition 3.5 (replacing (A0) by (A0’)). Then,

�0
[
Π(δlk , δ

0
lk, ∀(l, k) ∈ I(δ0)|N)

]
= o(1), I(δ0) = {(l, k) ∈ [K]2; δ0

lk = 1}. (10)

If in addition the following holds

∀δ ∈ {0,1}K
2
, ∀C > 0, ∀(l, k) ∈ I(δ)∩I(δ0)c, Πh|δ (S lk ⩽CϵT |δ ) = o

(
e−(κT+c1)T ϵ2

T

)
, (11)

with c1 > 0 defined in (A0’), then �0 [Π(δ , δ0|N)] = o(1).

The first part of Theorem 3.9 in (10) is directly obtained from Theorem 3.2 or Proposition 3.5 (Cases
1 and 2) and says that the posterior probability of δlk = 1 converges to 1, if the edge l→ k is in I(δ0),
i.e., δ0

lk = 1. The second and more difficult part of Theorem 3.9 is to infer a non-edge δ0
lk = 0. The

condition (11) forces the conditional prior distribution Πh|δ to be exponentially small around 0 for all
hlk such that δlk = 1. We note that it also implies that if h0

lk , 0 and is small, then it may not be detected
nor estimated properly. In Section 4, we present two common families of priors on the S lk’s that verify
(11).

Interestingly, if the model is more constrained, a much weaker condition on the prior distribution on
S lk is required which avoids this issue on the estimation of small “signals” h0

lk. We now consider two
restricted Hawkes models, where the interaction functions are either all the same, or only depend on
the “receiver” node. For simplicity of exposition, we consider the case of fully known link functions
satisfying the assumptions of Theorem 3.2, however our next proposition remains valid for the ReLU
and shifted ReLU models under the assumptions of Proposition 3.5.

• All-equal model: we assume that ∀(l, k) ∈ [K]2, hlk = δlkh̃, with h̃ ∈ H ′ so that F = { f =
(ν, δ, h̃) ∈ �+\{0}K × {0,1}K

2
× H ′; ( f , ϕ) satisfy (C1bis) or (C2) and Assumption 3.1}. When

δ , 0, then h̃ ∼Πh̃ is a probability distribution onH ′ ∩ {h̃ , 0}.
• Receiver node dependent model: we assume that ∀(l, k) ∈ [K]2,hlk = δlkhk with hk ∈ H

′, so
that F = { f = (ν, δ, (hk)k); hk ∈ H

′, ∀k, ( f , ϕ) satisfy (C1bis) or (C2) and Assumption 3.1}. We
also assume that the prior distribution Π can be written as a product of priors (Πk)k where for
each k, Πk is a distribution on (νk,hk, δlk, l ∈ [K]), restricted to F . We denote δ·k = (δlk, l ∈ [K]).

Proposition 3.10. We consider a restricted Hawkes model either defined above as the All-equal
model or as the Receiver node dependent model. Let N be a Hawkes process with function ϕ = (ϕk)k
and parameter f0 = (ν0,h0) and let Π be a prior distribution on F such that the prior on ν has positive
and continuous density wrt the Lebesgue measure. We also assume that there exists 0 < p1 < 1/2 such
that for any (l, k) ∈ [K]2, p1 ⩽Π(δlk = 1) ⩽ 1 − p1.

• In the All-equal model:

1. If there exists (l, k) ∈ [K]2 such that δ0
lk , 0, then if Πh̃(h0 ⩽ h̃ ⩽ h0 + ϵT ) ⩾ e−c1T ϵ2

T /2 and if
(A1), (A2) hold, then �0 [Π(δ , δ0|N)] = o(1).
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2. If δ0 = 0, then if there existsHT ⊂H such that for all δ , 0, Πh|δ(Hc
T |δ) = o(T−K/2), if (A2)

holds with ϵT =
√

log T/T, and if

∀C > 0, Πh̃

(
0 < ∥h̃∥1 ⩽C

√
log T/T

)
= o((log T )−K/2), (12)

then �0 [Π(δ , 0|N)] = o(1).

• In the Receiver node dependent model: under (A0’), (A1), (A2), for any k ∈ [K],

1. If there exists l ∈ [K] such that δ0
lk , 0, then �0

[
Π(δk1k , δ

0
k1k |N)

]
= o(1), ∀k1 ∈ [K].

2. If δ0
·k = 0, if there exists H̃T ⊂ H1 such that Πk(H̃T

c
) = o(T−K/2), and if for M > 0 large

enough and x0 > 0, ζ0 > 0,

N
(
ζ0M

√
log T/T , H̃T , ||.||1

)
⩽ T x0 M ,

and if (12) holds with hk instead of h̃, then �0
[
Π(δ·k , δ0

·k |N)
]
= o(1).

Consequently, in those restricted Hawkes models, the above proposition states that the posterior
distribution is consistent at δ0 under the much weaker assumption(12) on the prior compared to (11)
of Theorem 3.9. In fact, in the All-equal model (resp. the Receiver node dependent model), if the
true graph has no edge (resp. no edge arriving on node k), then the posterior distribution on h (resp. hk)
concentrates at the paranetric rate

√
log T/T . This gives a sharp lower bound on the marginal density

of N, i.e., on the denominator DT in (5). We note that (12) is a mild condition which is verified in
particular when the prior distribution on S̃ = ∥h̃∥1 (resp. S k = ∥hk∥1) conditionally on S̃ , 0 (resp.
S k , 0) has a density wrt the Lebesgue measure bounded by S̃ −a (resp. S −a

k ) with a > 0 near 0.
We now study the consistency of Bayesian estimators of the connectivity graph. From Theorem 3.9

or Proposition 3.10, we can directly obtain that the graph estimator based on the 0 − 1 loss function
defined as δ̂Πlk(N) = 1 ⇐⇒ Π(δlk = 1|N) > Π(δlk = 0|N), is consistent, i.e., �0

[
δ̂Π(N) , δ0

]
= o(1).

This result is obtained with the prior condition (11) in the non-restricted model, which as previously
explained can deteriorate the inference of small and non-null interaction functions. We thus propose an
alternative graph estimator based on a loss function penalising small signals, which therefore allows us
to use prior distributions which do not verify (11). For any graph estimator δ̂ = (δ̂lk)l,k ∈ {0,1}K

2
and

parameter f = (ν,h, δ) ∈ F , we define

L(δ̂, f ) =
K∑

l,k=1

1δ̂lk=01δlk=1 + 1δ̂lk=1
(
1δlk=0 + 1δlk=1F(∥hlk∥1)

)
,

with F :�+→ [0,1] a monotone non-increasing function, with F(0) = 1. For a prior Π, the risk of the
estimator δ̂ is defined as

r(δ̂,Π|N) =
∫
F

L(δ̂, f )dΠ( f |N) =
∑
l,k

1δ̂lk=0Π(δlk = 1|N) + 1δ̂lk=1

[
Π(δlk = 0|N) +�Π(1δlk=1F(∥hlk∥1)|N)

]
.

Then the associated risk-minimising estimator, δ̂Π,L(N) = arg min
δ∈{0,1}K2

r(δ,Π|N), verifies

δ̂Π,Llk (N) = 1 ⇐⇒ �Π[(1 − F(∥hlk∥1))1δlk=1|N] ⩾Π(δlk = 0|N). (13)

In the next theorem, we prove that our estimator δ̂Π,L(N) is consistent under the true model �0 if the
penalisation function F satisfies an exponential condition.
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Theorem 3.11. Let N be a Hawkes process with function ϕ = (ϕk)k and parameter f0 = (ν0,h0),
ϵT = o(1/

√
κT ) be a positive sequence and Π be a prior distribution on F satisfying the conditions of

Theorem 3.2 or Proposition 3.5 (replacing (A0) by (A0’)). Then, if there exists a > 0 such that

0 ⩽ 1 − F(M
√
κT ϵT ) ⩽ e−(c1+a+κT )T ϵ2

T , (14)

for T large enough and with M > 0 defined in Theorem 3.2, then for any (l, k) ∈ I(δ0) such that 1 −
F(

∥∥∥h0
lk

∥∥∥
1) ⩾ 2e−(κT+c1)T ϵ2

T , we have �0
[
δ̂Π,L(N) , δ0

]
= o(1).

Remark 3.12. The assumption on the penalisation function (14) is verified in particular if (i) F is
truncated, i.e., F(x) = 1[0,ϵ](x) for some (arbitrarily small) ϵ > 0, or if (ii) F is exponentially decreasing
around 0, i.e., F(x) = 1− exp{− 1

xp } with p > 1/β if ϵT = T−β/2β+1(log T )q for some q ⩾ 0 (see Corollary
4.2 for instance). We note that the choice of penalisation function F determines the detection level of
our risk-minimising graph estimator for “small signals”. With (i), we will detect “signals” ∥h0

lk∥1 > ϵ

and with (ii), we can detect ∥h0
lk∥1 > T−(p(2β+1))−1

. We also note that this assumption is related to (11),
however, since it applies on the penalisation function F and not on the prior distribution, it does not
alter the posterior distribution, thus the estimation of ν0 and h0.

The proofs of Theorem 3.9, Proposition 3.10 and Theorem 3.11 can be found in Section S3 in the
Supplementary material (Sulem, Rivoirard and Rousseau, 2023).

4. Prior models

In this section, we construct prior distributions Π that satisfy the assumptions of our main results stated
in Section 3 and obtain explicit posterior concentration rates for Hölder-smooth classes of interaction
functions. For ease of exposition, we consider link functions ϕk’s injective on (mk,Mk), with mk,Mk ∈

�∪ {−∞,+∞}.
First, we consider a prior on ν = (νk)k of the form: νk

i.i.d.
∼ πν(νk |(hlk)l∈[K])) ∝ πν(νk)1(mk ,Mk)(νk) with

πν a positive and continuous probability density on (0,+∞). To verify (A1), we can for instance choose
πν such that πν(νk > x) ⩽ x−a with a > 1. Then it is enough to choose c2 such that c2 > (κT + c1)/a.
Moreover in Case 2 of Proposition 3.5 (i.e., shifted ReLU with unknown shift θ0), we consider a prior
on θ such that θk

i.i.d.
∼ πθ with πθ a density wrt the Lebesgue measure on (0,+∞).

For the prior on h, we consider the hierarchical structure (9) introduced in Section 3.2 and for the sake
of simplicity we assume that δlk

i.i.d.
∼ B(p), ∀(l, k) ∈ [K]2, p ∈ (0,1), although as previously mentioned,

more general priors on δ could be considered. We recall that I(δ) = {(l, k) ∈ [K]2; δlk = 1}. We then
consider two parametrisation setups. In the first one, h = (hlk, (l, k) ∈ I(δ)) is drawn from a truncated
distribution of the form

dΠh(h|δ) ∝ dΠ⊗|I(δ)|
h (h)1∥S +∥<1(h), (15)

or simply dΠh(h|δ) ∝ dΠ⊗|I(δ)|
h (h) in the case of a bounded link function (condition (C2)), where Πh is

a prior distribution on one function. In the second parametrisation setup,

hlk = S lkh̄lk,
∥∥∥h̄lk

∥∥∥
1 = 1, [h̄lk |(l, k) ∈ I(δ)] i.i.d.

∼ Πh̄, S |δ ∼ΠS |δ, (16)

withΠh̄ is a prior distribution on one L1-normalised function andΠS |δ is a prior distribution on matrices
with non-zero entries δ and, under (C1bis), satisfying

∥∥∥S +
∥∥∥ < 1.
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Examples of the parametrisation setup (15) are Gaussian processes (or hierarchical Gaussian pro-
cesses) priors, and prior distributions based on an expansion on some basis, such as Legendre, Fourier,
wavelets, splines, etc. As mentioned earlier, the prior assumptions (A0)-(A2) are very common in the
literature, which allows to directly apply existing results, as we illustrate on spline priors in Section
4.1. In Donnet, Rivoirard and Rousseau (2020), a similar construction is provided using a mixture of
Betas distributions in the linear Hawkes model, which leads to the minimax rate of assumption up to
a logarithmic factor. We report this construction in the nonlinear model in Section S5.1 in the Supple-
mentary Material (Sulem, Rivoirard and Rousseau, 2023) and obtain the same estimation rate up to
logarithmic terms. The difficulty in this parametrisation might be to prove condition (11) in Theorem
3.9 for estimating the connectivity graph. In Section 4.2, we illustrate the second parametrisation setup
(16) with random histogram priors, which is a setup where condition (11) can be more easily verified.
We also consider a prior based on mixtures of Beta distributions in the Supplementary Material (Sulem,
Rivoirard and Rousseau, 2023). We denoteH(β,L0) the class of β-smooth functions with radius L0.

4.1. Spline priors for Πh

A nonparametric prior Πh satisfying the assumptions of Theorem 3.2 can be constructed using the
family of splines or free knot splines. Without loss of generality, we assume that A = 1. For J ⩾ 1, let
t0 = 0 < t1 < · · · < tJ = 1 define a partition of [0,1] and I j = (t j−1, t j), j ∈ [J]. We consider splines of
order q ⩾ 0, i.e., piecewise polynomial functions (on the partition) of degree q and for q ⩾ 2, q−2 times
continuously differentiable. For a given partition, this defines a vector space of dimension V = q+ J−1
(see for instance Stone (1994); Ghosal, Ghosh and van der Vaart (2000)).

For the sake of simplicity, we present the construction of regular partitions, where t j = j/J, however
random partitions can be dealt with following the computations of Section 2.3.1 of Donnet, Rivoirard
and Rousseau (2020). Let B = (B1, · · · ,BV ) be the B-spline basis of order q, as defined in Ghosal,
Ghosh and van der Vaart (2000). Recall that for any j ∈ [V], B j has support included in an interval of
length q/J, B j ⩾ 0 and

∑
j B j(x) = 1 for all x ∈ [0,1]. We can then define

hw,J(x) = wT B(x), w ∈�V , J ∼ P(λ),

where P(λ) is the Poisson distribution with mean λ, and consider the following hierarchical construc-
tion of Πh

w j
i.i.d.
∼ πw, 1 ⩽ j ⩽ V = q + J − 1, (17)

with πw a positive and continuous density on � satisfying πw(x) ≲ e−a1 |x|a2 for some a1,a2, λ > 0.
Using Lemma 4.1 of Ghosal, Ghosh and van der Vaart (2000), if h0 is H(β,L0) for some β ⩽ q

and L0 > 0, then setting JT = J0(T/ log T )1/(2β+1), ϵT = (T/ log T )−β/(2β+1), there exist w0 ∈�
VT , VT =

q + JT − 1 and C > 0 such that ∥h0 − hw0,JT ∥∞ ⩽ CϵT . Moreover using Lemma 4.2 and Lemma 4.3
of Ghosal, Ghosh and van der Vaart (2000), we have ∥w0∥∞ ⩽ C0, for some C0, and obtain that {w ∈
�VT , ∥w − w0∥∞ ⩽ ϵT } ⊂ B∞(ϵT ), which leads to (A0). Similarly, from Lemma 4.2 of Ghosal, Ghosh
and van der Vaart (2000), ∥hw,J − hw′,J∥1 ≲ ∥w−w′∥∞ and withHT = {hw,J ; ∥w∥∞ ⩽ T B0 , J ⩽ J1JT } for
some B0 > 0 and J1 > 0, (A1) and (A2) are also verified. We finally obtain the following result.

Corollary 4.1. Let N be a Hawkes process with link functions ϕ = (ϕk)k and parameter f0 = (ν0,h0)
such that (ϕ, f0) verify the conditions of Lemma 2.1, and Assumption 3.1. Under the above spline prior,
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if for any (l, k) ∈ [K]2,h0
lk ∈ H(β,L0) with β ∈ (0,q + 1] and L0 > 0, then for M > 0 large enough, we

have

�0
[
Π
(
∥ f − f0∥1 > M

(
T/ log T

)−β/(2β+1) (log T )q0
∣∣∣N)]
= o(1),

where q0 = 0 if ϕ verifies Assumption 3.1(i) and q0 = 1/2 if ϕ verifies Assumption 3.1(ii).

To estimate the connectivity graph δ0, one can either use the penalised estimator (13), which from
the above computations and Corollary 3.11 is consistent, or use the estimator based on the 0-1 loss
function if (11) can be verified. In the next section, we consider a prior based on random histograms
and illustrate how the latter condition (11) can be satisfied.

4.2. Random histograms prior

Random histograms are a special case of splines with q = 0. These piecewise constant functions are of
particular interest in the modelling of spike trains emitted by biological neurons, which only interact
on certain time periods. We use a similar construction as in Section 2.3.1. of Donnet, Rivoirard and
Rousseau (2020), however here the interaction functions are no longer restricted to be non-negative.
Using parametrisation (16), the interaction function hlk for (l, k) ∈ I(δ) has the form hlk = S lkh̄lk and the
h̄lk’s are independent and distributed as a random histogram h̄w,t defined as follows. Given a partition
t : 0 = t0 < t1 < · · · < tJ = 1, we define

h̄w,t(x) =
J−1∑
j=0

w j

t j+1 − t j
1(t j−1,t j],

J−1∑
j=0

|w j| = 1, J ∼ P(λ), λ > 0.

Similarly to Donnet, Rivoirard and Rousseau (2020), the prior on (|w1|, · · · , |wJ |) is constructed by first
selecting the non-zero coefficients w j’s, then defining a Dirichlet prior on the vector of non-zero |w j|’s,
and finally sampling the sign of the w j’s. Hence,

∀ j ∈ [J], w j = Z ju j, Z j ∈ {−1,0,1}, u j ⩾ 0,
J∑

j=1

u j = 1,

and u j = 0 if Z j = 0. We can consider Z j
i.i.d.
∼ Multinomial(p−1, p0, p1), with p−1+ p0+ p1 = 1, and given

(Z1, · · · ,ZJ), (ui1 , · · · ,uisz ) ∼D(asz , · · · ,asz ), sz =
∑

j |Z j|, where i1, · · · , isz are the indices of the non
zero Z j’s and α−1, α0, α1,asz > 0. Finally if the partition t is random, we consider a Dirichlet prior
D(α, · · · , α) on (t1, t2 − t1, · · · ,1 − tJ−1). We note that this construction is very similar to Section 2.3.1
of Donnet, Rivoirard and Rousseau (2020), and we therefore obtain the same results as in Corollaries
2 and 3 of Donnet, Rivoirard and Rousseau (2020).

Besides, to estimate the connectivity graph using the 0-1 loss (and to establish our posterior consis-
tency result), we can now verify (11). This condition holds if, with dΠS |δ =

∏
(l,k)∈I(δ) dΠS (S lk)1∥S +∥<1

(under (C1bis)), ΠS has a positive and continuous density πS on either [ϵ,1] if S 0
lk > ϵ, or if the density

near 0 verifies

πS (sp) ∝ s−p(α−1) exp(−a/sp)1[0,1](s), p > β, a > 0.

We now present a corollary of Theorem 3.2 in the case of random histograms with random partitions,
which is proved as in Donnet, Rivoirard and Rousseau (2020).
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Corollary 4.2. Let N be a Hawkes process with link functions ϕ = (ϕk)k and parameter f0 = (ν0,h0)
such that (ϕ, f0) verify Assumption 3.1. Under the above random histogram prior, if for any (l, k) ∈
[K]2,h0

lk ∈H(β,L0) with β ∈ (0,1] and L0 > 0, then for M large enough, we have

�0
[
Π
(
∥ f − f0∥1 > M(T/ log T )−β/(2β+1)(log T )q

∣∣∣N)]
= o(1),

where q = 0 if ϕ verifies Assumption 3.1(i), and q = 1/2 if ϕ verifies Assumption 3.1(ii).

Finally, in the case of the ReLU model (Proposition 3.5), we can also verify (8), in special case of
the true parameter f0 = (ν0,h0) where each h0

lk lie in the space of finite histograms.

Lemma 4.3. Let N be a nonlinear Hawkes process with parameter f0 = (ν0,h0) and ReLU link func-
tions ϕk(x) = (x)+,∀k, satisfying Assumption 2.2 (and condition (C1bis)). If for all (l, k) ∈ [K]2, there
exists J0 ∈�

∗ such that h0
lk(t) =

∑J0
j=1ω

lk
j01I j (t), with {I j}

J0
j=1 a partition of [0,1] and ∀ j ∈ [J0], ωlk

j0 ∈�,
then (8) holds.

Remark 4.4. In the previous lemma, the condition that the weights wlk
j0, (l, k) ∈ [K]2, j ∈ [J] are ra-

tional numbers is a technical argument that allows to find a lower bound on λ̃k
t ( f0) when λk

t ( f0) > 0.
This results from a density argument of the linear combinations of the weights, which, under these
conditions, constrains λk

t ( f0) to take values on a lattice. Besides, we note that our result is in fact more
general and applies to any model with Lipschitz link functions such that minx∈� ϕk(x) = 0.

Lemma 4.3 is proved in Section S5.2 in the Supplementary material (Sulem, Rivoirard and Rousseau,
2023).

5. Proofs

In this section, we report the proofs of our main theorems on the posterior concentration properties
(Theorems 3.2 and Proposition 3.5), and on the estimation of the connectivity graph (Theorems 3.9 and
3.11). Instead of using the clustering structure of linear Hawkes processes like in Donnet, Rivoirard and
Rousseau (2020) or a coupling technique like in Chen et al. (2017), these proofs leverage the renewal
properties of nonlinear Hawkes processes notably studied by Costa et al. in Costa et al. (2020). The
novelty of our proofs lies in the selection of parts or special “excursions”, that allow us to estimate the
parameter at a rate equivalent to the one for a linear Hawkes process. In the following section, we first
recall the definitions of the concept of excursions and some properties of the process’ renewal times.

5.1. Renewal times and excursions

In the following lemma, we introduce the concept of excursions for stationary nonlinear Hawkes pro-
cesses verifying the conditions of Lemma 2.1. This result extends the ones of Costa et al. in Costa
et al. (2020) to the multivariate case under condition (C1bis) of Lemma 2.1 and to bounded models
(condition (C2)).

Lemma 5.1. Let N be a Hawkes process with monotone non-decreasing and Lipschitz link functions
ϕ = (ϕk)k and parameter f = (ν,h) such that (ϕ, f ) verify (C1bis) or (C2). Then the point process
measure Xt(.) defined as

Xt(.) = N|(t−A,t], (18)
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is a strong Markov process with positive recurrent state ∅. Let {τ j} j⩾0 be the sequence of random times
defined as

τ j =

0 if j = 0;
inf

{
t > τ j−1; Xt− , ∅, Xt = ∅

}
= inf

{
t > τ j−1; N |[t−A,t) , ∅, N |(t−A,t] = ∅

}
if j ⩾ 1.

Then, {τ j} j⩾0 are stopping times for the process N. For T > 0, we also define

JT =max{ j ⩾ 0; τ j ⩽ T }. (19)

The intervals {[τ j, τ j+1)}JT−1
j=0 ∪ [τJT ,T ] form a partition of [0,T ]. The point process measures

(N|[τ j,τ j+1))1⩽ j⩽JT−1 are i.i.d. and independent of N|[0,τ1) and N |[τJT ,T ]; they are called excursions and
the stopping times {τ j} j⩾1 are called regenerative or renewal times.

The proof of the previous lemma is omitted since it is a fairly direct multivariate extension of some
elements of Proposition 3.1, Proposition 3.4, Theorem 3.5 and Theorem 3.6 in Costa et al. (2020),
recalled in Section S.10 in the Supplementary Material (Sulem et al. (2023)). For the extension to
bounded models, we use a direct consequence of the results in Costa et al. Costa et al. (2020) that if N
is dominated by a homogeneous Poisson point process, then it also have the regenerative properties of
Lemma 5.1. We also note that since A is known, the renewal times τ j’s are observable. In the rest of
this article, we denote

∆τ1 = τ2 − τ1, (20)

the length of a generic excursion. For any link functions ϕk’s and parameter f = (ν,h), we denote r f the
value of the intensity process at the beginning of each excursion, defined as

r f = (r f
1 , . . . , r

f
K), r f

k = ϕk(νk), k ∈ [K]. (21)

In the next two lemmas, we prove some useful results on the distributions of ∆τ1, on the number of
points in a generic excursion N[τ1, τ2) and on the number of excursions in the observation window
[−A,T ], JT , defined in (19).

Lemma 5.2. Under the assumptions of Lemma 5.1, the random variables ∆τ1 and N[τ1, τ2) admit
exponential moments. More precisely, under condition (C1bis), with m =

∥∥∥S +
∥∥∥ < 1, we have

∀s <min(
∥∥∥r f

∥∥∥
1 , γ/A), � f

[
es∆τ1

]
< +∞, and � f

[
esN[τ1,τ2)

]
< +∞, γ =

1 −m

2
√

K
log

(
1 +m

2m

)
.

Under condition (C2), we have ∀s < minkΛk), � f
[
es∆τ1

]
⩽

∥Λ∥21
(mink Λk−s)2 and � f

[
esN[τ1,τ2)

]
< +∞. In

particular, this implies that � f
[
N[τ1, τ2) + N[τ1, τ2)2

]
< +∞.

Remark 5.3. The previous lemma provides exponential moments of ∆τ1 and N[τ1, τ2), under the
assumption that

∥∥∥S +
∥∥∥ < 1 (C1bis), but we conjecture that results of Lemma 5.2 still holds under the

more general conditions r(S +) < 1 (C1) of Lemma 2.1.
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Lemma 5.4. Under the assumptions of Lemma 5.1, for any β > 0, there exists a constant cβ > 0 such
that � f

[
JT < [JT,β,1, JT,β,2]

]
⩽ T−β, with JT defined in (19) and

JT,β,1 =

 T
� f [∆τ1]

1 − cβ

√
log T

T


 , JT,β,2 =

 T
� f [∆τ1]

1 + cβ

√
log T

T


 .

The proofs of Lemmas 5.2 and 5.4 are reported in Section S8 in the Supplementary Material (Sulem,
Rivoirard and Rousseau, 2023).

5.2. Proof of Theorem 3.2 and Case 1 of Proposition 3.5

In this section, we prove our main posterior concentration theorem, Theorem 3.2, as well as Case 1
of Proposition 3.5, which deals with the specific case of the standard ReLU model. The first step of
this proof borrows some ideas from the one of Theorem 3 in Donnet, Rivoirard and Rousseau (2020),
but also introduces novel elements built from the renewal properties of the process. In particular, the
posterior concentration is first proved in terms of a particular distance on the intensity process (see
Proposition 5.5 below), which in fact corresponds to a stochastic (pseudo) distance on the parameter
space F . This stochastic distance d̃1T resembles the L1 stochastic distance used in Donnet, Rivoirard
and Rousseau (2020), except that it is restricted to a subset of the observation window [−A,T ] which
only contains the beginning of each excursion. More precisely for any excursion index j ∈ [JT − 1], we
denote (U(1)

j ,U(2)
j ) the times of the first two events after the j-th renewal time τ j (as defined in Lemma

5.1). We note that by definition, U(1)
j ∈ [τ j, τ j+1), U(2)

j ∈ [τ j, τ j+2] and τ j+1 ⩾U(1)
j + A. We then define

our restricted observation window A2(T ) as

A2(T ) :=
JT−1⋃
j=1

[τ j, ξ j], (22)

with ξ j :=U(2)
j if U(2)

j ∈ [τ j, τ j+1) and ξ j := τ j+1 otherwise. We note that the interval [τ j, ξ j] corresponds
either to the beginning of the j-th excursion or to the whole excursion [τ j, τ j+1) when the latter contains
only one event, implying that U(2)

j ⩾ τ j+1. Moreover, since the renewal times (and JT ) are observable,
so is A2(T ).

The construction of A2(T ) is a novel and essential element of our proof. Informally, it corresponds
to a set of intervals where the parameters can be inferred in a similar way as in the linear Hawkes
model and which Lebesgue measure is of order T . More precisely, using the renewal properties from
Section 5.1, we will prove, using Lemma A.1, that with probability going to 1, |A2(T )| ≳ T under �0.
We can now define our auxiliary stochastic distance as

d̃1T ( f , f ′) =
1
T

K∑
k=1

∫ T

0
1A2(T )(t)|λk

t ( f ) − λk
t ( f ′)|dt, (23)

and state our intermediate posterior concentration rate result, which holds for all models satisfying the
conditions of Theorem 3.2 and the ReLU-type models considered in Proposition 3.5.

Proposition 5.5. Under the assumptions of Theorem 3.2 or Proposition 3.5, for M′T = M′
√
κT with

M′ > 0 a large enough constant,

�0
[
Π(d̃1T ( f , f0) > M′T ϵT |N)

]
= o(1).
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The proof of the previous proposition follows the strategy of Donnet, Rivoirard and Rousseau (2020)
in Theorem 1, which is based on the now well-known argument by Ghosal and van der Vaart (2007).
However, we note that in our setting, this strategy can be applied thanks to the definition of the stochas-
tic distance which restricts the observation window to the set A2(T ). We recall here its main steps.
First, we restrict the space of probability events to a subset Ω̃T that has high probability (see below and
Lemma A.1). Secondly, we prove a lower bound of the denominator DT defined in (5), derived from the
technical Lemma A.2. Thirdly, we consider a ball centered at the true parameter f0 of radius M′T ϵT w.r.t.
d̃1T , denoted by Ad1 (M′T ϵT ) ⊂ F . Finally, to find an upper bound of the numerator NT (Ad1 (M′T ϵT )c)
defined in (5), we partition Ad1 (M′T ϵT )c into slices {S i}i on which we can design tests that have expo-
nentially decreasing type I and type II errors (see Lemma S6.1 in the Supplementary Material (Sulem,
Rivoirard and Rousseau, 2023) ). We then define ϕ as the maximum of the tests on the individual slices
S i. Due to the space constraints, this proof is reported in Section S2 of the Supplementary Material
(Sulem, Rivoirard and Rousseau, 2023).

From Proposition 5.5, we prove Theorem 3.2 and Case 1 of Proposition 3.5 using the following
classical decomposition (see for instance the proof of Theorem 1 in Donnet, Rivoirard and Rousseau
(2020)). Let A,B ∈ FT ⊂ F , with B possibly data dependent, ϕ ∈ [0,1] be a measurable test, κT defined
in (6), and Ω̃T ⊂Ω. Then,

�0 [Π(A∩ B|N)] ⩽ �0

[
{DT < e−(κT+c1)T ϵ2

T } ∩ Ω̃T

]
+�0

[
ϕ1Ω̃T

]
+�0[Ω̃c

T ]

+ e(κT+c1)T ϵ2
TΠ(F c

T ) + e(κT+c1)T ϵ2
T

∫
A∩FT

�0

[
� f

[
(1 − ϕ)1B( f )1Ω̃T

(N)
∣∣∣∣G0

]]
dΠ( f ). (24)

We first introduce the set Ω̃T , which from Lemma A.1, has probability �0
[
Ω̃c

T

]
going to 0 at any

polynomial rate. For T > 0, we denote

JT :=

J ∈�;
∣∣∣∣∣ J − 1

T
−

1
�0[∆τ1]

∣∣∣∣∣ ⩽ cβ

√
log T

T

 ,
with cβ > 0 (and β > 0) chosen in Lemma A.1, and, with r0 := r f0 = (r0

1, . . . , r
0
K) where r0

k = ϕk(ν0
k), and

µ0
k =�0

[
λk

t ( f0)
]
, for any k,

ΩN =

max
k∈[K]

sup
t∈[0,T ]

Nk[t − A, t) ⩽Cβ log T

∩
 K∑

k=1

∣∣∣∣∣∣Nk[−A,T ]
T

− µ0
k

∣∣∣∣∣∣ ⩽ δT

 ,
ΩJ = {JT ∈ JT } , ΩU =


JT−1∑
j=1

(U(1)
j − τ j) ⩾

T
�0[∆τ1]∥r0∥1

1 − 2cβ

√
log T

T


 ,

with δT = δ0

√
log T

T , δ0 > 0 and Cβ > 0 chosen in Lemma A.1 and define

Ω̃T = ΩN ∩ΩJ ∩ΩU . (25)

The sets ΩN , ΩJ and ΩU control respectively the number of events, the number of excursions and
the length of excursions. First, ΩN corresponds to realisations of N such that the number of events in
any interval of length A is upper bounded by cβ log T , and the number of events on [−A,T ] is close
to its expectation under the stationary distribution �0. Secondly, ΩJ corresponds to the realisations
such that the number of excursions in the observation interval [0,T ] divided by T , JT /T , is close to
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its limit 1/�0[∆τ1]. Thirdly, on ΩU , the measure of the subset corresponding to the collections of the
beginnings of excursions (from τ j to the first event U(1)

j ) is of order T .
Next, we bound the denominator of the posterior DT from (5). From Lemma A.2, together with the

lower bound technique of Ghosal and van der Vaart (2007), we have that

�0

[
DT <Π(B∞(ϵT ))e−κT T ϵ2

T

]
⩽ 2

∫
B∞(ϵT )

�0[LT ( f ) − LT ( f0) < −κT T ϵ2
T /2]

Π(B∞(ϵT ))
dΠ( f ) = o(1), (26)

which leads to �0

[
DT < e−(κT+c1)T ϵ2

T

]
= o(1) using asssumption (A0).

Then, we find a lower bound on |A2(T )| on Ω̃T . We recall that the point process measures
(N|[τ j,τ j+1))1⩽ j⩽JT−1 are i.i.d. and a fortiori that the random variables {U(1)

j − τ j} j are i.i.d. More-

over, for any j ∈ [JT − 1], t ∈ [τ j,U
(1)
j ) and k ∈ [K], the intensity process is by construction equal

to λk
t ( f0) = r0

k = ϕk(ν0
k). Therefore, conditionally on τ j, U(1)

j has the same distribution as an event from
a Poisson point process beginning at τ j, with intensity ∥r0∥1, since the process is the superposition of
K univariate Poisson process with intensity r0

k , k ∈ [K]. Thus, under �0, each variable U(1)
j − τ j follows

an exponential distribution with mean 1/ ∥r0∥1, and on ΩU , for T large enough, we have that

|A2(T )| =
JT−1∑
j=1

(ξ j − τ j) ⩾
JT−1∑
j=1

(U(1)
j − τ j) ⩾ c0T, c0 :=

1
2�0 [∆τ1] ∥r0∥1

.

Finally, for R > 0, we define the balls in L1 and stochastic distances

AL1 (R) := { f ∈ F ; ∥ f − f0∥1 ⩽ R}, Ad1 (R) = {d̃1T ( f , f0) ⩽ R}.

We now apply the decomposition (24) with ϕ = 1, A := AL1 (MT ϵT )c and B := Ad1 (M′T ϵT ), with
MT = M

√
κT , M′T = M′

√
κT , M > M′ and M′ defined in Theorem 5.5. As in the proof of Theorem 3

of Donnet, Rivoirard and Rousseau (2020), we are thus left to prove that

sup
AL1 (MT ϵT )c∩FT

� f
[
Ω̃T ∩ Ad1 (M′T ϵT )|G0

]
= o�0 (e−(c1+κT )T ϵ2

T ), (27)

with c1 defined in assumption (A0). We recall that � f is the process distribution associated to parameter
f defined in (3). To prove (27), we consider f ∈ AL1 (MT ϵT )c such that d̃1T ( f , f0) ⩽ M′T ϵT and for l ∈ [K]
and j ∈ [JT − 1], we define

Z jl :=
∫ ξ j

τ j

|λl
t( f ) − λl

t( f0)|dt. (28)

We note that using Lemma 5.1, the random variables {Z jl} j∈[JT−1] are i.i.d., and from (23) we also have

that Td̃1T ( f , f0) > max
l∈[K]

JT−1∑
j=1

Z jl. In order to derive a Bernstein-type inequality on the sum of the Z j’s,

we first find an upper bound of Z1l and its moments. Using that the link functions ϕk’s are L-Lipschitz,
we have

Z jl =

∫ ξ j

τ j

|ϕk(λ̃l
t(ν,h)) − ϕk(λ̃l

t(ν0,h0))|dt ⩽ L
∫ ξ j

τ j

|λ̃l
t(ν,h) − λ̃l

t(ν0,h0)|dt
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⩽ L(ξ j − τ j)|νl − ν
0
l | + L

∑
k

∫ ξ j

U(1)
j

|hkl − h0
kl|(t −U(1)

j )dt

⩽ L(A +U(1)
j − τ j)|νl − ν

0
l | + L

∑
k

∥hkl − h0
kl∥1 ⩽ L(A + 1 +U(1)

j − τ j) ∥ f − f0∥1 . (29)

Moreover, under � f , for any j ∈ [J], U(1)
j − τ j follows an exponential distribution with mean 1/

∥∥∥r f
∥∥∥

1,

therefore, for any n ∈�, � f
[
(U(1)

j − τ j)n
]
= n!
∥r f ∥

n
1
. Using the standard inequality (x + y)n ⩽ 2n−1(xn +

yn), we thus obtain that

� f
[
Zn

1l

]
⩽ 2n−1Ln

(
(A + 1)n +� f

[
(U(1)

j − τ j)n
])
∥ f − f0∥n1

⩽
1
2

2n!

2L max

A + 1,
1∥∥∥r f
∥∥∥

1

 ∥ f − f0∥1

n−2

× L2 max

A + 1,
1∥∥∥r f
∥∥∥

1

2

∥ f − f0∥21 ⩽
1
2

n!bn−2v2,

(30)

with b := 2L max
(
A + 1, 2

∥r0∥1

)
∥ f − f0∥1 and v := L max

(
A + 1, 2

∥r0∥1

)
∥ f − f0∥1. In the last inequality,

we have used the fact that ∥r f − r0∥1 ≲ d̃1T ( f , f0) ⩽ M′T ϵT on Ω̃T . This is because (U(1)
1 − τ1) + · · · +

(U(1)
JT−1 − τJT−1) ⩾ c0T/2, which leads to

Td̃1T ( f , f0) ⩾
∑

k

|r f
k − r0

k |
(
(U(1)

1 − τ1) + · · · + (U(1)
JT−1 − τJT−1)

)
⩾

T
∑

k |r
f
k − r0

k |

2�0 [∆τ1] ∥r0∥1
. (31)

It also implies that ∥r f ∥1 ⩾ ∥r0∥1 −
∥∥∥r f − r0

∥∥∥
1 ⩾ ∥r0∥1/2 for T large enough.

Our final argument consists in using the lower bound on � f [Z1l] obtained in Lemma A.4. In this
technical lemma, we show that there exists l ∈ [K] and C( f0) > 0 such that � f [Z1l] ⩾C( f0) ∥ f − f0∥1 .
Therefore, for this l,

� f

[
Ω̃T ∩ {d̃1T ( f , f0) ⩽ M′T ϵT }

∣∣∣∣G0

]
⩽ � f

Ω̃T ∩


JT−1∑
j=1

Z jl ⩽ M′T T ϵT


∣∣∣∣∣∣G0


⩽ � f

Ω̃T ∩


JT−1∑
j=1

(Z jl −� f
[
Z jl

]
) ⩽ M′T T ϵT − (JT − 1)� f

[
Z jl

]
∣∣∣∣∣∣G0


⩽ � f

 ⋃
J∈JT


J−1∑
j=1

(Z jl −� f
[
Z jl

]
) ⩽ −

C( f0)T
∥∥∥ f − f0

∥∥∥1
4�0[∆τ1]


∣∣∣∣∣∣G0

 ⩽ ∑
J∈JT

� f

J−1∑
j=1

(Z jl −� f
[
Z jl

]
) ⩽ −

C( f0)T
∥∥∥ f − f0

∥∥∥1
4�0[∆τ1]

∣∣∣∣∣∣G0

 ,
where we have used, for the third inequality, that on Ω̃T , JT − 1 ⩾ T

2�0[∆τ1] , ∥ f − f0∥1 ⩾ MT ϵT and
M′T < MT . For each J ∈ JT , we can now apply the Bernstein’s inequality:

� f

J−1∑
j=1

(Z jl −� f
[
Z jl

]
) ⩽ x

 ⩽ exp
{
−

x2

2(J − 1)(v2 + bx)

}
,
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with x = −C( f0)T∥ f− f0∥1
4�0[∆τ1] . We first upper bound the term v2 + bx:

v2 + b
C( f0) ∥ f − f0∥1

4�0[∆τ1]
⩽ L max

(
A + 1,

2
∥r0∥1

) (
L max

(
A + 1,

2
∥r0∥1

)
+

C( f0)
2 ∥r0∥1�0 [∆τ1]

)
∥ f − f0∥21

=C1( f0) ∥ f − f0∥21 ,

with C1( f0) := L max
(
A + 1, 2

∥r0∥1

) (
L max

(
A + 1, 2

∥r0∥1

)
+

C( f0)
2∥r0∥1�0[∆τ1]

)
. Finally, we obtain that

� f

J−1∑
j=1

(Z jl −� f
[
Z jl

]
) ⩽ −

C( f0)T
∥∥∥ f − f0

∥∥∥1
4�0[∆τ1]

∣∣∣∣∣∣G0

 ⩽ exp

− C( f0)2T 2
∥∥∥ f − f0

∥∥∥2
1

8(J − 1)C1( f0)
∥∥∥ f − f0

∥∥∥2
1

 ⩽ exp
− C( f0)2T

16C1( f0)

 ,
and since κT ϵ

2
T = o(1), we can conclude that

� f

[
Ω̃T ∩ {d̃1T ( f , f0) ⩽ M′T ϵT }

∣∣∣∣G0

]
⩽

2T
�0 [∆τ1]

exp
{
−

C( f0)2T
16C1( f0)

}
= o(e−(c1+κT )T ϵ2

T ),

which corresponds to (27) and terminates the proof of Theorem 3.2 and Case 1 of Proposition 3.5.

6. Conclusion

In this paper we have established concentration and consistency properties of the posterior distribution
and of Bayesian estimators of the parameter and connectivity graph, in a general class of nonlinear
Hawkes processes. These results validate the common use of these models in different applied contexts.
In particular, our results include the commonly used sigmoid and softplus models, as well as the more
challenging ReLU model, under some additional restrictions on the parameter space. Moreover, we
provide the first theoretical results for estimating an additional parameter of the link functions, in
the case of shifted ReLU with unknown shift. To prove those results, we have built a new technique
for obtaining model identifiability and concentration inequalities based on the decomposition of the
process into excursions, recently introduced by Costa et al. Costa et al. (2020). Finally, our results hold
under reasonable assumptions on the prior distribution and the true model, and we provide practical
examples for which those conditions are verified.

Although rather weak assumptions have been used to prove our results, it is likely that the latter
hold in more general contexts. In particular, we believe that one could relax the condition on processes
with bounded memory (A < +∞) since the regenerative properties of the nonlinear Hawkes processes
also hold for processes with unbounded memory. One major improvement of our results would be to
consider high dimensional processes (K →∞), possibly in restricted models such as sparse models
Bacry et al. (2020) or clustering models Raad, Ditlevsen and Löcherbach (2020). Another perspective
would be to prove the frequentist minimax rate of estimation, since it would be of great interest to
evaluate the optimality of Bayesian procedures in nonlinear Hawkes processes. Some practitioners
might also be interested in additional results on the estimation of the link function, through a different
parametric or even nonparametric form, like in Wang et al. (2016).

Appendix A: Main lemmas

In this section, we state some important lemmas to prove our main results in Section 5. The proofs
of Lemmas A.1, A.2, A.4 and A.5 are provided in Sections S2 and S9 in the Supplementary Material
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(Sulem, Rivoirard and Rousseau, 2023). The first two lemmas are controls respectively of the comple-
ment of the main event Ω̃T under the true distribution �0, and of the deviations of the log likelihood
ratio LT ( f0) − LT ( f ).

Lemma A.1. Let Q > 0. We consider Ω̃T defined in (25) in Section 5.2. For any β > 0, we can
choose Cβ and cβ in the definition of Ω̃T such that �0[Ω̃c

T ] ⩽ T−β. Moreover, for any 1 ⩽ q ⩽ Q,

�0

1Ω̃c
T

maxl sup
t∈[0,T ]

(
Nl[t − A, t)

)q
 ⩽ 2T−β/2. Finally, the previous results hold when replacing Ω̃T by

Ω̃′T = Ω̃T ∩ ΩA with ΩA defined in Section S1 of the Supplementary Material (Sulem, Rivoirard and
Rousseau, 2023) for the model with shifted ReLU link and unknown shift.

Lemma A.2. Under the assumptions of Theorem 3.2 or Proposition 3.5, for any f ∈ B∞(ϵT ) and T
large enough, we have

�0

[
LT ( f0) − LT ( f ) ⩾

1
2
κT T ϵ2

T

]
= o(1).

with
κT =


10 (under Assumption 3.1(i))
10(log T ) (under Assumption 3.1(ii) )
10(log T )2 (under Case 1 and condition (8))

Remark A.3. Contrary to the typical approach, the proof of Lemma A.2 is not based on the control
of the variance of LT ( f0) − LT ( f ), which is intractable due to the nonlinear form of the log-likelihood
function, but on a decomposition of LT ( f0)− LT ( f )−KL( f0, f ) into a sum of i.i.d. terms T j defined as:

T j :=
∑

k

∫ τ j+1

τ j

log
λk

t ( f0)

λk
t ( f )

dNk
t −

∫ τ j+1

τ j

(λk
t ( f0) − λk

t ( f ))dt.

The next lemma is a notably used in the proof of Theorem 3.2 in Section 5.2 and bridges the gap
between the posterior concentration rate in stochastic distance (see Theorem 5.5) and the rate in L1-
distance (Theorem 3.2).

Lemma A.4. For f ∈ FT and l ∈ [K], let

Z1l =

∫ ξ1

τ1

|λl
t( f ) − λl

t( f0)|dt,

where ξ1 is defined in (22) in Section 5.2. Under the assumptions of Theorem 3.2 and Case 1 of
Proposition 3.5, for MT → ∞ such that MT > M

√
κT with M > 0 and for any f ∈ FT such that

∥ν − ν0∥1 ⩽max(∥ν0∥1 , C̃) with C̃ > 0, there exists l ∈ [K] such that on Ω̃T ,

� f [Z1l] ⩾C( f0) ∥ f − f0∥1 ,

with C( f0) > 0 a constant that depends only on f0 and ϕ = (ϕk)k.
Similarly, under the assumptions of Case 2 of Proposition 3.5, for f ∈ FT and θ ∈ Θ, let r0 =

(r0
k )k, r f = (r f

k )k with r0
k = ϕk(ν0

k) = θ0
k + ν

0
k , r f

k = ϕk(νk) = θk + νk, ∀k. If
∥∥∥r f − r0

∥∥∥
1 ⩽ max(∥r0∥ , C̃′)

with C̃′ > 0, then there exists l ∈ [K] such that on Ω̃T ,

� f [Z1l] ⩾C′( f0)(∥r f − r0∥1 + ∥h − h0∥1), C′( f0) > 0. (32)
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Finally, this last lemma provides upper bounds on type I and type II errors for the tests used in the
proof of Case 2 of Proposition 3.5 in Section S1 of the Supplementary Material (Sulem, Rivoirard and
Rousseau, 2023)for estimating the parameter of the link functions θ0.

Lemma A.5. Using the notations of Section S1 of the Supplementary Material (Sulem, Rivoirard and
Rousseau, 2023), for θ1 ∈ Ā(M̃T ϵT )c, f1 ∈ AL1 (MT ϵT )∩FT , we define

ϕ( f1, θ1) = max
k∈[K]

min

1Nk(I0
k ( f1,θ1))−Λ0

k (I0
k ( f1,θ1))<−vT

∨1
|E|<

p0T
2�0[∆τ1]

,1Nk(I0
k ( f1,θ1))−Λ0

k (I0
k ( f1,θ1), f0)>vT

∨1
|E|<

p0T
2�0[∆τ1]

 ,
with I0

k ( f1, θ1) and E defined in (S1.3) and (S1.3) in the Supplementary Material (Sulem, Rivoirard

and Rousseau, 2023), p0 = �0
[
j ∈ E

]
, Λ0

k(Ik
0( f1, θ1)) =

∫ T
0 1I0

k ( f1,θ1)λ
k
t ( f0, θ0)dt and vT = wT T ϵT with

wT = 2
√

maxk θ
0
k (κT + c1) + 2x0 and x0 > 0. Then there exists u1 > 2x0 such that

�0

[
ϕ( f1, θ1)1′

Ω̃T

]
⩽ e−u1T ϵ2

T , sup
∥θ−θ1∥+∥ f− f1∥⩽ζϵT

�0

[
� f

[
(1 − ϕ( f1, θ1))1Ω̃′T

] ∣∣∣∣G0

]
= o(e−(κT+c1)T ϵ2

T ).

Supplementary Material

The supplementary material contains ten sections and includes proofs and additional results, notably
the proofs of Proposition 2.3, Proposition 2.5, Proposition 3.5, Corollary 3.8, Proposition 3.10, The-
orem 5.5 and Theorem 3.11 (second case). It also includes an alternative construction of the prior
distribution and the proofs of the technical lemmas in Section 5 and Appendix A, and Lemma 2.6.
Finally, the last section contains some useful results, in particular some extensions of the results from
Costa et al. (2020) related to the regenerative properties of nonlinear Hawkes processes.
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Statistiques 53 679–700. Institut Henri Poincaré.
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