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Léa Penazzi1,∗

Post-doctorate researcher
1 Aix Marseille University
CNRS, IUSTI UMR 7343

Marseille, France
Email: leapenazzi@gmail.com

Anne Castelan2

Researcher
2 Icam site de Toulouse

75 Avenue de Grande Bretagne
CS 97615 Toulouse Cedex 3, France

Email: anne.castelan@icam.fr

Stéphane Blanco3, Cyril Caliot4, Christophe Coustet5,
Mouna El Hafi6, Richard Fournier3, Jean-Pierre Fradin2

3 LAPLACE, UMR CNRS 5213, Université Paul Sabatier, Toulouse, France
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In power electronics modules, accurately estimating the
junction temperature is crucial for ensuring proper cool-
ing and preventing device failure. Recent breakthroughs
on the integral formulation of thermal couplings allows
the estimation of physical quantities as transfer functions
with Monte Carlo algorithms. The transfer function is
estimated with a single Monte Carlo algorithm in which
random walks are sampled to solve the coupled thermal
problem involving conduction and convection in potential
complex geometries. In the context of estimating junction
temperature in power electronics modules, this involves
simulating the thermal behavior of the module under vari-
ous operating conditions, such as different levels of power
dissipation and ambient temperatures. This paper ad-
dresses the junction temperature estimation as a func-
tion depending on a decisive parameter for the electronics
power components cooling: the convective heat transfer
coefficient. The different steps leading to the estimation
of the transfer function are presented as well as its nu-
merical validation against a results from a reference mul-
tiphysics electronics cooling simulation software (Celsius
EC Solver). The results from the transfer functions are
exposed for typical configurations of power modules and
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in both situations, the functions demonstrates the accu-
racy and reliability of the approach without degrading
the geometrical or multiphysics complexities of the prob-
lem. Moreover, due to the computational time gain when
estimating the junction temperature for different cooling
configurations, the function obtained with Monte Carlo
is prove being a relevant candidate for assessing thermal
peformance of power electronics modules, accounting for
uncertainties and variations inherent in operating condi-
tions.

NOMENCLATURE
T Temperature (K).
λ Thermal conductivity (W m−1 K−1).
Ψ Volumetric power density (W m−3).
TBF Solid/fluid boundary temperature (K).

1 INTRODUCTION
There are numerous numerical approaches to ther-

mal modeling of power electronics. This diversity reflects
complex tradeoffs between accuracy, computational and
human resources for data management and meshing [1].



One of the most usual approaches describes thermal trans-
fers by using networks of thermal resistances and capaci-
ties, but this is soon limited outside 1D and 2D simplified
geometries. Nodal methods extend this approach to all
geometries [2, 3, 4] but there is still a loss of information
because the system is divided into connected parts that are
considered to be isothermal. There are more advanced
2D or 3D analytical models that, while still requiring
a splitting into connected sub-systems, do not make the
isothermal assumption within each sub-system for which
the 3D heat equation is fully solved. They are, however,
restricted to systems that can be presicely described us-
ing simple geometric primitives such as parallelepipeds,
spheres, or cylinders [5, 6]. Finally, there is always the
option of fully discretizing the 3D geometry and com-
putationally solving the heat equation using approaches
such as finite element and finite volume methods. How-
ever, this significantly increases the time required for both
meshing and computing.

The current research intends to assist engineers fac-
ing design/optimisation instances where the geometrical
characteristics of a power electronic device require a com-
prehensive 3D numerical approach to thermal transfer but
time restrictions prevent it. When addressing this ques-
tion, there are two main reasons why Monte Carlo ap-
proaches are investigated, both of which are related to the
handling of complex geometries:

• Today’s Monte Carlo algorithms for calculating the
heat transfer equation take advantage of recent ad-
vances in the computer graphics sector. First, the en-
gineering process of meshing the volumes is avoided.
Second, the computation times are little sensitive to
the size and refinement of the geometrical data set
(frequently not at all).

• Symbolic Monte Carlo (SMC) algorithms can be
linked to the basic Monte Carlo algorithm, allowing
not only the temperatures and fluxes to be evaluated,
but also a set of parameters (introduced as symbols)
to be stored and later used inside transfer functions.
These functions evaluate the same quantities with-
out compromising the geometry, but they are signifi-
cantly faster than the Monte Carlo itself. As a result,
they can be employed in control, inversion or op-
timisation algorithms that involve invoking the heat
transfer solver repeatedly.

The second feature is highlighted here: creating transfer
functions as a natural byproduct of the main Monte Carlo
simulation [[Ajout refs dans ce paragraphe MC, géo com-
plexe avec synthèse d’image].

SMC was initially developed for inversion purposes
(accessing the parameters of a physical model from obser-

vations) and was not recognized as a numerical method in
and of itself until very recently. As a results, other key-
words, such as ”Inverse Monte Carlo” to refer to these
inversion objectives, or ”Importance Sampling” to refer
to an old Monte Carlo trick, originally meant for variance
reduction purpose (convergence speed-up), that was at the
heart of all early SMC developments, must be used when
exploring the corresponding literature [7, 8, 9, 10, 11].
Although only importance sampling will be employed
here (the approach will be closely detailed in Sec. 3), it
is worth noting that more advanced techniques have been
documented in [12][???les autres refs, y compris celui de
RAD ???], which may be relevant for thermal modeling
in power electronics. These new techniques do, in fact,
solve the specific issues associated with parameters ap-
pearing inside non-linear functions invoked by the Monte
Carlo algorithm. For example, the exponential laws to
statistically reconstruct thermal inertia for conduction in
solids are highly similar to the exponential law of Beer
extinction in [12].

Such questions will not be addressed in this paper.
This does not imply that only linear symbolic models are
considered; there is a sharp difference between the non-
linearity of the symbolic model and the nonlinear steps of
the Monte Carlo algorithm. The simulation examples will
focus on how a junction’s temperature varies as a function
a cooling device parameter, and this dependence is fully
nonlinear. However, there will be no nonlinearity in the
Monte Carlo itself, as there would be if, for example, we
attempted to construct a symbolic model of how the junc-
tion temperature would change as a function of the solid
diffusivity in a transient simulation [13].

Even if we restrict ourselves to one of the simplest
classes of SMC problems (importance sampling will suf-
fice), the SMC literature focuses primarly on the Ra-
diative Transfer Equation in applications such as atmo-
spheric radiation [8], tomography for medical imaging
[9], and radiative heat transfer in combustion devices
[10]. To the best of authors’ knowledge, this is the first
attempt to extend SMC to the Monte Carlo algorithm for
solving coupled heat transfer (conduction, convection and
radiation).

The paper is structured as follows. In Sec. 2, we de-
scribe and validate the Monte Carlo algorithm itself, ap-
plied to an elementary 3D case of an electronic module
on a baseplate with fins (heat sink) to evaluate the junc-
tion temperature of the module in steady state [6]. This
Monte Carlo algorithm is modified slightly to generate a
symbolic model in Sec. 3. The primary emphasis is on
predicting how the convective heat transfer coefficient (or
its field) affects the junction temperature. In the process
of designing/selecting an air-convection cooling system,



Fig. 1. 1st case - Electronic module on a plate fin heat sink. Di-
mensions of the cooling system and further details on dimensions
values are available in Appendix A.

the objective is to precisely predict the temperature evo-
lution at the junction as a function of flow. The resulting
transfer function is evaluated in Sec. 4 in terms of both
precision and computation time.

Finally, conclusions and discussions regarding per-
spective of future work (see Sec. 5).

2 MONTE CARLO
The example of an electronic module associated with

a plate-fin heat sink depicted in Fig. 1 will be used to
illustrate theoretical developments.

The heat transfer model will first be expressed in very
standard partial differential terms (heat equation for con-
duction in solids with volumetric sources and convection
at the boundary) and then translated into statistical terms
in order to develop a Monte Carlo algorithm evaluating
a junction temperature. As Monte Carlo is rarely used
to simulate thermal heat transfer in electronics, we pro-
vide exhaustive algorithmic information. This informa-
tion will be required when addressing SMC. There are
only successive steps leading to the sampling of a ther-
mal path backward from the junction ot the controlled air
flow (at a known temperature), with sources accumulat-
ing along the path to account for electrical energy dissi-
pation. We will insist on the statistical steps associated
with the path reaching the solid/fluid interface, whether
the path is re-injected into the solid or terminates at the
flow. Indeed, this is the only portion of the Monte Carlo
algorithm that is dependent on the convective exchange
coefficient h, and all of our SMC discussion will center
on this part. Overall, it will be demonstrated that SMC
imposes minimal changes on such a conducto-convective
Monte Carlo algorithm: no additional random sampling
is required, and all that is necessary is to store informa-
tion about the locations where conducto-convective paths
visited the interface.

2.1 The heat transfer model
The electronic module and the thermal interface ma-

terial (TIM) are assumed to have the same thermal proper-
ties. The electronic module and TIM volumes are respec-
tively noted D1 and D2. The corresponding thermal con-
ductivities are λ1 and λ2

1. The power density P (~x) = P0

emitted by the module is uniform within D1. The domain
corresponding to the plate fin heat sink is noted D3. Its
thermal conductivity is λ3 (no power density). The part
of the surface of D1 facing the surounding fluid is noted
∂Dconv1 , similarly parts of the surfaces of D2 and D3 fac-
ing the surounding fluid are noted ∂Dconv2 and ∂Dconv3 ,
with ∂Dconv = ∂Dconv1 ∪ ∂Dconv2 ∪ ∂Dconv3 . The inter-
face between D1 and D2 is noted ∂D12 and the interface
between D2 and D3 is noted ∂D23. The temperature Tf
of the surounding fluid (air) is uniform and the convective
heat transfer coefficient h is also uniform2. The contact
resistances between D1 and D2 and between D2 and D3

are neglected. We use the notation ~x for locations within
the solids (D1, D2 or D3) and the notation ~y for surface
locations (∂Dconv, ∂D12 or ∂D23). The objective is to
numerically estimate the temperature Tj ≡ T (~xj), at a lo-
cation ~xobs ≡ ~xj inside D1, representative of the junction
temperature, at the stationnary regime.

The corresponding heat transfer model is the follow-
ing:



λ1 ∆T + Ψ = 0 ∀~x ∈ D1

∆T = 0 ∀~x ∈ D2 ∪ D3

− λ1
~∇T.~n1 = λ2

~∇T.~n2 ∀~x ≡ ~y ∈ ∂D12

− λ2
~∇T.~n2 = λ3

~∇T.~n3 ∀~x ≡ ~y ∈ ∂D23

− λ`~∇T.~n` = h(T − TBF) ∀~x ≡ ~y ∈ ∂Dconv`

(1)
(2)

(3)

(4)

(5)

where ~n1 is the outward unit surface normal of D1

and ~n2 is the outward unit surface normal of D2 (for ~y ∈
∂D12, ~n2 = − ~n1) and ` an index equal to either 1,2 or 3.

2.2 The equivalent statistical model
Heat equations Eqs. (1) and (2) and their boundary

conditions Eqs. (3) to (5) are reformulated to get a statisti-
cal interpretation enabling a Monte Carlo approach. Such

1Thermal properties are independant of temperature.The addressed
problem is therefore linear regarding temperature.

2We retain a convective heat transfer coefficient that is uniform for
simplification of the analysis and the comparisons with other numerical
solutions. There no theoretical limitation their and h could depend on
location (different values for the plate and and the fins, higher values
close to the fans, etc) as the result of detailed fluid mechanics simula-
tions.



Fig. 2. Illustration of a random path sampling compatible with
path-tracing acceleration techniques of computer graphics. Each
sphere has the same radius δS and is adjusted when getting
close to the domain boundary.

translations are as old as numerical heat transfer history
[14, 15, 16] and have given rise to the well-known Walk
on Sphere Monte Carlo algorithm family [17, 18, 19].
However, the primary strength of modern Monte Carlo
approaches to heat transfer is the use of the same ac-
celeration techniques developed by the computer graph-
ics community for the film and video game industries:
the computation times become insensitive to the level of
geometrical description refinement (the number of trian-
gles in the geometrical mesh). Moreover, these tech-
niques are currently incompatible with the deployment of
Walk on Sphere algorithms in their purest form. The pri-
mary reason is that Walk on Sphere algorithms require
knowledge of the largest sphere that fits the volume (the
first sphere-surface intersection as the radius increases),
whereas computer graphics techniques are based on line-
surface intersections. We will not return to the underlying
causes of this contradiction; rather, we will describe in de-
tail one of the algorithms that can be used to circumvent
it. The corresponding formalism is essentially identical to
that found in the Walk on Sphere literature, with the ex-
ception that the radius of the sphere is adjusted as a func-
tion of the distance between line-surface intersections and
is always chosen to be small enough to permit numeri-
cal approximations at each step [20, 21, 22, 23, 24](see
Fig. 2).

The main idea is that Eqs. (1) and (2) are Laplace
equations, one with a uniform source and the other with-
out, and that the solutions to these equations satisfy the
following integral constraints relating the temperature at
the center of a sphere to the temperature field along the
sphere: a quasi-constant source term inside a sphere with
a radius of δ. The solution of Eq. (1) corresponds to
Eq. (6) (the procedure is detailed in ??) :

Fig. 3. Illustration of the sampling of a random path using the
random walk-on-sphere method to estimate density at location
~x. In order to end the random walk, the boundary of the domain
is thickened of a small value ε in which the final position ~x3 is
projected on the boundary.

T (~x) =

∫
4π

1

4π
T (~x+ δ~u) d~u+

Ψδ2

6λ1
∀~x ∈ D1 (6)

Similarly, the solution of Eq. (2) corresponds to the
following equation:

T (~x) =

∫
4π

1

4π
T (~x+ δ~u) d~u ∀~x ∈ D2 (7)

The ponderation factor 1
4π in the integrals over the

sphere signifies that these integrals may be analyzed as
uniform averages across the sphere. The temperature
T (~x) at the center of the sphere with radius δ is the uni-
form average of the temperatures T (~x+δ~u) on the sphere,
according to Eq. (7). The source term Ψδ2

6λ1
can be incor-

porated into the integral for Eq. (6) in order to obtain the
temperature T (~x) at the sphere’s center as the uniform av-
erage of T (~x+δ~u)+ Ψδ2

6λ1
. Therefore, in order to calculate

the temperature at a specific location ~x, we can employ a
Monte Carlo algorithm that samples uniformly the sphere
surrounding ~x with a radius of δ, obtain the temperature
at the sampled location, and calculate the mean (if neces-
sary, including the source). However, in general, the tem-
perature at the location on the sphere that was sampled
is undetermined. Nevertheless, a significant strategy em-
ployed in Monte Carlo practice is the utilization of dou-
ble randomisation: in situations where one Monte Carlo
algorithm requires an unknown quantity that could be ac-
counted for by another Monte Carlo algorithm, the second



Monte Carlo algorithm is simply invoked as a continua-
tion of the first (”the expectation of an expectation is an
expectation”). In this case, this means that when we reach
a point on the sphere where the temperature is unknown,
we simply sample a location on this second sphere and de-
fine a new sphere around it. The Walk On Sphere strategy
has just been succinctly outlined: locations are sampled
uniformly along spheres in succession until a known tem-
perature is encountered (see Fig. 3). In Poisson equation,
the only distinction is that the source term is accumulated
at each stage.

The genuine challenge lies in the close proximity to
boundaries. While the Walk On Sphere algorithm de-
scribed above is exact, it requires numerical approxima-
tions when dealing with boundaries. The radius of the
sphere is modified in the majority of Walk On Sphere
algorithms to ensure that it is precisely tangent to the
boundary. Subsequently, a location is sampled from this
sphere, and its boundary membership is determined by
whether its distance to the boundary is less than a prede-
termined numerical parameter denoted as ε (the ”thick-
ness” of the boundary) [17, 18, 19]. The WOS literature
contains a detailed analysis of this approximation, which
demonstrates that the numerical convergence associated
with it is outstanding. This is one of WOS numeric’s
assets. Regrettably, this approach to boundary handling
is incompatible with modern instruments designed to ac-
celerate path sampling in complex geometries and inher-
ited from the computer graphics commmunity [25] These
tools were developed exclusively for line-boundary inter-
sections (locating the nearest intersection with the bound-
ary in a given direction) and not sphere-boundary inter-
sections (locating the largest sphere tangent to the bound-
ary). This is a highly active area of research in computer
graphics that is currently under investigation. However,
in order to continue benefiting from the insensitivity of
Monte Carlo algorithms to the complexity of the geome-
try (same computation time regardless of the level of re-
finement in the geometric description), we must handle
the vicinity of boundaries using only line-boundary in-
tersections [26, 20]. In this case, we will implement the
suggested solution by utilizing two line-boundary inter-
sections at each stage [27, 28, 29, 24]. Regardless of the
distance to the boundary, the approach entails sampling a
location on a sphere of radius δ in an isotropically sam-
pled direction ~u; subsequently, we examine the intersec-
tion of the sampled location with the boundary in both the
direction ~u and the direction −~u; if the distance between
the intersection and the boundary in question is less than
δ, then δ is modified to reflect this new value, and the
sampled location becomes ~x+ δintersect ~u.

The first term in Eqs. (6) and (7) is derived from the

classical result of harmonic functions theory, which states
that the average value of T over the surface of a sphere
with any radius δ is equivalent to the value of T at the
sphere’s center, assuming no external sources. ~u repre-
sents the direction unit vector in both equations.

Then, discretization is performed on the three bound-
ary conditions corresponding to Eqs. (3) to (5) using fi-
nite differences and a backward difference scheme corre-
sponding to the following equation (further information
regarding discretization of boundary conditions can be
found in ??):

~∇T.~n ≈ T (~y)− T (~y − δ~n)

δ
(8)

In equations (6), (7) and (8), δ is a numerical param-
eter corresponding to the walking step for conduction in
the solid. In equations (6) and (7), when ~x is in the vicin-
ity of the boundary, δ inside the angular integral must be
adjusted and numerous strategies are available in the lit-
erature. The numerical parameter denoted as δ in Eqs. (6)
to (8) represents the walking step for conduction in the
solid. In Eqs. (6) and (7), when ~x is in the vicinity of the
boundary, δ within the angular integral must be modified;
numerous methods for this purpose are described in the
literature

By substituting the given Eq. (8) for the three bound-
ary conditions Eqs. (3) to (5) and for any location ~y be-
longing to successively the boundaries ∂D12, ∂D23 and
∂Dconvl , one obtains respectively the following equations:

T (~y) =

P12︷ ︸︸ ︷
λ1

λ1 + λ2
δb1
δb2

T (~y − δb1 ~n1)

+
λ2

λ2 + λ1
δb2
δb1︸ ︷︷ ︸

1−P12

T (~y − δb2 ~n2)∀~y ∈ ∂D12
(9)



T (~y) =

P23︷ ︸︸ ︷
λ2

λ2 + λ3
δb2
δb3

T (~y − δb2 ~n2)

+
λ3

λ3 + λ2
δb3
δb2︸ ︷︷ ︸

1−P23

T (~y − δb3 ~n3)∀~y ∈ ∂D23
(10)

T (~y) =

Pconvl (h)︷ ︸︸ ︷
h

h+ λl
δbl

Tf

+

λl
δbl

h+ λl
δbl︸ ︷︷ ︸

1−Pconvl (h)

T (~y − δbl ~nl)∀l = 1, 2, 3;∀~y ∈ ∂Dconvl

(11)

Eqs. (9) to (11) can be given a statistical interpre-
tation by introducing probabilities P12 = λ1

λ1+λ2
δb1
δb2

,

P23 = λ2

λ2+λ3
δb2
δb3

and Pconvl(h) = h

h+
λl
δbl

(∀l ∈ 1, 2, 3)

; as well as Eqs. (6) and (7) introducing the probability
density p(~u) = 1

4π .
Those equations can be gathered using the Heaviside

function H (taking the value 1 if the condition is satis-
fied, 0 otherwise), to express the complete Monte Carlo
algorithm to evaluate the junction temperature Tj(~xobs),
this equation can hence be visualized represented in an
algorithmic way in Fig. 43.

Fig. 4 can be given a statistical interpretation as the
integral formulation of the junction temperature may be
read as the expectation of a random variable W corre-
sponding to the Monte Carlo weight, such as Tj(~xobs) =
E(W ). Every realizationwi represents a random path that
starts at a location ~xobs in the module’s core (D1) and pro-
gresses through volumes D until it reaches the predeter-

mined temperature Tf. A power term contribution of
ΨL2

j

6λ1

is accumulated at each step j of the walk in the volume
as the path traverses the volume D1 corresponding to the
module. The index j is a counter incremented at each step

3Considering thatD = D1∪D2∪D3 (volume elements) and ∂D =

∂Dconv1 ∪ ∂Dconv2 ∪ ∂Dconv3 ∪ ∂D12∪ ∂D23 (boundary elements).

executed in the volume ∂D1. At the end of an inth MC re-
alisation, a path carried out Ki paths in the volume D1.
Hence, the Monte Carlo weight wi corresponding to the
inth realization, can be expressed as the following:

wi = TBF +
Ψ

6λ1

Ki∑
j=1

L2
j (12)

Fig. 5 illustrates the Monte Carlo algorithm diagram
associated with a particular realization i of the MC weight
wi. The subsequent steps comprise the procedure of a
realization:

The path starts in volume D1, in the module’s center,
where the estimation of the junction temperature is re-
quired. The current location ~xc is set at the probe start po-
sition ~x0 at the center of the volume D1. The path length
Lj is initialized to zero and the corresponding counter j
is set equal to 1. A direction ~u is sampled isotropically
according to a probability density p~U (~u) = 1

4π and a step
δ is made in the direction ~u. Then, a test is performed
to know if the segment [~xc − δ~u; ~xc + δ~u] intersects one
of the boundaries forming ∂D1

4. If the segment intere-
sects a boundary, the current discretization step δc is ad-
justed (see Fig. 2). Otherwise, the segment does not in-
tersect any boundary and the current discretization step
δc value is kept. The current position is updated, such as,
~xc ← ~xc + δc~u, j is incremented by one and Lj stores
the added current path length. At each step in the mod-
ule volume D1 informations along the path are recorded
to store the contribution related to the volumetric power
density Ψ.

After this, a test is performed to know if the current
location ~xc is on a boundary ∂D1. If not, the randow walk
in the volume goes on another conductive path is sampled
in D1 such as previously. If the location is on a bound-
ary, what happens next is determined by which boundary
has been reached. If ~xc belongs to the solid/fluid bound-
ary ∂Dconv1 and a Bernoulli test is performed according
to the convective probabilities {Pconv1(h); 1−Pconv1(h)}.
Either, the path stops at this solid/fluid boundary and the
Monte Carlo weight corresponding to Eq. (12) is stored
or the path is reinjected in the volume D1 and the con-
ductive random walk goes on in the volume. Otherwise,
~xc is located on the boundary ∂D12 between D1 and D2,
a Bernoulli test is performed to know if the conductive
path goes on in D2 or keeps going in D1 according to the
probabilities {P12; 1 − P12}. At the end of this test, ei-
ther the path remains in D1 and is reinjected along the

4The test is performed in the direction −~u in order to respect the
Laplacian harmonicity Eq. (6) and Eq. (7)



Fig. 4. Equation describing the Monte Carlo algorithm. Probabilities are enclosed in orange frames.

normal ~n1 at a location ~xc− δb1~n1 within volume D1 and
the conductive random walk goes on in the volume, or the
path leaves D1 for D2 and the path is relocated along the
normal ~n2 at a location ~xc − δb2~n2 within D2 while the
conductive random walk continues.

The conductive random walk is executed in the vol-
ume D2 in the same manner as in volume D1, un-
til it reaches a boundary. The sole distinction lies in
the absence of volumetric power density in D2 , conse-
quently, no contribution accumulates along the sampled
path. When reaching a boundary, the path encounters one
of the following: solid/fluid boundary ∂Dconv2 , solid/solid
boundary ∂D23 or solid/solid boundary ∂D12. In the
event that the path intersects the solid/fluid boundary, a
Bernoulli test is executed in accordance to the convec-
tive probabilities {Pconv2(h); 1−Pconv2(h)}. In this case,
either the path terminates and the Monte Carlo weight
(see Eq. (12)) is retained, or it is reinjected at a location
~xc − δb2~n2 in D2. Subsequently, the conductive random
walk continues throughout the volumeD2. When the path
encounters the solid/solid boundary ∂D23, a Bernoulli
test is executed to determine whether the path continues in
D2 or continues in D3 based on the corresponding proba-
bility values {P23; 1−P23}. In line with prior details, the
random conductive walk continues after the reinjection in
the corresponding volumesD2 orD3 starting at the corre-
sponding location, respectively, ~xc− δb2~n2 or ~xc− δb3~n3.
When the path encounters the solid/solid boundary ∂D12,
a Bernoulli test is executed to determine, on the basis of
the corresponding probabilities {P12, 1 − P12}, whether
the path proceeds the conductive walk in D2 or returns to
D1.

When the path leaves D2 for D3, in a manner anal-

ogous to that which was described in volume D2, a con-
ductive random walk is executed until a boundary is en-
countered. This boundary is either the solid/solid bound-
ary ∂D23 or the solid/fluid boundary ∂Dconv3 . Identical
to before, a Bernoulli test is conducted if this boundary
is ∂D23 to determine whether the path continues in D3

or exits D3 to resume the conductive random walk in D2.
Ultimately, when the path reaches the solid/fluid bound-
ary ∂Dconv3 , as determined by the Bernoulli test according
to probabilities Pconv3(h); 1 − Pconv3(h): either the path
terminates and the Monte Carlo weight value is retained
(see Eq. (12)), or the path is reinjected into the volume at
a location ~xc − δb3~n3.

From a synthetic perspective, the conductive path
commences at location ~xobs within the module’s core,
passes through the different components volumes, and
ends at the solid/fluid boundary via convective exchange
when encountering the temperature TBF. Along the way,
it accumulates a contribution denoted as Ψ

6λ1

∑Ki
j=1 Lj ,

which is attributable to the power density Ψ present in the
module. A Monte Carlo computation consists in N real-
izations wi of W are performed and the mean m of these
realizations corresponds to the estimation of the junction
temperature Tj(~xobs). The equations that represent the
temperature estimate and the corresponding statisticall er-
rors are as follows:
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Fig. 5. Scheme describing the Monte Carlo algorithm to eval-
uate the junction temperature at the inth realization

Tj(~xobs) ' m =
1

N

N∑
i=1

wi (13)

s =
1√
N

 1

N

N∑
i=1

w2
i (h)−

(
1

N

N∑
i=1

wi

)2
 1

2

(14)

3 SYMBOLIC MONTE CARLO
3.1 The corresponding symbolic model on h

The Monte Carlo algorithm for determining the junc-
tion temperature Tj(h|~xobs, h̃) for a given value h = h̃
has been defined previously. We shall now demonstrate

how the storing of the information contained in the ran-
dom paths is affected when h is encountered, thereby con-
structing the temperature as a function of the heat transfer
coefficient h. The exhaustive method is described in [22].

The starting point is a rewriting of the solid/fluid
boundary condition (see Eq. (5)) utilizing an importance
sampling strategy, i.e., introducing a new arbitrary prob-
ability P̃ = h̃

h̃+
λl
δbl

and adjusting the Monte Carlo weight

as necessary, the following modifications are made:

T (h|~xobs, h̃) =P̃

{
Pconvl(h)

P̃
TBF

}
+ (1− P̃)

{
1− Pconvl(h)

1− P̃
T (~y − δbl~nl)

}
(15)

Finally, the functional expression for the Monte
Carlo weight and the temperature expression are pro-
vided:

wi(h) =

(
Pconvl(h)

1− P̃

)ki Pconvl(h)

P̃
TBF +

Ψ

6 λ1

Ji∑
j=1

L2
j

(16)
With ki the number of times the path reached the

boundary and continued in the solid (reinjection) during
one Monte Carlo realization.

Hence, the temperature estimation Tj(~xobs|h) as a
function of h with Symbolic Monte Carlo, may be ex-
pressed as follows:

Tj(h|~xobs, h̃) ' 1

N

N∑
i=1

wi(h) (17)

s(h) =
1√
N

 1

N

N∑
i=1

wi(h)2 −
(

1

N

N∑
i=1

wi(h)

)2
 1

2

(18)

4 RESULTS AND ANALYSIS
Fig. 1 depicts the configuration that was utilized to

test the method. In this configuration the Monte Carlo
and Symbolic Monte Carlo algorithms are used and com-
pared to a reference thermal simulation tool used in the
electronic area, 6SigmaET software. This first part of re-
sults will be discussed in Sec. 4.1.



Fig. 6. Monte Carlo simulations (black rounded marks) com-
puted each for N = 104 and 6SIGMAET simulation results
(blue star marks) to evaluate the junction temperature Tj(~xobs)
according to the heat transfer coefficient h. Results from the
Symbolic Monte Carlo method (red rounded marks) were com-
puted thanks to the evaluation of the function estimated with a
single calculation with h̃ = 10 W m−2 K−1. Results are pre-
sented as temperature gradients Tj(~xobs) − TBF with TBF =
295.65K.

In the second stage, the Symbolic Monte Carlo
method will be implemented in the case illustrated in
Fig. 7 which is a typical example of electronic compo-
nent in electric vehicles [30]. . This second case involves
the forced convection cooling of four power electronics
modules. Two cases will be investigated, a single-sided
cooling and double-sided cooling, this would be the ob-
jectif of Sec. 4.2.

4.1 Validation of the Monte Carlo and Symbolic
Monte Carlo methods

The Monte Carlo algorithm is utilized to estimate
the junction temperature in the initial case involving the
electronic module disposed on a plate fin heat sink (see
Fig. 1), employing the heat transfer model delineated
by Eqs. (1) to (3) and (5). For the purposes of nu-
merical comparison, the Monte Carlo results and results
of Finite Volume simulations generated by the 6SIG-
MAET software are compared for various convection co-
efficient h values, from h = 10W m−2 K−1 up to h =
80W m−2 K−1. These results are presented in Fig. 6.

Each of the Monte Carlo computation has been per-
formed in order to output a result with a relative er-
ror value below or equal to 1%, the relative error be-
ing expressed as s(h)/(Tj(~xobs, h) − TBF). In the case
of the Symbolic Monte Carlo, the single computation
of the function has been performed at h̃ = 10 W m−2

Power devices
Dielectric gel

Cu spreaders

Cu bumps

Ag sinter

Top liquid

Electric pump Bottom liquid

channel

channel

Fig. 7. Second case of a double sided component.

where the relative error is as well equal to 1%. For the
other values of h, the relative error related to the com-
putation of the junction temperature with the function
never exceeds 3%. Afterwards, relative errors between
the Monte Carlo and Symbolic Monte Carlo results and
6SIGMAET Finite Volume results have been computed
for each value of the heat transfer coefficient and are rep-
resented in Table 1. The values of relative errors are be-
low 4%. Most of the values are under 3% except the one
at h = 25W m−2 K−1, indeed at such value of the con-
vective heat transfer coefficient, conductive paths tend to
be longer within volumes and have more difficulties to
terminate, in contrary with higher values of h. This phe-
nomenom retranscripted by the conductive path reflects
the reality of the physics but may cause more variance in
the case of the Monte Carlo method.

h (W m−2 K−1) |TMC−T6SIGMAET
T6SIGMAET

| × 10−2 |TSMC−T6SIGMAET
T6SIGMAET

| × 10−2

10 2.01 2.01

15 1.64 2.67

20 2.97 3.02

25 3.05 3.00

30 2.59 2.77

40 2.89 2.69

45 2.59 2.33

50 2.74 2.01

60 2.44 2.01

70 2.35 1.89

80 2.73 1.74

Table 1. Relative errors between the estimations of the junction
temperature in the case of the Monte Carlo method (TMC), the
Symbolic Monte Carlo method (TSMC) and the results from the
Finite Volume method from the 6SIGMAET software (TSIGMAET).



4.2 Application of the SMC method in the case of
forced convection cooling

The studied configuration consists of two copper
spreaders encapsulating four power modules (chips). The
four chips are composed of a typical component material.
Two of the four power modules (chips 1 and 4) are linked
to the bottom spreader via silver sinters while copper al-
loy bumps ensure the mechanical resistance and connec-
tion to the top spreader. The remaining two chips (chips
2 and 3) are connected to the top spreader via copper
alloy bumps and the bottom spreader via silver sinters.
Only chips 1 and 3 are emitting a volumetric power den-
sity equal to Ψ = 1.25 × 1010W m−3 (corresponding to
250W dissipated for each power module). Power mod-
ules, bumps and sinters are submerged in a dielectric gel
made of typicall underfill. Lateral surfaces of the system
are isolated, the top and bottom surfaces of the spread-
ers are in contact with channels filled with glycoled water
cooled down by cryogeny, through which electric pumps
circulates the fluid in the cylindrical cavities. The con-
vection occuring between the the upper channel and the
top surface of the top spreader is represented by a heat
transfer coefficient htop, whereas the convection occuring
between the lower channel and the bottom surface of the
bottom spreader is denoted by a heat transfer coefficient
hbot. For both solid/fluid interfaces, a unique boundary
fluid temperature TBF = 263.15K is considered. The
aforementioned configuration is represented in a 2D front
view in Fig. 7 in which power modules 1 and 2 are visible.

The four temperatures at the center of each of the
four power modules, i.e. the junction temperatures, will
be be estimated as a function depending on the bottom
heat transfer coefficient hbot with a Symbolic Monte Carlo
approach as described in Sec. 3. To accomplish this, the
heat transfer model under consideration closely resembles
the one that was previously introduced in Sec. 2.1. In-
deed, conduction at steady state with uniform volumetric
power density in power modules 1 and 3 is described by
Eq. (1) and stationnary conduction is described by Eq. (2)
in power modules 2 and 4. No volumetric power exist in
modules 2 and 4. Solid/solid interfaces between each of
the components are described by equations depending on
the thermal properties of the elements, similar to Eqs. (3)
and (4) and solid/fluid boundary conditions for convec-
tion are represented by Eq. (5).

Two scenarios are considered, the first one will be
the case of a single-side cooling in which natural con-
vection is considered in the top channel and the power
of the pump is variable is the bottom channel. The sec-
ond scenario will be a double-side cooling configuration
in which the water pump in the bottom channel is set a
the maximum speed and the power of the pump in the top

channel is changing. Both of these scenarios as well as
the corresponding results are described in the following
paragraphs.

Single-side cooling In the present case, hbot is set equal
to 10 W m−2 K−1 and htop is variable. This value of hbot
corresponds to a configuration where the bottom channel
is removed, the plate is at the contact of air and natu-
ral convection occurs with minimum radiation. Tempera-
tures at the center of each module are evaluated as trans-
fer function of the bottom heat transfer coefficient htop
and for the single Monte Carlo computation needed to es-
timate each of the four functions, the reference value of
h̃top is set equal to 260.728 W m−2 K−1. The function
is then used to estimate the junction temperature of each
chip on an interval of hbot values with a minimum value
of 260.728 and a maximum value equal to 10000. For
each evaluation of the transfer function, a Monte Carlo
computation is made.

First, results from the Symbolic Monte Carlo are
compared to results from the Finite Volume method used
in the 6SIGMAET software. These results are presented
in Fig. 8. Results from the Symbolic Monte Carlo method
are relatively closed to the ones estimated by the Finite
Volume method and show good concordance.

More closely, the relative errors ε = |TSMC−T6SIGMAET|
T6SIGMAET

estimated for each of temperature evolution of the chip
according to htop are plotted and represented in Fig. 9.
The higher htop value, the lower the relative error of the
Symbolic Monte Carlo results compared to the Finite Vol-
ume method results. A maximum value of relative error
may be observed for the minimum value of htop, quite
above 10% and the maximum error is in the case of chips
1 and 3 where a volumetric power is on. For higher val-
ues of htop, the relative error values decrease and are way
lower than 10%.

In order to judge of the relevance of an estimation of
the temperature with the function, a good tool is the com-
putation of the relative error such as s/m or s/∆T . In
the case of a classical Monte Carlo resolution, the quan-
tity estimation is judged relevant when this error is below
1%. In the case of the Symbolic Monte Carlo results, each
of the relative errors s/∆T are below 1%, except the tem-
perature value estimated for htop = 104 in which the rela-
tive error value is below 2%. A temperature computation
with the function on the htop range value is considered
valid if this relative error is below 5%, but this is quite
arbitrary, it can be more strict, hence in the results pre-
sented here the results are considered more than valid and
acceptable regarding the relevance of the method itself.

Another major benefit of the function is the computa-
tion time gain compared to a classical Monte Carlo reso-



Fig. 8. Symbolic Monte Carlo simulations (coloured filled marks) were computed with the evaluation of the function. The function
was estimated with a single Monte Carlo with N = 105 realizations and h̃top = 260.728 W m−2. Results are presented as
temperature gradients Tj(~xobs)− TBF with TBF = 263.15 K
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Fig. 9. Error profiles between results from 6SIGMAET simulations and results from the Symbolic Monte Carlo functions evaluations
made for each chip.

lution in which the run needs to be done for each different
value of htop. The function needs to be computed with a
single Monte Carlo computation with an incompressible
time, but when this is done the function is used to evalu-
ated the temperature. In these cases the temperature eval-
uation with the function is between 100 times faster for

the lowest value of htop and 10 times faster for the highest
values (see Fig. 10).

Double-side cooling The top heat transfer coefficient
htop is set equal to 10000 W m−2 K−1, corresponding to
the pump at maximum speed in the liquid cooling chan-
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Fig. 10. Computation time ratios corresponding to tSMC/tMC according to htop values.

nel. For the single Monte Carlo simulation, the reference
value of htop is set equal to 260.728 W m−2 K−1 enabling
the transfer function calculation. The function is then
used to estimate the junction temperature of each chip on
an interval of htop values with a minimum of 260.728 and
a maximum value equal to 10000. As previously, for each
evaluation of the transfer function, a Monte Carlo compu-
tation is made.

Results with the function evaluation are compared to
Finite Volume method results from the 6SIGMAET soft-
ware, similarly as before. These results are presented in
Fig. 11. Temperature estimations follow the right ten-
dency when compared to 6SIGMAET results. The max-
imum gap is in the case of the chip 1 and 3 temperature
evolution, when volumetric power are emitted.

If we look more closely to the relative error between
the function from Symbolic Monte Carlo results and Fi-
nite Volume results though, as represented on Fig. 12,
even in the case of chip 3, the relative error is below
4%. In the case of the other chips, most of the relative er-
rors are below 2%. Hence, the results from the Symbolic
Monte Carlo are considered in good accordance with the
ones from the reference method, the Finite Volume results
from 6SIGMAET.

Now, regarding the relevance of the results from the
function estimated by the Symbolic Monte Carlo method
in the heat transfer coefficient interval of values, let’s
compared the statistical relative error s/m similarly as
before. The statistical relative error for the Symbolic
Monte Carlo is compared to the relative error from clas-

sical Monte Carlo computations. For the same number of
realizations, i.e. N = 106, classical Monte Carlo compu-
tations show a statistical relative error below 0.1% when
results from the Symbolic Monte Carlo method show a
statistical relative error below 1%. The temperature esti-
matons in the htop value interval is hence considered valid
regarding the relevance of the function. Moreover, sta-
tistical relative error are diminished compared to the sin-
gle side cooling which may be explained by the fact that
”paths tend to stop more easily so there is less variance”.

Regarding the computation time gain, when com-
pared to Monte Carlo results, a temperature evaluation
with the function is 3000 times to 8000 times faster, re-
spectively for lowest and highest values of htop. Once
more, compared to the single side cooling configuration,
this configuration show a more profitable gain in compu-
tation time.

One last word to say that even if its trivial, when com-
paring the single and double side cooling, the results (see
Fig and Fig) show that the lowest gradient Tj − TBF may
be achieved with double side cooling.

5 CONCLUSIONS
The objective of this article was to show the devel-

opment of a Symbolic Monte Carlo algorithm in order to
produce and estimate the junction temperature of a typi-
cal power module set (consisting of a module on ”dissi-
pateur à ailettes) as the function of a parameter directly
expressing the cooling potential of a fluid, the heat trans-



Fig. 11. Symbolic Monte Carlo simulations (coloured filled marks) were computed with the evaluation of the function. The function
was estimated with a single Monte Carlo with N = 106 realizations and h̃top = 260.728 W m−2. Results are presented as
temperature gradients Tj(~xobs)− TBF with TBF = 263.15 K
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Fig. 12. Error profiles between results from 6SIGMAET simulations and results from the Symbolic Monte Carlo functions evaluations
made for each chip.

fer coefficient. The implementation of this function and
its comparison with reference method such as Finite Vol-
ume method used in the 6SIGMAET software has been
conducted and showed good concordance. To go further
and demonstrate the interest and potential of such a func-
tion in designed or optimization phases of power modules

cooling systems, the Symbolic Monte Carlo algorithm to
estimate the function was then implemented and deployed
in a practical geometry of power modules from electric
vehicles and more specifically in two extreme configura-
tions, the single side and double side cooling of the mul-
tiples modules setup. In these cases, after a mandatory
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comparison with reference results from the same 6SGI-
MAET software, these functions have shown their in-
tern tools to question their relevance and know when they
should not be used anymore and their interest of compu-
tation time gain when compared to classical Monte Carlo
method. These two points show how to rely and the func-
tion and its interest in being used in a optimization pro-
cess where the direct model need to be evaluated a large
number of times.

This function proves as well its potential when
choosing the right cooling configuration. Of course in
this case it is nothing new, but still, suppose the researcher
know the potential configurations of interest and the ther-
mal model corresponding to it, the function can be esti-
mated and it can be used for analysis purpose and help
in a decision of a cooling configuration. Moreover, if we
take a step back, with only one single Monte Carlo com-
putation, which means with only one reference sampling
of the physics, a landscape of multiple configurations may
be explored, supposed it is in the range of the validity of
the function. Through this function and the information
contained in its coefficients, the physics is explored with-
out compromise on the geometric complexity.

Now the perspectives for the work to follow, first
it would be to explore a wider range of cooling config-
uratioon, go out of monophasic way of cooling and go
through diphasic cooling.
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