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Sliding Mode Observers for Set-valued Lur’e Systems with

Uncertainties Beyond Observational Range

Samir Adly∗ Jun Huang† Ba Khiet Le ‡

Abstract

In this paper, we introduce a new approximate sliding mode observer for Lur’e set-valued
dynamical systems, particularly addressing challenges posed by uncertainties not within the
standard range of observation. Traditionally, Luenberger-like observers and sliding mode ob-
server have been designed only for uncertainties in the range of observation. Central to our
approach is the treatment of the uncertainty term which we decompose into two components:
the first part in the observation subspace and the second part in its complemented subspace. We
establish that when the second part converges to zero, an exact sliding mode observer for the
system can be obtained. In scenarios where this convergence does not occur, our methodology
allows for the estimation of errors between the actual state and the observer state. This leads
to a practical interval estimation technique, valuable in situations where part of the uncertainty
lies outside the observable range. Finally, we show that our observer is also an H∞ observer.

Keywords. Sliding mode observer; set-valued Lur’e systems; uncertainties outside the
observation subspace

AMS Subject Classification. 28B05, 34A36, 34A60, 49J52, 49J53, 93D20

1 Introduction

Set-valued Lur’e dynamical systems is a general and widely studied framework in applied math-
ematics and control theory which covers many other models usually used to study nonsmooth
dynamical systems such as evolution variational inequalities, projected dynamical systems, re-
lay systems, complementarity systems . . . Especially it has been extensively studied in the recent
decades [1, 2, 3, 4, 7, 8, 9, 11, 12, 14, 15, 16, 19, 20, 21, 22, 27]. Despite advancements in the under-
standing of the system’s existence and uniqueness, stability and asymptotic analysis, the design of
control and observers still poses many interesting open questions. Specifically, most observers for
set-valued Lur’e systems follow the Luenberger-like design, which has limitations when the system
is subjected to uncertainty, as discussed in references such as [4, 5, 10, 11, 12, 15, 16, 21, 27]. To our

∗Laboratoire XLIM, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges CEDEX, France
Email: samir.adly@unilim.fr
†School of Mechanical and Electrical Engineering, Soochow University, China

Email: cauchyhot@163.com
‡Optimization Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh

City, Vietnam
E-mail: lebakhiet@tdtu.edu.vn

1



understanding, the concept of Luenberger-like observers for set-valued Lur’e systems was initially
explored by Brogliato-Heemels in [11], and later extended to incorporate uncertainty by Huang et
al in [15]. The key idea of Huang et al. [15] is to approximate the unknown by using an additional
ODE, aiming to achieve observer convergence with an unknown rate. On the other hand, by using
a sliding mode observer, under the same or improved assumptions, Adly-Le [4] obtain the expo-
nential convergence without solving an additional ODE. Furthermore, the authors proposed a new
efficient smoothing approximation using the time guiding functions and confirms that sliding mode
technique is robust to sensitive data. However, the essential restrictness of the existing results
using Luenberger-like observers or sliding mode observers (see, e.g. [4, 15, 16, 21, 24, 26, 27, 28])
is the requirement of the range condition for the uncertainties. One of the other approaches is
the construction of H∞ observers. Nonetheless, H∞ observers only provides the estimation for the
total process under the zero initial condition rather than the time instant estimation (see, e.g. [16]).
This fact motivates us to provide an approximate sliding mode observer to obtain a time instant
estimation for the Lur’e system subject to an uncertainty not in the range of observation. The idea
is to decompose ξ into 2 parts: ξ = ξ1 + ξ2 where ξ1 is the projection of ξ onto the observation
subspace and ξ2 is in the complement of the observation subspace. We show that if ξ2 is bounded,
we can have a useful estimation for the state of the original system. Interval estimation is practical
and unavoidable if the uncertainty ξ is general and not in the range of observation. We refer here
some interval observers results for some specific systems [17, 23]. In addition, if ξ2 tends to vanish
when the time is large, we obtain the exact sliding mode observer, i.e., the observer state converges
to the original state asymptotically. Finally, we show that our proposed observer is also an H∞

observer.
The paper is structured as follows: In Section 2, we revisit established definitions and results

essential for our subsequent analyses. Section 3 presents our proposal for an approximate sliding
mode observer for the original system, which simultaneously functions as an H∞ observer. In
Section 4, we give several numerical examples to validate the theoretical findings. The paper
concludes in Section 5, where we offer our closing remarks and explore potential future directions.

2 Notations and mathematical background

We denote the scalar product and the corresponding norm of Euclidean spaces by 〈·, ·〉 and ‖ · ‖
respectively. A matrix P ∈ Rn×n is called positive definite, written P > 0, if there exists a > 0
such that

〈Px,x〉 ≥ a‖x‖2, ∀ x ∈ Rn.

The Sign functions in Rn is defined by

Sign(x) =


x
‖x‖ if x 6= 0

B if x = 0,

where B denotes the unit ball in Rn.
A set-valued mapping F : Rm ⇒ Rm is called monotone if for all x, y ∈ Rm and x∗ ∈ F(x), y∗ ∈

F(y), one has
〈x∗ − y∗,x− y〉 ≥ 0.
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Furthermore, F is called maximal monotone if there is no monotone operator G such that the graph
of F is contained strictly in the graph of G (see, e.g, [6, 13]).

Let us recall a general version of Gronwall’s inequality [25].

Lemma 1. Let T > 0 be given and a(·), b(·) ∈ L1([0,T ];R) with b(t) ≥ 0 for almost all t ∈ [0,T ].
Let the absolutely continuous function w : [0,T ]→ R+ satisfy:

(1− α)w′(t) ≤ a(t)w(t) + b(t)wα(t), a.e. t ∈ [0,T ], (1)

where 0 ≤ α < 1. Then for all t ∈ [0,T ]:

w1−α(t) ≤ w1−α(0)exp
(∫ t

0
a(τ)dτ

)
+

∫ t

0
exp
(∫ t

s
a(τ)dτ

)
b(s)ds. (2)

3 Approximate sliding mode observer and the convergence anal-
ysis

In this section, we consider the Lur’e system subject to an uncertainty not in the range of observation
as follows 

ẋ = Ax+Bω + f(x,u) + ξ(t),

ω ∈ −F(Cx),

y = Fx,

(3)

where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rm×n,F ∈ Rp×n are given matrix, x ∈ Rn is the state,
F : Rm ⇒ Rm is a maximal monotone operator, u ∈ Rr is the control input and y ∈ Rp is
the measurable output. The nonlinear functions f is Lipschitz continuous and ξ ∈ Rl is unknown.
The model in (3) is quite general since in the right-hand side of the ODE, one has the linear Ax,
the nonlinear f(x,u), the set-valued BF(Cx) and the unknown ξ. To our knowledge, within the
literature for this general framework, it is common for the term ξ to typically fulfill the range con-
dition: ξ ∈ Im(P−1F T ) where P is a positive definite matrix which appeared in some constructed
Lyapunov function (see, e.g. [4, 15, 21]). This means that the uncertainty lies within the range of
observation, which poses a limitation. In our paper, we do not impose the range condition. Our
approach involves decomposing ξ into two components: ξ = ξ1 +ξ2, where ξ1 = P−1F T θ represents
the projection of ξ onto the subspace Im(P−1F T ) and ξ2 is in the complement of the observation
subspace.

Next, we propose an approximate sliding mode observer for the system (3) under the following
assumptions:

Assumption 1: The set-valued operator F : Rn ⇒ Rn is a maximal monotone operator.

Assumption 2: The functions f : Rn × Rr → Rn, (x,u) 7→ f(x,u) is Lf - Lipschitz continuous
w.r.t x, i.e.:

‖f(x1,u)− f(x2,u)‖ ≤ Lf‖x1 − x2‖.

3



Assumption 3: There exist ε > 0, P ∈ Rn×n > 0, L ∈ Rn×p and K ∈ Rm×p such that

P (A− LF ) + (A− LF )TP + 2Lf‖P‖I + 2εI ≤ 0, (4)

BTP = C −KF . (5)

Assumption 4: The unknown ξ is continuous and can be decomposed as ξ(t) = P−1F T ξ1(t) +
ξ2(t), where P−1F T ξ1(t) is the projection of ξ onto Im(P−1F T ). The terms ξ1 and ξ2 are unknown,
bounded by known continuous positive functions κ1(t) and κ2(t) respectively, i.e., for all t ≥ 0, we
have

|ξ1(t)| ≤ κ1(t), |ξ2(t)| ≤ κ2(t).

Remark 1. i) Assumption 4 is quite general, since it does not require the uncertainty in the range
of P−1F T , i.e., the range of observation.
ii) Suppose that Assumption 4 holds, then we have FP−1ξ2 = 0, i.e., ξ2 is in the kernel of FP−1.

The proposed approximate sliding mode observer for (3) is
˙̃x = Ax̃+Bω̃ − Ley + f1(x̃,u)− P−1F T (κ1Sign(ey) +

κ3ey
‖ey‖2+δ ),

ω̃ ∈ −F(Cx̃−Key),

ỹ = Fx̃,

(6)

where
e := x̃− x, ey := Fe, (7)

for some given small δ > 0. Since the nonlinear f and the unknown ξ are continuous, we can
obtain the existence and uniqueness of the original system (3) and the approximate observer (6)
under some additional mild conditions (see, e.g., [4, 11, 15]). In the following, we show that if ξ2 is
bounded, we obtain a useful estimation for the error e(t). On the other hand, if ξ2 tends to vanish
when the time is large, we have an exact observer indeed.

Theorem 2. Suppose that Assumptions 1–4 hold. Let V (t) = 〈Pe(t), e(t)〉. Then

√
V (t) ≤

√
V (0)exp(

−εt
λmax

) +
‖P‖√
λmin

∫ t

0
exp(

ε(s− t)
λmax

)‖κ2(t)‖ds, (8)

where λmax and λmin are the largest and smallest eigenvalues of P respectively. In addition

a) If κ2(·) is bounded by some k > 0, then

‖e(t)‖ ≤ λmax‖P‖k
λminε

+ exp(
−εt
λmax

)(

√
V (0)

λmin
− λmax‖P‖k

ελmin
). (9)

Additionally, we introduce the attractive set Ω := [0, k‖P‖ε ]. Consequently, the error norm ‖e(t)‖
converges to any neighborhood of Ω in finite time and remains within that vicinity.
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b) If κ2(t)→ 0 as t→∞, then ‖e(t)‖ → 0 as t→∞, i.e., (6) is indeed a observer of (3).

c) If ‖κ2(t)‖ ≤ ke−at, then e(t) converges exponentially to zero.

d) If k2 ∈ L2(0,∞), then

√
V (t) ≤

√
V (0)exp(

−εt
λmax

) +
‖P‖√
λmin

√∫ t

0
κ22(s)ds

√
λmax

2ε
(1− exp(

−2εt

λmax
))

≤
√
V (0)exp(

−εt
λmax

) +
‖P‖‖κ2‖L2(0,∞)√

λmin

√
λmax

2ε
(1− exp(

−2εt

λmax
)).

Proof. From (3) and (6), we have

ė ∈ (A− LF )e−B(ω̃ − ω) + f(x̃,u)− f(x,u)

− P−1F T (κ1Sign(ey) +
κ3ey

‖ey‖2 + δ
)− (P−1F T ξ1(t) + ξ2(t)). (10)

With V (t) = 〈Pe(t), e(t)〉, one has

1

2

dV

dt
= 〈P ė, e〉 = 〈P (A− LF )e+ PB(ω̃ − ω), e〉

+ 〈P (f1(x̃,u)− f1(x,u)), e〉 − (κ1(t)− ‖ξ1(t)‖)‖ey‖ − 〈Pξ2(t), e〉

− κ3‖ey‖2

‖ey‖2 + δ
. (11)

From (5) and the monotonicity of F , we have

〈PB(ω̃ − ω), e〉 = 〈ω̃ − ω),BTPe〉 = 〈ω̃ − ω, (C −KF )e〉 ≤ 0. (12)

On the other hand, using Assumption 2, we obtain

〈P (f1(x̃,u)− f1(x,u)), e〉 ≤ L1‖P‖‖e‖2. (13)

Thus from (4), (10)-(13), we deduce that

1

2

dV

dt
≤ −ε‖e‖2 + ‖P‖‖κ2(t)‖‖e(t)‖ ≤ −

ε

λmax
V +

‖P‖‖κ2(t)‖√
λmin

√
V . (14)

Using Lemma 1 with α = 1/2, we have√
V (t) ≤

√
V (0)exp(

−εt
λmax

) +
‖P‖√
λmin

∫ t

0
exp(

ε(s− t)
λmax

)‖κ2(s)‖ds.

a) If κ2(·) is bounded by some k > 0, then√
λmin‖e(t)‖ ≤

√
V (t) ≤

√
V (0)exp(

−εt
λmax

) +
‖P‖k√
λmin

∫ t

0
exp(

ε(s− t)
λmax

)ds.

=
√
V (0)exp(

−εt
λmax

) +
λmax‖P‖k
ε
√
λmin

(
1− exp(

−εt
λmax

)
)

=
λmax‖P‖k
ε
√
λmin

+ exp(
−εt
λmax

)(
√
V (0)− λmax‖P‖k

ε
√
λmin

).
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Thus, one obtains (9). On the other hand, from (14) we have

dV

dt
≤ −ε‖e‖2 + k‖P‖‖e‖.

If ‖e‖ ≥ k‖P‖
ε + ρ for some ρ > 0, one has dV

dt ≤ −ρε‖e‖. Hence classically ‖e‖ converges to any
neighborhood of Ω in finite time and stay there.

b) In particular, κ2(·) is bounded by some k > 0. Note that from (9), we imply that

‖e(t)‖ ≤ λmax‖P‖k
λminε

+ exp(
−εt
λmax

)

√
V (0)

λmin
, ∀t ≥ 0. (15)

In particular, e(t) is bounded and hence V (e(t)) is bounded by some V ∗. Let T > 0 be given,
Tn = nT and cn := supt∈[Tn,+∞) |k2(t)|, n ≥ 1, then (kn) converges to zero since k(t) → 0 as
t→∞. Using (15), by replacing 0 by Tn, for all t ≥ Tn, we obtain

‖e(t)‖ ≤ λmax‖P‖cn
λminε

+ exp(
−ε(t− Tn)

λmax
)

√
V ∗

λmin
. (16)

For given δ > 0, we can choose n0 such that
λmax‖P‖cn0

λminε
≤ δ. Then

‖e(t)‖ ≤ δ + exp(
−ε(t− Tn0)

λmax
)

√
V ∗

λmin
, ∀ t ≥ Tn0 . (17)

Thus
lim sup
t→∞

‖e(t)‖ ≤ δ.

Since δ is arbitrary, we must have
lim sup
t→∞

‖e(t)‖ ≤ 0,

and thus
lim
t→∞
‖e(t)‖ = 0.

c) If ‖κ2(t)‖ ≤ ke−at, then

√
V (t) ≤

√
V (0)exp(

−εt
λmax

) +
‖P‖k√
λmin

∫ t

0
exp(

ε(s− t)
λmax

− as)ds (18)

=
√
V (0)exp(

−εt
λmax

) +
λmax‖P‖k√

λmin(ε− aλmax)
(e−at − exp(

−εt
λmax

)), (19)

if ε 6= aλmax. Thus the error e(t) converges to zero with exponential rate. The case ε = aλmax is
trivial.
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d) If k2 ∈ L2(0,∞), then from (8), one has

√
V (t) ≤

√
V (0)exp(

−εt
λmax

) +
‖P‖√
λmin

√∫ t

0
κ22(s)ds

√∫ t

0
exp(

2ε(s− t)
λmax

)ds

=
√
V (0)exp(

−εt
λmax

) +
‖P‖√
λmin

√∫ t

0
κ22(s)ds

√
λmax

2ε
(1− exp(

−2εt

λmax
))

≤
√
V (0)exp(

−εt
λmax

) +
‖P‖‖κ2‖L2(0,∞)√

λmin

√
λmax

2ε
(1− exp(

−2εt

λmax
)). (20)

The proof is thereby completed.

Remark 2. i) In the first case, we have the interval estimation for the error, i.e., the original state
x(t) belongs to some known interval centered at the approximate observer x̃(t). In the remaining
cases, one obtains the exact observer. It covers the case where the unknown ξ vanishes after some
time instant T0 > 0 as considered in some examples in [16]. Note that with our observer, we only
require that the unknown part ξ2 (in the complement of the observation space) tends to vanish (see
Figure 3, Example 2).
ii) The term

κ3ey
‖ey‖2+δ makes ey small very fast and remain small. Note that if ‖ey‖2 ≥ δ, then

e2y
‖ey‖2+δ ≥

1
2 . Thus, if we choose κ3(t) >

(‖P‖‖κ2(t)‖+ρ)2
2ε for some ρ > 0 and ‖ey‖2 ≥ δ, then

1

2

dV

dt
= 〈P ė, e〉 = 〈P (A− LF )e+ PB(ω̃ − ω), e〉+ 〈P (f1(x̃,u)− f1(x,u)), e〉

− (κ1(t)− ‖ξ1(t)‖)‖ey‖ −
κ3(t)e

2
y

‖ey‖2 + δ
− 〈Pξ2(t), e〉

≤ −ε‖e‖2 − κ3(t)

2
+ ‖P‖‖κ2(t)‖‖e‖ ≤ −ρ‖e‖. (21)

Then ‖e(t)‖ decreases very fast in finite time such that ‖ey(t)‖2 < δ.
iii) Suppose that Pk2(·) is bounded by k′, then we can improve the set Ω by the new attractive set
Ω′ = [0, k

′

ε ].
iv) The same result is obtained if the unknown ξ(t) is replaced by ξ(t,x,u).
v) Theorem 2 can be also used to obtain an H∞ observer for the original system.

Let us recall the definition of H∞ observer (see, e.g., [16]).

Definition 1. If the error e(t) is asymptotically stable for ξ ≡ 0 and ‖e‖L2(0,∞) ≤ µ‖ξ‖L2(0,∞) for
some µ > 0 under zero initial condition for non-zero ξ ∈ L2(0,∞), then (6) is said an H∞ observer
for the system (3).

Assumption 5: There exists some µ > 0 such that Ω −P

−P −2µεI

 ≤ 0 (22)

where Ω := P (A− LF ) + (A− LF )TP + 2Lf‖P‖I + 2εI and ε > 0 is in Assumption 4.
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Theorem 3. Suppose that Assumptions 1–5 hold. Then (6) is an H∞ observer for the system (3).

Proof. From Theorem 2, if the uncertainty ξ ≡ 0, then the error e(t) converges to zero exponentially.
For non-zero ξ ∈ L2(0,∞), from (11)-(13), with the same V (t) = 〈Pe(t), e(t)〉, we have

1

2

dV

dt
= 〈P ė, e〉

= 〈P (A− LF )e+ PB(ω̃ − ω), e〉

+ 〈P (f1(x̃,u)− f1(x,u)), e〉 − κ1(t)‖ey‖ −
κ3‖ey‖2

‖ey‖2 + δ
− 〈Pξ, e〉

≤ 〈P (A− LF )e, e〉+ Lf‖P‖‖e‖2 − 〈Pξ, e〉
≤ ε(−‖e‖2 + µ‖ξ‖2) (23)

where the last inequality is deduced by using Assumption 5. Integrating both side from 0 to ∞,
using V (0) = 0 and note that V is non-negative, we obtain that ‖e‖L2(0,∞) ≤ µ‖ξ‖L2(0,∞). It means
that (6) is an H∞ observer for the system (3).

Remark 3. i) Assumption 5 implies that Ω = P (A − LF ) + (A − LF )TP + 2Lf‖P‖I + 2εI ≤ 0,
which is consistent to Assumption 4. In Ω, we use the term εI instead of I as in [16], which is
easier to have the non-positiveness of Ω.

ii) The positive number µ exists, for example, if Ω ≤ −2εI, we can choose µ > ‖P‖2
4ε2

.

4 Numerical examples

Example 1. Next we consider the system (3) with

A =


−6 4 0

7 −8 0

0 0 −7

 ,B =


4

6

−3

 , f(x,u) =


u+ 2 sinx2

2u+ 3 cosx1

−u+ 4 sinx3


C =

(
8 6 −3

)
,F =

(
1 0 0

)
, u = 5 sin t.

Suppose that the unknown ξ(t,x,u) =


2

5 cosx1

4 sin t

 and

F(x) =


sign(x)(3|x|+ 6) if x 6= 0,

[−6, 6] if x = 0.

8



Then L = 4 and k =
√

41. Then Assumptions 1–4 are satisfied with

P =


1 0 0

0 1 0

0 0 1

 , L =


0

11

0

 , ε = 2, K = 4.

One can observe that the total error ‖e‖ converges to any neighborhood of the set Ω = [0,
√

41/2]
in finite time while the observed error e1 tends to zero very fast. Consequently, the observer state
x̃ using (6) provides a good estimation for the original state x.

0 1 2 3 4 5

Time t

-3

-2

-1

0

1

2

3

e
1

0 2 4 6 8 10

Time t

-3

-2

-1

0

1

2

3

e
2

0 2 4 6 8 10

Time t

-3

-2

-1

0

1

2

3

e
3

Figure 1: Errors using the approximate sliding mode observer (6)

Example 2. Next let us consider the rotor system with friction as in [10, 18]:

Juθ̈u + kθ(θu − θl) + Tfu(θ̇u) = kmu

Jlθ̈l − kθ(θu − θl) + Tfl(θ̇l) = 0,
(24)

where θu and θl are the angular positions of the upper and lower discs, respectively. Let x1 = θu−θl,
x2 = θ̇u and x3 = θ̇l, we have

ẋ1 = x2 − x3

ẋ2 =
km
Ju
u− kθ

Ju
x1 −

1

Ju
Tfu(x2)

ẋ3 =
kθ
Jl
x1 −

1

Jl
Tfl(x3),

(25)

where

Tfu(x2) =

{
Tcu(x2)sign(x2), x2 6= 0
[−Tsu + ∆Tsu, Tsu + ∆Tsu], x2 = 0

(26)
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and

Tfl(x3) =


[Tsl + T1(1− 2

1+eω1|x3|
)

+T2(1− 2
1+eω1|x3|

)]sign(x3) + blx3, x3 6= 0

[−Tsl, Tsl], x3 = 0.

(27)

For simplicity, we take Tfu(x2) = bupx2. Then (25) can be written as

ẋ1 = x2 − x3

ẋ2 =
km
Ju
u− kθ

Ju
x1 −

bup
Ju
x2

ẋ3 =
kθ
Jl
x1 −

1

Jl
Tfl(x3).

(28)

The estimation of the parameters are given in the following tablet:

Parameter Estimated value

Ju [kg m2/ rad] 0.4765
km [Nm/ V] 3.9950
bup [Nms/ rad] 2.2247
kθ [Nm/ rad] 0.0727
Jl [kg m2/ rad] 0.0326
Tsl [Nm] 0.1642
T1 [Nm] 0.0603
T2 [Nm] -0.2267
ω1 [s/rad] 5.7468
ω2 [s/rad] 0.2941
bl [Nms/ rad] 0.0109

Substituting the values into the function, we have

Tfu(x2) = 2.2247x2,

Tfl(x3) =


[0.1642 + 0.0603(1− 2

1+e5.7468|x3|
)

−0.2267(1− 2
1+e0.2941|x3|

)]sign(x3) + 0.0109x3, x3 6= 0

[−0.1642, 0.1642], x3 = 0.

In order to analyse the real system, we have to use the mathematical model in a more abstract
form: 

ẋ = Ax+Bω +Gu
ω ∈ −Tfl(Cx)
y = Fx,

(29)

where A =

 0 1 −1

− kθ
Ju
− bup

Ju
0

kθ
Jl

0 0

, G =

 0
km
Ju
0

, B =

 0
0
1
Jl

, C = [0 0 1], F = [1 0 0]. Substituting

the estimated values of the parameters, we have

A =

 0 1 −1
−0.1526 −4.6688 0
2.2301 0 0

 , G =

 0
8.3841

0

 , B =

 0
0

30.6748

 .
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Since Tfl(x3) is not monotone, we use the loop transformation T̃fl(Cx) = Tfl(Cx) −mCx, where
m = −0.021. Then

T̄fl(x3) =


[0.1642 + 0.0603(1− 2

1+e5.7468|x3|
)

−0.2267(1− 2
1+e0.2941|x3|

)]sign(x3) + 0.0319x3, x3 6= 0

[−0.1642, 0.1642], x3 = 0.

Under the transformation, we have a new system
ẋ = Āx+Bω +Gu
ω ∈ −F(Cx)
y = Cx,

(30)

where

Ā = A−mBC =

 0 1 −1
−0.1526 −4.6688 0
2.2301 0 0.6442

 , G =

 0
8.3841

0

 ,

B =

 0
0

30.6748

 , C = [0 0 1], F = [1 0 0].

F(λ) =


[0.1642 + 0.0603(1− 2

1+e5.7468|λ|
)

− 0.2267(1− 2
1+e0.2941|λ|

)]sign(λ) + 0.0319λ, λ 6= 0

[−0.1642, 0.1642], λ = 0.

From [18], λ 7→ F(λ) is monotone.
The input u is the input voltage to the power amplifier of the motor, and u is chosen as 2.

Solving the following LMIs:

(Ā− LF )TP + P (Ā− LF ) = −Q
BTP = C −KF ,

(31)

we obtain

P =

 0.2958 0.0417 0.0600
0.0417 0.0286 0
0.0600 0 0.0326

 , Q =

 −0.1327 −0.0064 −0.0158
−0.0064 −0.1837 0.0183
0.0158 0.0183 −0.0780

 ,

L =

 3.3069
−1.2140
−12.2290

 , K = −1.8392, ε = 0.0714.

Now, let’s assume that the system (30) is influenced by an uncertainty ξ(t,x), which is described
as follows: 

ẋ = Āx+Bω +Gu+ ξ(t,x)
ω ∈ −F(Cx)
y = Cx.

(32)
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Figure 2: Errors using (6) applied to Example 2 with the uncertainty ξ1

Suppose that the unknown ξ(t,x) = ξ1(t,x) =


1

4 sinx2

cos t

. Using the approximate sliding mode

observer (6), we can see that observation error e1 converges to zero very fast and the total error
module ‖e(t)‖ belongs to the attractive set Ω′ = [0, 7.75] in finite time (Figure 2). The numerical
result is consistent with Theorem 2 when the uncertainty is chosen randomly. Next we consider
the unknown

ξ(t,x) = ξ2(t,x) =


16.0552

−23.4092

−29.5495

+


e−t

e−2t

e−1.5t

 ,

which has 2 parts: the first part in Im(P−1F T ) and the second part vanishes when the time is
large. Then the approximate sliding mode observer (6) is indeed the observer of the original system
(Figure 3).

5 Conclusions

In this paper, we introduce an approximate sliding mode observer, which also functions as an
H∞ observer, designed for a specific category of set-valued Lur’e dynamical systems. Importantly,
our approach accommodates scenarios where the uncertainty does not fall within the range of
observation. Consequently, we are able to obtain accurate state estimations for the original systems.
Furthermore, in cases where the unobservable portion of uncertainty tends to vanish when the time
is large, we achieve exact observers. It would be interesting to investigate strategies that enhance
the robustness of our proposed observer, enabling it to handle increasingly complex and dynamic
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Figure 3: Errors using (6) applied to Example 2 with the uncertainty ξ2

uncertainties or disturbances. Exploring ways to incorporate adaptive control strategies into our
observer framework would be a promising direction, facilitating its adaptation to evolving system
conditions. Optimizing and reducing the size of the attractive set could be a valuable pursuit,
potentially resulting in quicker convergence times. The practical application and validation of
our observer in real-world systems, such as autonomous vehicles, robotics, or industrial processes,
present good opportunities for future exploration. Extending our observer framework to address
the challenges posed by nonlinear systems with set-valued uncertainties would further broaden its
applicability and impact. These open questions require further investigation and are beyond the
scope of the current paper. They will be the focus of a new research project.
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