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In this paper, we introduce a new approximate sliding mode observer for Lur'e set-valued dynamical systems, particularly addressing challenges posed by uncertainties not within the standard range of observation. Traditionally, Luenberger-like observers and sliding mode observer have been designed only for uncertainties in the range of observation. Central to our approach is the treatment of the uncertainty term which we decompose into two components: the first part in the observation subspace and the second part in its complemented subspace. We establish that when the second part converges to zero, an exact sliding mode observer for the system can be obtained. In scenarios where this convergence does not occur, our methodology allows for the estimation of errors between the actual state and the observer state. This leads to a practical interval estimation technique, valuable in situations where part of the uncertainty lies outside the observable range. Finally, we show that our observer is also an H ∞ observer.

Introduction

Set-valued Lur'e dynamical systems is a general and widely studied framework in applied mathematics and control theory which covers many other models usually used to study nonsmooth dynamical systems such as evolution variational inequalities, projected dynamical systems, relay systems, complementarity systems . . . Especially it has been extensively studied in the recent decades [START_REF] Acary | Nonsmooth Modeling and Simulation for Switched Circuits[END_REF][START_REF] Adly | Nonsmooth Lur'e Dynamical Systems in Hilbert Spaces[END_REF][START_REF] Adly | Maximal Monotonicity and Cyclic-Monotonicity Arising in Nonsmooth Lur'e Dynamical Systems[END_REF][START_REF] Adly | Sliding Mode Observer for Set-valued Lur'e Systems and Chattering Removing[END_REF][START_REF] Brogliato | Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings[END_REF][START_REF] Brogliato | Well-posedness, stability and invariance results for a class of multivalued Lur'e dynamical systems[END_REF][START_REF] Brogliato | Dissipative Systems Analysis and Control[END_REF][START_REF] Brogliato | Observer Design for Lur'e Systems With Multivalued Mappings: A Passivity Approach[END_REF][START_REF] Brogliato | Dynamical Systems Coupled with Monotone Set-Valued Operators: Formalisms, Applications, Well-Posedness, and Stability[END_REF][START_REF] Camlibel | Linear passive systems and maximal monotone mappings[END_REF][START_REF] Huang | Adaptive full-order and reduced-order observers for the Lur'e differential inclusion system[END_REF][START_REF] Huang | H ∞ Observer design for singular one-sided Lur'e differential inclusion system[END_REF][START_REF] Le | On a class of Lur'e dynamical systems with state-dependent set-valued feedback[END_REF][START_REF] Le | Well-posedness and nonsmooth Lyapunov pairs for state-dependent maximal monotone differential inclusions[END_REF][START_REF] Le | Sliding Mode Observers for Time-Dependent Set-Valued Lur'e Systems Subject to Uncertainties[END_REF][START_REF] Lur'e | On the theory of stability of control systems[END_REF][START_REF] Tanwani | Stability and observer design for Lur'e systems with multivalued, non-monotone, time-varying nonlinearities and state jumps[END_REF]. Despite advancements in the understanding of the system's existence and uniqueness, stability and asymptotic analysis, the design of control and observers still poses many interesting open questions. Specifically, most observers for set-valued Lur'e systems follow the Luenberger-like design, which has limitations when the system is subjected to uncertainty, as discussed in references such as [START_REF] Adly | Sliding Mode Observer for Set-valued Lur'e Systems and Chattering Removing[END_REF][START_REF] Arcak | Nonlinear observers: A circle criterion design and robustness analysis[END_REF][START_REF] De Bruin | Control of mechanical motion systems with non-collocation of actuation and friction: A Popov criterion approach for input-to-state stability and set-valued nonlinearities[END_REF][START_REF] Brogliato | Observer Design for Lur'e Systems With Multivalued Mappings: A Passivity Approach[END_REF][START_REF] Brogliato | Dynamical Systems Coupled with Monotone Set-Valued Operators: Formalisms, Applications, Well-Posedness, and Stability[END_REF][START_REF] Huang | Adaptive full-order and reduced-order observers for the Lur'e differential inclusion system[END_REF][START_REF] Huang | H ∞ Observer design for singular one-sided Lur'e differential inclusion system[END_REF][START_REF] Le | Sliding Mode Observers for Time-Dependent Set-Valued Lur'e Systems Subject to Uncertainties[END_REF][START_REF] Tanwani | Stability and observer design for Lur'e systems with multivalued, non-monotone, time-varying nonlinearities and state jumps[END_REF]. To our understanding, the concept of Luenberger-like observers for set-valued Lur'e systems was initially explored by Brogliato-Heemels in [START_REF] Brogliato | Observer Design for Lur'e Systems With Multivalued Mappings: A Passivity Approach[END_REF], and later extended to incorporate uncertainty by Huang et al in [START_REF] Huang | Adaptive full-order and reduced-order observers for the Lur'e differential inclusion system[END_REF]. The key idea of Huang et al. [START_REF] Huang | Adaptive full-order and reduced-order observers for the Lur'e differential inclusion system[END_REF] is to approximate the unknown by using an additional ODE, aiming to achieve observer convergence with an unknown rate. On the other hand, by using a sliding mode observer, under the same or improved assumptions, Adly-Le [START_REF] Adly | Sliding Mode Observer for Set-valued Lur'e Systems and Chattering Removing[END_REF] obtain the exponential convergence without solving an additional ODE. Furthermore, the authors proposed a new efficient smoothing approximation using the time guiding functions and confirms that sliding mode technique is robust to sensitive data. However, the essential restrictness of the existing results using Luenberger-like observers or sliding mode observers (see, e.g. [START_REF] Adly | Sliding Mode Observer for Set-valued Lur'e Systems and Chattering Removing[END_REF][START_REF] Huang | Adaptive full-order and reduced-order observers for the Lur'e differential inclusion system[END_REF][START_REF] Huang | H ∞ Observer design for singular one-sided Lur'e differential inclusion system[END_REF][START_REF] Le | Sliding Mode Observers for Time-Dependent Set-Valued Lur'e Systems Subject to Uncertainties[END_REF][START_REF] Shtessel | Sliding Mode Control and Observation[END_REF][START_REF] Spurgeon | Sliding mode observers -a survey[END_REF][START_REF] Tanwani | Stability and observer design for Lur'e systems with multivalued, non-monotone, time-varying nonlinearities and state jumps[END_REF][START_REF] Xiang | On the design of Walcott-Zak sliding mode observer[END_REF]) is the requirement of the range condition for the uncertainties. One of the other approaches is the construction of H ∞ observers. Nonetheless, H ∞ observers only provides the estimation for the total process under the zero initial condition rather than the time instant estimation (see, e.g. [START_REF] Huang | H ∞ Observer design for singular one-sided Lur'e differential inclusion system[END_REF]). This fact motivates us to provide an approximate sliding mode observer to obtain a time instant estimation for the Lur'e system subject to an uncertainty not in the range of observation. The idea is to decompose ξ into 2 parts: ξ = ξ 1 + ξ 2 where ξ 1 is the projection of ξ onto the observation subspace and ξ 2 is in the complement of the observation subspace. We show that if ξ 2 is bounded, we can have a useful estimation for the state of the original system. Interval estimation is practical and unavoidable if the uncertainty ξ is general and not in the range of observation. We refer here some interval observers results for some specific systems [START_REF] Huang | Interval observer design method for asynchronous switched systems[END_REF][START_REF] Mazenca | Interval observers for linear time-invariant systems with disturbances[END_REF]. In addition, if ξ 2 tends to vanish when the time is large, we obtain the exact sliding mode observer, i.e., the observer state converges to the original state asymptotically. Finally, we show that our proposed observer is also an H ∞ observer.

The paper is structured as follows: In Section 2, we revisit established definitions and results essential for our subsequent analyses. Section 3 presents our proposal for an approximate sliding mode observer for the original system, which simultaneously functions as an H ∞ observer. In Section 4, we give several numerical examples to validate the theoretical findings. The paper concludes in Section 5, where we offer our closing remarks and explore potential future directions.

Notations and mathematical background

We denote the scalar product and the corresponding norm of Euclidean spaces by •, • and • respectively. A matrix P ∈ R n×n is called positive definite, written P > 0, if there exists a > 0 such that

P x, x ≥ a x 2 , ∀ x ∈ R n .
The Sign functions in R n is defined by

Sign(x) =    x x if x = 0 B if x = 0,
where B denotes the unit ball in R n . A set-valued mapping F : R m ⇒ R m is called monotone if for all x, y ∈ R m and x * ∈ F(x), y * ∈ F(y), one has

x * -y * , x -y ≥ 0.

Furthermore, F is called maximal monotone if there is no monotone operator G such that the graph of F is contained strictly in the graph of G (see, e.g, [START_REF] Aubin | Differential Inclusions: Set-valued Maps and Viability Theory[END_REF][START_REF] Brezis | Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert[END_REF]).

Let us recall a general version of Gronwall's inequality [START_REF] Showalter | Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations[END_REF].

Lemma 1. Let T > 0 be given and

a(•), b(•) ∈ L 1 ([0, T ]; R) with b(t) ≥ 0 for almost all t ∈ [0, T ].
Let the absolutely continuous function w : [0, T ] → R + satisfy:

(1 -α)w (t) ≤ a(t)w(t) + b(t)w α (t), a.e. t ∈ [0, T ], (1) 
where 0 ≤ α < 1. Then for all t ∈ [0, T ]:

w 1-α (t) ≤ w 1-α (0)exp t 0 a(τ )dτ + t 0 exp t s a(τ )dτ b(s)ds. ( 2 
)
3 Approximate sliding mode observer and the convergence analysis

In this section, we consider the Lur'e system subject to an uncertainty not in the range of observation as follows

           ẋ = Ax + Bω + f (x, u) + ξ(t), ω ∈ -F(Cx), y = F x, (3) 
where A ∈ R n×n , B ∈ R n×m , C ∈ R m×n , F ∈ R p×n are given matrix, x ∈ R n is the state, F : R m ⇒ R m is a maximal monotone operator, u ∈ R r is the control input and y ∈ R p is the measurable output. The nonlinear functions f is Lipschitz continuous and ξ ∈ R l is unknown. The model in (3) is quite general since in the right-hand side of the ODE, one has the linear Ax, the nonlinear f (x, u), the set-valued BF(Cx) and the unknown ξ. To our knowledge, within the literature for this general framework, it is common for the term ξ to typically fulfill the range condition: ξ ∈ Im(P -1 F T ) where P is a positive definite matrix which appeared in some constructed Lyapunov function (see, e.g. [START_REF] Adly | Sliding Mode Observer for Set-valued Lur'e Systems and Chattering Removing[END_REF][START_REF] Huang | Adaptive full-order and reduced-order observers for the Lur'e differential inclusion system[END_REF][START_REF] Le | Sliding Mode Observers for Time-Dependent Set-Valued Lur'e Systems Subject to Uncertainties[END_REF]). This means that the uncertainty lies within the range of observation, which poses a limitation. In our paper, we do not impose the range condition. Our approach involves decomposing ξ into two components: ξ = ξ 1 + ξ 2 , where ξ 1 = P -1 F T θ represents the projection of ξ onto the subspace Im(P -1 F T ) and ξ 2 is in the complement of the observation subspace.

Next, we propose an approximate sliding mode observer for the system (3) under the following assumptions:

Assumption 1: The set-valued operator F : R n ⇒ R n is a maximal monotone operator. Assumption 2: The functions f : R n × R r → R n , (x, u) → f (x, u) is L f -Lipschitz continuous w.r.t x, i.e.: f (x 1 , u) -f (x 2 , u) ≤ L f x 1 -x 2 .
Assumption 3: There exist > 0, P ∈ R n×n > 0, L ∈ R n×p and K ∈ R m×p such that

P (A -LF ) + (A -LF ) T P + 2L f P I + 2 I ≤ 0, (4) 
B T P = C -KF . ( 5 
)
Assumption 4: The unknown ξ is continuous and can be decomposed as ξ(t) = P -1 F T ξ 1 (t) + ξ 2 (t), where P -1 F T ξ 1 (t) is the projection of ξ onto Im(P -1 F T ). The terms ξ 1 and ξ 2 are unknown, bounded by known continuous positive functions κ 1 (t) and κ 2 (t) respectively, i.e., for all t ≥ 0, we have

|ξ 1 (t)| ≤ κ 1 (t), |ξ 2 (t)| ≤ κ 2 (t).
Remark 1. i) Assumption 4 is quite general, since it does not require the uncertainty in the range of P -1 F T , i.e., the range of observation. ii) Suppose that Assumption 4 holds, then we have F P -1 ξ 2 = 0, i.e., ξ 2 is in the kernel of F P -1 .

The proposed approximate sliding mode observer for (3) is

           ẋ = Ax + B ω -Le y + f 1 (x, u) -P -1 F T (κ 1 Sign(e y ) + κ 3 ey ey 2 +δ ), ω ∈ -F(C x -Ke y ), ỹ = F x, (6) 
where e := x -x, e y := F e,

for some given small δ > 0. Since the nonlinear f and the unknown ξ are continuous, we can obtain the existence and uniqueness of the original system (3) and the approximate observer [START_REF] Aubin | Differential Inclusions: Set-valued Maps and Viability Theory[END_REF] under some additional mild conditions (see, e.g., [START_REF] Adly | Sliding Mode Observer for Set-valued Lur'e Systems and Chattering Removing[END_REF][START_REF] Brogliato | Observer Design for Lur'e Systems With Multivalued Mappings: A Passivity Approach[END_REF][START_REF] Huang | Adaptive full-order and reduced-order observers for the Lur'e differential inclusion system[END_REF]). In the following, we show that if ξ 2 is bounded, we obtain a useful estimation for the error e(t). On the other hand, if ξ 2 tends to vanish when the time is large, we have an exact observer indeed.

Theorem 2. Suppose that Assumptions 1-4 hold. Let V (t) = P e(t), e(t) . Then

V (t) ≤ V (0)exp( -t λ max ) + P √ λ min t 0 exp( (s -t) λ max ) κ 2 (t) ds, (8) 
where λ max and λ min are the largest and smallest eigenvalues of P respectively. In addition

a) If κ 2 (•) is bounded by some k > 0, then e(t) ≤ λ max P k λ min + exp( -t λ max )( V (0) λ min - λ max P k λ min ). ( 9 
)
Additionally, we introduce the attractive set Ω := [0, k P ]. Consequently, the error norm e(t) converges to any neighborhood of Ω in finite time and remains within that vicinity.

b) If κ 2 (t) → 0 as t → ∞, then e(t) → 0 as t → ∞, i.e., ( 6) is indeed a observer of (3). c) If κ 2 (t) ≤ ke -at , then e(t) converges exponentially to zero.

d) If k 2 ∈ L 2 (0, ∞), then V (t) ≤ V (0)exp( -t λ max ) + P √ λ min t 0 κ 2 2 (s)ds λ max 2 (1 -exp( -2 t λ max )) ≤ V (0)exp( -t λ max ) + P κ 2 L 2 (0,∞) √ λ min λ max 2 (1 -exp( -2 t λ max )).
Proof. From ( 3) and ( 6), we have

ė ∈ (A -LF )e -B(ω -ω) + f (x, u) -f (x, u) -P -1 F T (κ 1 Sign(e y ) + κ 3 e y e y 2 + δ ) -(P -1 F T ξ 1 (t) + ξ 2 (t)). ( 10 
)
With V (t) = P e(t), e(t) , one has 1 2

dV dt = P ė, e = P (A -LF )e + P B(ω -ω), e

+ P (f 1 (x, u) -f 1 (x, u)), e -(κ 1 (t) -ξ 1 (t) ) e y -P ξ 2 (t), e - κ 3 e y 2 e y 2 + δ . (11) 
From ( 5) and the monotonicity of F, we have

P B(ω -ω), e = ω -ω), B T P e = ω -ω, (C -KF )e ≤ 0. (12) 
On the other hand, using Assumption 2, we obtain

P (f 1 (x, u) -f 1 (x, u)), e ≤ L 1 P e 2 . ( 13 
)
Thus from ( 4), ( 10)-( 13), we deduce that 1 2

dV dt ≤ -e 2 + P κ 2 (t) e(t) ≤ - λ max V + P κ 2 (t) √ λ min √ V . ( 14 
)
Using Lemma 1 with α = 1/2, we have

V (t) ≤ V (0)exp( -t λ max ) + P √ λ min t 0 exp( (s -t) λ max ) κ 2 (s) ds. a) If κ 2 (•) is bounded by some k > 0, then λ min e(t) ≤ V (t) ≤ V (0)exp( -t λ max ) + P k √ λ min t 0 exp( (s -t) λ max )ds. = V (0)exp( -t λ max ) + λ max P k √ λ min 1 -exp( -t λ max ) = λ max P k √ λ min + exp( -t λ max )( V (0) - λ max P k √ λ min ).
Thus, one obtains [START_REF] Brogliato | Dissipative Systems Analysis and Control[END_REF]. On the other hand, from [START_REF] Camlibel | Linear passive systems and maximal monotone mappings[END_REF] we have dV dt ≤ -e 2 + k P e .

If e ≥ k P + ρ for some ρ > 0, one has dV dt ≤ -ρ e . Hence classically e converges to any neighborhood of Ω in finite time and stay there. b) In particular, κ 2 (•) is bounded by some k > 0. Note that from (9), we imply that

e(t) ≤ λ max P k λ min + exp( -t λ max ) V (0) λ min , ∀t ≥ 0. ( 15 
)
In particular, e(t) is bounded and hence V (e(t)) is bounded by some V * . Let T > 0 be given, [START_REF] Huang | Adaptive full-order and reduced-order observers for the Lur'e differential inclusion system[END_REF], by replacing 0 by T n , for all t ≥ T n , we obtain

T n = nT and c n := sup t∈[Tn,+∞) |k 2 (t)|, n ≥ 1, then (k n ) converges to zero since k(t) → 0 as t → ∞. Using (
e(t) ≤ λ max P c n λ min + exp( -(t -T n ) λ max ) V * λ min . ( 16 
)
For given δ > 0, we can choose n 0 such that 

λmax P cn 0 λ min ≤ δ. Then e(t) ≤ δ + exp( -(t -T n 0 ) λ max ) V * λ min , ∀ t ≥ T n 0 . (17) 
V (t) ≤ V (0)exp( -t λ max ) + P k √ λ min t 0 exp( (s -t) λ max -as)ds (18) = V (0)exp( -t λ max ) + λ max P k √ λ min ( -aλ max ) (e -at -exp( -t λ max )), (19) 
if = aλ max . Thus the error e(t) converges to zero with exponential rate. The case = aλ max is trivial.

d) If k 2 ∈ L 2 (0, ∞), then from ( 8), one has

V (t) ≤ V (0)exp( -t λ max ) + P √ λ min t 0 κ 2 2 (s)ds t 0 exp( 2 (s -t) λ max )ds = V (0)exp( -t λ max ) + P √ λ min t 0 κ 2 2 (s)ds λ max 2 (1 -exp( -2 t λ max )) ≤ V (0)exp( -t λ max ) + P κ 2 L 2 (0,∞) √ λ min λ max 2 (1 -exp( -2 t λ max )). ( 20 
)
The proof is thereby completed.

Remark 2. i) In the first case, we have the interval estimation for the error, i.e., the original state x(t) belongs to some known interval centered at the approximate observer x(t). In the remaining cases, one obtains the exact observer. It covers the case where the unknown ξ vanishes after some time instant T 0 > 0 as considered in some examples in [START_REF] Huang | H ∞ Observer design for singular one-sided Lur'e differential inclusion system[END_REF]. Note that with our observer, we only require that the unknown part ξ 2 (in the complement of the observation space) tends to vanish (see Figure 3, Example 2).

ii) The term 

κ
Then e(t) decreases very fast in finite time such that e y (t) 2 < δ.

iii) Suppose that P k 2 (•) is bounded by k , then we can improve the set Ω by the new attractive set Ω = [0, k ]. iv) The same result is obtained if the unknown ξ(t) is replaced by ξ(t, x, u). v) Theorem 2 can be also used to obtain an H ∞ observer for the original system.

Let us recall the definition of H ∞ observer (see, e.g., [START_REF] Huang | H ∞ Observer design for singular one-sided Lur'e differential inclusion system[END_REF]).

Definition 1. If the error e(t) is asymptotically stable for ξ ≡ 0 and e L 2 (0,∞) ≤ µ ξ L 2 (0,∞) for some µ > 0 under zero initial condition for non-zero ξ ∈ L 2 (0, ∞), then ( 6) is said an H ∞ observer for the system (3).

Assumption 5: There exists some µ > 0 such that

  Ω -P -P -2µ I   ≤ 0 ( 22 
)
where Ω := P (A -LF ) + (A -LF ) T P + 2L f P I + 2 I and > 0 is in Assumption 4.

Theorem 3. Suppose that Assumptions 1-5 hold. Then ( 6) is an H ∞ observer for the system (3).

Proof. From Theorem 2, if the uncertainty ξ ≡ 0, then the error e(t) converges to zero exponentially. For non-zero ξ ∈ L 2 (0, ∞), from ( 11)-( 13), with the same V (t) = P e(t), e(t) , we have 

≤ (-e 2 + µ ξ 2 ) ( 23 
)
where the last inequality is deduced by using Assumption 5. Integrating both side from 0 to ∞, using V (0) = 0 and note that V is non-negative, we obtain that e L 2 (0,∞) ≤ µ ξ L 2 (0,∞) . It means that ( 6) is an H ∞ observer for the system (3).

Remark 3. i) Assumption 5 implies that Ω = P (A -LF ) + (A -LF ) T P + 2L f P I + 2 I ≤ 0, which is consistent to Assumption 4. In Ω, we use the term I instead of I as in [START_REF] Huang | H ∞ Observer design for singular one-sided Lur'e differential inclusion system[END_REF], which is easier to have the non-positiveness of Ω.

ii) The positive number µ exists, for example, if Ω ≤ -2 I, we can choose µ > P 2 4 2 .

Numerical examples

Example 1. Next we consider the system (3) with

A =       -6 4 0 7 -8 0 0 0 -7       , B =       4 6 -3       , f (x, u) =       u + 2 sin x 2 2u + 3 cos x 1 -u + 4 sin x 3       C = 8 6 -3 , F = 1 0 0 , u = 5 sin t.
Suppose that the unknown ξ(t, x, u)

=       2 5 cos x 1 4 sin t       and 
F(x) =    sign(x)(3|x| + 6) if x = 0, [-6, 6] if x = 0.
Then L = 4 and k = √ 41. Then Assumptions 1-4 are satisfied with

P =       1 0 0 0 1 0 0 0 1       , L =       0 11 0       , = 2, K = 4.
One can observe that the total error e converges to any neighborhood of the set Ω = [0, √ 41/2] in finite time while the observed error e 1 tends to zero very fast. Consequently, the observer state x using (6) provides a good estimation for the original state x. Example 2. Next let us consider the rotor system with friction as in [START_REF] De Bruin | Control of mechanical motion systems with non-collocation of actuation and friction: A Popov criterion approach for input-to-state stability and set-valued nonlinearities[END_REF][START_REF] Juloski | Observer design for an experimental rotor system with discontinuous friction[END_REF]:

0 1 2 3 4 5 Time t -3 -2 -1 0 1 2 3 e 1 0 2 4 6 8 10 Time t -3 -2 -1 0 1 2 3 e 2 0 2 4 6 8 10 Time t -3 -2 -1 0 1 2 3 
J u θu + k θ (θ u -θ l ) + T f u ( θu ) = k m u J l θl -k θ (θ u -θ l ) + T f l ( θl ) = 0, (24) 
where θ u and θ l are the angular positions of the upper and lower discs, respectively. Let

x 1 = θ u -θ l , x 2 = θu and x 3 = θl , we have ẋ1 = x 2 -x 3 ẋ2 = k m J u u - k θ J u x 1 - 1 J u T f u (x 2 ) ẋ3 = k θ J l x 1 - 1 J l T f l (x 3 ), (25) 
where

T f u (x 2 ) = T cu (x 2 )sign(x 2 ), x 2 = 0 [-T su + ∆T su , T su + ∆T su ], x 2 = 0 (26) 
and

T f l (x 3 ) =      [T sl + T 1 (1 - 2 1+e ω 1 |x 3 | ) +T 2 (1 - 2 1+e ω 1 |x 3 | )]sign(x 3 ) + b l x 3 , x 3 = 0 [-T sl , T sl ], x 3 = 0. (27) 
For simplicity, we take T f u (x 2 ) = b up x 2 . Then (25) can be written as

ẋ1 = x 2 -x 3 ẋ2 = k m J u u - k θ J u x 1 - b up J u x 2 ẋ3 = k θ J l x 1 - 1 J l T f l (x 3 ). ( 28 
)
The estimation of the parameters are given in the following tablet: 

Parameter Estimated value J u [kg m 2 /
T f u (x 2 ) = 2.2247x 2 , T f l (x 3 ) =      [0.1642 + 0.0603(1 - 2 1+e 5.7468|x 3 | ) -0.2267(1 - 2 1+e 0.2941|x 3 | )]sign(x 3 ) + 0.0109x 3 ,
x 3 = 0 [-0.1642, 0.1642],

x 3 = 0.

In order to analyse the real system, we have to use the mathematical model in a more abstract form:

   ẋ = Ax + Bω + Gu ω ∈ -T f l (Cx) y = F x, (29) 
where x 3 = 0.

A =    0 1 -1 -k θ Ju - bup Ju 0 k θ J l 0 0   , G =   0 km Ju 0   , B =   0 0 1 J l   , C = [0 0 1], F = [
Under the transformation, we have a new system

   ẋ = Āx + Bω + Gu ω ∈ -F(Cx) y = Cx, (30) 
where

Ā = A -mBC =   0 1 -1 -0.1526 -4.6688 0 2.2301 0 0.6442   , G =   0 8.3841 0   , B =   0 0 30.6748   , C = [0 0 1], F = [1 0 0]. F(λ) =      [0.1642 + 0.0603(1 - 2 1+e 5.7468|λ| ) -0.2267(1 - 2 1+e 0.2941|λ| )]sign(λ) + 0.0319λ, λ = 0 [-0.1642, 0.1642], λ = 0.
From [START_REF] Juloski | Observer design for an experimental rotor system with discontinuous friction[END_REF], λ → F(λ) is monotone. The input u is the input voltage to the power amplifier of the motor, and u is chosen as 2. Solving the following LMIs: Now, let's assume that the system (30) is influenced by an uncertainty ξ(t, x), which is described as follows: Suppose that the unknown ξ

( Ā -LF ) T P + P ( Ā -LF ) = -Q B T P = C -KF , (31) 
   ẋ = Āx + Bω + Gu + ξ(t, x) ω ∈ -F(Cx) y = Cx. (32) 
(t, x) = ξ 1 (t, x) =       1 4 sin x 2 cos t      
. Using the approximate sliding mode observer (6), we can see that observation error e 1 converges to zero very fast and the total error module e(t) belongs to the attractive set Ω = [0, 7.75] in finite time (Figure 2). The numerical result is consistent with Theorem 2 when the uncertainty is chosen randomly. Next we consider the unknown

ξ(t, x) = ξ 2 (t, x) =       16.0552 -23.4092 -29.5495       +       e -t e -2t e -1.5t      
, which has 2 parts: the first part in Im(P -1 F T ) and the second part vanishes when the time is large. Then the approximate sliding mode observer ( 6) is indeed the observer of the original system (Figure 3).

Conclusions

In this paper, we introduce an approximate sliding mode observer, which also functions as an H ∞ observer, designed for a specific category of set-valued Lur'e dynamical systems. Importantly, our approach accommodates scenarios where the uncertainty does not fall within the range of observation. Consequently, we are able to obtain accurate state estimations for the original systems. Furthermore, in cases where the unobservable portion of uncertainty tends to vanish when the time is large, we achieve exact observers. It would be interesting to investigate strategies that enhance the robustness of our proposed observer, enabling it to handle increasingly complex and dynamic uncertainties or disturbances. Exploring ways to incorporate adaptive control strategies into our observer framework would be a promising direction, facilitating its adaptation to evolving system conditions. Optimizing and reducing the size of the attractive set could be a valuable pursuit, potentially resulting in quicker convergence times. The practical application and validation of our observer in real-world systems, such as autonomous vehicles, robotics, or industrial processes, present good opportunities for future exploration. Extending our observer framework to address the challenges posed by nonlinear systems with set-valued uncertainties would further broaden its applicability and impact. These open questions require further investigation and are beyond the scope of the current paper. They will be the focus of a new research project.
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 31 Figure1: Errors using the approximate sliding mode observer[START_REF] Aubin | Differential Inclusions: Set-valued Maps and Viability Theory[END_REF] 

  T f l (x 3 ) is not monotone, we use the loop transformation Tfl (Cx) = T f l (Cx) -mCx, where m = -0.021. Then Tfl (x 3 ) = 2941|x 3 | )]sign(x 3 ) + 0.0319x 3 , x 3 = 0 [-0.1642, 0.1642],

  = -1.8392, = 0.0714.
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 32 Figure 2: Errors using (6) applied to Example 2 with the uncertainty ξ 1
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 33 Figure 3: Errors using (6) applied to Example 2 with the uncertainty ξ 2