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We introduce two Bishop-Phelps-Bollobás moduli of a Banach space which measure, for a given Banach space, what is the best possible Bishop-Phelps-Bollobás theorem in this space. We show that there is a common upper bound for these moduli for all Banach spaces and we present an example showing that this bound is sharp. We prove the continuity of these moduli and an inequality with respect to duality. We calculate the two moduli for Hilbert spaces and also present many examples for which the moduli have the maximum possible value (among them, there are C(K) spaces and L 1 (µ) spaces). Finally, we show that if a Banach space has the maximum possible value of any of the moduli, then it contains almost isometric copies of the real space

(2) ∞ and present an example showing that this condition is not sufficient.

Introduction

The classical Bishop-Phelps theorem of 1961 [START_REF] Bishop | A proof that every Banach space is subreflexive[END_REF] states that the set of norm attaining functionals on a Banach space is norm dense in the dual space. Few years later, B. Bollobás [START_REF] Bollobás | An extension to the theorem of Bishop and Phelps[END_REF] gave a sharper version of this theorem allowing to approximate at the same time a functional and a vector in which it almost attains the norm (see the result bellow). The main aim of this paper is to study the best possible approximation of this kind that one may have in each Banach space, measuring it by using two moduli which we define.

Before going further, we first present the original result by Bollobás which nowadays is known as the Bishop-Phelps-Bollobás theorem. We need to fix some notation. Given a (real or complex) Banach space X, we write B X and S X to denote the closed unit ball and the unit sphere of the space, and X * denotes the (topological) dual of X. We will also use the notation Π(X) := (x, x * ) ∈ X × X * : x = x * = x * (x) = 1 .

Theorem 1.1 (Bishop-Phelps-Bollobás theorem [START_REF] Bollobás | An extension to the theorem of Bishop and Phelps[END_REF]). Let X be a Banach space. Suppose x ∈ S X and x * ∈ S X * satisfy |1 -x * (x)| ε 2 /2 (0 < ε < 1/2). Then there exists (y, y * ) ∈ Π(X) such that x -y < ε + ε 2 and x * -y * ε.

So the idea is that given (x, x * ) ∈ S X × S X * such that x * (x) ∼ 1, there exist y ∈ S X close to x and y * ∈ S X * close to x * for which y * (y) = 1. This result has many applications, especially for the theory of numerical ranges, see [START_REF] Bollobás | An extension to the theorem of Bishop and Phelps[END_REF][START_REF] Bonsall | Numerical Ranges II[END_REF].

Our objective is to introduce two moduli which measures, for a given Banach space, what is the best possible Bollobás theorem in this space, that is, how close can be y to x and y * to x * in the result above depending on how close is x * (x) to 1. In the first modulus, we allow the vector and the functional to have norm less than or equal to one, whereas in the second modulus we only consider norm-one vectors and functionals. Definitions 1.2 (Bishop-Phelps-Bollobás modulus). Let X be a Banach space. The Bishop-Phelps-Bollobás modulus of X is the function Φ X : (0, 2) -→ R + such that given δ ∈ (0, 2), Φ X (δ) is the infimum of those ε > 0 satisfying that for every (x, x * ) ∈ B X ×B X * with Re x * (x) > 1 -δ, there is (y, y * ) ∈ Π(X) with x -y < ε and x * -y * < ε.

The spherical Bishop-Phelps-Bollobás modulus of X is the function Φ S X : (0, 2) -→ R + such that given δ ∈ (0, 2), Φ S X (δ) is the infimum of those ε > 0 satisfying that for every (x, x * ) ∈ S X × S X * with Re x * (x) > 1 -δ, there is (y, y * ) ∈ Π(X) with x -y < ε and x * -y * < ε.

Evidently, Φ S X (δ) Φ X (δ), so any estimation from above for Φ X (δ) is also valid for Φ S X (δ) and, viceversa, any estimation from below for Φ S X (δ) is also valid for Φ X (δ). Recall that the dual of a complex Banach space X is isometric (taking real parts) to the dual of the real subjacent space X R . Also, Π(X) does not change if we consider X as a real Banach space (indeed, if (x, x * ) ∈ Π(X) then x * ∈ S X * and x ∈ S X satisfies x * (x) = 1 so, obviously, Re x * (x) = 1 and (x, Re x * ) ∈ Π(X R )). Therefore, only the real structure of the space is playing a role in the above definitions. We could then suppose that we are only dealing with real Banach spaces and any result would apply automatically to complex spaces. Nevertheless, we are not going to do so, mainly because for classical sequence or function spaces, the real space underlying the complex version of the space is not equal, in general, to the real version of the space. We then prefer to develop the theory for real and complex spaces which, actually, does not suppose much more effort. Unless otherwise is stated, the (arbitrary or concrete) spaces we are dealing with will be real or complex and the results work in both cases. Some notation will help to the understanding and further use of Definitions 1.2. Let X be a Banach space and fix 0 < δ < 2. Writing A X (δ) := (x, x * ) ∈ B X × B X * : Re x * (x) > 1 -δ , A S X (δ) := (x, x * ) ∈ S X × S X * : Re x * (x) > 1 -δ , it is clear that Φ X (δ) = sup (x,x * )∈A X (δ) inf (y,y * )∈Π(X) max{ x -y , x * -y * }, Φ S X (δ) = sup (x,x * )∈A S X (δ) inf (y,y * )∈Π(X) max{ x -y , x * -y * }.

Therefore, if we write d H (A, B) to denote the Hausdorff distance between A, B ⊂ X × X * associated to the ∞ -distance d ∞ in X ×X * (that is, d ∞ (x, x * ), (y, y * ) = max{ x-y , x * -y * } for (x, x * ), (y, y * ) ∈ X × X * , and

d H (A, B) = max sup a∈A inf b∈B d ∞ (a, b) , sup b∈B inf a∈A d ∞ (a, b)
for A, B ⊂ X × X * ), then we clearly have that Φ X (δ) = d H A X (δ), Π(X) and Φ S X (δ) = d H A S X (δ), Π(X) for every 0 < δ < 2 (observe that Π(X) ⊂ A X (δ) and Π(X) ⊂ A S X (δ) for every δ). The following result is immediate.

Remark 1.3. Let X be a Banach space. Given δ 1 , δ 2 ∈ (0, 2) with δ 1 < δ 2 , one has

A X (δ 1 ) ⊂ A X (δ 2 ) and A S X (δ 1 ) ⊂ A S X (δ 2 )
. Therefore, the functions Φ X (•) and Φ S X (•) are increasing.

Routine computations and the fact that the Hausdorff distance does not change if we take closure in one of the sets, provide the following observations. Remark 1.4. Let X be a Banach space. Then, for every δ ∈ (0, 2), one has

Φ X (δ) := inf ε > 0 : ∀(x, x * ) ∈ B X × B X * with Re x * (x) > 1 -δ, ∃(y, y * ) ∈ Π(X) with d ∞ ((x, x * ), (y, y * )) < ε = inf ε > 0 : ∀(x, x * ) ∈ B X × B X * with Re x * (x) 1 -δ, ∃(y, y * ) ∈ Π(X) with d ∞ ((x, x * ), (y, y * )) < ε = inf ε > 0 : ∀(x, x * ) ∈ B X × B X * with Re x * (x) > 1 -δ, ∃(y, y * ) ∈ Π(X) with d ∞ ((x, x * ), (y, y * )) ε = inf ε > 0 : ∀(x, x * ) ∈ B X × B X * with Re x * (x) 1 -δ, ∃(y, y * ) ∈ Π(X) with d ∞ ((x, x * ), (y, y * )) ε , and 
Φ S X (δ) := inf ε > 0 : ∀(x, x * ) ∈ S X × S X * with Re x * (x) > 1 -δ, ∃(y, y * ) ∈ Π(X) with d ∞ ((x, x * ), (y, y * )) < ε = inf ε > 0 : ∀(x, x * ) ∈ S X × S X * with Re x * (x) 1 -δ, ∃(y, y * ) ∈ Π(X) with d ∞ ((x, x * ), (y, y * )) < ε = inf ε > 0 : ∀(x, x * ) ∈ S X × S X * with Re x * (x) > 1 -δ, ∃(y, y * ) ∈ Π(X) with d ∞ ((x, x * ), (y, y * )) ε = inf ε > 0 : ∀(x, x * ) ∈ S X × S X * with Re x * (x) 1 -δ, ∃(y, y * ) ∈ Π(X) with d ∞ ((x, x * ), (y, y * )) ε .
Observe that the smaller are the functions Φ X (•) and Φ S X (•), the better is the approximation on the space. It can be deduced from the Bishop-Phelps-Bollobás theorem that there is a common upper bound for Φ X (•) and Φ S X (•) for all Banach spaces X. Our first result in the next section will be to present the best possible upper bound, namely we will show that (1) Φ S X (δ) Φ X (δ)

√ 2δ 0 < δ < 2, X Banach space .
This will follow from a result by R. Phelps [START_REF] Phelps | Support Cones in Banach Spaces and Their Applications[END_REF]. A version for Φ S X (δ) for small δ's can be also deduced from the Brøndsted-Rockafellar variational principle [14, Theorem 3.17], as claimed in [START_REF] Cascales | A Bishop-Phelps-Bollobás type theorem for uniform algebras[END_REF]. The sharpness of (1) can be verified by considering the real space X =

(2) ∞ . This is the content of section 2. Next, we prove in section 3 that for every Banach space X, the moduli Φ X (δ) and Φ S X (δ) are continuous in δ. We prove that Φ X (δ) Φ X * (δ) and Φ S X (δ) Φ S X * (δ). Finally, we show that Φ X (δ) =

√ 2δ if and only if Φ S X (δ) = √ 2δ.
Examples of spaces for which the two moduli are computed are presented in section 4. Among other results, the moduli of R and of every real or complex Hilbert space of (real)-dimension greater than one are calculated, and there are presented a number of spaces for which the value of both moduli are √ 2δ (i.e. the maximal possible value) for small δ's: namely c 0 , 1 and, more in general, L 1 (µ), C 0 (L), unital C * -algebras with non-trivial centralizer. . . The main result of section 5 states that if a Banach space X satisfies Φ X (δ 0 ) = √ 2δ 0 (equivalently, Φ S X (δ 0 ) = √ 2δ 0 ) for some δ 0 ∈ (0, 1/2), then X contains almost isometric copies of the real space

∞ . We finish presenting, for every δ ∈ (0, 1/2), an example of a three dimensional real space Z containing an isometric copy of (2)

∞ for which Φ Z (δ) < √ 2δ
. This is the content of section 6.

The upper bound of the moduli

Our first result is the promised best upper bound of the Bishop-Phelps-Bollobás moduli.

Theorem 2.1. For every Banach space X and every δ ∈ (0, 2), Φ X (δ) √ 2δ and so, Φ S X (δ)

√ 2δ

We deduce the above result from [13, Corollary 2.2], which was stated for general bounded convex sets on real Banach spaces. Particularizing the result to the case of the unit ball of a Banach space, using a routine argument to change non-strict inequalities to strict inequalities, and taking into account that the dual of a complex Banach space is isometric (taking real parts) to the dual of the real subjacent space, we get the following result. Proposition 2.2 (Particular case of [START_REF] Phelps | Support Cones in Banach Spaces and Their Applications[END_REF]Corollary 2.2]). Let X be Banach space. Suppose that z * ∈ S X * , z ∈ B X and η > 0 are given such that Re z * (z) > 1 -η. Then, for any k ∈ (0, 1) there exist ỹ * ∈ X * and ỹ ∈ S X such that

ỹ * = ỹ * (ỹ), z -ỹ < η k , z * -ỹ * < k.
Proof of Theorem 2.1. We have to show that given (x, x * ) ∈ B X × B X * with Re x * (x) > 1 -δ, there exists (y, y * ) ∈ Π(X) such that x -y < √ 2δ and x * -y * < √ 2δ. Let us first prove the result for the more interesting case of δ ∈ (0, 1). In this case,

0 < 1 -δ < x * 1, so, if we write η = x * -1 + δ x * > 0, z * = x * / x * and z = x, one has Re z * (z) > 1 -η.
Next, we consider k = η/ √ 2δ and claim that 0 < k < 1. Indeed, as the function

(2) ϕ(t) = t -1 + δ √ 2δ t (t ∈ R + )
is strictly increasing, k = ϕ( x * ) and 1 -δ < x * 1, we have that

0 = ϕ(1 -δ) < k ϕ(1) = √ δ √ 2 < 1,
as desired. Therefore, we may apply Proposition 2.2 with z * ∈ S X * , z ∈ B X , η > 0 and 0 < k < 1 to obtain ỹ * ∈ X * and ỹ ∈ S X satisfying

ỹ * = ỹ * (ỹ), z -ỹ < η k = √ 2δ, x * x * -ỹ * < k = x * -1 + δ x * √ 2δ .
As k < 1, we get ỹ * = 0 and we may write y * = ỹ * ỹ * , y = ỹ, to get that (y, y * ) ∈ Π(X). We already have that x -y < √ 2δ. On the other hand, we have

x * -y * = x * - ỹ * ỹ * x * -x * ỹ * + x * ỹ * - ỹ * ỹ * x * x * x * -ỹ * + x * ỹ * -1 x * x * x * -ỹ * + x * ỹ * -x * + 1 -x * x * x * x * -ỹ * + ỹ * -1 + 1 -x * 2 x * x * x * -ỹ * + 1 -x * < 2 √ 2δ x * -1 + δ + 1 -x * .
Now, as the function

γ(t) = 2 √ 2δ t -1 + δ + 1 -t t ∈ [0, 1]
is strictly increasing (for this we only need 0 < δ < 2), we get γ( x * ) γ(1)

= 2δ √ 2δ = √ 2δ. It follows that x * -y * < √ 2δ, as desired.
Let us now prove the case when δ ∈ [1, 2). Here, it can be routinely verified that

δ -1 √ 2δ -1 < √ 2δ -1 so, writing ψ(δ) = 1 2 δ -1 √ 2δ -1 + √ 2δ -1 we get (3) δ -1 √ 2δ -1 < ψ(δ) < √ 2δ -1 δ ∈ [1, 2)
. Now, we have to distinguish two situations. Let first suppose that x * ψ(δ). Then, we take any y ∈ S X such that x -y 1 and take y * ∈ S X * such that y * (y) = 1. Then, (y,

y * ) ∈ Π(X), x -y 1 < √ 2δ and x * -y * 1 + x * 1 + ψ(δ) < √ 2δ
by [START_REF] Behrends | M -complements of M -ideals[END_REF]. Otherwise, suppose x * > ψ(δ). We then write η = x * -1 + δ x * > 0 and k = η/ √ 2δ as in the previous case, and we have to show that k < 1. This is trivial for the case δ = 1 and for δ > 1, we use that the function ϕ defined in ( 2) is now strictly decreasing to get that

k = ϕ( x * ) < ϕ ψ(δ) < ϕ δ -1 √ 2δ -1 = 1.
Then, the rest of the proof follows the same lines of the case when δ ∈ (0, 1) since this hypothesis is not longer used.

Let us comment that the above proof is much simpler if we restrict to x * ∈ S X * (in particular, to the spherical modulus Φ S X (δ)), but the result for non-unital functionals is stronger. Actually, the following stronger version can be deduced by conveniently modifying the election of k in the proof of Theorem 2.1.

Remark 2.3. For every 0 < θ < 1 and every 0 < δ < 2, there is ρ = ρ(δ, θ) > 0 such that for every Banach space X, if x * ∈ B X * with x * θ, x ∈ B X satisfy that Re x * (x) > 1 -δ, then there is a pair (y, y * ) ∈ Π(X) satisfying

x -y < √ 2δ -ρ and x * -y * < √ 2δ -ρ.
Let us observe that, given 0 < θ < 1, the hypothesis above is not empty only when 1 -θ < δ. On the other hand, in the proof it is sufficient to consider only the case of δ < 1 + θ, because, otherwise, the evident inequality Re x * (x) > -θ = 1 -(1 + θ) implies that there is a pair (y, y * ) ∈ Π(X) satisfying x -y < 2(1 + θ) and x * -y * < 2(1 + θ), so the statement of our remark holds true with

ρ := √ 2δ -2(1 + θ).
Next, we rewrite Theorem 2.1 in two equivalent ways.

Corollary 2.4. Let X be a Banach space.

(a) Let 0 < ε < 2 and suppose that x ∈ B X and

x * ∈ B X * satisfy Re x * (x) > 1 -ε 2 /2.
Then, there exists (y, y * ) ∈ Π(X) such that

x -y < ε and x * -y * < ε.

(b) Let 0 < δ < 2 and suppose that x ∈ B X and x * ∈ B X * satisfy Re x * (x) > 1 -δ.

Then, there exists (y, y * ) ∈ Π(X) such that

x -y < √ 2δ and x * -y * < √ 2δ.
As the last result of this section, we present an example of a Banach space for which the estimate in Theorem 2.1 is sharp.

Example 2.5. Let X be the real space

(2) ∞ . Then, Φ S X (δ) = Φ X (δ) = √ 2δ for all δ ∈ (0, 2).
Proof. Fix 0 < δ < 2. We consider

z = (1 - √ 2δ, 1) ∈ S X and z * = √ 2δ 2 , 1 - √ 2δ 2 ∈ S X * ,
and observe that z * (z) = 1 -δ. Now, suppose we may find (y, y * ) ∈ Π(X) such that z -y < √ 2δ and z * -y * < √ 2δ. By the shape of B X , we only have two possibilities: either y is an extreme point of B X or y * is an extreme point of B X * (this is actually true for all two-dimensional real spaces). Suppose first that y is an extreme point of B X , which has the form y = (a, b) with a, b ∈ {-1, 1}. As

z -y = max{|1 - √ 2δ -a|, |1 -b|} < √ 2δ,
we are forced to have b = 1 and a = -1. Now, we have y * = (-t, 1 -t) for some 0 t 1 and

z * -y * = √ 2δ 2 + t + t - √ 2δ 2 = max √ 2δ, 2t √ 2δ, 
a contradiction. On the other hand, if y * is an extreme point of B X * , then either y * = (a, 0) or y * = (0, b) for suitable a, b ∈ {-1, 1}. In the first case, as

z * -y * = √ 2δ 2 -a + 1 - √ 2δ 2 < √ 2δ,
we are forced to have a = 1 and so, y = (1, s) for suitable s ∈ [-1, 1]. But then z -y √ 2δ, which is impossible. In case y * = (0, b) with b = ±1, we have

z * -y * = √ 2δ 2 + 1 - √ 2δ 2 -b < √ 2δ, so b = -1 and therefore, y = (s, -1) for suitable s ∈ [-1, 1], giving z -y 2, a contradiction.

Basic properties of the moduli

Our first result is the continuity of the Bishop-Phelps-Bollobás moduli.

Proposition 3.1. Let X be a Banach space. Then, the functions

δ -→ Φ X (δ) and δ -→ Φ S X (δ) are continuous in (0, 2).
We need the following three lemmata which could be of independent interest. Lemma 3.2. For every pair

(x 0 , x * 0 ) ∈ B X × B X * there is a pair (y, y * ) ∈ Π(X) with Re y * (x 0 ) + x * 0 (y) 0.
Moreover, if actually Re x * 0 (x 0 ) > 0 then (y, y * ) ∈ Π(X) can be selected to satisfy

Re y * (x 0 ) + x * 0 (y) 2 Re x * 0 (x 0 ) .
Proof. 1. Take y 0 ∈ S X ∩ ker x * 0 and let y * 0 be a supporting functional at y 0 . Then Re y * 0 (x 0 ) + x * 0 (y 0 ) = Re y * 0 (x 0 ) If the right hand side is positive we can take y = y 0 , y * = y * 0 , in the opposite case take y = -y 0 , y * = -y * 0 . 2. Take y = x0 x0 and let y * be a supporting functional at y. Then, since for a fixed a > 0 the minimum of f (t) := t + a t for t > 0 equals 2

√ a, we get Re y * (x 0 ) + x * 0 (y) = x 0 + 1 x 0 Re x * 0 (x 0 ) 2 Re x * 0 (x 0 ).
The above lemma allows us to prove the following result which we will use to show the continuity of the Bishop-Phelps-Bollobás modulus.

Lemma 3.3. Let X be a Banach space. Suppose (x 0 , x * 0 ) ∈ A X (δ 0 ) with 0 < δ < δ 0 < 2. Then: Case 1: If δ, δ 0 ∈]0, 1] then dist (x 0 , x * 0 ), A X (δ) 2 √ 1 -δ - √ 1 -δ 0 1 - √ 1 -δ 0 . Case 2: If δ, δ 0 ∈ [1, 2) then dist (x 0 , x * 0 ), A X (δ) 2 2 -δ 0 δ 0 • δ 0 -δ δ 0 -1 + √ 1 -2δ + δδ 0 .
Proof. Denote t = Re x * 0 (x 0 ). Let (y, y * ) ∈ Π(X) be from the previous lemma (in case 1 we use part 2 of the lemma, in case 2 we use part 1). For every λ ∈ [0, 1] we define

x λ = (1 -λ)x 0 + λy and x * λ = (1 -λ)x * 0 + λy * . Both x λ and x * λ belong to corresponding balls, and dist ∞ ((x 0 , x * 0 ), (x λ , x * λ )) 2λ. We have: (4) Re x * λ (x λ ) = (1 -λ) 2 t + λ(1 -λ) Re y * (x 0 ) + x * 0 (y) + λ 2 , so in case 1 Re x * λ (x λ ) (1 -λ) 2 t + 2λ(1 -λ) √ t + λ 2 = (1 -λ) √ t + λ 2 .
Now we are looking for a possibly small value of λ, for which (

x λ , x * λ ) ∈ A X (δ). If δ 1 -t, the value λ = 0 is already ok and dist ∞ ((x 0 , x * 0 ), A X (δ)) = 0. If 0 < δ < 1 -t then the positive solution in λ of the equation (1 -λ) √ t + λ 2 = 1 -δ is λ t = √ 1 -δ - √ t 1 - √ t . Evidently, λ t ∈ [0, 1], so (x λt , x * λt ) ∈ A X (δ). Since λ t decreases in t, dist ∞ ((x 0 , x * 0 ), A X (δ)) 2λ t 2λ 1-δ0 = 2 √ 1 -δ - √ 1 -δ 0 1 - √ 1 -δ 0 .
This completes the proof of case 1.

In the case 2 we may assume t 1 -δ (otherwise the corresponding distance is 0 and the job is done), so t 0. By part 1 of the previous lemma and ( 4)

Re x * λ (x λ ) (1 -λ) 2 t + λ 2 , so we are solving in λ the equation (1 -λ) 2 t + λ 2 -1 + δ = 0, i.e. (1 + t)λ 2 -2tλ + (t -1 + δ) = 0. The discriminant of this equation is D = -tδ -δ + 1. Remark that D -(1 -δ)δ -δ + 1 = (1 -δ) 2 0
and t -1 + δ 0, so there is a positive solution of our equation given by

λ t = 1 1 + t (t + √ D) = 1 1 + t (t + √ 1 -tδ -δ).
This λ t decreases in t, so

λ t λ 1-δ0 = 1 δ 0 (1 -δ 0 + 1 -2δ + δδ 0 ) = 2 + δ 0 δ 0 • δ 0 -δ δ 0 -1 + √ 1 -2δ + δδ 0 .
For the continuity of the spherical modulus, we need the following result.

Lemma 3.4. Let X be a Banach space. Suppose (x 0 , x * 0 ) ∈ A S X (δ 0 ) with 0 < δ < δ 0 < 2. Then:

Case 1: If δ < 1 then dist ∞ (x 0 , x * 0 ), A S X (δ) 4(δ 0 -δ) δ 0 . Case 2: If δ ∈ [1, 2) and 2 - √ 2 -δ 0 < δ < δ 0 , then dist ∞ (x 0 , x * 0 ), A S X (δ) 2(δ 0 -δ) 2 -δ .
Proof. Let us start with case 1. Fix ξ ∈ (0, δ). As x * 0 = 1, we may find

y ξ ∈ S X satisfying x * 0 (y ξ ) > 1-ξ. For every λ ∈ [0, 1] we define x(λ, ξ) = λx 0 + (1 -λ)y ξ .
Consider λ ξ = δ-ξ δ0-ξ ∈ [0, 1] and write x ξ = x(λ ξ , ξ). An straightforward verification shows that Re x * 0 (x ξ ) > 1 -δ and so, as 1 -δ 0, we have that x ξ = 0 and also that Re

x * 0 x ξ x ξ > 1 -δ.
Therefore,

x ξ x ξ , x * 0 ∈ A S X (δ). It remains to estimate x 0 - x ξ x ξ
as follows:

x 0 - x ξ x ξ x 0 -x ξ + x ξ - x ξ x ξ 2 δ 0 -δ δ 0 -ξ + | x ξ -1| 2 δ 0 -δ δ 0 -ξ + | x ξ -x 0 | 2 δ 0 -δ δ 0 -ξ + x ξ -x 0 4 δ 0 -δ δ 0 -ξ .
We get the result by just letting ξ -→ 0.

Let us prove case 2. We have to distinguish the values of Re

x * 0 (x 0 ). If Re x * 0 (x 0 ) > 1 -δ, then the proof is done. Suppose otherwise that 1 -δ Re x * 0 (x 0 ) > 1 -δ 0 . Fix ξ ∈ 0, min{2 -δ 0 , 4δ-2-δ0-δ 2 δ-1 } (observe that 4δ-2-δ0-δ 2 δ-1
> 0 by the conditions on δ). As x * 0 = 1, we may find y ξ ∈ S X satisfying x * 0 (y ξ ) > 1 -ξ. Now, we consider

λ ξ = δ 0 -δ 2 -δ -ξ and x ξ = x 0 + λ ξ y ξ .
Notice that λ ξ ∈ (0, 1) (since δ < δ 0 and ξ < 2 -δ 0 ) and

x ξ x 0 -λ y ξ = 1 -λ ξ > 0. Also, observe that Re x * 0 (x ξ ) 1 -δ + λ ξ = (1 -δ)(2 -δ -ξ) + δ 0 -δ 2 -δ -ξ so, Re x * 0 (x ξ ) 0 since ξ 4δ-2-δ0-δ 2 δ-1 . Now, Re x * 0 x ξ x ξ Re x * 0 x ξ 1 -λ ξ > 1 -δ 0 + λ ξ (1 -ξ) 1 -λ ξ = 1 -δ.
Therefore,

x ξ x ξ , x * 0 ∈ A S X (δ). It remains to estimate x 0 - x ξ x ξ
as follows:

x 0 - x ξ x ξ x 0 -x ξ + x ξ - x ξ x ξ δ 0 -δ 2 -δ -ξ + x ξ -1 δ 0 -δ 2 -δ -ξ + x ξ -x 0 δ 0 -δ 2 -δ -ξ + x ξ -x 0 2 δ 0 -δ 2 -δ -ξ .
Consequently, letting ξ -→ 0, we get

dist ∞ (x 0 , x * 0 ), A S X (δ) 2(δ 0 -δ) 2 -δ .
Proof of Proposition 3.1. Let us give the proof for Φ X (δ). Observe that for δ 1 , δ 2 ∈ (0, 2) with δ 1 < δ 2 , one has

0 < Φ X (δ 2 ) -Φ X (δ 1 ) = d H (A X (δ 2 ), Π(X)) -d H (A X (δ 1 ), Π(X)) d H (A X (δ 2 ), A X (δ 1 )) .
Now, the continuity follows routinely from Lemma 3.3.

An analogous argument allows to prove the continuity of Φ S X (δ) from Lemma 3.4.

The following lemma will be used to show that the approximation in the space is not worse than the approximation in the dual. It is actually an easy application of the Principle of Local Reflexivity.

Lemma 3.5. For ε > 0, let (x, x * ) ∈ B X × B X * and let (ỹ * , ỹ * * ) ∈ Π(Y * ) such that x * -ỹ * < ε and x -ỹ * * < ε.
Then there is a pair (y, y * ) ∈ Π(X) such that

x -y < ε and x * -y * < ε.

Proof. First chose ε < ε such that still

x * -ỹ * < ε and x -ỹ * * < ε . Now, we consider ξ > 0 such that

(1 + ξ)ε + ξ + 2ξ 1 + ξ < ε,
and use the Principle of Local Reflexivity (see [START_REF] Albiac | Topics in Banach Space Theory[END_REF]Theorem 11.2.4], for instance) to get an operator T : Lin {x, ỹ * * } -→ X satisfying

T , T -1 1 + ξ, T (x) = x, ỹ * (T (ỹ * * )) = y * * (ỹ * ) = 1. Next, we consider x = T (ỹ * * ) T (ỹ * * ) ∈ S X and x * = ỹ * ∈ S X * , observe that Re x * (x) > 1 1 + ξ = 1 - ξ 1 + ξ ,
and we use Corollary 2.4 to get (y, y * ) ∈ Π(X) satisfying that

x -y < 2ξ 1 + ξ and x * -y * < 2ξ 1 + ξ .
Let us show that (y, y * ) ∈ Π(X) fulfill our requirements:

x -y T (x) -T (ỹ * * ) + T (ỹ * * ) -x + x -y < (1 + ξ)ε + ξ + 2ξ 1 + ξ < ε
and, analogously,

x * -y * x * -ỹ * + ỹ * -y * < ε + 2ξ 1 + ξ < ε.
Proposition 3.6. Let X be a Banach space. Then

Φ X (δ) Φ X * (δ) and Φ S X (δ) Φ S X * (δ)
for every δ ∈ (0, 2).

Proof. The proof is the same for both moduli, so we are only giving the case of Φ X (δ). Fix δ ∈ (0, 2). We consider any ε > 0 such that Φ X * (δ) < ε and for a given (x, x * ) ∈ A X (δ) consider (x * , x) ∈ A X * (δ) (we identify X as a subspace of X * * ) and so we may find (ỹ * , ỹ * * ) ∈ Π(Y * ) such that

x * -ỹ * < ε and x -ỹ * * < ε.

Now, an application of the previous lemma gives us a (y, y * ) ∈ Π(X) such that

x -y < ε and x * -y * < ε.

This means that Φ X (δ) ε and, therefore, Φ X (δ) Φ X * (δ), as desired.

We do not know whether the inequalities in Proposition 3.6 can be strict. Of course, this can not be the case when the space is reflexive. Corollary 3.7. For every reflexive Banach space X, one has Φ X (δ) = Φ X * (δ) and Φ S X (δ) = Φ S X * (δ) for every 0 < δ < 2.

Our last result in this section states that when the Bishop-Phelps-Bollobás modulus is the worst possible, then the spherical Bishop-Phelps-Bollobás modulus is also the worst possible. Proposition 3.8. Let X be a Banach space. For every δ ∈ (0, 2), the condition

Φ X (δ) = √ 2δ is equivalent to the condition Φ S X (δ) = √ 2δ. Proof. Since Φ S X (δ) Φ X (δ) √ 2δ, the implication Φ S X (δ) = √ 2δ ⇒ Φ X (δ) = √ 2δ is evident. Let us prove the inverse implication. Let Φ X (δ) = √ 2δ. Then there is a sequence of pairs (x n , x * n ) ∈ B X × B X * such that Re x * n (x n ) > 1 -δ but for every (y, y * ) ∈ Π(X) we have x n -y √ 2δ - 1 n or x * n -y * √ 2δ - 1 n .
An application of Remark 2.3 gives us that x * n -→ 1 as n → ∞. As the duality argument given in Lemma 3.5 implies the dual version of Remark 2.3, we also have

x n -→ 1 as n → ∞. Denote xn = xn xn , x * n = x * n x * n . In the case when δ ∈ (0, 1], we have Re x * n (x n ) > 1 -δ but for every (y, y * ) ∈ Π(X) xn -y √ 2δ - 1 n -x n -xn or x * n -y * √ 2δ - 1 n -x * n -x * n .
Since the right-hand sides of the above inequalities go to √ 2δ, we get the condition Φ S X (δ) = √ 2δ.

In the case of δ ∈ (1, 2), we no longer know that Re x * n (x n ) > 1 -δ, but what we do know is that lim inf Re x * n (x n ) 1 -δ, and that gives us the desired condition Φ S X (δ) = √ 2δ thanks to the continuity of the spherical modulus (Proposition 3.1).

Examples

We start with the simplest example of X = R.

Example 4.1. Φ R (δ) = δ if 0 < δ 1 √ δ -1 + 1 if 1 < δ < 2 , Φ S R (δ) = 0 for every δ ∈ (0, 2).
Proof. We first fix δ ∈ (0, 1]. First observe that taking x = 1 -δ, x * = 1, it is evident that Φ R (δ) δ.

For the other inequality, we fix x, x * ∈ [-1, 1] with x * x > 1 -δ. Then, x and x * have the same sign and we have that Second, fix δ ∈ (1, 2). On the one hand, taking

|x| > 1 -δ and |x * | > 1 -δ. Indeed, if |x| < 1 -δ, as |x * | 1, one has x * x = |x * x| < 1 -δ,
x = √ δ -1, x * = - √ δ -1, one has x * x = 1 -δ. As |x + 1| = √ δ -1 + 1 and |x * -1| = √ δ -1 + 1, it follows that Φ R (δ) √ δ -1 + 1.
For the other inequality, we fix x, x * ∈ [-1, 1] with x * x > 1 -δ. If x and x * have the same sign, which we may and do suppose positive, then |x -1| 1 < δ and |x * -1| 1 < δ and the same is true if one of them is null. Therefore, to prove the last case we may and do suppose that x > 0 and x * < 0. Now, if we suppose, for the sake of contradiction, that

|x -(-1)| √ δ -1 + 1 and |x * -1| √ δ -1 + 1, we get x √ δ -1 and -x * √ δ -1, so -x * x δ -1 or, equivalently, x * x 1 -δ, a contradiction. Therefore, either |x -(-1)| < √ δ -1 + 1 and |x * -(-1)| < 1 < √ δ -1 + 1 or |x * -1| < √ δ -1 + 1 and |x -1| < 1 < √ δ -1 + 1.
The result for Φ S R is an obvious consequence of the fact that S R = {-1, 1}.

Let us observe that the above proof gives actually a lower bound for Φ X (δ) for every Banach space X when δ ∈ (0, 1]. Remark 4.2. Let X be a Banach space. Then Φ X (δ) δ for every δ ∈ (0, 1]. Indeed, consider x 0 ∈ S X and x * 0 ∈ S X * with x * 0 (x 0 ) = 1 and write x = (1 -δ)x 0 and x * = x * 0 . Then Re x * (x) = 1 -δ and dist (x, S X ) = δ.

We do not know a result giving a lower bound for Φ X (δ) when δ > 1, outside of the trivial one Φ X (δ) 1. Also, we do not know if the lower bound for the behavior of Φ X (δ) in a neighborhood of 0 given in the remark above can be improved for Banach spaces of dimension greater than or equal to two.

We next calculate the moduli of a Hilbert space of (real) dimension greater than one.

Example 4.3. Let H be a Hilbert space of dimension over R greater than or equal to two. Then:

(a) Φ S H (δ) = 2 - √ 4 -2δ for every δ ∈ (0, 2). (b) For δ ∈ (0, 1], Φ H (δ) = max δ, 2 - √ 4 -2δ . For δ ∈ (1, 2), Φ H (δ) = √ δ.
Proof. As we commented in the introduction, both Φ H and Φ S H only depend on the real structure of the space, so we may and do suppose that H is a real Hilbert space of dimension greater than or equal to 2. Let us also recall that H * identifies with H and that the action of a vector y ∈ H on a vector x ∈ H is nothing but their inner product denoted by x, y . In particular,

Π(H) = (z, z) ∈ S H × S H .
Therefore, for every δ ∈ (0, 2), Φ H (δ) (resp. Φ S H (δ)) is the infimum of those ε > 0 such that whenever x, y ∈ B H (resp. x, y ∈ S H ) satisfies x, y 1 -δ, there is z ∈ S H such that x -z ε and y -z ε.

We will use the following (easy) claim in both the proofs of (a) and (b). 

x -z = y -z = 2 -2 + 2 x, y 2 - √ 4 -2δ.
To get the other inequality, we fix an ortonormal basis {e 1 , e 2 , . . .} of H, consider

x = 1 -δ/2 e 1 + δ/2e 2 ∈ S H and y = 1 -δ/2 e 1 -δ/2e 2 ∈ S H
and observe that x, y = 1 -δ. Now, given z ∈ S H , we write z 1 = z, e 1 , z 2 = z, e 2 , and observe that This follows from the obvious fact that Φ • (δ) increases when we restrict to subspaces. So, we are done if we restrict to the two-dimensional case and consider two points P = ( P , 0), Q = (q 1 , q 2 ) with q 2 0 and P Q , satisfying P, Q 1 -δ, and we find z ∈ S H such that P -z ε 0 and Q -z ε 0 . Now, it is straightforward to check that we have P ∈ √ 1 -δ, 1 , and 1 helps to the better understanding of the rest of the proof.

max{ z -x 2 , z -y 2 } = max ± |z 1 -1 -δ/2| 2 + |z 2 ± δ/2| 2 + 1 -z 2 1 -z 2 2 = z 2 1 + 1 -δ/2 -2z 1 1 -δ/2 + max ± |z 2 ± δ/2| 2 + 1 -z 2 1 -z 2 2 = 2 -2z 1 1 -δ/2 + 2|z 2 | δ/2 2 -2 1 -δ/2. It follows that Φ S H (δ) 2 - √ 4 
q 1 = 1-δ P ∈ 1 -δ, √ 1 -δ . Figure
Consider M = 1-δ+ P 2 P , P -(1-δ) 2 P
, which is the normalized midpoint between A = (1, 0) and 2 and write ∆ to denote the arc of the unit sphere of H between A and M . We claim that Q ∈ z∈∆ B(z, ε 0 ) and P ∈ z∈∆ B(z, ε 0 ). Observe that this gives that there is z ∈ ∆ ⊂ S H whose distance to P and Q is less than or equal to ε 0 , finishing the proof. Let us prove the claim. First, we

B = 1-δ P , 1 -( 1-δ P )
show that Q = (q 1 , q 2 ) ∈ z∈∆ B(z, ε 0 ). If q 2 P -(1-δ) 2 P
, the ball of radius ε 0 centered in the point of ∆ with second coordinate equal to q 2 contains the point

Q since ε 0 dist ((q 1 , 0), A) dist (Q, ∆).
For greater values of q 2 , write first

C = q 1 , P -(1-δ) 2 P
, which belongs to B(M, ε 0 ) by the previous argument. Also, as M is the normalized mid point between A and B, we have by the claim at the beginning of this proof that

M -B = 2 -2 + 2 A, B = 2 -2 + 2 1 -δ P 2 - √ 4 -2δ ε 0 A 1 -δ √ 1 -δ P 1-δ P B M q1 D C Figure 1.
Calculating Φ H (δ) for δ ∈ (0, 1) so, also, M -D ε 0 . Therefore, both the points C and C belong to B(M, ε 0 ), so also the whole segment [C, D] is contained there, and this proves the first part of the claim. To show the second part of the claim, that P ∈ z∈∆ B(z, ε 0 ), we consider the function

f (p) := 1 + p 2 -2p(p + 1 -δ) p ∈ [ √ 1 -δ, 1]
and observe that it is a convex function, so

f (p) max{f (1), f ( √ 1 -δ} ε 2 0 . It follows that P -M = 1 + P 2 -2 P ( P + 1 -δ) ε 0 ,
hence M ∈ B(P, ε 0 ). As also A ∈ B(P, ε 0 ), it follows that the whole circular arc ∆ is contained in B(P, ε 0 ) or, equivalently, that P ∈ z∈∆ B(z, ε 0 ).

Let now fix δ ∈ (1, 2).

Analogously to what we did before in equation ( 5), to show that Φ H (δ) √ δ, it is enough to consider the two-dimensional case and that, given p = ( p , 0) ∈ B H , q = (q 1 , q 2 ) ∈ B H with q 2 0, to find z ∈ S H such that z -P , z -Q √ δ. Routine computations show that

z = p + q 1 2 , 1 - p + q 1 2 2 ∈ S H
does the job. For the other inequality, we fix an ortonormal basis {e 1 , e 2 , . . .} of H, consider

P = √ δ -1 e 1 ∈ B H , Q = - √ δ -1 e 1 ∈ B H
and observe that P, Q = 1 -δ. For any z ∈ S H , we write z 1 = z, e 1 and we compute

max{ z -P 2 , z -Q 2 } = max |z 1 - √ δ -1| 2 + 1 -|z 1 | 2 , |z 1 + √ δ -1| 2 + 1 -|z 1 | 2 = max ± |z 1 ± √ δ -1| 2 + 1 -|z 1 | 2 = (|z 1 | + √ δ -1) 2 + 1 -|z 1 | 2 = δ + 2 √ δ -1|z 1 | δ.
It follows that Φ H (δ) √ δ, as desired.

Our next aim is to present a number of examples for which the values of the Bishop-Phelps-Bollobás moduli are the maximum possible, namely Φ X (δ) = Φ X (δ) = √ 2δ for small δ's. As we always have Φ S X (δ) Φ X (δ) √ 2δ, it is enough if we prove the formally stronger result that Φ S X (δ) = √ 2δ for small δ's (actually, the two facts are equivalent, see Proposition 3.8), and this is what we will show. It happens that all of the examples have in common that they contains an isometric copy of the real space

(2) ∞ or (2)
1 .

In the next section we will show that the latter is a necessary condition that it is not actually sufficient.

The first result is about Banach spaces admitting an L-descomposition. As a consequence we will calculate the moduli of L 1 (µ) spaces. Proposition 4.4. Let X be a Banach space. Suppose that there are two (non-trivial) subspaces Y and

Z such that X = Y ⊕ 1 Z. Then Φ X (δ) = Φ S X (δ) = √ 2δ for every δ ∈ (0, 1/2].
Proof. Fix δ ∈ (0, 1/2] and consider (y 0 , y * 0 ) ∈ Π(Y ) and (z 0 , z * 0 ) ∈ Π(Z) and write

x 0 = √ 2δ 2 y 0 , 1 - √ 2δ 2 z 0 ∈ S X x * 0 = 1 - √ 2δ y * 0 , z * 0 ∈ S X * .
It is clear that Re x * 0 (x 0 ) = 1 -δ. Now, suppose that we may choose (x, x * ) ∈ Π(X) such that 

- √ 2δ -y * 1 - √ 2δ y * 0 -y * < √ 2δ
from which follows that y * < 1 and so, y = 0 by ( 6), giving z = x = 1. But then,

x 0 -x = √ 2δ 2 y 0 + 1 - √ 2δ 2 z 0 -z √ 2δ 2 + 1 - √ 2δ 2 -z = √ 2δ,
a contradiction. We have proved that Φ X (δ) √ 2δ, being the other inequality always true.

The result above produces the following example. It is immediate that with a dual argument than the one given in Proposition 4.4 it is possible to deduce the same for a Banach space which decomposes as an ∞ -sum. Actually, in this case we will get a better result using ideals instead of subspaces. Proposition 4.6. Let X be a Banach space. Suppose that X * = Y ⊕ 1 Z where Y and Z are (nontrivial) subspaces of X * such that Y

w * = X * and Z w * = X * (w * is the weak * -topology σ(X * , X)). Then Φ X (δ) = Φ S X (δ) = √ 2δ for every δ ∈ (0, 1/2].
Proof. We claim that there are y 0 , z 0 ∈ S X and y * 0 ∈ S Y and z * 0 ∈ S Z such that Re y * 0 (y 0 ) = 1, Re z * 0 (z 0 ) = 1, y * (z 0 ) = 0 ∀y * ∈ Y, z * (y 0 ) = 0 ∀z * ∈ Z. Indeed, we define y 0 and y * 0 , being z 0 and z * 0 analogous. By assumption there is y 0 ∈ S X such that z * (y 0 ) = 0 for every z * ∈ Z and we may choose x * ∈ S X * such that Re x * (y 0 ) = 1 and we only have to prove that x * ∈ Y and then write y * 0 = x * . But we have x * = y * + z * with y * ∈ Y , z * ∈ Z and 1 = Re x * (y 0 ) = Re y * (y 0 ) y * y * + z * = 1, so z * = 0 and x * ∈ Y .

We now define

x * 0 = √ 2δ 2 y * 0 , 1 - √ 2δ 2 z * 0 ∈ S X * x 0 = 1 - √ 2δ y 0 + z 0 ∈ X
and first observe that x 0 1; indeed, for every

x * = y * + z * ∈ S X * one has |x * (x 0 )| = 1 - √ 2δ y * (y 0 ) + z * (z 0 ) 1 - √ 2δ y * + z * y * + z * = 1.
It is clear that Re x * 0 (x 0 ) = 1 -δ. Now, suppose that we may choose (x, x * ) ∈ Π(X) such that x 0 -x < √ 2δ and

x * 0 -x * < √ 2δ.
We Therefore, we have, in particular, that

(7) Re y * (x) = y * x Y . Now, we have 1 - √ 2δ -x Y = 1 - √ 2δ y 0 Y -x Y 1 - √ 2δ y 0 -x Y < √ 2δ
from which follows that x Y < 1 and so, y * = 0 by ( 7) and z * = x * = 1. But then,

x * 0 -x * = √ 2δ 2 y * 0 + 1 - √ 2δ 2 z * 0 -z * √ 2δ 2 + 1 - √ 2δ 2 -z * = √ 2δ,
a contradiction. Again, we have proved that Φ X (δ) √ 2δ, being the other inequality always true.

Of course, the first consequence of the above result is to Banach spaces which decompose as ∞ -sum of two subspaces. Indeed, if X = Y ⊕ ∞ Z for two (non-trivial) subspaces Y and Z, then X * = Y ⊥ ⊕ 1 Z ⊥ and Y ⊥ and Z ⊥ are w * -closed, so far away of being dense. Therefore, Proposition 4.6 applies. We have proved the following result.

Corollary 4.7. Let X be a Banach space. Suppose that there are two (non-trivial) subspaces Y and Z such that

X = Y ⊕ ∞ Z. Then Φ X (δ) = Φ S X (δ) = √ 2δ for every δ ∈ (0, 1/2].
As a consequence, we obtain the following examples, analogous to the ones presented in Example 4.5.

Examples 4.8.

(a) Let (Ω, Σ, µ) a measure space such that L ∞ (Ω) has dimension greater than one and let E be any non-zero Banach space. Then,

Φ L∞(µ,E) = Φ S L∞(µ,E) (δ) = √ 2δ δ ∈ (0, 1/2] .
(b) Let Γ be a set with more than one point and let E be any non-zero Banach space. Then,

Φ c0(Γ,E) = Φ S c0(Γ,E) (δ) = √ 2δ and Φ c(Γ,E) = Φ S c(Γ,E) (δ) = √ 2δ δ ∈ (0, 1/2] .
Our next aim is to deduce from Proposition 4.6 that also arbitrary C(K) spaces have the maximum moduli and for this we have to deal with the concept of M -ideal. Given a subspace J of a Banach space X, J is called M -ideal if J ⊥ is a L-summand on X * (use [START_REF] Harmand | M -ideals in Banach spaces and Banach algebras[END_REF] for background). In this case, X * = J ⊥ ⊕ 1 J where J = {x * ∈ X * : x * = x * | J } ≡ J * . Now, if X contain a non-trivial M -ideal J, one has X * = J ⊥ ⊕ 1 J and to apply Proposition 4.6 we need that J to be not σ(X * , X)-dense. Actually, J is not dense in X * if and only if there is x 0 ∈ X \ {0} such that x 0 + y = max{ x 0 , y } for every y ∈ J (this is easy to verify and a proof can be found in [START_REF] Behrends | M -complements of M -ideals[END_REF]). Let us enunciate what we have shown.

Corollary 4.9. Let X be a Banach space. Suppose that there is a non-trivial M -ideal J of X and a point x 0 ∈ X \ {0} such that x 0 + y = max{ x 0 , y } for every y ∈ J. Then,

Φ X (δ) = Φ S X (δ) = √ 2δ for every δ ∈ (0, 1/2].
With the above corollary we are able to prove that the moduli of any non-trivial C 0 (L) space are maximum.

Example 4.10. Let L be a locally compact Hausdorff topological space with at least two points and let E be any non-zero Banach space. Then

Φ C0(L,E) (δ) = Φ S C0(L,E) (δ) = √ 2δ for every δ ∈ (0, 1/2]
. Indeed, we may find a non-empty non-dense open subset U of L and consider the subspace As U is open and nonempty, we may find a non-null function x 0 ∈ C 0 (L, E) whose support is contained in U . It follows that x 0 + y = max{ x 0 , y } for every y ∈ J by disjointness of the supports.

J = f ∈ C 0 (L, E) : f | U = 0},
A sufficient condition to be in the hypotheses of Corollary 4.9 is that a Banach space X contains two non-trivial M -ideals J 1 and J 2 such that J 1 ∩ J 2 = {0} since, in this case, J 1 and J 2 are complementary M -summands in J 1 + J 2 [10, Proposition I.1.17]. Let us comment that this is actually what happens in C(K) when K has more than one point. Corollary 4.11. Let X be a Banach space. Suppose there are two non-trivial M -ideals J 1 and J 2 such that

J 1 ∩ J 2 = {0}. Then Φ X (δ) = Φ S X (δ) = √ 2δ for every δ ∈ (0, 1/2].
A sufficient condition for a Banach space to have two non-intersecting M -ideals is that its centralizer is non-trivial (i.e. has dimension at least two). We are not going into details, but roughly speaking, the centralizer Z(X) of a Banach space X is a closed subalgebra of L(X) isometrically isomorphic to C(K X ) where K X is a Hausdorff topological space, and it is possible to see X as a C(K X )-submodule of k∈K X X k for suitable X k 's. We refer to [2, §3.B] and [10, §I.3] for details. It happens that every M -ideal of C(K X ) produces an M -ideal of X in a suitable way (see [2, §4.A]) and if Z(X) contains more than one point, then two non-intersecting M -ideals appear in X, so our corollary above applies. Corollary 4.12. Let X a Banach space. If Z(X) has dimension greater than one, then

Φ X (δ) = Φ S X (δ) = √ 2δ for every δ ∈ (0, 2].
To give some new examples coming from this corollary, we recall that the centralizer of a unital (complex) C * -algebra identifies with its center (see [START_REF] Harmand | M -ideals in Banach spaces and Banach algebras[END_REF]Theorem V.4.7] or [2, Example 3 in page 63]).

Example 4.13. Let A be a unital C * -algebra with non-trivial center. Then,

Φ A (δ) = Φ S A (δ) = √ 2δ for every δ ∈ (0, 1/2].
It would be interesting to see whether the algebra L(H) for a finite-or infinite-dimensional Hilbert space H has the maximum Bishop-Phelps-Bollobás moduli. None of the results of this section applies to it since its center is trivial and, despite it contains K(H) as an M -ideal, there is no element x 0 ∈ L(H) satisfying the requirements of Corollary 4.9 (see [3, page 538]). Let us also comment that the bidual of L(H) is a C * -algebra with non-trivial centralizer, so Φ L(H

) * * (δ) = Φ S L(H) * * (δ) = √ 2δ for every δ ∈ (0, 1/2].
If there is δ ∈ (0, 1/2] such that Φ L(H) (δ) < √ 2δ, then this would be an example when the inequality in Proposition 3.6 is strict.

We finish this section with two pictures: one with the Bishop-Phelps-Bollobás moduli of R, C and

∞ , and another one with the corresponding values of the spherical Bishop-Phelps-Bollobás moduli. goal in this section is to show that Banach spaces with the greatest possible moduli contain almost isometric copies of the real 2 ∞ . Let us first recall the following definition. Definition 5.1. Let X, E be Banach spaces. X is said to contain almost isometric copies of E if, for every ε > 0 there is a subspace E ε ⊂ X and there is a bijective linear operator T :

E -→ E ε with T < 1 + ε and T -1 < 1 + ε.
The next result is well-known and has a straightforward proof. Lemma 5.2. A real Banach space E contains an isometric copy of

(2) ∞ if and only if there are elements u, v ∈ S E such that u -v = u + v = 2. E contains almost isometric copies of (2) ∞ if and only if there are elements u n , v n ∈ S E , n ∈ N such that u n -v n -→ 2 and u n + v n -→ 2 as n → ∞.
The class of spaces X that do not contain almost isometric copies of (

∞ was deeply studied by James [START_REF] James | Uniformly non-square Banach spaces[END_REF] (see also the exposition in Van Dulst's book [START_REF] Van Dulst | Reflexive and superreflexive Banach spaces[END_REF]), who gave to such spaces the name "uniformly non-square". He proved in particular, that every uniformly non-square space must be reflexive, that this property is stable under passing to subspaces, quotient spaces and duals. In fact, a general result is true [START_REF] Kadets | On two-dimensional universal Banach spaces[END_REF]: for every 2-dimensional space E if a real Banach space X does not contain almost isometric copies of E then X is reflexive. The aim of this section is to prove that if a real Banach space X satisfies that its Bishop-Phelps-Bollobás modulus is √ 2δ in at least one point δ ∈ (0, 1/2), then X (and, equivalently, the dual space) contains almost isometric copies of We will use some lemmas and ideas of Bishop and Phelps [START_REF] Bishop | A proof that every Banach space is subreflexive[END_REF], but for the reader's convenience we will refer to the corresponding lemmas in the already classical Diestel's book [START_REF] Diestel | Geometry of Banach spaces Lecture notes in Math[END_REF].

From now on, X will denote a real Banach space. For t > 1 and x * ∈ S X * , we denote

K(t, x * ) := {x ∈ X : x t x * (x)}.
Observe that K(t, x * ) is a convex cone with non-empty interior.

Lemma 5.3 (A particular case of [8, Chapter 1, Lemma 1]). For every z ∈ B X , every x * ∈ S X * and every t > 1, there is x 0 ∈ S X such that x 0 -z ∈ K(t, x * ) and [K(t, x * ) + x 0 ] ∩ B X = {x 0 }. Lemma 5.5. Let z ∈ B X , x * ∈ S X * , t > 1, and let x 0 ∈ S X be from Lemma 5.3. Denote y * ∈ S X * a functional that separates x 0 + K(t, x * ) from B X , so y * (x 0 ) = 1 and y * K(t, x * ) ⊂ [0, ∞). Then x * ker y * ∩ S X ⊂ (-∞, 1/t] and so, dist x * , Lin y * 1/t and min{ x * -y * , x * + y * } 2/t.

Proof. This also can be extracted from [8, Chapter 1], but it is better to give a proof. For every w ∈ ker y * ∩ S X we have that w does not belong to the interior of K(t, x * ), so 1 = w t x * (w), i.e. x * (ker y * ∩ S X ) ⊂ (-∞, 1/t]. An application of Lemma 5.4 completes the proof. Now we are passing to our results. At first, for the sake of simplicity, we consider the easier finitedimensional case.

Lemma 5.6. Let X be a finite-dimensional real space. Fix ε ∈ (0, 1). Suppose that (x, x * ) ∈ S X × S X * satisfies that x * (x) = 1 -ε 2 2 and that max{ y -x , y * -x * } ε for every pair (y, y * ) ∈ Π(X). Then for t = 2 ε , there exists y 0 ∈ [x + K(t, x * )] ∩ S X such that x * (y 0 ) = 1.

Proof. Consider a sequence t n > t, n ∈ N, with lim n t n = t. Using Lemma 5.3, we get y n ∈ S X such that (8)

y n -x ∈ K(t n , x * ) and (K(t n , x * ) + y n ) ∩ B X = {y n }.
Let y * n ∈ X * be a functional that separates K(t n , x * ) + y n from B X , i.e. y * n (y n ) = 1 and y * n (K(t n , x * )) ⊂ [0, ∞). Then, according to Lemma 5.5,

(9) min{ x * -y * n , x * + y * n } 2/t n < ε. But x * + y * n (x * + y * n )(y n ) = 1 + x * (y n ) = 1 + x * (x) + x * (y n -x) = 2 - ε 2 2 + x * (y n -x).
Since (y n -x) ∈ K(t n , x * ), we have x * (y n -x) (y n -x) /t n 0 so

x * + y * n 2 - ε 2 2 > ε
(we have used here that 0 < ε < 1). Comparing with (9), we get x * -y * n < ε, so the condition of our lemma says that x -y n ε. Without loss of generality (passing to a subsequence if necessary) we can assume that y n tend to some y 0 . Then

ε lim n y n -x lim n t n x * (y n -x) = t(x * (y 0 ) -x * (x)) 2 ε (x * (y 0 ) -1 + ε 2 2 ) 2 ε (1 -1 + ε 2 2 ) = ε.
This means that all the inequalities in the above chain are in fact equalities. In particular, x * (y 0 ) = 1 and

y 0 -x = lim n y n -x = t x * (y 0 ) -x * (x) , i.e. y 0 ∈ [x + K(t, x * )] ∩ S X .
Lemma 5.7. Under the conditions of Lemma 5.6, there are y * ∈ S X * and α 1 -ε 2 with

(10) x * -αy * ε 2 and x * -y * ε,
and there is v ∈ S X such that

(11) x * (v) = y * (v) = 1.
Proof. Let y 0 be from the previous lemma. Fix a strictly increasing sequence of t n > 1 with lim n t n = t and let us consider two cases.

Case 1 : Suppose there exists m 0 ∈ N with int K(t m0 , x * ) + x ∩ B X = ∅. Then, using the fact that for every closed convex set with non-empty interior, the closure of the interior is the whole set, we get

y 0 ∈ x + K(t, x * ) ∩ B X = int x + K(t, x * ) ∩ B X = n m0 int x + K(t n , x * ) ∩ B X .
So, we can pick (12)

z n ∈ x + K(t n , x * ) ∩ B X
such that z n -→ y 0 . In particular, x * (z n ) -→ 1. Let us apply Lemma 5.3: there are v n ∈ S X such that [START_REF] Phelps | Support Cones in Banach Spaces and Their Applications[END_REF] v n -z n ∈ K(t n , x * ) and [START_REF] Kadets | On two-dimensional universal Banach spaces[END_REF] implies that z n -x ∈ K(t n , x * ) which, together with [START_REF] Phelps | Support Cones in Banach Spaces and Their Applications[END_REF], mean that v n -x ∈ K(t n , x * ). Consequently,

K(t n , x * ) + v n ∩ B X = {v n }. Then x * (v n -z n ) 0, i.e. 1 x * (v n ) x * (z n ) -→ 1, so x * (v n ) -→ 1. Condition
v n -x t n x * (v n -x) t n ε 2 2 < ε.
If we denote y * n ∈ S X * to the functional that separates v n + K(t n , x * ) from B X , then (v n , y * n ) ∈ Π(X). Since we are working under the conditions of Lemma 5.6, it follows that

y * n -x * ε.
Also, by Lemma 5.5, dist (x * , Lin y * n ) 1/t n , so there are

α n ∈ R such that x * -α n y * n 1/t n .
Again, without loss of generality, we may assume that the sequences (α n ), (v n ) and (y * n ) have limits. Let us denote α := lim n α n , y * := lim n y * n , and v :

= lim n v n . Then v = 1, y * = 1, x * (v) = lim n x * (v n ) = 1, and y * (v) = lim n y * n (v n ) = 1.
This proves [START_REF] James | Uniformly non-square Banach spaces[END_REF]. Also,

x * -αy * = lim n x * -α n y * n 1 t = ε 2 . Consequently, ( 14 
) ε 2 x * -αy * (x * -αy * )(v) = 1 -α, so, α 1 -ε 2 .
Since by Theorem 2.1, x * (x) cannot be strictly smaller than 1 -δ, we have x * (x) = 1 -δ. Therefore, we may apply Lemma 5.7 to find y * ∈ S X * and α 1 -ε 2 for which conditions [START_REF] Harmand | M -ideals in Banach spaces and Banach algebras[END_REF] and ( 11) are fulfilled. Now we claim that in fact there is only one number γ ∈ R for which (15)

x * -γy * ε 2 and this γ equals 1 -ε 2 . So α = 1 -ε 2 and, we also claim that (16)

x * -αy * = ε 2 and x * -y * = ε.

Indeed, when we were proving equation ( 14), we proved that every γ ∈ R that satisfies (15) must satisfy γ 1 -ε 2 . On the other hand, the function γ -→ x * -γy * is convex, so the set G of those γ ∈ R satisfying (15) also must be convex; but 1 / ∈ G, so γ < 1. Finally, according to (10),

ε 2 1 -γ = y * -γy * x * -y * -x * -γy * ε 2 .
This means that all the inequalities above must be equalities, so γ 1 -ε 2 , and also (16) must be true. The claim is proved.

Now, let us define

u * := x * -αy * x * -αy * = 2 ε (x * -(1 - ε 2 )y * ),
and let us show that functionals u * and y * span a subspace of X * isometric to

∞ . According to Lemma 5.2, it is sufficient to show that u * -y * = u * + y * = 2. Let us do this. At first,

u * -y * = 2 ε (x * -(1 - ε 2 )y * ) -y * = 2 ε x * -y * = 2.
At second,

2 u * + y * = 2 ε (x * -(1 - ε 2 )y * ) + y * = 2 ε x * -y * + εy * 2 ε (x * -y * + εy * )(v) = 2.
Let us comment that for complex Banach spaces, we cannot expect that Theorem 5.8 provides a complex copy of (2) ∞ in the dual of the space. Namely, the two-dimensional complex space X =

(2) 1 satisfies Φ X (δ) = √ 2δ for δ ∈ (0, 1/2) but it does not contain the complex space

∞ (of course, it contains the real space ∞ are isometric in the real case). We do not know whether it is true a result saying that if a complex space X satisfies Φ X (δ) = √ 2δ for some δ ∈ (0, 1/2), then X contains a copy of the complex space

(2)
1 or a copy of the complex space

∞ . Let us extend the result of Theorem 5.8 to the infinite-dimensional case. Roughly speaking, we proceed as in the proof of such theorem, but instead of selecting convergent subsequences, we select subsequences such that their numerical characteristics (like norms of elements, pairwise distances, or values of some important functionals) have limits.

Theorem 5.9. Let X be an infinite-dimensional Banach space. Suppose that there is δ ∈ (0, 1/2) such that Φ X (δ) = √ 2δ (or, equivalently, Φ S X (δ) = √ 2δ). Then X * (and hence also X) contains almost isometric copies of 

* n ) ∈ S X × S X * such that x * n (x n ) > 1 -δ = 1 -ε 2 2 and (17) max{ y -x n , y * -x * n } ε - 1 n
for every pair (y, y * ) ∈ Π(X). Since we have x 

* n (x n ) 1 -(ε -1 n ) 2 /
y n -x n ∈ K(t n , x * n ) and (K(t n , x * n ) + y n ) ∩ B X = {y n }. For given n ∈ N, let u * n ∈ S X * be a functional that separates K(t n , x * n ) + y n from B X , that is, satisfying u * n (y n ) = 1 and u * n (K(t n , x * n )) ⊂ [0, ∞).
Then, according to Lemma 5.5, we have min{

x * n -u * n , x * n + u * n } 2/t n < ε. As we have x * n + u * n (x * n + u * n )(y n ) = 1 + x * n (y n ) = 1 + x * n (x n ) + x * n (y n -x n ) 2 - ε 2 2 > ε,
we get x * n -u * n < ε, so (17) says that x n -y n ε -1 n . Without loss of generality, passing to a subsequence if necessary, we can assume that the following limits exist: lim

n x n -y n , lim n x * n (y n -x n ) and lim n x * n (y n ). Then ε lim n y n -x n lim n t n x * n (y n -x n ) = t lim n x * n (y n -x n ) 2 ε (lim n x * n (y n ) -1 + ε 2 2 ) 2 ε (1 -1 + ε 2 2 ) = ε.
This means that all the inequalities in the above chain are in fact equalities. In particular, lim n x * n (y n ) = 1, and

(20) ε = lim n y n -x n = t lim n x * n (y n -x n ),
so the analogue of Lemma 5.6 is proved. Now, we proceed with analogue of Lemma 5. Observe that we have shown that the values of the functional x * n on ker y * n ∩ S X do not exceed The remaining conditions in (21) and ( 22) can be deduced the same way as in the case 1.

Finally, (21) and ( 22) imply that lim n x * n -y * n = lim n x * n -y * n = 2: the proof does not differ much from the corresponding part of the Theorem 5.8 demonstration.

Corollary 5.10. Let X be a uniformly non-square Banach space. Then, Φ S X (δ) Φ X (δ) < √ 2δ for every δ ∈ (0, 1/2). Consequently, every superreflexive Banach space can be equivalently renormed in such a way that, in the new norm, Φ S X (δ) Φ X (δ) < √ 2δ for all δ ∈ (0, 1/2).

It would be interesting to obtain a quantitative version of the above corollary.

6. A three dimensional space E containing

(2)

∞ with Φ E (δ) < √ 2δ
Like in the previous section, for every δ ∈ (0, 1/2) we denote ε = √ 2δ, so 0 < ε < 1. We denote B 3 ε ⊂ R 3 the absolute convex hull of the following 11 points A k , k = 1, . . . , 11 (or, what is the same, the convex hull of 22 points ±A k , k = 1, . . . , 11): Denote D ε the normed space R 3 , • , for which B 3 ε is its unit ball. Then D * ε can be viewed as R 3 with the polar of B 3 ε as the unit ball, and the action of x * ∈ D * ε on x ∈ D ε is just the standard inner product in R 3 . Let us list, without proof, some properties of D ε whose verification is straightforward:

A 1 = (0, 0, 3 4 ) 
• The subspace of D ε formed by vectors of the form (x 1 , x 2 , 0) is canonically isometric to 1 (and so, is isometric to

(2) ∞ ).
• There are no other isometric copies of [START_REF] Behrends | M -structure and the Banach-Stone Theorem[END_REF] ∞ in D * ε . • The following operators act as isometries both on D ε and D * ε : (x 1 , x 2 , x 3 ) -→ (x 2 , x 1 , x 3 ), (x 1 , x 2 , x 3 ) -→ (x 1 , -x 2 , x 3 ). In other words, changing the sign of one coordinate or rearranging the first two coordinates do not change the norm of an element.

The following theorem shows that the existence of an Proof. Assume contrary that Φ X (δ) = √ 2δ. Like in the proof of Theorem 5.8, this implies the existence of a pair (x, x * ) ∈ S X × S X * with the following properties: x * (x) = 1 -δ and (27) max{ z -x , z * -x * } ε for every pair (z, z * ) ∈ Π(X).

  a contradiction; the other inequality follows in the same manner. Finally, one deduces that |x-sign(x)| < δ and |x * -sign(x * )| < δ, as desired.

Claim:√ 4 -

 4 Given x, y ∈ S H with x + y = 0, write z = x+y x+y to denote the normalized midpoint. Thenx -z = y -z = 2 -2 + 2 x, y . Indeed, we have x -z 2 = 2 -2 x,z and 2 x, z = 2 x, x + y x + y = 2 + 2 x, y 2 + 2 x, y , giving x -z = 2 -2 + 2 x, y , being the other equality true by symmetry. (a). Let first prove that Φ S H (δ) 2 -2δ. Take x, y ∈ S H with x, y 1 -δ (so x + y = 0), consider z = x+y x+y ∈ S H and use the claim to get that

  -2δ, as desired.(b). We first fix δ ∈ (0, 1) and write ε 0 = max δ, 2 -√ 4 -2δ . The inequality Φ H (δ) ε 0 follows by Remark 4.2, the fact that Φ H (δ) Φ S H (δ) and the result in item (a). To get the other inequality, we first observe that[START_REF] Bollobás | An extension to the theorem of Bishop and Phelps[END_REF] Φ H (δ) Φ Lin {x,y} (δ) ∀x, y ∈ B H with x, y = 1 -δ.

  x = (y, z) ∈ Y ⊕ 1 Z, x * = (y * , z * ) ∈ Y * ⊕ ∞ Z * and observe that 1 = Re x * (x) = Re y * (y) + Re z * (z) y * y + z * z y + z = 1, therefore, we have (6) Re y * (y) = y * y . Now, we have 1

Example 4 . 5 .

 45 Let (Ω, Σ, µ) be a measure space such that L 1 (µ) has dimension greater than one and let E be any non-zero Banach space. Then,Φ L1(µ,E) (δ) = Φ S L1(µ,E) (δ) =√ 2δ for every δ ∈ (0, 1/2]. Indeed, we may find two measurable sets A, B ⊂ Ω with empty intersection such that Ω = A ∪ B. Then Y = L 1 (µ| A , E) and Z = L 1 (µ| B , E) are non-null, L 1 (µ, E) = Y ⊕ 1 Z and so the results follows from Proposition 4.4. Particular case of the above example are 1 and L 1 [0, 1].

  consider the semi-norm • Y defined on X by x Y := sup{|y * (x)| : y * ∈ S Y } which is smaller than or equal to the original norm, write x * = y * + z * with y * ∈ Y and z * ∈ Z, and observe that 1 = Re x * (x) = Re y * (x) + Re z * (x) y * x Y + z * x y * + z * = 1.

  which is an M -ideal of C 0 (L, E) by [10, Corollary VI.3.4] (use the simpler [10, Example I.1.4.a] for the scalar-valued case) and it is non-zero since L \ U has non-empty interior.

Figure 2 .Figure 3 .∞ 5 .

 235 Figure 2. The value of Φ X (δ) for R, C and (2)∞

( 2 )

 2 ∞ . Actually, as shown in Remark 3.8, Φ X (δ) = √ 2δ if and only if Φ S X (δ) = √ 2δ. Therefore, we may use the formally stronger hypothesis of Φ S X (δ) = √ 2δ.

Lemma 5 . 4 ([ 8 ,

 548 Chapter 1, Lemma 2] with a little modification that follows from the proof there). Let x * , y * ∈ S X * and suppose that x * ker y * ∩ S X ⊂ (-∞, ε/2]. Then dist x * , Lin y * ε/2 and min{ x * -y * , x * + y * } ε.

( 2 )

 2 ∞ as a subspace since

  Denote ε := √ 2δ.There is a sequence of pairs (x n , x

7 :Case 1 :

 71 we need to show that there are y * n ∈ S X * and α n 0,α n -→ 1 -ε 2 with (21) x * n -α n y * n ε 2 and x * n -y * n ε,and there is a sequence of v n ∈ S X such that(22) lim n x * n (v n ) = lim n y * n (v n ) = 1.Assume that there exist r > 0 and n ∈ N such that, for all m > n,K(t -r, x * m ) + x m ∩ B X \ (x m + rB X ) = ∅. This means that for all m > n there is z m such that z m -x m > r, z m 1 and z m -x m (t -r)x * m (z m -x m ). For λ ∈ (0,1) denote y m,λ := λz m + (1 -λ)y m . Clearly, y m,λ ∈ B X . Denote also λ m = inf{λ : y m,λ ∈ x m + K(t, x * m )}, and let us show that (23) lim m λ m = 0.Observe first that λ m is smaller than every value of λ for whichy m,λ -x m tx * (y m,λ -x m ).On the one hand, if y m -x m -tx * m (y m -x m ) 0, then λ = 0 belongs to the set in question, and the job is done. On the other hand, if y m -x m -tx * m (y m -x m ) 0, then there is λ for whichλ z m -x m + (1 -λ) y m -x m = tλx * m (z m -x m ) + t(1 -λ)x * m (y m -x m) is positive and belongs to the set in question. This means thatλ m y m -x m -tx * m (y m -x m ) y m -x m -tx * m (y m -x m ) + tx * m (z m -x m ) -z m -x m, but the limit of the right-hand side equals 0 thanks to (20). So condition (23) is proved. This means that y m,λm ∈ x m + K(t, x * m ) and y m,λm -y m 2λ m -→ 0. Let us pick a little bit bigger λm > λ m in such a way that we still have y m, λm -y m -→ 0, but for some tn < t with tn -→ t, we have (24) y m, λm -x m tn x * m (y m, λm -x m ). Then, in particular, lim n x * n (y n, λn ) = lim n x * n (y n ) = 1. Let us apply Lemma 5.3. There are v n ∈ S X such that (25) v n -y n, λn ∈ K( tn , x * n ) and K( tn , x * n ) + v n ∩ B X = {v n }.

, A 2 = ( 1 -A 10 =

 2110 [START_REF] Albiac | Topics in Banach Space Theory[END_REF][START_REF] Albiac | Topics in Banach Space Theory[END_REF] 0), A 11 = (1, -1, 0).

•

  There are no other isometric copies of(2) ∞ in D ε . • The subspace of D *ε formed by vectors of the form (x 1 , x 2 , 0) is canonically isometric to

Theorem 6 . 1 .

 61 Let δ ∈ (0, 1/2), ε = √ 2δ, and X = D ε . Then Φ X (δ) < √ 2δ.

  2 by Theorem 2.1, we deduce that lim n x * n (x n ) = 1 -δ. Denote t = 2 ε . Now, we are going to proceed like in Lemma 5.6 in order to show that there is a sequence (y n ) of elements in S X such that

	(18)	lim n	y n -x n	t lim n	x * n (y n -x n ) and lim n	x * n (y n ) = 1.
	Pick a sequence (t					

n ) with t n > t, n ∈ N and lim n t n = t. Using Lemma 5.3, for every n ∈ N we get y n ∈ S X such that

(19) 

  1 t-rn + 2r n . Therefore, by Lemma 5.4,

	dist (x * n , Lin y * n )	1 t -r n	+ 2r n -→	1 t
	and so there are α n ∈ R such that			
	lim n	x * n -α n y * n	1 t	.

First author partially supported by Spanish MINECO and FEDER project no. MTM2012-31755 and by Junta de Andalucía and FEDER grant FQM-185. Second author partially supported by Junta de Andalucía and FEDER grants FQM-185 and P09-FQM-4911 and by the program GENIL-PRIE of the CEI of the University of Granada. Third author partially supported by Spanish MINECO and FEDER project no. MTM2012-31755, and by Junta de Andalucía and FEDER grants FQM-185 and P09-FQM-4911. Fourth and Fifth authors partially supported by Junta de Andalucía and FEDER grant FQM-257. (Chica & Martín)

Case 2 : Assume that for every n ∈ N we have int K(t n , x * ) + x ∩ B X = ∅. Let us separate x + int (K(t n , x * )) from B X by a norm-one functional y * n , that is, y * n x + int K(t n , x * ) > 1, so, in particular, y * n (x) 1. Again, passing to a subsequence, we can assume that there exists y * = lim n y * n which satisfies y * = 1, 1 y * (x) lim n y * n (x) 1. So, y * (x) = 1, i.e. (x, y * ) ∈ Π(X). By the conditions of our lemma, this implies that y * -x * = max{ x -x , y * -x * } ε.

Since

we can select z n ∈ int x + K(t n , x * ) in such a way that z n -→ y 0 . Then

hence, y * (y 0 ) = 1. This means that condition [START_REF] James | Uniformly non-square Banach spaces[END_REF] works for v := y 0 . The remaining conditions can be deduced from Lemma 5.5 the same way as in the case 1.

We are now able to state and prove the main result of the section in the finite-dimensional case.

Theorem 5.8. Let X be a finite-dimensional real Banach space. Suppose that there is a δ

(hence, X also contains an isometric copy of

∞ ).

Proof. Denote ε := √ 2δ ∈ (0, 1). There is a sequence of pairs (

2 and max{ y -x n , y * -x * n } ε -1 n for every pair (y, y * ) ∈ Π(X). Since the space is finite-dimensional, we can find a subsequence of (x n , x * n ) that converges to a pair (x, x * ) ∈ S X × S X * . This pair satisfies that x * (x)

1 -δ and for every (y, y * ) ∈ Π(X),

This proves the first part of (22). Condition (24) imply that y n, λn -x n ∈ K( tn , x * n ) which, together with (25), mean that

If we denote by y * n ∈ S X * the functional that separates v n + K( tn , x * ) from B X , then (v n , y * n ) ∈ Π(X) (this proves the second part of (22) even in a stronger form) so, thanks to (17),

Also, by Lemma 5.5, dist (x * n , Lin y * n ) 1/ tn , so there are

Again, without loss of generality, we may assume that the sequences (α n ) and

Starting at this point, (21) can be deduced in the same way as it was done for (16). Case 2 : Assume that there is a sequence of r n > 0, r n -→ 0 and that there is a subsequence of (x m , x * m ) (that we will again denote (x m , x * m )) such that

Then also

By the Bishop-Phelps-Bollobás theorem, there is a sequence (x n , ỹ * n ) ∈ Π(X), such that max{ xn -x n , ỹ * n -y * n } -→ 0 as n → ∞. Again, passing to a subsequence, we can assume that all the numerical characteristics that appear here have the corresponding limits. According to (17), for n big enough, we have

This means that condition (22) works for v n := y n . Now consider an arbitrary w ∈ ker y * n ∩ S X . Taking a convex combination with an element h of the unit sphere where y * n (h) almost equals -1, we can construct an element w ∈ B X such that w -w 2r n and y * n ( w) = -r n . Then, by (26

Also, repeating the proof of Theorem 5.8 for this x * ∈ S X * , we can find u * , y * ∈ S X * such that the pair (u * , y * ) is 1-equivalent to the canonical basis of

1 and

This means that x * = ε 2 u * + (1 -ε 2 )y * . What can be this (u * , y * ) if we take into account that there is only one isometric copy of (2) 1 in X * ? It can be either u * = (1, 0, 0), y * = (0, 1, 0), or a pair of vectors that can be obtained from this one by application of isometries, i.e. just 8 possibilities. Consequently, x * either equals to the vector (ε/2, 1 -ε/2, 0), or to a vector that can be obtained from this one by application of isometries, again just 8 possibilities.

By duality argument, there are u, y ∈ S X such that the pair (u, y) is 1-equivalent to the canonical basis of (2) 1 and

Since the only (up to isometries) pair u, y ∈ S X of this kind is u = (1, 1, 0), y = (1, -1, 0), we get x = (1, 1 -ε, 0), or can be obtained from this one by application of isometries. So there are 8 × 8 = 64 possibilities for the pair (x, x * ). Taking into account that x * (x) = 1 -δ we reduce this number to 8 possibilities: x = (1 -ε, 1, 0), x * = (ε/2, 1 -ε/2, 0) and images of this pair under remaining 7 reflections and rotations of the underlying R 2 . If we show that this choice of (x, x * ) do not satisfy condition (27) then, by symmetry, the remaining choices would not satisfy (27) neither, and this would give us the desired contradiction.

Indeed, the pair (z, z * ) ∈ Π(X) that do not satisfy (27) for x = (1 -ε, 1, 0), x * = (ε/2, 1 -ε/2, 0) is the following one: z = (1 -ε, 1, ε/2), z * = (ε/2, 1 -ε/2, ε). Let us check the required properties. At first, z = A 2 ∈ S X . Then, z * (z) = 1. The last property means, that z * 1, so in order to check that z * = 1 it remains to show that |z * (A k )| 1 for all k. This is true for ε < 1. Finally, z -x = (0, 0, ε/2) = ε 2 4 3 A 1 = 2 3 ε < ε, and z * -x * = (0, 0, ε) = (0, 0, ε), A 1 = 3 4 ε < ε.