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Nicolae Mihalache1 and François Vigneron2

October 29, 2024

Abstract

This article presents a new algorithm to compute all the roots of two families
of polynomials that are of interest for the Mandelbrot set M : the roots of those
polynomials are respectively the parameters c ∈ M associated with periodic criti-
cal dynamics for fc(z) = z2 + c (hyperbolic centers) or with pre-periodic dynamics
(Misiurewicz-Thurston parameters). The algorithm is based on the computation of
discrete level lines that provide excellent starting points for the Newton method. In
practice, we observe that these polynomials can be split in linear time of the degree.

This article is paired with a code library [Mandel] that implements this algorithm.
Using this library and about 723 000 core-hours on the HPC center Roméo (Reims),
we have successfully found all hyperbolic centers of period ≤ 41 and all Misiurewicz-
Thurston parameters whose period and pre-period sum to ≤ 35. Concretely, this
task involves splitting a tera-polynomial, i.e. a polynomial of degree ∼ 1012, which is
orders of magnitude ahead of the previous state of the art. It also involves dealing
with the certifiability of our numerical results, which is an issue that we address in
detail, both mathematically and along the production chain. The certified database
is available to the scientific community [Mand.DB].

For the smaller periods that can be represented using only hardware arithmetic
(floating points FP80), the implementation of our algorithm can split the correspond-
ing polynomials of degree ∼ 109 in less than one day-core. We complement these
benchmarks with a statistical analysis of the separation of the roots, which confirms
that no other polynomial in these families can be split without using higher precision
arithmetic.
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1 Introduction

Algorithms to find all the roots of a given polynomial date back to the beginning
of mathematics. Greeks and Babylonians understood quadratic equations 2000 BC and
applied them to compute the boundaries of their agricultural fields, to define just taxes
and fair trade. Al-khawarizmi’s algorithm (825AD) constitutes the official starting point
of algebra and gave it its name.

At a theoretical level, the fundamental theorem of algebra ensures that every polyno-
mial can be split over C and the proof of this results was successively refined by d’Alembert
(1746), C.F. Gauss (1799), J.R. Argand (1806) and A.L. Cauchy (1821). The race to-
wards general solutions by radicals, though punctuated by great achievements, ultimately
stumped all generations until N. Abel (1829) and E. Galois (1832) proved the problem
to be unsolvable and discovered a new branch of mathematics (groups theory) along the
way.

Polynomial roots are also of key importance for modern numerical analysis. For ex-
ample, Gauss quadrature formulas provide an extremely efficient way to compute the
value of integrals as a linear combination of evaluations at the roots of some orthogonal
polynomial (Legendre, Jacobi, Chebyshev, Laguerre, Hermite,. . . ); see e.g. [BM92]. An-
other striking example is the computation of eigenvalues of linear operators, which are, by
definition (at least when the ambiant dimension is finite), the roots of the characteristic
polynomial. The knowledge of eigenvalues is crucial to understand the behavior of dy-
namical systems as illustrated, dramatically, by the collapse of Tacoma’s bridge in 1940.
Similarly, the Covid-19 pandemic has put R0 (the largest eigenvalue of the regeneration
matrix in a population model) under the international spotlight. Eigenvalues are also
essential in exploratory data analysis when a predictive model is based on a principal
component analysis.

In this article, we focus on two important families of polynomials. The family of
hyperbolic polynomials is defined recursively by

p0(z) = 0, pn+1(z) = pn(z)
2 + z. (1)

For n ≥ 1, one has deg pn = 2n−1. The family of Misiurewicz-Thurston polynomials is a
two parameters family defined for ℓ, n ∈ N by

qℓ,n(z) = pℓ+n(z)− pℓ(z). (2)

The polynomials pn and qℓ,n are closely related to the Mandelbrot set M (see [CG93],
[Mil90] or Section 2 for further details). This set is both one of the most intricate math-
ematical objects and a very famous computer-generated image (Figure 1). Its fractal
nature has fascinated the general public, the mathematical and the computer science
communities since 1980 and a great deal of research has been done around its properties
during this time. The century old conjecture of P. Fatou [Fat19] remains largely open
and can be stated as the following question: are all connected components of the interior
of M hyperbolic, i.e. do they each contain exactly one root of some pn ?
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Figure 1: The Mandelbrot set M with ∂M in black and in gray, the interior of M.

The current state of the art for root-finding algorithms is limited, in practice, to poly-
nomials whose degree does not exceed a few millions or, at best, a few hundred millions. In
Section §3 we survey briefly the corresponding algorithms. For example, D. Schleicher and
R. Stoll [SS17] have mastered this scale and give computing times1 ranging from 18 hours-
core to 15 days-core for various polynomials of degree 220 ∼ 106. Other implementations
using a different splitting algorithm and massively parallel architectures [GSCG17] end up
with similar core requirements and degree limitations. Eigenvalue methods encounter sim-
ilar limitations on the size of non-zero elements in the matrices [DT93], [IYM11], [SZI+17],
[SK19]. A substantial leap forward was accomplished by [RSS17]: using an adaptative
mesh-refinement technique for the Newton method they split a polynomial of degree 224

in less than 7 days-core, however with a few missing roots, and even one instance of a
polynomial of degree 230 ∼ 109 in 4 days-core. This remarquable implementation is even
backed by theoretical results [HSS01], [Sch23] (see §3.5 below) that ensure that a certain
set of starting points guaranties that all roots will be found.

For the application to Gaussian quadrature, one can exploit the specific connection
between orthogonal polynomials and the associated ODEs to compute the roots in linear
time. The published benchmark time [Bre17] is about 6 day-core to compute a Gauss-
Jacobi rule of record size 1012. The algorithm is explained in [BMF12], [HT13], [TTO16].

Let us point out that, while numerical analysis has recently reached problems with

1A time-core unit is a rough measure of the practical complexity of an implementation, regardless of
the architecture of the computer. It is obtained by adding the individual compute time of each active
computing unit involved throughout the computation. A convenient estimate and upper bound is the
product of the wall-clock time of the computation by the number of CPU cores in use. Up to a point,
mostly limited by memory management, parallelization leads to a better wall-clock time, even though
the overall time-core requirements may be substantially higher.
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2×109 degrees of freedom for hyperbolic PDEs in field-ready medical imaging [TAB+19],
550 × 109 degrees of freedom for elliptic PDEs on the Titan supercomputer [GMSB16]
and even 1015 degrees of freedom for a turbulence simulation on Summit [RAY19], those
remarkable achievements do not yet imply the ability to solve routinely eigenvalue and
polynomial splitting problems of this size. In particular, as we will see in Section §6,
the low separation between roots of polynomials of extreme degree cannot, in general, be
resolved using hardware floating point arithmetic.

1.1 Our results in a nutshell

This article raises the state of the art of polynomial splitting to a degree about one
trillion (i.e. 240 ∼ 1012), called a tera-polynomial2. We do not claim full generality and
focus on the families pn and qℓ,n defined above.

To achieve this result without brute force, the main idea is a new splitting algorithm.
Roughly speaking, the classical Newton’s method consists in choosing [HSS01] a mesh of
initial points that encircles the roots and to iterate the Newton map until the trajectories
reach the roots; this method results in a dense mesh of most of the disk (see Fig. 2).

Figure 2: Newton’s method to split a polynomial of degree d = 20 with 4 starting points (black)
per root. The trajectories (white) are Newton’s iterations, which are stoped in case of divergence;
the gray dots mark the critical points; the white disk are contracted to the roots (red). The classical
choice for the starting points (left) leads to O(d2) Newton steps. A better choice, proposed in this
article (right) optimizes the position of the starting points by combining their computation with
that of a level curve and brings, in practice, the total number of steps to O(d). See also [RSS17,
Fig. 2] for a similar idea, though implemented differently.

Instead, we propose to choose the starting points of the Newton method on a level curve

2As a trinomial denotes a polynomial expression with 3 terms, we should call it a teranomial. We decided
against it as the single letter difference with the prefix tetra (that denotes 4) could lead to confusion.
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that hugs the set of roots tightly. To produce this curve, one starts on an extremely lean
mesh to perform most of the “descend” with as little computations as possible. When
needed, one can then densify the mesh at a certain level set (horizontally) and then
continue the descend (vertically) with more points. Ultimately, we catch up with the
dense mesh of the classical method, having only a few Newton steps left until we find all
the roots.

We are releasing an exhaustive and proven list [Mand.DB] of all the roots of pn (called
hyperbolic centers) for n up to period 41 and all the roots of qℓ,n (called pre-periodic or
Misiurewicz-Thurston points) of order ℓ + n ≤ 35. By proven, we mean that each point
zj in our database comes with a mathematical statement that guaranties two things:
an exact root z̃j lies within a certain maximal tolerance from our numerical value, and
a standard refinement technique (Newton’s method) applied to zj converges to z̃j . To
ensure a strict control of the computational errors that is robust enough to withstand
intensive iterations, we have revisited and extended the theory of disk arithmetic.

As a companion to this article, we also release an implementation of our algorithm as a
standard C library [Mandel]. This library can be used to check and explore our database
[Mand.DB] and contains all the tools necessary to perform extractions, generate images,
compute arbitrary precision refinements, etc. This library is optimized on all fronts: it
can run on a single core for the smallest periods or can take advantage of the massively
parallel architectures of modern HPC centers for the higher ones. For example, the
splitting of p21, which is reported as requiring at least 18.8 hours-core in [SS17] takes only
10 seconds with our algorithm, on a single core of a consumer-grade personal computer.
Similarly, we can split p29 in only 1 hour-core and p33 in about 1 day-single-core. The
computations automatically switch to high-precision, using the [MPFR] library, but only
when necessary. For example, when n ≥ 30 the roots of pn near −2 are so close that they
cannot be resolved in the standard 64 bits floating point arithmetic. Up to n ≤ 41, we
use numbers with 128 significant bits. Throughout the library, custom data structures
ensure near optimal memory usage, data access and computation times.

The case of the polynomials qℓ,n is interesting because, contrary to the pn, they have
multiple roots, which slow down drastically the dynamics of the Newton map. However,
our algorithm remains robust in this case. We stopped at the order ℓ + n ≤ 35. The
volume of data generated by the roots of all (ℓ, n) combinations is of the same order of
magnitude to that of the roots of all pn for n ≤ 39 (see Section 2.4).

Our database and its companion library constitute a powerful numerical microscope
whose resolution extends far beyond the current state of the art and that can assist the
mathematical community in the exploration of the properties of M. While an in-depth
analysis will take time, we already present in this first article a few properties, like the
minimal distance between the roots of a given type (see Section 6.3.2).

1.2 Structure of this article

Our article is organized as follows. Section §2 contains a brief self-contained intro-
duction to the Mandelbrot set. Section §3 presents a quick review of the most common
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splitting (or at least root finding) algorithms for polynomials. A detailed presentation of
our new algorithm is done in Section §4, along with a general discussion of its algorithmic
complexity. The main statements, Theorems 4 and 5, are based on Theorem 13 proved
in Appendix B. As we do not claim full generality, the specifics of working with polyno-
mials tailored to the Mandelbrot set is discussed too. Readers interested in polynomials
of high degrees may appreciate, on the side, our improvement of the standard evaluation
scheme [AMV22], along with its companion library [FPE].

Section §5 is focused on the question of providing certifiable results. The backbone
of this section is a theory of a disk arithmetic (Theorem 8), which, contrary to interval
arithmetic, tolerates a high number of iterations of holomorphic maps.

Our implementation [Mandel] is presented in Section §6. The computer assisted
proof of the 3× 1012 instances of the generic Theorem 9 relies on Section §5, in particular
Theorems 6, 7. We also discuss the practical cost of our algorithm as we scale up to
splitting the tera-polynomial p41. This analysis confirms, in practice, the complexity
claims of Section §4. A listing of the tasks is given in Appendix D.

A proof of our Theorem 2 stated in Section §2 on the factorization of qℓ,n is given
in Appendix A. A few background auxiliary mathematical results used in section §5 are
recalled briefly in Appendix B; Theorem 13 and its corollary are new. For the sake of
convenience, the notations introduced throughout the article are listed in Appendix C.

Theorems are numbered independently (up to 14). All other statements and remarks
follow a distinct continuous numbering.

1.3 Thanks

We are grateful to Romeo, the HPC center of the University of Reims Champagne-
Ardenne, for hosting our project graciously even though its scale (near 50TB of data and
1 century-core / 870 kh of CPU usage for both the development and production phase)
is quite substantial for this regional structure.

It is our pleasure to thank our families who supported us in the long (5+ years) and,
at times stressful, process that gave birth to the Mandelbrot library. We also thank Sarah
Novak for a thorough proof-reading of this article.

2 About the Mandelbrot set

In this section, we will collect the strict minimum on the Mandelbrot set and fix
notations that will be needed subsequently. See Appendix C for standard notations.

The Mandelbrot set M is composed of the parameters c ∈ C for which the se-
quence (pn(c))n∈N (defined in (1)) remains bounded (Fig. 1). This sequence is the orbit
by iterated compositions of the only critical point z = 0 of the map fc(z) = z2 + c, i.e.

∀n ∈ N, fn
c (0) = fc ◦ . . . ◦ fc︸ ︷︷ ︸

n times

(0) = pn(c). (3)
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For short, the sequence (pn(c))n∈N is called the critical orbit of fc. M is a connected set,
whose complement in C is simply connected [DH82], [Sib84]. One has

M ⊂ D(0, 2) ∪ {−2}.

There are many tools online to explore M, both for scientific purposes or just for its
intrinsic beauty; see e.g. [Che10] or [Guc].

For c ∈ C, the dynamics of fc splits C in two complementary sets. The Fatou set Fc is
the open subset of z ∈ C in the neighborhood of which, the sequence (fn

c )n∈N is a normal
family i.e. precompact in the topology of local uniform convergence. On the contrary, on
the Julia set Jc = C\Fc, the dynamics appears to be, loosely speaking, chaotic. Both Fc

and Jc are fully invariant (i.e. invariant sets of the forward and backwards dynamics)
and that c ∈ M if and only if Jc is connected. For a review of the properties of Fatou
and Julia sets, see e.g. [CG93], [Mil90] for polynomial and rational maps and [Ber93],
[MPRW22] for entire and meromorphic functions.

2.1 Hyperbolic parameters

For n ≥ 1, the roots of pn are parameters c ∈ M, called hyperbolic centers, whose
critical orbits are periodic of period n. The roots of pn are simple [DH82, Buf18] and the
polynomial pn(z) is divisible by pk(z) for any divisor k of n. A. Douady and J.H. Hubbard
[DH82, DH85] have shown that the hyperbolic centers are interior points of M, with at
most one hyperbolic center per connected component of the interior. The set of all
hyperbolic centers is also dense in the boundary of M in the sense that its closure in C
contains ∂M.

Let us define the set of hyperbolic centers of order n ≥ 1 as the subset of p−1
n (0) whose

minimal (or fundamental) period is exactly n; in other terms:

Hyp(n) =
{
z ∈ p−1

n (0)
∣∣∀k ∈ Div(n)∗, pk(z) ̸= 0

}
(4)

where Div(n) = {k ∈ N∗ ; ∃k′ ∈ N, kk′ = n} and Div(n)∗ = Div(n)\{n} is the set
of strict divisors of n. For example, Hyp(1) = {0} and Hyp(2) = {−1}. The reduced
hyperbolic polynomial, also known as Gleason’s polynomial, is:

hn(z) =
∏

r∈Hyp(n)

(z − r). (5)

The polynomials pn and hn have integer coefficients. While expected, the irreducibility
of hn over Z[z] remains conjectural (see [HT15, last remark of §3], [SS17, p.155]).

Theorem 1 (folklore, included in [HT15]). The complete factorization of pn is

pn(z) =
∏
k|n

hk(z). (6)
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Moreover, the cardinal of Hyp(n) is given by

|Hyp(n)| =
∑
k|n

µ(n/k)2k−1 (7)

where µ is the Möbius function, i.e.

µ(n) =

{
(−1)ν if n is square free and has ν distinct prime factors,

0 if n is not square free.

The notation k|n means k ∈ Div(n) and |S| denotes the cardinal of a finite set. The
identity (6) is well known and is key in the count of hyperbolic centers. The Online
Encyclopedia of Integer Sequences [OEIS] attributes (7) to Warren D. Smith and Robert
Munafo (2000), sadly with no published reference. For a more general result that applies
to iterated maps of the form zd + c, see [HT15].

Figure 3: The hyperbolic points Hyp(n) for n ≤ 18 in green and the Misiurewicz-
Thurston parameters Mℓ,n = Mis(ℓ, n) with ℓ+n ≤ 16 in red in different parts of the
Mandelbrot set M, with Re c increasing from left to right between images.

2.2 Pre-periodic or Misiurewicz-Thurston parameters

For integers n ≥ 1 and ℓ ≥ 2, the roots of qℓ,n (defined in (2)) are parameters c ∈ ∂M,
called pre-periodic centers or Misiurewicz-Thurston points, whose critical orbits are pre-
periodic, that is it becomes periodic of period n after the first ℓ steps. For ℓ ∈ {0, 1}, one
can check immediately that

q0,n(z) = pn(z) and q1,n(z) = p2n(z). (8)

The dynamical reason for the second identity in (8) is that 0 is the only pre-image of c
under fc so a pre-periodic orbit of type (1, n) starting at zero actually loops back to zero,
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so is periodic of period n. The polynomial qℓ,n(z) is divisible by qℓ,k(z) for any divisor k
of n and by qℓ′,n(z) for any ℓ′ ≤ ℓ. Some of the roots of qℓ,n(z) have multiplicity; however,
the polynomial

sℓ,n(z) =
qℓ,n(z)

qℓ−1,n(z)
∈ Z[z] (9)

has simple roots [Buf18], [HT15, Lemma 3.1]. Douady-Hubbard [DH82, DH85] have
shown that the set of all pre-periodic points is dense in the boundary of M. Visually,
those points are either branch tips, centers of spirals or points where branches meet (see
Fig. 3).

By analogy with the hyperbolic case, let us define the set of Misiurewicz points of type
(ℓ, n) as the subset of q−1

ℓ,n(0) whose dynamical parameters are exactly ℓ and n; in other
terms:

Mis(ℓ, n) =

{
z ∈ q−1

ℓ,n(0)

∣∣∣∣∣ qℓ−1,n(z) ̸= 0,

∀k ∈ Div(n)∗, qℓ,k(z) ̸= 0

}
. (10)

We call ℓ + n the order of Mis(ℓ, n) because qℓ,n is a polynomial of degree 2ℓ+n−1. The
reduced polynomial whose roots are exactly Mis(ℓ, n) is denoted by

mℓ,n(z) =
∏

r∈Mis(ℓ,n)

(z − r) ∈ Z[z]. (11)

Note that Mis(0, n) = Hyp(n) and Mis(1, n) = ∅ because of (8). The count of the
Misiurewicz points has been established by B. Hutz and A. Towsley [HT15, Cor. 3.3]:

|Mis(ℓ, n)| = Φ(ℓ, n) |Hyp(n)| (12)

where

Φ(ℓ, n) =


1 if ℓ = 0,

2ℓ−1 − 1 if ℓ ̸= 0 and n|ℓ− 1,

2ℓ−1 otherwise.

To get a complete factorization of qℓ,n(z) in terms of (5) and (11), one needs to
understand the multiplicity of the hyperbolic factors. We claim the following result.

Theorem 2. For ℓ ∈ N and n ∈ N∗, one has

qℓ,n(z) =
∏
k|n

hk(z)
ηℓ(k)

ℓ∏
j=2

mj,k(z)

 (13)

where the multiplicity ηℓ(k) is given by3

ηℓ(k) =

⌊
ℓ− 1

k

⌋
+ 2. (14)

In other words, the roots of qℓ,n are composed of the points Hyp(k) for any divisor k of
n, which are roots with multiplicity ηℓ(k), and of the points Mis(j, k) for 2 ≤ j ≤ ℓ, which
are simple roots.

3In (14), the floor function is denoted by ⌊x⌋ = n if n ∈ Z and x ∈ [n, n+ 1).
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This result appears to be new. We propose a direct proof in Appendix A.

2.3 Harmonic measure

The sets of all hyperbolic-centers and of all Misiurewicz-Thurston points are respec-
tively denoted by:

Hyp =
⋃

n∈N∗

Hyp(n) ⊂
◦
M and Mis =

⋃
ℓ≥2
n∈N∗

Mis(ℓ, n) ⊂ ∂M.

As mentioned above, Mis = ∂M ⊂ Hyp. The density measures of Hyp and Mis (i.e. the
limit of the uniform counting measure on finite subsets of increasing order) both coincide
with the harmonic measure for ∂(Mc), which is the image of the uniform measure on the
unit circle under the Riemann map D(0, 1)c → Mc. Intuitively, the harmonic measure
expresses the asymptotic density of the external rays as they land on the boundary of the
Mandelbrot set. The support of the harmonic measure is the only subset of ∂M that is
“visible” to a random brownian motion starting at ∞ and is of Hausdorff dimension 1.
For further details, see [Mak85], [Lev90], [BS05], [FG15], [GV17], [GV19] and Remark 24
below.

2.4 Scale of the computational challenge

Using the library [Mandel] associated with this article, we have completely deter-
mined the sets Hyp(n) for all n ≤ 41 and Mis(ℓ, n) for ℓ + n ≤ 35. Both problems
consists in solving polynomial equations, namely (1) or (2), of respective degrees 2n−1 or
2ℓ+n−1. Overall, we have sifted through about 3.3 × 1012 polynomial roots and identi-
fied 2 725 023 424 662 distinct parameters of the Mandelbrot set. About 80% of them are
hyperbolic centers.

The tera-polynomial p41 has degree 1 099 511 627 776 and, as 41 is a prime number,

p−1
41 (0) = Hyp(41) ∪ {0}.

More generally, the deflation of Hyp(n) due to strict divisors of n constitutes an asymp-
totically negligible subset of the roots of pn.

The situation is not exactly the same for Mis(ℓ, n). There are 33 non-hyperbolic pre-
periodic polynomials qℓ,n of order ℓ+n = 35, each of degree 17 179 869 184. However, the
exact count 271 590 481 057 of

⋃
Mis(ℓ, n) for all types of order 35 represents only 47.9%

of the total number of roots of those polynomials. More generally, (12) ensures that, for
large N : ∑

ℓ+n=N
ℓ̸=0

|Mis(ℓ, n)| ≃ N − 2

2
|Hyp(N)|.

The deflation of Mis(ℓ, n) due to divisors is therefore, asymptotically, 50% as ℓ+n → ∞.
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To convey a sense of the orders of magnitude involved for storing and processing the
roots of polynomials of giga- and tera-scale, let us underline that a computation that takes,
on average, only 1 milli-second per root requires about 12 days-core for a polynomial of
degree 109. This requirement jumps to 32 years-core (∼ 280k hours-core) for a polynomial
of degree 1012.

Our actual computation times are discussed in Section §6. The success of our entreprise
is due to the efficiency of our new splitting algorithm for pn and qℓ,n (see Section 4), which
is bounded by O(d log d).

3 A brief review of root finding algorithms

In the rest of the article, one will assume that P ∈ C[z] is a polynomial of degree
d = degP ≥ 1 and that its roots Z = P−1(0) are localized in the disk D(0, r). See
Theorem 10 in Appendix B to estimate r from the coefficients of P .

A splitting algorithm is an algorithm that provides the list of all the roots of P through
convergent numerical approximations. Splitting algorithms can be classified in three broad
families: methods based on Newton’s iterations, root isolation methods and eigenvalue
methods. Let us review them briefly.

We denote by Vd the arithmetic complexity of evaluating a polynomial of degree d.
Horner’s method ensures that, in general, Vd = O(d) when the coefficients are known.
Some evaluation schemes offer a similar complexity with better balanced intermediary
computations, like Estrin’s method, which is implemented in the Flint library [FLINT],
or some variants [Mor13]. Other schemes take advantage of multipoint evaluations (see
e.g. [KS16]). In a separate article [AMV22], we propose a Fast Polynomial Evaluator
algorithm and its practical implementation [FPE] that brings the average cost of evaluating
real and complex polynomials with a fixed precision down to Vd = O(

√
d log d) after a

preprocessing phase that can be performed independently of the precision4 and that costs
O(d log d).

For iteratively defined polynomials (e.g. for pn, which is of degree d = 2n−1), one
obviously has Vd = O(log2 d). To keep comparisons fair between algorithms, we will
therefore explicitly factor out the cost of evaluations whenever possible.

Remark 1. If a polynomial P has simple roots, the computational cost of checking that
a sorted list of numbers is indeed a list of all the roots of P is O(dVd). To check that a
root z is of multiplicity k, one computes P (z), P ′(z), . . . , P (k−1)(z) instead of computing
k distinct values of P so the contribution to the total cost remains of order kVd provided
that each derivative can also be evaluated in time O(Vd). The cost of checking roots thus
remains O(dVd).

4In the pre-processing phase of the FPE algorithm, only the integer part of the base-2 logarithm of the
coefficients is needed.
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3.1 A word on numerical instabilities

A naive splitting algorithm consists in finding a root of P by any available method,
and then reduce the degree of P by performing a euclidian division.

In practice, this method is plagued by numerical instabilities, illustrated on Wilkin-
son’s polynomial [Wil84]

W20(x) =

20∏
n=1

(x− n)

whose largest root is 2019 times less stable than its smallest root when the coefficients
are perturbed in the canonical basis (though other basis may behave better). In general,
determining the roots of a polynomial from the list of its coefficients is a highly ill-
conditioned problem.

Consequently, for very large polynomials, computing the coefficients is not always
advisable. For example, as p3(z) = z4 + 2z3 + z2 + z, the largest coefficient of pn(z) for
n ≥ 3 exceeds 22

n−3
while the smallest one remains 1. Storing the coefficients of p41(z)

exactly is, at best, impractical and any reasonable approximation of those coefficients
would not be sufficiently precise to compute the roots accurately.

3.2 Root isolation methods

Bracketing (or root isolation) consists in identifying an interval of the real line or a
domain of the complex plane where the number of roots of P is prescribed.

Methods based on this principle are usually developed on the real line where they
constitute a textbook application of the intermediary value theorem (bisection method,
or the more involved ITP method).

In the complex plane, the splitting circle method and the Lehmer–Schur algorithm
are based on the residue theorem, which implies that, for all n ∈ N∑

z∈Ω
P (z)=0

mP (z)z
n =

1

2iπ

∫
∂Ω

P ′(z)

P (z)
zndz

for any smooth domain Ω whose boundary avoids the zeros of P and where mP (z) denotes
the multiplicity of z as a root of P . Successive refinements of Ω will either isolate single
roots or clusters of close roots that can be identified using Newton’s identities. Aside from
the cost of computing the integral to a sufficient precision, those methods are plagued by
the geometrical problem of finding a “good” circle, i.e. one which is proper to initiate a
sequence of divide and conquer iterations.

Of similar nature is Graeffe’s method, where the sequence

Pn+1(z
2) = (−1)dPn(z)Pn(−z)

13



is computed from P1 = P . The roots of Pn are {z2n ; P (z) = 0} and are thus, generically,
exponentially separated from each other. In that case Vieta’s formulas can easily be
inverted approximately, which gives the roots of Pn and ultimately, those of P .

Root isolation methods excel in finding roots of a given polynomial, but they are not
a splitting algorithms per se. We will not insist on comparing their complexity.

Our algorithm (see §4 below) presents a strong familiarity with the splitting circle
method: the level lines that we will use provide a tight enclosure of the roots of P by
a Jordan curve. Tighter level sets would enclose the roots in a finite union of disjointed
connected sets (see Fig. 2 and 6).

3.3 Eigenvalue algorithms

Splitting a polynomial P can always be restated as the question of finding all the
eigenvalues of the companion matrix AP ∈ Md(C), at least provided that the coefficients
of P are known.

AP =


0 1 0 . . . 0

0 0 1
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 1
c0 c1 · · · · · · cn−1

 if P (x) = xn −
n−1∑
k=0

ckx
k.

The vector (1, x, x2, . . . , xn−1) is an eigenvector of AP if and only if P (x) = 0.

The complexity of eigenvalue algorithms usually depends on the structure of the matrix
under consideration. For example, the modern version of the QR algorithm for Hessenberg
matrices5 costs O(d2) per iteration [BDG04], [CGXZ07]. The sequence starts with A0 =
A, the matrix whose spectrum is being computed. The principle of each step consists in
an orthogonal similarity transform Ak+1 = QT

kAkQk where

Ak = QkRk with

{
Qk orthogonal

Rk upper triangular

As QT
kQk = I, it boils down to computing Qk, Rk and then forming Ak+1 = RkQk.

The number of iterations used in practice until Ak reaches the Schur form of A (upper
triangular) may be O(d) or higher. Companion matrices belong to the Hessenberg class,
so, as a splitting algorithm, the QR method costs at least O(d3).

Note that the polynomial P is not explicitly evaluated here, so the factor Vd is not
included in the arithmetic complexity. However, it appears implicitly in each step as a
cost of matrices operations.

5A Hessenberg matrix has zero entries above the first superdiagonal, which is the case for AP .
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Remark 2. Many applications that require polynomial splitting arise naturally as an
eigenvalue problem. For example, in structural mechanics, the asymptotic stability anal-
ysis of an engineering design calls for the determination of the spectrum of some PDE
operator, which can be approximated by a large band-limited finite-elements matrix. Most
linear algebra algorithms are tailored for the needs of the specific applications, like finding
the extreme eigenvalues or their distribution [ACE09], or determining the eigenvectors.
They do not always constitute proper splitting algorithms, even though they can occasion-
ally be repurposed as such.

3.4 Newton’s iterations

The core of many iterative splitting algorithms are Newton’s iterations:

zn+1 = NP (zn) where NP (z) = z − P (z)

P ′(z)
· (15)

The fixed points of the dynamics of NP are the roots of P .

In the vicinity of each simple root, this method converges bi-exponentially. More
precisely, if z∗ = lim zn with P ′(z∗) ̸= 0, Taylor’s formula for P can be rewritten

zn+1 − z∗ =
(zn − z∗)

2

P ′(zn)

∫ 1

0
(1− t)P ′′(tz∗ + (1− t)zn)dt.

For ρ > 0, one defines Cρ = 1
2 sup |P

′′(z)|/ inf |P ′(z)|, each extremum being computed for

z ∈ D(z∗, ρ). One can always assume that ρCρ < 1 because Cρ → 1
2

∣∣∣P ′′(z∗)
P ′(z∗)

∣∣∣ ∈ R+ as

ρ → 0, so ρCρ → 0. In that case, if zn0 ∈ D(z∗, ρ) then

∀n ≥ n0, |zn+1 − z∗| ≤ Cρ|zn − z∗|2 i.e. |zn − z∗| ≤ C−1
ρ (ρCρ)

2n−n0
. (16)

When the root z∗ is of multiplicity µ ≥ 2, then the convergence of Newton’s algorithm
is only exponential. Indeed, one has

N ′
P (z) =

P (z)P ′′(z)

P ′(z)2
−→
z→z∗

1− 1

µ
∈
[
1
2 , 1

)
so for any z0 in the bassin of attraction

A(z∗) = {z ∈ C ; lim
n→∞

Nn
P (z) = z∗}

the estimate (16) is replaced, using Taylor’s formula for NP , by

zn+1 − z∗
zn − z∗

→ 1− 1

µ
· (17)

In that case, the accelerated scheme

z′n+1 = z′n − µ · P (z′n)

P ′(z′n)
(18)
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could be used instead to restore an ultimately bi-exponential behavior in the vicinity of
multiple roots. In practice, however, µ may be unknown and, even if it was known, this
accelerator will completely destroy the attraction bassins of the simple roots, as illustrated
on Figure 4. A better accelerator may be König’s method [BH03] that replaces P/P ′

in (15) by ratios of consecutive higher-order derivatives of 1/P .

Figure 4: Attraction bassins and Julia set of the Newton method (left) and of the
accelerated method with µ = 2 (right) for P (z) = (z − 1)2(z + 1)(z2 + 1).

The so called, quasi-Newton variants (Muller, Steffensen) avoid computing the deriva-
tive for numerical purposes, in particular if the method is applied to a general function
whose derivative is not known or not easily computable. A typical example is the secant
method. Another class of quasi-Newton methods involve higher-order derivatives (Halley,
Householder, Laguerre, Jenkins-Traub,. . . ): they give a higher-order of convergence in
exchange for a tighter requirement on the smoothness of the function and higher-order
norms in the estimates. See e.g. [Cam19] for a parallel implementation of Laguerre’s
method.

Transforming Newton’s method into a splitting algorithm requires choosing a set of
starting points for which the dynamics will visit every root. The naive approach of findind
one root at a time and factoring it out is both unpractical and numerically unstable (see
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§3.1). Choosing starting points at random may miss some roots entirely.
For a given z0 ∈ C for which the sequence converges to z∗, the number of steps required

before the sequence enters the bi-exponential regime i.e. min{n ; zn ∈ D(z∗, ρ)} with ρ
as in (16) may be astronomical. Occasional wild excursions from the vicinity of critical
points of P towards ∞ are not the main problem: those trajectories are easily identified
and abandoned. The less understood regime happens when the sequence crosses the mid-
range D(0, r)\D(z∗, ρ) where the sequence may almost stall if the Newton’s bassin forms a
narrow gorge, as described in [HSS01]; see also Figure 2. Any theoretical advance on this
matter like [BAS16] are of interest to improve the bounds on the complexity of Newton’s
method as a global splitting algorithm.

The stoping criterion is another critical issue: P. Henrici [Hen74, Chap. 6] states
that one may stop the Newton method when its steps get smaller then ε/d where ε
is the precision sought after, in which case the proximity of a root can be proved. In
our algorithm, we stopped much earlier and relied instead on an a-posteriori analysis,
performed in a higher precision and using disk arithmetic to prove that the sequence has
entered the quadratic convergence region (see §5).

Aberth-Ehrlich method [Abe73] is a generalisation of Newton’s method. It attempts
to find all the roots simultaneously by computing a fixed point for zn = (zn,j) ∈ Cd :

zn+1,j = zn,j −
1

P ′(zn,j)
P (zn,j)

−
∑
k ̸=j

1
zn,j−zn,k

·

The idea is that each root repels the others with an electrostatic potential, which prevents
the Newton’s dynamics to converge multiple times on a single root while missing another
one completely. The components of the starting vector z0 ∈ Cd are chosen within D(0, r)
and presumed to lack any symmetries that would accidentally match a symmetry of the
set of roots, which could prevent convergence.

The Aberth method is at the heart of the implementation of MPSolve [BF00, BR14],
which is the reference software for splitting polynomials using arbitrary precision arith-
metic. A massively parallel implementation [GSKC16] of this algorithm on multiple GPUs
can run up to a few millions of roots.

At each step, computing the electrostatic potential requires O(d2) operations, while
the evaluation of all P ′(zn,j)/P (zn,j) costs O(dVd). The typical number of steps to reach
a given approximation depends strongly on the choice of initial points [Gug86], [Fra89],
[Bin96]; in practice, it takes at least O(d) steps, with an overhead of O(d log d) operations
to compute a “good” initial vector z0 ∈ Cd. The overall cost of Aberth’s method is
thus O(d3) operations regardless of the actual value of Vd.

In practice, the Aberth method has good global convergence properties. However, a
theoretical foundation for this global convergence remains an open problem.

Weierstrass method (also known as Durand–Kerner) is the following variation:

zn+1,j = zn,j −
P (zn,j)∏

k ̸=j

(zn,j − zn,k)
·
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On a theoretical level, it was recently proven [RSS20], [KI04] that the Weierstrass method
may fail generically, i.e. on an open set of polynomials for an open set of intialization
points. This is a sharp reminder that one must pay close attention to the bassin of
attraction of each numerical method.

3.5 The algorithm of Hubbard, Schleicher and Sutherland

The global structure of the bassins of attraction of Newton’s method is quite intricate.
It has been extensively studied in [Sut89], [HSS01], [SS17], where a remarkable universal
algorithm for splitting P is explained. Let us consider a root z∗ of P and denote by
A(z∗) ⊂ C the basin of attraction for Newton’s method.

The connected component of z∗ in A(z∗) is called the immediate basin of attraction
and is denoted by U(z∗). It admits as many access to infinity (i.e. homotopy classes of
simple arcs connecting z∗ to ∞) as the number of critical points of NP within it, counted
with multiplicity (including the root itself as critical point if z∗ is a multiple root). The
girth (or channel width) at z ∈ U(z∗) is the length of the connected component of z in

{z′ ∈ U(z∗) ; |z′| = |z|}.

The girths admits a universal bound from below, which implies that taking about 2.47d3/2

points uniformly along a wide enough circle ensures that there is at least one point per
basin of attraction. This property turns Newton’s method into a trivially parallelizable
global splitting algorithm.

A more involved analysis based on the conformal modulus of the access channels
(roughly speaking: the ratio between the girth of the channel to the amplitude of one
Newton step from that point) allows both a reduction in the number of points involved,
and better estimates. A universal starting mesh, given in [HSS01], is composed of about
α ≃ 4.16d log d points taken on β ≃ 0.27 log d concentric circles.

Theorem 3 (Splitting algorithm of [HSS01]). Given a polynomial P (z) of degree d whose
roots are contained in D(0, r) and integers α ≥ 4.16d log d, β ≥ 0.27 log d, the mesh

Mr(d) =
⋃

1≤ν≤β

r(1 +
√
2)

(
1− 1

d

) 2ν−1
4β

Uα

contains a point in each bassin of attraction of the roots of P , for Newton’s method. Here,
Uα =

{
e2ikπ/α ; 0 ≤ k < α

}
denotes the roots of unity of order α.

Overall, |Mr(d)| ≃ 1.11d log2 d. For d ≃ 232, the mesh is build upon β = 6 circles. The
computational improvement over a one-circle approach, which requires O(d3/2) starting
points, becomes advantageous when d ≥ 214 (see Fig. 5).
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3.6 Practical considerations regarding the algorithm of [HSS01]

In this subsection, we discuss some practical aspects of the implementation of Theo-
rem 3, seen as a splitting algorithm, that will lead (for the polynomials pn and qℓ,n) to
our improved algorithm presented in Section 4.

The overall complexity of J.H. Hubbard, D. Schleicher and S. Sutherland splitting
algorithm is αβγ Newton steps (i.e. αβγVd arithmetic operations), where αβ = |Mr(d)| is
the number of starting points and γ is the average number of Newton iterations that are
actually necessary to compute the roots with a precision ε. The question of estimating γ
is two-fold. It obviously depends on the minimal separation of the roots of P (z), which
dictates the precision ε of the (final) computations. In [HSS01], no upper bound on γ is
given. However, a practical number of iterates is recommended:

γ ≃ d log
(r
ε

)
(19)

assuming that roots are simple. On the other hand, γ is also profoundly impacted by
the mid-range dynamics of the Newton map, i.e. the region D(0, r(1 +

√
2))\D(z∗, ρ)

with ρ as in (16), where the method can spend a substantial amount of time. The key
observation that leads to our algorithm is that, in that region, Newton’s method appears
to be computing level lines over and over in a very inefficient way (see Fig. 2).

5 10 15 20 25 30

5

10

50

100

500

1000

Figure 5: Gridpoints-per-root ratio for Mr(d) as a function of log2(d).
Comparison with the one-circle grid (dashed line).

3.6.1 On the scalability of the number of gridpoints per root

The algorithm of [HSS01] is remarkably efficient when d ≤ 220 i.e. for polynomials
of degree up to a few millions. However, in the giga- and tera-scale, the growth of the
gridpoint-per-root ratio, i.e. αβ/d, may add a substantial overhead to the cost of the
computation (see Fig. 5). In other terms, having the certainty to catch all the roots
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comes at a cost of at least 500 redundant finds for each root, on average. Moreover,
eliminating those redundant finds adds, in practice, additional search and sorting costs.
This objection is, however, not completely fair: in practice, one can start the search on
a dyadic thinning of Mr(d) and gradually step up to using the full mesh if roots are still
missing after each pass (see [HSS01, §9]).

Remark 3. If P is known to only have real roots, then the mesh Mr(d) can be reduced
to 1.3d points on a single semi-circle, which gives a constant gridpoints-per-root ratio.

3.6.2 On root separation

Let Z = P−1(0). For any z ∈ Z, let us introduce

δP (z) = min
{
|z − z′| ; z′ ∈ Z and z′ ̸= z

}
. (20)

In order to be able to distinguish the root z from its closest neighbor, it is necessary to
compute it with a precision ε < δP (z)/2. The minimal separation between the roots of
the polynomial P is

∆P = min {δP (z) ; z ∈ Z} , (21)

For example (see Fig. 15 and §6.3.2), for hyperbolic polynomials, one has ∆pn ∝ 4−n

which means that, lacking any further information on the local fluctuations of δpn(z), one
should request a precision ε of order O(4−n) for all the roots, which, according to (19)
requires γ = O(n2n) iterations of the Newton map. The cardinality of the starting mesh
is at least d = 2n−1 and may skyrocket up to |M2(d)| = O(n22n) should the finest mesh
be required. The total number of Newton steps thus ranges from O(n22n) to O(n322n).
As the evaluation of pn requires Vd = O(n) arithmetic operations, applying [HSS01] to
split pn requires O(nκ22n) arithmetic operations with 2 ≤ κ ≤ 4.

We have no reason to believe that p41 would behave especially badly. However, the
previous discussion gives a range of 1027 to 1031 arithmetic operations, which means that,
even if we disregard the need to compute at a precision much higher than 64 bits and
forget all the extra operations required to handle the large volume of data, it would take,
optimistically, 31 years to split p41 on a exa-scale computer like Frontier. This optimistic
estimate is astronomical and marks the splitting of p41 as a problem clearly out of reach
of the current state of the art.

3.6.3 On the mid-range dynamics of the Newton map

A pertinent quantity for the analysis of the Newton map is the number of Newton
steps that are necessary to bridge the level set A to the level set B (with A > B):

γA,B(P, z0) = min{k ; |P (zk)| ≤ B} −max{k ; |P (zk)| ≥ A}. (22)

For each root z∗, the dynamics of the Newton map develops in two stages. The first stage
(called mid-range) connects the starting meshMr(d) to the edge of D(z∗, ρ), which requires
γ1 ≃ γA,B(P, z0) Newton steps where A = |P (z0)| and B = max{|P (z)| ; z ∈ D(z∗, ρ)}
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with ρ as in (16). In practice, γ1 ≥ O(d) because, according to [HSS01, Lemma 3], Newton
steps satisfy

|z| − r

d
< |NP (z)− z| < |z|+ r

d
(23)

for |z| ≥ r > 0. A second stage connects the edge of D(z∗, ρ) to D(z∗, ε) where the
desired precision is reached. As it happens entirely in the quadratic regime (16), this
phase requires and additional γ2 = O(log log ρ

ε ) refining steps, or O(log ρ
ε ) for multiple

roots. Overall γ = γ1 + γ2.

Remark 4. As discussed in [HSS01, §9], starting instead from a rescaled mesh or radius
λr for some λ > 1 would allow one to slightly decrease the upper bound on the cardinality
of the mesh if λ is chosen close to 1, but it would dramatically increase γ1 by O(d log λ).

Computing γA,B precisely in full generality seems hopeless (see however [BAS16] and
Theorem 5 below). However, one may experiment along the real line to get a feeling of the
orders of magnitude. For the hyperbolic polynomials pn, the Newton dynamics starting
from the point

z0 =
1

4
+ θn ∈ R+ such that pn

(
1

4
+ θn

)
= 5

always converges to z∗ = 0. The first stage of the dynamics takes

γ1 = inf{k ∈ N ; zk ∈ D(0, 1/4)}

steps because for k ≥ γ1, the convergence of the sequence (zk)k∈N becomes quadratic.
We checked numerically that γ1 ≤ 6 for any n ≤ 38000. On the other hand, starting
another sequence of Newton iterations from z̃0 = 1 (as would be the case if we start from
Mr(2

n−1)), one would get

γ̃1 = inf{k ∈ N ; pn(z̃k) ≤ 5} ≥ O(2n)

because most Newton steps are of order 2−n. This simple observation suggests that,
instead of starting from a universal and too far meshMr(2

n−1), it may be more appropriate
to start from a mesh along a level line

|pn(z)| = L.

This idea is the key to the new algorithm that we describe in the next section.

4 A new splitting algorithm based on level-lines

In this section, we expose our new splitting algorithm at the general level, and illustrate
it on the search for hyperbolic centers and Misiurewicz points of M. Again, throughout
this section P denotes a polynomial in C[z] of degree d = degP whose roots Z = P−1(0)
are located within the disk D(0, r). The set of critical points is denoted by CritP . For
simplicity, we will also assume that P is monic.
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Brute force is not a viable option when d ≳ 1012. For example, one observes that the
minimal separation between roots of pk changes dramatically with the position in M and
that only a few roots contribute to the realisation of the overall minimum (see Fig. 16).
The corresponding Newton bassins are narrow channels. As illustrated in the previous
section, using a uniform starting grid fine enough to capture all of those narrow channels
is an algorithmic dead-end.

4.1 General principle

The solution we propose is that of an adaptative mesh refinement. Trying to reverse-
engineer the dynamics of the Newton map on the fly to guess where to add points seems
mostly out of reach and has only been attempted by [RSS17]-[Sch23] who use a clever
geometric estimator of the deformation of the trajectories for that purpose; however, if a
few roots end up being missed, it is not clear how to refine the computation.

What we need instead is a systematic way to put more grid points around regions
of high root density and spend less time visiting the regions of lower root density. We
want to parametrise a curve encircling the roots of P such that uniform subdivisions of
its parameter induce the desired adaptative mesh refinement.

The answer is given by the interaction between the two ordinary differential equations
that rule Newton’s flow and the level lines. Newton’s flow is defined by the ODE:

ζ ′(t) = − P (ζ(t))

P ′(ζ(t))
(24)

The evolution is iso-angle (i.e. argP is constant along trajectories) and the modulus is
an exponentially decaying Lyapunov function because any solution satisfies:

P (ζ(t)) = e−(t−t0)P (ζ(t0)). (25)

The stationary solutions are the roots. We will call Newton’s rays or iso-angle rays the
non-stationary solutions of the Newton flow. The non-critical iso-angles, i.e.

argP (ζ(t0)) /∈ arg [P (CritP )\{0}] (26)

stem global solutions, both forwards and backwards. Forwards, non-stationary maximal
trajectories on [t0, T

∗) converge to the roots if the trajectory is global i.e. T ∗ = +∞, or to
critical points if T ∗ < +∞. Note that, when T ∗ < +∞, the argument of the critical value
at the end-point must match the iso-angle of the trajectory; also, the end-point cannot
be a multiple root because (25) implies that

lim
t→T ∗

P (ζ(t)) = e−(T ∗−t0)P (ζ(t0)) ̸= 0.

Backwards, maximal trajectories on (T∗, t0] either go to ∞ ∈ C if T∗ = −∞ or to non-root
critical points with the same critical iso-angle if |T∗| < ∞. Bounded maximal trajectories
are possible between two critical points whose values share the same argument. Note that
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0 is a critical value if and only if P admits multiple roots. In that case, if ζ(t) converges
to a root of multiplicity µ, L’Hopital’s rule ensures that

ζ ′(t) ∼
t→+∞

−P (µ−1)(ζ(t))

P (µ)(ζ(t))

so, locally, the profile of Newton’s flow is radial and coincides with that of a simple root
of P (µ−1). The properties of Newton’s flow where used in [AMV23] to produce a short
proof of the fundamental Theorem of Algebra.

Level lines |P (z)| = L are also caracterized by an ODE, namely:

λ′(t) = i
P (λ(t))

P ′(λ(t))
· (27)

The solutions satisfy
P (λ(t)) = eitP (λ(0)). (28)

By construction, the level-lines are orthogonal to iso-angles. Again, stationary solutions
are the roots of P . The modulus |P (λ(t))| is constant along each level-line; in particular,
the level-lines are bounded. If |P (λ(t))| > max |P (Crit(P ))|, there is only one maximal
solution, which is a Jordan curve (as the image of a circle by the Riemann map of the
outside). Below the maximal critical value, there are multiple connected components that
are either compact or join two (possibly identical) critical points. The function λ(t) is
2ℓπ-periodic where ℓ ≤ d = degP because P (λ(2kπ)) = P (λ(0)) for any k ∈ Z and
P can take this value at most d distinct times; once the value loops, the unicity in the
Cauchy-Lipschitz theorem for the first-order ODE (27) ensures periodicity. For a level
line of large enough modulus, d is the smallest period.

Theorem 4. Given a monic polynomial P of degree d, if z0 ∈ C satisfies

|P (z0)| > max |P (Crit(P ))| and argP (z0) /∈ arg[P (Crit(P ))\{0}], (29)

then the points zk = λ(t0 + 2kπ) for 0 ≤ k < d obtained by solving (27) with λ(t0) = z0
are distinct. Each zk is associated to a global forward Newton flow (24), denoted by ζk(t).
The points z∗k = lim

t→+∞
ζk(t) are all the roots of P and this enumeration is consistent with

the multiplicities, i.e.
P (z) = (z − z∗0)(z − z∗1) . . . (z − z∗d). (30)

Proof. From the discussion above, we know that the starting points λ(t0+2kπ) for 0 ≤ k <
d such that argP (λ(t0)) /∈ arg[P (Crit(P ))\{0}] have a global forward Newton flow and
that each of these flows converges to a root of P . The d starting points are distinct because
|P (λ(t0))| > max |P (Crit(P ))| so the level line has only one connected component. The
question is wether one could be missing a root. Near each root z∗, the polynomial P takes
all possible arguments exactly as many times as the multiplicity because P (z) ∼ α(z−z∗)

m

as z → z∗, for α ∈ C∗ and m ∈ N∗. If we missed a root z∗, we consider a nearby point
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where argP (z) = argP (λ(t0)). The Newton ray from z is global both forwards and
backwards and escapes (backwards) at infinity. Thus, this Newton ray intersects the level
line of modulus |P (λ(t0))| and, as the angle is invariant, it is one of the λ(t0 + 2kπ)
points. Therefore, no root could have been missed. The same argument shows that no
multiplicity can be misrepresented, by following back the m Newton rays near z∗ whose
angle is argP (λ(t0)).

If one chooses d distinct values (tj)0≤j<d in [0, 2π), then at least one of them must
satisfy argP (λ(tj)) /∈ arg[P (Crit(P ))\{0}] because argP (λ(tj)) = argP (λ(t0)) + t0 − tj
mod 2π and there are, at most, d − 1 distinct critical values. We have therefore a naive
way of choosing O(d2) starting points (λ(tj +2kπ))0≤j,k<d whose Newton trajectories are
guarantied to reach all the roots. Generically however, the number of starting point drops
to O(d) as it is very unlikely that more than a few choices will hit critical arguments.
For example, in practice, we were able to split the polynomials pn and qℓ,n by Newton’s
method using only 4d starting points of iso-angles 0, π/2, π and 3π/2.

As illustrated on Figure 2, the next advantage of using iso-angle rays and level lines
instead of using unstructured parallel iterations of the Newton map, is that one can
perform most of the descend using a lean mesh, and densify it at a lowest level with no
risk of missing iso-angle rays.

Figure 6: Initial mesh Lζ0,d(p5) as black points and part of Lζ0,8d(p5) with d = 16 and
ζ0 = 5. Two other level lines are depicted along with Newton’s flow (iso-angles). The map
ΦP (z) = P (z)1/d maps large level lines to circles (top right) while P folds the level line ζ0
onto itself d times (bottom right). This figure is a commutative diagram.
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For ζ0 ∈ C such that |ζ0| > max |P (Crit(P ))| and N ∈ N∗, let us consider the mesh

Lζ0,N (P ) = {λ(2kdπ/N) ; 0 ≤ k < N} (31)

where λ is the 2dπ-periodic maximal solution of (27) defined by a choice6 of λ(0) as one
arbitrary root of P (λ(0)) = ζ0. In the rest of this section, we assume that this choice
is made consistently; it does not interfere with the set itself because λ is periodic. The
formula (28) implies that:

P (λ(2kdπ/N)) = e2ikdπ/Nζ0. (32)

In particular, the mesh Lζ0,N is a finite subset of cardinality N of the (smooth) level
curve defined by |P (z)| = |ζ0|. It is called a discrete level set of order N . As Lζ0,N (P ) ⊂
Lζ0,2N (P ), each mesh Lζ0,2m(P ) is a refinement of Lζ0,2m−1(P ). More generally, increasing
the value of N creates a finer mesh. On the value side, P (Lζ0,N (P )) is a uniform mesh
(roots of unity of higher order); on the pre-image side, the density of Lζ0,N (P ) the mesh
increases naturally around points of higher root density, as illustrated on Figure 6. Note
that the previous considerations on the solutions of (27) imply that

P−1(ζ0) = Lζ0,degP (P )

as long as |ζ0| > max |P (Crit(P ))|.

The discrete level line Lζ0,N (P ) is computed recursively using the following result.
One defines the Newton map with target ζ as the limit, if it exists:

L(P ; z0, ζ) = lim
n→∞

Nn
P−ζ(z0) (33)

where NQ is the Newton map (15) of a polynomial Q and powers denote, as usual,
composition. By construction, P (L(P ; z0, ζ)) = ζ.

Proposition 5. Given z0 such that |P (z0)| > max |P (Crit(P ))| and an arbitrary inte-
ger N ∈ N∗, there exists M ∈ N∗ large enough given by (37) such that the finite sequence

zk+1 = L

(
P ; zk, P (zk)e

2iπd
MN

)
(34)

satisfies LP (z0),N = {z0, zM , z2M , . . . , z(N−1)M}.

Remark 6. The auxiliary finite sequence (zℓM+j)ℓ∈J0,N−1K; j∈J0,M−1K satisfies

P (zℓM+j) = P (z0)e
2iπd (ℓM+j)/(MN).

When N = d = degP , the phase shift is simpler. The phase of P (z) changes d times
along |P (z)| = λ. Each time the phase advances by 2π (one turn), we have a new point
of Lζ0,d(P ). Each discrete turn is completed with M intermediary steps, as illustrated on
Figure 6. The value M is called the number of points per turn for the computation of
Lζ0,d(P ). When N divides d, roots of P (z) = ζ0 are being skipped.
6To lift the ambiguity regarding that choice, one can denote by L•

z0,N (P ) the discrete level that starts at
the point λ(0) = z0 ∈ C; then L•

z0,N (P ) = Lζ0,N (P ) with the value ζ0 = P (z0).
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Proof. Let C = max |P (Crit(P ))|. Applying the same argument as in [Jun85], one can
claim the following: there is a unique analytic determination of ΦP (z) = P (z)1/d that
satisfies the constraint ΦP (z) ∼ z as |z| → ∞. Moreover, on {z ∈ C ; |P (z)| > C}, the
map ΦP is univalent (see Fig. 6). Given ζ0 = P (z0) ∈ C such that |ζ0| > C and λ the
continuous level line from z0, the first step of the proof consists in choosing M ∈ N∗ large
enough to ensure that z1 = λ( 2πd

MN ) satisfies

lim
n→∞

N n(z0) = z1 where N (z) = z − P (z)− P (z1)

P ′(z)
· (35)

Up to a translation N (z) = N∗(z − z1) + z1 the desired statement is equivalent to:

lim
n→∞

N n
∗ (z0 − z1) = 0 where N∗(z) = z − P (z + z1)− P (z1)

P ′(z + z1)
·

Let ζ1 = P (z1) and the half-line D = R−ζ1 antipodal to ζ1. Note that |ζ0| = |ζ1|. The
injectivity of ΦP ensures that P−1(z) is well defined, injective and bi-holomorphic on
D(0, C)c\D and in particular on D(ζ1, |ζ0| − C). Next, writing R = |ζ0| − C, we apply
Theorem 13 to the injective map g : D(0, 1) → C defined by

∀w ∈ D(0, 1), g(w) =
P ′(z1)

R

(
P−1(ζ1 +Rw)− z1

)
.

By construction, g(0) = 0 and g′(0) = 1. Its reciprocal f = g−1 is given by

f(z) =
P
(
z1 +

Rz
P ′(z1)

)
− P (z1)

R
·

Then g(D(0, β0)) is contained in the bassin of attraction of 0 for the Newton map

Nf (z) =
P ′(z1)

R
N∗

(
Rz

P ′(z1)

)
.

The original question (35) gets an positive answer if P ′(z1)
R (z0 − z1) ∈ g(D(0, β0)), which

easily boils down to
|P (z0)− P (z1)| < β0(|P (z0)| − C). (36)

As P (z1) = P (z0)e
2iπd
MN and |1− eiθ| < |θ| it is therefore sufficient to take

M ≥ 2πd

Nβ0

(
1− C

|P (z0)|

) (37)

to ensure that L

(
P ; z0, P (z0)e

2iπd
MN

)
= λ( 2πd

MN ). As the constants are uniform by rotation,

the rest of the statement follows by re-indexing the next points.

Remark 7. For more precise estimates along the level line, see [MVn+1], where we exploit
the fact that P−1 is injective not only on the disk D(ζ1, |ζ0|−C) but also on the half-plane
tangent to D(0, C) that contains ζ1.
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Once one is able to compute Lζ0,N (P ) efficiently, then, the splitting algorithm consists
in iterating either Newton’s flow or the Newton map from each point of Lζ0,N (P ) until
roots are found up to the precision desired. Obviously, this step is highly parallelizable.
Duplicates are eliminated from the list and if some roots are missing, N can be increased.

The strategy for splitting P can therefore be formalized as follows.

Algorithm S(P ) : Splitting algorithm for P (z) with simple roots in D(0, 1)

Data: λ+ ≥ max |P (Crit(P ))| and λ− ≤ min |P (Crit(P ))|.
1 Compute the discrete level line M = L2λ+,cLd(P ) /* O(d) */

2 for each z ∈ M do

3 Iterate time-1-flow to λ−/11 /* (5 + log λ+

λ−
)× Tflow */

4 Iterate NP to the desired precision ε /* O(log | log ε|) */

5 Add root to appropriate data structure R /* O(log2 d) */

An upper bound for λ+ is given by Theorem 10 applied to P ′; on the other hand, no
simple universal a-priori lower bound for λ− is known.

We have already explained how to compute the discrete level line. The constant cL is
chosen in accordance with Proposition 5. In practice, cL = 4 (see §4.2)

In the previous algorithm, Newton’s descend is split in two phases. In the first phase,
one follows the iso-angle rays instead of taking discrete Newton steps. We call Tflow the
arithmetic cost of following the continuous flow in time 1 and factor it out. An exact
upper-bound of the duration of transit is available for the continuous flow.

Proposition 8. The number of iterations of the time 1 Newton flow that connect two
level lines is logarithmic in the ratio of the levels. Precisely, given a point z0 such that
|P (z0)| = λ1 and λ2 < λ1, the Newton flow ζ(t) of P defined by (24) with ζ(0) = z0
satisfies

|P (ζ(t))| ≤ λ2 if and only if t ≥ log
λ1

λ2
·

Proof. According to (25), each time 1 iteration of Newton’s flow divides the modulus of
the value of the polynomial by e.

In the second phase, our choice for λ− ensures that NP converges quadratically.

Proposition 9. Assuming P has simple roots, let rc = min |P (Crit(P ))|. The set

Ω = P−1 (D(0, rc))

is contained in the bassin of attraction of the roots of Newton’s flow (24).
Moreover, the set P−1(D(0, rc/11)) in included in the union of the quadratic bassins

of the Newton’s method. If the roots or P belong to D(0, 1), it takes O(log | log ε|) Newton
steps to go from any level line λ ≤ rc/11 to the roots, up to the desired precision ε.
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Proof. The set Ω has d connected components, one for each root of P . Indeed, by con-
struction, Ω does not contain any critical point so the forwards Newton’s flow (24) is
global on Ω and connect continuously any point in Ω to a root of P , without leaving Ω
because of (25). Every component contains at least one root and if two roots where in
the same component, the flow would have to split and Ω would contain a critical point,
which is impossible. Let us now take λ ≤ λ−/11 < β2rc and w0 such that |P (w0)| = λ.
The function P maps each connected component of Ω to D(0, rc) bi-holomorphically and,
in particular, is injective on each. Choosing a component Ωj of Ω and the corresponding
root zj , we apply Corollary 23 to

g(y) =
P ′(zj)

rc

[
P−1(rcy)− zj

]
: D(0, 1) → Ω̃j =

P ′(zj)
rc

(Ωj − zj)

with target D(0, ϵj), where ϵj =
|P ′(zj)|

rc
ε. If |P ′(zj)|/rc > 1

8ε , we already have w0 ∈
D(0, ϵj). Otherwise, the Newton sequences

wk+1 = NP (wk) and ζk+1 = Ng−1(ζk)

are related by

wk = zj +
rcζk

|P ′(zj)|

and for n ≥ 3 + log2

∣∣∣log2 |P ′(zj)|
rc

ε
∣∣∣, one has ζk ∈ D(0, ϵj), i.e. wk ∈ D(zj , ε).

If one assumes that the roots of P belong to the unit disk, then Köbe’s lemma implies
that D(zj ,

1
4rc/|P

′(zj)|) ⊂ Ωj . Moreover, Ωj ⊂ D(zj , δj) where δj is the distance to
the nearest critical point, which cannot exceed 2 because CritP belongs to the convex
envelope of the roots and therefore to D(0, 1). Consequently, |P ′(zj)|/rc > 1/8.

Remark 10. Proposition 9 is optimal for the Newton flow: Ω contains at least one critical
point of P so it is not contained in the bassin of attraction of the roots.

The appropriate data structure that allows sorting and insertions of d points with
total complexity of at most O(d log2 d) will be presented in Section 6.

The previous statements about the algorithm can be reformulated as follows.

Theorem 5. There are universal constants ρ2 and β2 given by Corollary 23, such that,
for any polynomial P with simple roots (zj):

• The Newton map converges bi-exponentially to zi on the disk D(zj , ρ2rc/|P ′(zj)|).

• Newton’s flow (24) in time T = log 1.1
β2

+ log max |P (Crit(P ))|
min |P (Crit(P ))| maps the level line

L = {z ; |P (z)| = 1.1max |P (Crit(P ))|}

into the union of the quadratic bassins of attraction of the roots for the Newton
map NP , i.e. the zone where the convergence of the iterates of NP towards the roots
is bi-exponential. Note that log 1.1

β2
≤ 2.5.
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4.2 Specifics for polynomials related to M

In full generality, S(P ) and Theorem 5 are not yet ready to rival the algorithm of
[HSS01]. However, in practice, our strategy behaves extremely well (see Section 6).

In our implementation, the outmost level line is λ0 = 5 for pn and λ0 = 100 for qℓ,n.
For the smallest degrees, there is no need for parallelism and it is not necessary to refine
the level curve: one applies simply S(P ) with 4d points, i.e. cL = 4.

To split pn and qℓ,n for large n, a massively parallel implementation is welcome and
can be formalized as follows. Upper bounds on the arithmetic complexity are given as
commentaries. The mention para indicates that the operation can be performed in a
trivially parallel fashion (i.e. as J independent jobs) on multiple computing units ; on the
other hand, the mention mono is a step that should be performed on a single computing
unit.

One chooses a constant IN that will cap the number of Newton iterates to IN log d.
In practice, IN = 1 for pn or IN = 2.6 for qℓ,n.

Algorithm S// : Splitting algorithm for pn and qℓ,n (parallel & certified version)

1 begin compute level lines
2 coarse level line Lλ0,N0(P ) /* O(1) mono */

3 refine level line to Lλ0,dcL(P ) =
⋃
Mj /* O(d) para */

4 begin root finding
5 for each parallel job j ∈ {1, . . . , J} do
6 for each z ∈ Mj do
7 iterate NP up to max{20; IN log d} /* O(log d) para */

8 sort roots Rj in appropriate data structure /* O(1) para */

9 merge roots from all jobs R =
⋃
Rj /* O(d/J) mono */

10 begin certification
11 for each z ∈ R do
12 check P (z) = 0 using disk arithmetic /* O(log d) para */

Let us go over each step in details and justify the bounds on the arithmetic complexity
claimed above.

The mesh refinement is possible because the pn and qℓ,n are defined recursively (see
below). Each point Lλ0,N0(P ) can then be used as a starting point of an independent job
so one can choose J ≤ N0. By construction, there are dcL/N0 − 1 points of Lλ0,dcL(P )
between each pair of consecutive points of Lλ0,N0(P ). According to Theorem 4, it means
that the algorithm will produce |Rj | ∼ d/J roots per job.

For large degrees (typically n ≥ 17), the coarse level set corresponds to N0 = 215

which means that 16 385 starting points such that |P (z)| = λ0 are computed in the
upper plane Im z ≥ 0, with argP (z) = 2kπ/N0 and k ∈ J0, N0K. For the intermediary
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periods, we found it more practical to group consecutive jobs together in order to ensure
an approximately constant size for |Rj | (and thus consistent file sizes across the project).

Let us now explain how Lλ0,cLd(P ) can be computed efficiently using a parallel al-
gorithm. As the cardinality of this mesh is cLd, the huge volume of data prohibits to
compute the mesh ahead of time or to store it on disk when d reaches the tera-scale.
The pertinent subsection of the mesh has to be generated on the fly by each computing
process.

For the Mandelbrot set, one uses the fact that the polynomials (pk)k≥3 form a nested
family whose level lines encircle M tightly (see Fig. 7). One computes an initial mesh
Lλ0,215(p16). Next, one observes that for any zj ∈ Lλ0,215(p16) = p−1

16 (λ0), one has

p17(zj) = p16(zj)
2 + zj = λ2

0 + zj .

Proceeding as in Proposition 5, we can find z′j close to zj such that p17(z
′
j) = λ2

0. This
means that z′j ∈ Lλ2

0,2
15(p16) with the correct index. Iterating this method, one can then

use z′j as starting points to solve iteratively p17(z) = rk where the radius rk is gradually

reduced from λ2
0 down to λ0. In the end, one obtains Lλ0,215(p17). In a similar fashion,

one can construct the mesh Lλ0,215(pk+1) from Lλ0,215(pk) in negligible time. This method
is the key to the parallelization as each point of Lλ0,215(pk) is the seed of a parallel task.

Figure 7: Level sets of pk for 10 ≤ k ≤ 18 (red) and hyperbolic centers Hyp(n)
for n ≤ 12 (green). The level lines Lλ,N tend to self-refine around regions where
argP (z) cycles most, which reflects a higher intrication of the bassins of attraction
for the Newton flow and the Newton map.

In practice, the highest critical value (in module) of pn is reached along the real axis, at
the left-most tip of the Mandelbrot set and is asymptotically equal to 2 (see also [Jun85]).

The number of Newton steps necessary to jump from the starting level line λ0 > 2 to
a neighbourhood D(z, ε) of a root z is almost constant: on average, no more then 12 steps
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where necessary to split p41, most of which can even be performed in a lower precision
(see Table 3 in Section 6). One can show that the 1st Newton step is of order the distance
to the Mandelbrot set. What happens later is less clear.

4.3 About multiple roots

As the level line is chosen above the highest modulus of critical values, the algorithm
is not affected by multiple roots. A root of multiplicity m will be reached along m distinct
iso-angles. In practice, our benchmarks (see Section 6.4.2) confirm that our algorithm is
indeed robust to high multiplicities.

5 The certification process

As illustrated in [RSS17], there are various techniques to convince oneself that one
has found all roots. For example, one can use Viete’s identities to check that a few
sums of the powers of the roots are in concordance with the first coefficients of the
polynomial. Occasionally, this technique can provide some help in finding a few missing
roots. However, for very large degrees, the cost of this checkup may become prohibitive
for a result that, in the worst case, could be no more than a lucky coincidence.

Each of our results comes instead with a numerical proof, based on disk arithmetic.
The complexity of checking that pn(z) = 0 using our method is O(log d).

5.1 How to prove the localization of a root

Let us consider f ∈ Hol(U) and assume that one has found a point z0 ∈ U such that
f(z0) ∈ D(0, ε) for some ε > 0 and f ′(z0) ∈ D(λ, η) with |λ| > η > 0. If ε/(|λ| − η) is
small enough, one can expect the existence of an exact root of f in the immediate vicinity
of z0. This idea is at the heart of Newton’s method. We can combine it with the spirit of
Rouché’s theorem 11 to produce a quantifiable statement.

Theorem 6. Given a holomorphic function f ∈ Hol(U), a disk B = D(z0, R) such that
B̄ ⊂ U and B′ a second disk such that f ′(B) ⊂ B′, we assume that

R dist(0, B′) > |f(z0)|. (38)

Then there exists a unique point z∗ ∈ B such that f(z∗) = 0.

Remark 11. Note that, z∗ is necessarily a simple root of f . In practice, disk arithmetic
(see §5.3) provides an upper bound of |f(z0)| and, for a given R > 0, also of |f ′(z)− z1|
when z ∈ B, where z1 is a numerical approximation of f ′(z0). One can then construct B′

and check if (38) is indeed satisfied.

Proof. Let us introduce the arc γ(t) = z0+Re2iπt for t ∈ [0, 1]. The fundamental theorem
of calculus and the convexity of B′ imply:

f(γ(t)) = f(z0) +Re2iπt
∫ 1

0
f ′(z0 + sRe2iπt)ds ∈ f(z0) +Re2iπt ·B′.
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Assumption (38) thus implies that f ◦ γ is valued in an annulus centered at f(z0) that
encircles zero. Its winding number with respect to zero is thus the same than that with
respect to f(z0). Moreover, f ◦ γ is homotopic, within that annulus, to the path t 7→
f(z0) +Rλe2iπt where λ is the center of B′ so the winding number is 1. Because of (38),
0 /∈ f ′(B) so all possible roots within B are simple and

|f−1(0) ∩B| = 1

2iπ

∫
γ

f ′(z)

f(z)
dz =

1

2iπ

∫
f◦γ

dζ

ζ
=

1

2iπ

∫
f◦γ

dζ

ζ − f(z0)
= 1

i.e. f admits exactly one root in B.

5.2 How to prove the convergence of Newton refinements

The practical limitation of the classical estimates presented in Section 3.4 is that
the radius on which Newton’s method behaves bi-exponentially or exponentially is not,
usually, an explicit one. The following result adresses this issue, at least for simple roots.
For further results, see [Hen74, Chap. 6].

Theorem 7. Let us consider a simple root z∗ of P ∈ C[z] and z0 ∈ D(z∗, η). For ε > 3η,
if there exists a disk B′ satisfying

P ′(D(z0, ε)) ⊂ B′ with D(B′, 0) > 2 diam(B′), (39)

then one has NP (D(z0, ε)) ⊊ D(z0, ε) and thus D(z0, ε) is contained in the attraction
bassin A(z∗) = {z ∈ C ; lim

n→∞
Nn

P (z) = z∗}.

Remark 12. The typical application case of Theorem 7 concerns an approximate root
z0 that is known, thanks to Theorem 6, to be in D(z∗, ε1). To save resources, we want
to publish z′0, which is an approximate value of z0 with a reduced precision ε2 ≫ ε1.
Theorem 7 gives a condition that garanties that we can do so without losing any important
information: an approximation of z∗ to an arbitrary high precision can be retrieved from
the sole knowledge of z′0 by applying iterates of NP The assumption (39) can be checked
using disk arithmetic (see §5.3). Note that, in the proof, the loss of ε−3η

2 on the radius

suggests that the Lipschitz constant of NP is approximately Lipschitz of order 1 − 3η
2ε ,

which hints that the next iterations of NP will converge at least exponentially.

Proof. Let us consider B = D(z0, ε) and P ′(B) ⊂ B′ where B′ = D(d, ε′) is a disk such
that |d| > 5ε′. In particular B′ does not contain zero. Given z0 + h ∈ D(z0, ε), one has:

NP (z0 + h) = z0 + h− P (z0 + h)− P (z0) + P (z0)− P (z∗)

P ′(z0 + h)

= z0 + h

(∫ 1

0
1− P ′(z0 + th)

P ′(z0 + h)
dt

)
+ (z0 − z∗)

∫ 1

0

P ′((1− t)z∗ + tz0)

P ′(z0 + h)
dt

The ratio of two values d+ ϑ1 and d+ ϑ2 in B′ satisfies:∣∣∣∣1− d+ ϑ1

d+ ϑ2

∣∣∣∣ = |ϑ2 − ϑ1|
|d+ ϑ2|

≤ 2ε′

|d| − ε′
<

1

2
and

∣∣∣∣d+ ϑ1

d+ ϑ2

∣∣∣∣ ≤ |d|+ ε′

|d| − ε′
<

3

2
.
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One thus has |NP (z0 + h)− z0| < 1
2 |h|+

3
2 |z0 − z∗| i.e.

NP (z0 + h) ∈ D

(
z0,

ε

2
+

3η

2

)
= D

(
z0, ε−

ε− 3η

2

)
⊊ D(z0, ε)

provided ε > 3η. As D(z0, ε) is forward invariant under NP , this disk is contained in its
Fatou set. The iterates of NP on D(z0, ε) thus converge to z∗.

5.3 Results on how to control numerical errors

Lastly, we need a theoretical background for handling all the errors that occur within
the numerical computations that are necessary to prove that the Theorems 6 and 7 can
indeed be applied. It is often (wrongly) believed that integer arithmetic is the only one
apt for formal verification. We intent to show here that proofs can also be carried in
floating point arithmetic, even with complex numbers.

The certification of a computation is only possible if the implementation choices re-
spect a universal norm, as for example the one defined by the IEEE standards [IEE]. We
use the library MPFR [MPFR] because it offers a reliable implementation of arbitrary pre-
cision that has been extensively tested. One of its main feature is the guaranty of proper
handling of roundings, which is essential for the certification process described below.
However, any other compliant implementation could equally be used as a foundation.

Working with complex numbers requires special care because, contrary to the real case,
multiplications in C are not an elementary operation. In what follows, we will restrict
our attention to the fields operations: +, ×.

5.3.1 Finite precision arithmetic

An ideal model of arithmetic with a finite precision N ∈ N∗ consists in considering
the following discrete subset of real numbers

R̂N = {0} ∪
⋃
e∈Z

2eZN , (40)

where

ZN =

±
(
2−1 +

N∑
j=2

bj2
−j

)
with b2, . . . , bN ∈ {0, 1}

 = ±2−N J2N−1, 2N − 1K. (41)

When x ∈ 2eZN , one defines e = e(x) as the exponent of x. The (bj)1,...,N are called the
bits of x, with the convention that b1 = 1. Let us point out that if N ′ ≥ N is a larger
precision, then R̂N ⊂ R̂N ′ .

Practical implementations of finite precision arithmetic are restricted by physical con-
tingencies; one then considers instead the finite set:

RN = {±0} ∪
emax⋃

e=emin

2eZN ∪ {±∞,NaN}, (42)
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where −emin and emax are (configurable but fixed) large positive integers. The additional
symbols allow one to handle numerical exceptions without producing errors (NaN stands
for not a number). For efficient processing by the hardware, bits are packed in groups of
8 called a byte, and packs of bytes (typically 4 or 8) are called limbs.

2eN 2e+1N2e-1N

2e-N

0 2e-2 2e-1 2e 2e+1

Figure 8: Representation of 2eZ4 ∩ R+ for five consecutive values of e. Note how the gap
between adjacent vertices varies with the exponent e, and the special role of zero as an
accumulation point of R̂N .

The arithmetic operations +N and ×N are naturally defined on R̂N by

∀x, y ∈ R̂N , x+N y = R̂N (x+ y) and x×N y = R̂N (x× y),

where R̂N : R → R̂N is the rounding operator that rounds to the nearest lattice point.

Let us also define the operators R̂
±
N that round respectively always up and always down,

and the practical ones RN , R±
N , that are valued in RN . By a convention, called flush

to zero, which is not an IEEE standard but is the choice made in the MPFR library,
RN (x) = 0 if |x| < 2emin even though 0 is not the nearest lattice point if |x| > 2emin−1.
Similarly, |RN (x)| = ∞ if |x| > 2emax(1− 2−N ).

For a given number x ∈ R̂N\{0}, the gap that separates it from its farthest immediate
neighbors is

ûlp(x) = 2e(x)−N . (43)

By convention, ûlp(0) = 0. The name of this operator is unit on last position because it
reflects the metric effect of a change of one unit on the least significant bit bN . If x ∈ RN

is a regular number i.e. if emin ≤ e(x) ≤ emax, one sets ulp(x) = ûlp(x). By convention,
ulp(±0) = 21+emin and ulp(±∞) = ∞, which ensures the following statement. Note
that the usual implementation choice is e(0) = emin − 1.

Proposition 13. For x ∈ R, one has∣∣∣R̂N (x)− x
∣∣∣ ≤ 1

2 ûlp(R̂N (x)) and |RN (x)− x| ≤ 1
2 ulp(RN (x)).

Remark 14. IEEE standards require gradual underflow instead of flush to zero. This
means that RN should be complemented with a set of denormalized numbers

{k2emin−N ; k ∈ Z, |k| < 2N−1},

called subnormals, which ensures that the lattice RN is regular near zero. In that case,
ulp(x) = 2emin−N for all those additional points, including x = 0. With this alternate con-
vention, Proposition 13 still holds. The MPFR library offers the possibility of emulating
the norm, but it is not the default behavior.

34



5.3.2 Interval arithmetic

Interval arithmetic is a standard topic in numerical analysis [vdH09], [Rok01] whenever
dependable results are critical. Reliable and fast libraries exist, like MPFI [RR05] or Arb
[ARB].

Given a continuous numeric function f , the goal of interval arithmetic is to bound, as
accurately as possible, the set to which f(x) belongs when the prior knowledge on x is
limited to a set of inequalities, e.g. a ≤ x ≤ b. The main challenge is to take dependency
into account: for example, f(x) = x2 + x maps [−1, 1] to [−1

4 , 2] while g(x, y) = xy + x
maps [−1, 1]2 to [−2, 2].

The following statement is an immediate but essential consequence of Proposition 13.

Proposition 15. For xa, xb ∈ RN and ra, rb ∈ RM , one has:

I(xa, ra) + I(xb, rb) ⊂ I
(
xa +N xb , R

+
M

(
ra + rb +

1
2 ulp(xa +N xb)

))
,

I(xa, ra)× I(xb, rb) ⊂ I
(
xa ×N xb , R

+
M

(
rarb + ra|xb|+ rb|xa|+ 1

2 ulp(xa ×N xb)
))

where I(x, r) = (x− r, x+ r) denotes open intervals along the real line.

In practice, the new radius is computed using the R+
M operator for each intermediary

computation to ensure that one gets a certifiable upper bound.

5.3.3 Naive rectangle arithmetic

For our purpose in complex dynamics, a naive use of a tensorized interval arithmetic
faces the following shortcoming (see Fig. 9): if a is in z + [−r, r] + i[−r,+r] with |z| = 1,
then a2 belongs to z2 + (2r|z|1 + r2) [−1, 1] + i(2r|z|1 + 2r2) [−1, 1], with |z|1 = |Re z|+
| Im z|, which means that, when Arg z ≃ π/4, the size of the uncertainty box is roughly
multiplied by 2

√
2 instead of the factor 2 imposed by the derivative. If this happens

at many iterations of the square function, the resulting precision loss is catastrophic.
The average value of log |eiθ|1 on the unit circle is β = 0.2365. By the Birkhoff ergodic
theorem, for a typical starting point a with |a| = 1, computing n iterates of the map
z 7→ z2 starting at a induces a cumulative multiplicative loss of precision of about eβn.
For example, for n = 200, a loss of precision of order of 1020 should be expected.

5.3.4 Disk arithmetic

The idea of disk arithmetic consists in studying what optimal outcome can be deduced
from the prior knowledge that a ∈ D(z, r). While the idea is not new [PP98], it has
remained, up to now, fairly uncommon.

The practical gain of substituting disks to squares is illustrated on Figure 9. If a ∈
D(z, r), then a2 belongs to D(z2, 2r|z|+r2). If r is small enough to ensure that r2 ≪ 2r|z|
but without being necessarily tiny, the first observation is that each iteration of the square
function multiplies the radius of the uncertainty disk by roughly a factor 2|z| instead of
2|z|1; one thus gains a casual

√
2 factor over the naive use of interval arithmetic.
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The second observation is more profound and pertains to small values of r: for any
conformal map f , the image of a small disk is almost a disk. Naturally, a nearly cir-
cular shape can be enclosed within a disk of a barely larger diameter. In practice, r
is infinitesimally small and the derivative of the map on the disk of radius r is almost
constant. In comparison to the unavoidable action of the differential f ′(z)dz at the cen-
ter point, the additive loss on the bounding radius of f(D(z, r)) is then of order r2 and
the multiplicative loss is thus about 1 + r/|f ′(z)|. For example, if we perform k = 105

iterations with bounded derivatives |f ′(z)| ≥ 1 along the orbit, starting from a radius
r = 10−20, then the cumulative multiplicative error of the disk arithmetic method is
about (1 + r)k ≃ 1 + kr = 1 + 10−15 ≃ 1.

Using disk arithmetic is the gateway to getting bounds that are both proven and
almost optimal, even after a high number of iterates. It is a first essential step towards
computational proofs in complex dynamics.

Figure 9: Comparison between the image by f(z) = z2 of a square centered at z = e3iπ/16

of side 2r, and that of a disks of center z and diameter 2r for r = 0.5 (left) and r =
0.1 (right). The images of the square and of the disk are drawn at the same scale, and
compared respectively to an enclosing box or disk centered around z2, which is of optimal
size, provided that uniformity with respect to Arg z is required.

For za = xa + iya, zb = xb + iyb ∈ R̂N + iR̂N , the sum za +N zb is naturally defined
in components

za +N zb = (xa +N xb) + i(ya +N yb).

The radical difference between interval and disk arithmetic is that the computation of the
product of complex numbers requires four exact multiplications on the real line, followed
by two additions. Therefore, the product requires an intermediary precision N ′ ≥ N :

za ×N,N ′ zb = (xa ×N ′ xb)−N (ya ×N ′ yb) + i [(xa ×N ′ yb) +N (ya ×N ′ xb)] .

Intermediary products are guarantied exact only if N ′ ≥ 2N . Let us extended the defini-
tion of ulp to complex finite precision numbers by

ulp(x+ iy) =
√

ulp(x)2 + ulp(y)2.

The following statement generalises Proposition 15 and is at the heart of the implemen-
tation of our library [Mandel].
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Theorem 8. For centers za, zb ∈ RN + iRN , radii ra, rb ∈ RM , one has:

D(za, ra) + D(zb, rb) ⊂ D
(
za +N zb , R

+
M

(
ra + rb +

1
2 ulp(za +N zb)

))
.

For any intermediary precision N ′ ≥ N , the product of exact centers satisfies:

zazb ∈ D
(
za ×N,N ′ zb, R∗

)
,

where
R∗ = R+

M

(
1
2 ulp(za ×N,N ′ zb) +

1
2

∑
u=xa,ya
v=xb,yp

ulp(u×N ′ v)
)
.

The product of disks satisfies:

D(za, ra)×D(zb, rb) ⊂ D
(
za ×N,N ′ zb , R

+
M

(
rarb + ra|zb|+ rb|za|+R∗

))
.

Finally, if x ∈ RN and r ∈ RM , the scaling transform of the disk satisfies:

I(x, r)×D(za, ra) ⊂ D
(
x×N za , R

+
M

(
(|x|+ r)ra + r|za|+ 1

2 ulp(x×N za)
))

.

Figure 10: The key points to the proof of Theorem 8 : RN ×RN grid (left)
and the rounding strategy of z′ ∈ C to z̃ ∈ RN ×RN within 1

2 ulp z̃ (right).

The proof of the theorem is straightforward and the complex extension of the definition
of ulp is illustrated on Figure 10. In our library, the role of R∗ is implemented as an on-
the-fly modification of ulp.

To ease the tedious task of checking Theorem 8, let us recall a few ground rules.
Having Figure 10 in mind may help convey the key points. The center of a disk Dz,r

is always considered exact; it belongs to RN × RN . The corresponding ulp is thus a
rectangle of dimensions ulpx× ulp y where z = x+ iy. When computing the result of an
operation, the new exact center z′ ∈ C does not belong, in general, to the grid RN ×RN .
The real and imaginary parts of z′ are rounded to their closest value, which gives the new
center z̃ ∈ RN ×RN . To compensate, one needs to increase the radius of the disk by, at
most, half the diagonal of the ulp rectangle. The claim that the center can be assumed
exact is thus restored and one is ready for the next operation.
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Remark 16. The product of complex numbers is a multi-step operation over R. As
such, additional ulp have to be added to bound the successive rounding errors in each
intermediary step.

Remark 17. There is a slightly tighter upper bound for the radius R∗, namely

R∗ = R+
M

{
1
2 ulp

(
za ×N,N ′ zb + ulp(xa ×N ′ xb) + ulp(ya ×N ′ yb)

+ i [ulp(ya ×N ′ xb) + ulp(xa ×N ′ yb)]
)}

.

However, the code complexity and computational cost of using R∗ are unreasonably high
compared to that of using R∗ and are not justified for the expected gain.

6 Implementation and numerical results

In this section, we present the library [Mandel] and the database [Mand.DB], which
are a companion to this article and the numerical results that we have obtained with it.
The main practical challenge is to preserve the efficiency of computations as the scale of
the problem spans 12 orders of magnitude. The algorithm exposed in §4 is specifically
designed for this. However, all the logistics regarding process scheduling and data handling
have to keep up. At this scale, the certification of all the data becomes crucial, not only
though the procedure described in §5 but also, at the lowest level, to ensure that no bit
corruption occurs in the production and storage pipeline. In its final state, our database
takes 43TB of disk space and we estimate (see Table 2) the overall cost to regenerate it
from scratch to 83 years-core (723 000 hours-core) of computation time. The actual time
that was actually necessary to build this library from scratch actually exceeds 1 million
core-hours.

6.1 Appropriate data structures

Computations are performed with the standard FP80 format (long double) for low
precision or with mpfr and mpc numbers (a convenience wrapper for complex numbers)
for arbitrary higher precision. However, the foundation of scalable efficiency is the usage
of appropriate data structures that are efficient for storage (both for disk and memory us-
age7), maintenance operations (sort, search, insertion) and that are easily compatible with
high-precision arithmetic. In [Mandel], we have developed such structures specifically for
this project.

Our core numerical format to store complex numbers in [−2, 2) + i[0, 4) is the u128

format. It is composed of two unsigned 128-bits integers representing respectively the real
and imaginary part with the two leading bits reserved for the mantissa. A pair (p, q) in
u128 format thus represents the complex number

z = (−2 + p× 2−126) + iq × 2−126. (44)

7Because of memory alignement, the size of a structure in RAM may not match its size on the disk.
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Roots of pn and qℓ,n are ultimately stored as u128 numbers, which we call the published
value in the rest of this text. The minimal absolute resolution of published values is
therefore about 1.2 × 10−38. This resolution is sufficient for our needs: for example, the
minimal distance between two distinct hyperbolic centers of period 41 is only 2.45×10−23

so pairs of roots will differ by at least 50 bits.

Figure 11: Insertion in nset is non commutative (left): inserting A,D,B,C results in {A,D}
while inserting A,B,C,D results in {A,B,C}. Near the real axis (right), the points A, B and
D respect the assumption (45) so can be added to an nset. The point C is problematic; the
absolute value of its imaginary part does not exceed ϵ/2, where ϵ is the separation parameter,
and should be rounded to zero prior to insertion.

The work-horse of our database is the nset structure. This structure implements
the mathematical idea of a finite set of points in the rectangle [−2, 2) + i(−4, 4) that is
symmetric with respect to the real axis. Only the points in the upper-plane are stored.
Each stored point in the set is a u128 complex number. Each set comes with a separation
parameter ε > 0 and all operations on the nset guaranty the following property: given
two distincts points z1, z2 in the set or in its conjugate image:

max{|Re(z1 − z2)|, | Im(z1 − z2)|} ≥ ε. (45)

In other words, points are considered as equal if one center belongs to the square “pixel”
of side 2ε centered in the other one. Note that this is not an transitive relation (see
Fig. 11). Special care must be taken near the real axis to avoid collisions with the
conjugate images (z2 = z1): if | Im(z1)| < ε/2 then z1 is undistinguishable from its
conjugate and is therefore considered real; the value Im z1 should be set to zero in order
to respect (45). In our database, we use a separation εh = 3.23 × 10−27 for hyperbolic
centers and εm = 8.08× 10−28 for Misiurewicz points. Note that this parameter serves a
different purpose than the certification parameters (see Fig. 12).

The points in an nset structure are totally ordered by the lexicographical order:

z1 ⪯ z2 ⇐⇒ Re z1 < Re z2 or

{
Re z1 = Re z2,

Im z1 < Im z2.
(46)
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To optimize memory management, an nset can exist in two internal states, either locked
or unlocked. In its unlocked state, an nset contains a family of sub-sets (called bars)
whose sizes form, ideally, a geometric progression. Each bar is ordered with (46). Bars are
independent from one another (no ordering). Insertion is performed on the last (smallest)
bar unless it is full, in which case the bar is merged with the previous one (recursively
if necessary). This means that insertion can be performed in O(1) to O(N) operations,
where N is the size of the nset. However, large numbers of operations are exponentially
rare: the kth bar is only merged into the bar k+1 when all the previous bars are full, so once
in O(2k) insertions. If we denote by B is the size of the smallest bar and K = log2

(
1 + N

B

)
the total number of bars, then, on average, an insertion costs

K∑
k=1

kB2k−1

K∑
k=1

B2k−1

=
1 + (K − 1)2K

2K − 1
= O(logN)

operations of memory management. Conversely, a search on an unlocked nset takes
O(log2N) operations because each of the K = O(logN) bars must be searched indepen-
dently. Note that in order to ensure (45), an insertion can only be performed after a
search for the new point has confirmed that it is indeed appropriate to add it. Points
near the real line (like the point C on the right-hand side of Figure 11) must be treated as
exceptions: it is up to the user to decide wether it is appropriate to correct the imaginary
part to zero or to refuse to add the point.

In its locked state, all the memory bars of an nset are merged, which means that the
set becomes fully ordered. This is a one-time O(N) cost. Insertion within a locked nset

is not authorized anymore. Note that unlocking remains possible and, in that case, the
previous logarithmic costs can be restored (using dyadically smaller bars before the main
data chunk). In a locked nset, the cost of a search drops to O(logN). A locked nset

is essentially ready to be written to the disk. Actions on an nset structure require only
a O(logN) memory overhead (pointers to the each memory bar), which turns out to be
constant in practice8. Note that we haven’t implemented deletion as a guaranty that no
point will ever be added unless we know for certain that it should.

We have also implemented pset, i.e. planar sets, which is a structure analogous to
the nset but based on FP80 numbers (long double) instead of u128. The pset struc-
ture implements the mathematical idea of a finite set of points in the complex plane,
with no geometric restrictions. It provides logarithmic search and insertion times with
logarithmic memory overhead. The theoretical optimum [FS89], [Lar13] for operations
on ordered memory structures is O(logN/ log logN). The performances of our structures
are therefore quite satisfactory and may be of general interest. In particular, aside from
improved RAM usage, our low memory footprint minimizes the cost of the conversions to

8No more than 64 memory bars are ever necessary if one uses unsigned long for array indices.
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and from a disk-storage format, which is crucial when handling terabytes of data9.

Our format to handle vectors of high-precision numbers is called mpv. This format is
optimized for storage and large scale disk access. In a given vector, all the elements share
a common precision. The vector can either be real or complex, with consecutive pairs of
real/imaginary parts. Individual operations on elements are possible, though awkward.
One important feature of this format is the possibility to concatenate multiple vectors into
a single file (what we call mini-files) and to perform parallel read-writes on each mini-file.

Our implementation also contains tools to import, export and compare CSV files
(comma separated values) of complex numbers of arbitrary precision (using a, b to repre-
sent a+ib). This format is extremely slow because of the binary to decimal conversion and
requires about 1.8 times more disk space. It ensures however a human-readable output
and a minimal compatibility with other computing or graphical tools.

6.2 Certification of the results and protection against data corruption

Each published value (see (44) for a definition) for a root of pn or qℓ,n comes with
multiple levels certifications. Let us underline that the following theorem contains about
3× 1012 individual statements, whose proof are computer assisted.

Theorem 9. There are constants εR, εN and εS given in Figure 12 for which the following
holds. In the nset database for the roots of pn or qℓ,n, each published value zj ∈ 2−126(Z+
iN) can be paired with a unique actual root z∗ ∈ D(zj , εR). This pairing is bijective in
the upper half plane Im z ≥ 0. Each pair of published values zj , zk satisfies |zj − zk| ≥ εS
and either zj ∈ R or |zj − z̄j | ≥ εS. Lastly, the disk D(zj , εN ) is entirely contained in the
attraction bassin of z∗ for the Newton method of the associated polynomial.

Proof. Using the controlled rounding features of the MPFR library [MPFR], we have
implemented disk arithmetic i.e. Theorem 8. This allows us to provide, for each root
candidate zj , a numerical proof that the assumptions of Theorem 6 on the localisation
of each root can indeed be applied. Thus, we can certify that the published coordinates
of each root differ from an actual root by no more than 10−30 for pn or 10−35 for qℓ,n.
Similarly, using disk arithmetic with εN , we can check the assumptions of Theorem 7
which ensures the claim on the Newton bassin. Next, each pair of two published values
or any pair with conjugate values satisfies the separation assumption (45) because it is
build into our storage structure (see §6.1). It is slightly stronger than the one claimed
here. This separation guaranties that it is possible to count unambiguously all the real
roots, and all the non real roots in the upper half-plane. Comparing with the theoretical
count given by Theorem 1 and (12) ensures our bijection claim.

9A pointer requires typically 8 bytes on a 64-bit architecture; implementing e.g. a balanced tree of FP80
with 2 pointers to the children would therefore induce about 50% of memory overhead.
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pn≤40 p41 qℓ,n

εR 10−30 10−35

εN 10−24 10−25 10−32

εS 3.23× 10−27 8.08× 10−28

Figure 12: For each root z∗ with Im z∗ ≥ 0, the published value zj ∈ 2−126(Z + iN) comes
with different radii. The radius of separation εS guaranties proper counting, the radius of
certification εR is such that z∗ ∈ D(zj , εR) and the radius of convergence εN ensures that the
D(zj , εN ) is contained in the bassin of attraction of z∗ for the Newton method.

Remark 18. We are confident that each component of the published values is exact up
to

±1
2 ulp(Re u128) = ±2−127 ≃ 5.9× 10−39,

which is better than the εR radius claimed in Theorem 9. Indeed, once we have a zj value
that passes the certifications for both disk arithmetic and Newton bassin, we can refine its
value using Newton’s method until reaching a fixed point at the desired precision (44), up
to a final rounding error.

At the terabyte scale, the possibility of bit corruption becomes a significant issue.
Besides the previous statement, practical precautions must therefore be taken to ensure
the integrity of the data along the whole production chain, from the initial computation
that finds a root to its final storage in a file. This protection must also extends to any
subsequent use of the stored values.

Our library [Mandel] incorporates a strict data certification procedure. Our nset file
format implements a header that contains the MD5 checksum of the data stored in the
rest of the file. When writing a file, a checksum of the original data is first computed
in memory, then the file is written onto the disk and the checksum is written in the file
header. To detect subsequent data corruption (due to an error in a file transfert or a
random bit flip), each time a file is loaded, the checksum of the data stored in the file is
computed again and checked against its original value stored in the header. This protocol
ensures the data integrity once the original MD5 stamp has been generated.

Lastly, one needs to check that a randommemory corruption has not affected the initial
creation process, after the value was computed but before the original MD5 checksum
was generated. The only sensible way to guard against this problem is to perform a new
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Figure 13: Computation time, in microseconds, per new parameter Hyp(n) computed with
hypQuick (red dots) or Mis(ℓ, n) with misQuick (gray lozenges). The black square give the
average time at a given ℓ + n. The slowest subtype corresponds to qℓ,2. Labels indicate the
total splitting time of pn or qℓ,2 on a single CPU. The magenta triangles represent the average
computation time per root of qℓ,n, regardless of wether the root is a hyperbolic divisor or not.
The dashed lines correspond to a slope O(n0.8) or O((ℓ+ n)0.8), and the overall fit suggests
that the algorithm behaves, in practice, as O(d(log d)0.8).

independent certification (count and proofs) of Theorem 9 of all the data written on the
disk, which we did using our applications hypCount, hypProve, misCount and misProve.
To encourage independent verifications, the code of those applications has been kept as
minimalistic as possible.

The only uncertainty left is a data corruption that could happen after this second
certification but would remain undetected by the MD5 checksums. As MD5 is a 128
bit cryptographic hash function10, the probability of such an event is of order 2−128 ≃
3× 10−39.

6.3 Quick single-core splitting of polynomials up to degree 109

Splitting the polynomials pn and qℓ,n for the first values of n is a standard compu-
tational challenge. Using the standard algorithms of Section 3, splitting p25 (degree 1.7
million) is a task that used to lie at the computational frontier and required days of core
usage. Using our new algorithm based on level lines (presented in Section 4), the polyno-

10Granted that our database is not subject to a malicious attack that would actively seek a vulnerability.
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mial p25 can now be split in only a few minutes on a single core of consumer hardware.
As illustrated of Figure 13, we push the day-core limit back to p33 (degree 4.3 billion).

As explained in §6.3.2 below, this degree is the highest one that can be handled using
hardware arithmetic.

6.3.1 Implementation of the level line algorithm

In our implementation [Mandel], the application hypQuick splits pn and computes a
listing of Hyp(n). On Figure 13, the low degree scatter for processes that execute in less
than 5 seconds is driven by memory loading and is not significant. The 40% jump in the
average processing time per root at p30 is due to the fact that we double the number of
points on the initial level line when n ≥ 30. The code of this application is concise and
is largely independent of the rest of the library. It relies on the pset structure (see §6.1)
to collect and sort the roots and prevent duplicates. The functions that implement the
Newton’s method are common to our whole library.

Let us comment on our implementation for the splitting of pn. The endpoints of the
level curve |pn(z)| = 5 along the real line are found by dichotomy. The discrete level
curve L5,2n−1(pn) defined by (31) is computed on the fly using Proposition 5 with M = 8
points per turn if n ≤ 29 or M = 16 points per turn if n ≥ 30, i.e. one computes solutions
of pn(zk) = 5e2ikπ/M , each zk acting as the starting point for the Newton iterations
towards zk+1 (see Fig. 6). For each zk such that k ≡ 0 mod 2 (if n ≤ 29) or k ≡ 0
mod 4 (if n ≥ 30), a Newton descend attempts to find a new root of pn. To prevent
divergent trajectories, the number of iterations is capped by O(log d). The new root
is then searched in O(log d) within a pset structure that contains all the roots of the
known divisors of pn given by Theorem 1. If the root does not belong to a divisor, it
is added, in constant time, into a pset structure that collects all new roots. Then the
computation of the discrete level curve restarts and the process continues. Overall, the
complexity of splitting pn and identifying Hyp(n) using this implementation is O(d log d)
with d = 2n−1, which explains the record times shown on Figure 13. All computations
are performed using FP80 hardware arithmetic. The memory requirement is d + O(

√
d)

to store both the divisors and the new roots. The application finally outputs the listing
of the set Hyp(n) in CSV format.

We have also implemented two applications that split qℓ,n for ℓ+ n ≤ 30. The appli-
cation misQuick uses the original polynomials qℓ,n, which have high-multiplicity roots, as
described in Theorem 2. Figure 13 synthesizes our benchmarks. The computation time
appears to obey a general rule O(d(log d)0.8) per new parameter, regardless of multiplic-
ity. The constant factor in front of this experimental law depends on the sub-family of
polynomials on which the benchmark is run and the parameters (like the ratio of starting
points per root). In theory, a O(d log d) scaling law should have been observed. Let us
point out that the renormalized computation time per root (regardless of wether it is a Mi-
siurewicz type or not) is equivalent to that of hyperbolic polynomials of the same degree.
This means that high-multiplicities have, at least in that case, a minimal effect on the
efficiency of our algorithm. To get rid of multiplicities, the application misSimpleQuick

uses the simplified polynomials sℓ,n = pℓ+n−1 + pℓ−1 instead of qℓ,n. This polynomial (9)
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plays a central role in the proof of Theorem 2 (see equation (60) in Appendix A), it has
simple roots that contain Mis(ℓ, n) and is a lot simpler to compute than the fully reduced
polynomial mℓ,n given by (11).

6.3.2 Reaching the limit of hardware arithmetic

The different C standard types of finite precision arithmetic are recalled in Table 1.
For example, FP80 arithmetic is the highest precision available on common hardware and
offers 64 significand bits; as such, it is suitable to represent the list of all roots of a
polynomial only when the minimal root separation exceeds 2−64 ≃ 5× 10−20. Moreover,
a margin of at least a few bits is necessary for the Newton dynamics to be meaningful
and converge to those roots.

Norm Standard C Java Sign Exponent Significand RAM Disk
FP32 float float 1 bit 8 bit 1+23 bit 4B 4B
FP64 double double 1 bit 11 bit 1+52 bit 8B 8B
FP80

long double
- 1 bit 15 bit 64 bit 12-16B 10B

FP128 - 1 bit 15 bit 1+112 bit 16B 16B

Table 1: Standard types of finite precision arithmetic.

Let us consider the two left-most real roots c1 = −2+ ε1 and c2 = −2+ ε2 of pn, with
0 < ε1 < ε2. For large n, the corresponding dynamics (see Fig. 14) linger near 2 for most
of the trajectory and separate from one another only at the last step, with

pn−1(c1) =
√
2− ε1 ≃

√
2
(
1− ε1

4

)
and pn−1(c2) = −

√
2− ε2 ≃ −

√
2
(
1− ε2

4

)
,

hence the rough estimate:

2
√
2 ≃ |pn−1(c1)− pn−1(c2)| ≃ |p′n−1(−2)||c1 − c2|. (47)

The computation of the derivative is classical and is based on the connection between
the parameter space and that of dynamics. Indeed, as f ′

c(z) = 2z and

(fk
c )

′(z) =

k−1∏
ℓ=0

f ′
c(f

ℓ
c (z)) = 2kzfc(z) . . . f

k−1
c (z),

the recursive definition of pn gives

p′n(c) = 1 +

n−1∑
ℓ=1

(f ℓ
c )

′(pn−ℓ(c)) = 1 +

n−1∑
ℓ=1

2ℓpn−ℓ(c)pn−ℓ+1(c) . . . pn−1(c)

thus
p′n(c)

(fn−1
c )′(c)

= 1 +
n−2∑
ℓ=0

2ℓpn−ℓ(c)pn−ℓ+1(c) . . . pn−1(c)

2n−1p1(c)p2(c) . . . pn−1(c)
= 1 +

n−1∑
k=1

1

(fk
c )

′(c)
(48)
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For c = −2, one has fk
−2(−2) = 2 for all k ≥ 1 and (fk

−2)
′(−2) = −4k. Substitution

in (48) gives p′n(−2) = −4n+2
6 and thus, within the approximation (47):

|c1 − c2| ∝ 4−n. (49)
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Figure 14: Dynamics associated with the left-most real roots of pn (here with n = 6).
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Figure 15: Minimal distance among hyperbolic centers Hyp(n) and among the roots of pn (which
differs only for odd n). The shaded regions highlight the resolution of hardware finite precision
arithmetics FP64 and FP80 and the region where a higher precision is required.
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Figure 16: Histogram of the minimal distance among Hyp(n) ∩ Ik with geometric bins Ik =
(−2+ 4−k−1,−2+ 4−k]×R illustrating that the closest gap happens near c = −2. The gray data
points corresponds to bins where the minimal distance among all roots of pn is strictly smaller
(close proximity of a divisor).
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Figure 17: Histogram of the minimal distance among Mis(ℓ, n) ∩ Ik for ℓ+ n = 26, which is the
first Misiurewicz order that cannot be integrally represented with FP80 arithmetic. The separation
within Mis(3, 23) and Mis(4, 22) drops below the limit of the representation.
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The actual root separation computed on our high-resolution dataset is illustrated on
Figures 15, 16 and 17. Within Hyp(n), one can check numerically that the two left-
most real roots are, indeed, the closest points. The experimental scaling law matches the
predicted behavior (relative error smaller than 0.1% when n ≥ 9):

min
c,c′∈Hyp(n)

c ̸=c′

|c− c′| ∼ 118.4

4n
· (50)

For odd n, both roots lie at the center of a primitive component of period n. For even n,
the minimal distance among roots of pn is slightly smaller than among Hyp(n), due to the
presence of a closer pair involving a root of a divisor (see Fig. 16): one root is the center
of a primitive component of period n/2 and the other one is the center of a satellite of
period n.

In the Mis(ℓ, n) family, the limitation of hardware arithmetic is first hit for the sub-
types Mis(3, 23) and Mis(4, 22), as illustrated on Figure 17. Both sets contain, at the left-
most end of M, two distincts real parameters separated by less than 4.86×10−20 < 2−64.
They cannot be separated in FP80 arithmetic. More generally, we have observed that all
sets Mis(ℓ, n) with 26 ≤ ℓ+n ≤ 32 and 3 ≤ ℓ ≤ 3(ℓ+n−25)+1 contain, near the left tip,
parameters that cannot be represented in FP80 arithmetic. Obviously, our app misQuick

is subject to those limitations and reports the missing roots, which is normal behavior.
However, to offer a user friendly interface, the apps misQuick and misSimpleQuick

provide an option to refine all roots near the real axis and left of −2 + 4−16 using high-
precision MPFR numbers. This option does not sacrifice much of the performances and
allows us to compute a complete list of all Mis(ℓ, n) parameters of type ℓ+ n ≤ 30 in the
time-frame illustrated on Figure 13.

When ℓ + n = 30, a second region (near Re c = −1) contains close complex pairs
(see Fig. 21) that are separated by less than 2−62. Computing types of order ℓ+ n ≥ 31
would require introducing multiple high-precision exceptions. At that point, one should
just switch to our HPC implementation described in Section 6.4.

Those numerical observations establish that, in the family of all hyperbolic centers
and Misiurewicz parameters, the roots of p33 and mℓ,n with ℓ + n = 30 constitute the
final frontier of what can be computed using FP80 hardware arithmetic. As illustrated
on Figure 13, our new algorithm based on level-lines can reach this frontier in just a
bit less than one day-core for the hyperbolic parameters and in about 3 hours for each
pre-periodic type (half that for misSimpleQuick).

Remark 19. The upper exponent limit of FP80 numbers is 22
14 ≃ 1.18 × 104932. In

hypQuick, we deal with polynomials of degree up to 232. Let us underline that

|z|232 ≤ 1.18× 104932 ⇔ |z| ≤ RFP80 with RFP80 ≃ 1 + 2.64× 10−6

and that M∩D(0, RFP80)
c ̸= ∅. To compute accurately one Newton step pn(z)/p

′
n(z) when

we detect that both the numerator and denominator are so large that each will exceed the
exponent limit (which happens in the first steps), we simplify a common large factor,
without loss of precision.
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6.3.3 A-posteriori certification of the FP80 results

There is no realistic hope of certifying FP80 computations within their own framework.
The operations on long double are extremely hardware dependent and we have no real
garanties that a given implementation will perform properly, in any circumstances, up
to the last bit. Implementing disk arithmetic is possible and can provide a reasonable
amount of confidence and is therefore included in our library. However, using disks based
on hardware arithmetic still leaves an unacceptable room for doubt11 that only MPFR

(which implements guarantied rounding directives) can waive.

For all periods 3 to 33, we did compare the listing of Hyp(n) obtained in FP80 arith-
metic using hypQuick to the certified listing obtained independently with high-precision
MPFR and certified disk arithmetic (see §5 and §6.2). The maximum deviation between
two corresponding lists does not exceed 5.24 × 10−19 (reached, in our case, for p24). In
particular, the lists of roots are identical up to a precision of 10−18. This a-posteriori
check constitutes the best possible certification of our FP80 results.

Similarly, the a-posteriori certification of Mis(ℓ, n) for ℓ+ n ≤ 25 reports a maximum
deviation of 3.25 × 10−19 between the lists obtained in hardware arithmetic and those
obtained with MPFR. Subtypes of higher order also pass the certification, with an obvious
exception for the parameters that cannot be represented in hardware arithmetic and are
thus out of the reach of misQuick (see Section 6.3.2). Of course, they can be certified
only if one activates the high-precision option for parameters left of −2 + 4−16.

6.4 Our HPC approach for splitting a tera-polynomial

Scaling up our algorithm from the splitting of p33 to that of p41 requires the resources
from a HPC center. The two key ingredients are massively parallel operations and the
ability to switch on the fly between hardware arithmetic, and arithmetic in arbitrary
precision. The splitting process is decomposed in multiple stages.

6.4.1 Overview of the splitting process

The first stage, called is a massively parallel raw search that involves J = 2n−27

tasks (respectively J = 2n+ℓ−27 for qn,ℓ) that are independent of each other. Each task
consists in finding roots in a certain sub-region of the Mandelbrot set. More precisely, the
computation of the discrete level line L5,2n−1(pn) is split in J pieces of equal cardinality.
We choose 2n−1/J = 227 to ensure that the resulting nset files of roots would take about
1.1GB each on disk. Each task computes a part of the finest level line and finds all the roots
that can be reached from it using the Newton map. In the library, the corresponding apps
are hypRaw and misRaw. The alternative misSimpleRaw uses the simplified polynomials
sℓ,n = pℓ+n−1 + pℓ−1 defined by (9) instead of qℓ,n, which eliminates most hyperbolic
divisors and ensures that all roots are simple.

The superiority of our level-line algorithm is illustrated on Figures 7 and 18: sections
of equal cardinality of Lλ,N span physical regions of extremely varied size. The level-line

11A single disk radius mistakenly rounded the wrong way breaks the logic chain of who contains whom.
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is a naturally self-refining mesh in the sense that the mesh is, by construction, denser in
regions where argP (z) cycles more rapidly, which indicates an intrication of the bassins
of attraction for the Newton flow and is thus likely to occur for the Newton map too. As
iso-angles (24) and external rays coincide asymptotically at infinity, it can be expected
that those regions still corellate with a higher density of external rays, and thus capture
faithfully, as the ray land, the harmonic measure of Mc and thus the roots of pn and qℓ,n
(see Fig. 20 and Section 2.3).

The key to the parallelization is the possibility to compute recursively a point with a
given phase on a level line. One uses discrete iso-angle trajectories (25), which are good
approximations of the external rays (Figure 19). A point on Lλ′,N (pn) with a given phase
can be obtained from a corresponding point in Lλ,N/2(pn−1) with λ′ = λ2 using only a
few Newton steps. If λ is large enough, one can be confident that no skip modulo 2π has
occurred so the phase is correct. Again by the Newton method, we obtain Lλ,N (pn) from
Lλ′,N (pn). This process is explained in details in Section 4.2. Use the app levelSets to
initiate the low-resolution level sets that will be used by each parallel task.

The second stage consist in merging the roots found by all the parallel tasks. Sorting
tera-bytes of data split in thousands of files of about one gigabyte each and deleting
the roots found multiple times appears, at first, as a substantial computational challenge.
However, as explained in Section 6.1, we used an appropriate, custom made, data structure
that allows for logarithmic search and insertion times and prohibits duplicates. Overall,
the time requirements for the second stage turned out to be negligible (see Table 2). The
corresponding apps are hypRawCount and misRawCount. They can also generate maps,
which are low-resolution portraits of the Mandelbrot set that count how many roots of a
given type end up in a given pixel (see Fig. 20).

Figure 18: Zoom on 18 consecutive raw jobs for p35 : the roots found by each parallel
task are colored differently from the next one. Note the extreme spatial variability
between tasks, even though each one starts from a piece of the discrete level line that
contains 227 points.
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Figure 19: External rays landing at the root of hyperbolic components of periods up to 6.

The third stage is the a-posteriori certification of the data, as explained in Section 6.2.
It is split in two sub-stages. First, we read the files in batch and count that we have all
roots in a strictly increasing lexicographic order. The corresponding apps are hypCount

and misCount. For reliability reasons, this task is performed on a a single CPU and
the code is as independent as possible from the rest of the library. Next (and last), the
certification involves redoing all the proofs in high-precision disk arithmetic using as many
CPUs as possible, which is the role of the apps hypProve and misProve.

In practice, the main difficulty for the certification of c ∈ Hyp(n) is a close transit of
pk(c) near zero for some k|n. This phenomenon can hinder the certification of a root of
pn and prevents essentially any certification attempt made with interval arithmetic. On
the other hand, disk arithmetic (see Section 5.3) is essentially immune to this problem.
Once the proper certification radius (see Section 6.2) was identified, the process went on
flawlessly.

For Mis(ℓ, n), we encountered difficulties in the raw search that kept missing pairs
of particularly close parameters near the tips of some antennas (see Fig. 21). However,
adjusting the parameters in Theorem 9 solved the issue.

The overall computation times of all stages are given in Table 2. As the certification
has an overall O(d log2 d) complexity, it can be used as a reference time12. The ratio
of 2.4 (for pn) or 9.4 (for qℓ,n) between the time necessary for the raw search and that
necessary for the certification attests that our algorithm behaves in practice as O(d log2 d)
with a small constant, at least for the pn and qℓ,n families. The higher raw search time for
Misiurewicz parameters is mostly driven by the fact that, asymptotically, half the roots of
qℓ,n are high-multiplicity hyperbolic divisors that are discarded in the end. Note that we
did not used the simplified polynomials mℓ,n, nor sℓ,n = pℓ+n−1 + pℓ−1. We can therefore
claim that, in practice, the presence of high multiplicities roots slows down the search
time with our level-line algorithm by a mere factor 1.95.

12log2 d as we check that new parameters are not roots of divisors.
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Root finding Certification
Total

Find/certif.

Parallel jobs Merge Counting Proofs ratio

Hyperbolic
pn, n≤41

26.2 y 16.1 d 1.7 d 11 y
37.2 y

2.4229 kh 386 h 41 h 96.4 kh ∼326 kh
70.3% 0.1% 0.01% 29.6%

Misiurewicz
qℓ,n, ℓ+n≤35

40.9 y 9.1 d 1.1 d 4.4 y
45.3 y

9.4358 kh 218 h 26 h 38.2 kh ∼397 kh
89.4% 0.05% 0.006% 10.6%

Table 2: Overal computation time of each main stage. See Footnote 1 p. 4 for a definition
of time-core. Note that for Misiurewicz polynomials, we did not use the simplified version
based on mℓ,n in order to measure the effects of high-multiplicities (about 50% of the roots
for q2,n) on our level-line algorithm.

Figure 20: The harmonic measure of Mc

can be visualized by counting how many hy-
perbolic centers land on each pixel and ad-
justing the shade accordingly (which is the
principle of our map files). Here we represent
Hyp(n) for n ≤ 24. Note the difference with
Figure 1 as the inner creeks are visited less
frequently than antennaes.

Figure 21: Typical example of a pair of
Mis(7, 27) parameters that are particularly
easy to miss during the raw search.

6.4.2 Number of Newton steps

In this subsection, we present some statistics regarding the practical complexity of our
algorithm, when applied to the splitting of pn or qℓ,n when n (resp. ℓ + n) is large. To
normalize the statistics, we present them in terms of Newton steps per root or in Newton
steps per new parameter. Each computable action boils down, eventually, to a Newton
steps or equivalent (evaluate a polynomial expression, its derivative and a quotient). We
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have sorted the actions in categories defined by what is actually being computed and
we normalize the total number of Newton steps for each action by the degree of the
polynomial (steps per root) or by the cardinal of the set being computed (steps per new
parameter). For Mis(ℓ, n) sets, the steps per parameter is roughly double the number
of steps per roots because, asymptotically, only half the roots are kept in the set (see
Section 2.4).

Period Level line Convergent descend Discarded descend

n L5,8d(pn) % FP80 FP128 Repeat Overlap Divisor Divergent
28 51.6 N/r 26% 8.8 N/p 2.4 N/p 73% - 0.01% 1%
30 50.7 N/r 25% 8.7 N/p 2.5 N/p 73% 0.07% 0.00% 1%
35 47.9 N/r 25% 8.4 N/p 2.8 N/p 73% 0.23% 0.00% 1%
39 46.9 N/r 25% 8.1 N/p 3.1 N/p 73% 0.38% 0.00% 1%
40 47.2 N/r 25% 7.9 N/p 3.2 N/p 73% 0.39% 0.00% 1%
41 47.7 N/r 25% 7.7 N/p 3.4 N/p 73% 0.34% 0.00% 1%

Table 3: Count of Newton steps per new hyperbolic parameter (N/p), which, for pn, is
equivalent to Newton steps per root (N/r). Intermediary periods have similar statistics.

Type Level line Convergent descend Discarded descend

ℓ+ n L100,8d(qℓ,n) % FP80 FP128 Repeat Overlap Divisor Divergent
28 110 N/p 56.8 N/r 13% 9 N/p 2.5 N/p 33% 0.02% 48.1% 6%
30 107 N/p 55.4 N/r 13% 8.9 N/p 2.6 N/p 34% 0.01% 48.1% 6%
32 104 N/p 53.9 N/r 12% 8.6 N/p 2.9 N/p 34% 0.00% 48.1% 6%
33 120 N/p 58.8 N/r 13% 10.8 N/p 4.3 N/p 35% 0.01% 49.2% 4%
35 131 N/p 64.4 N/r 13% 10.5 N/p 4.8 N/p 35% 0.02% 49.2% 4%

Table 4: Count of Newton steps per new Misiurewicz parameter (N/p) and Newton
steps per root (N/r). The normalization is substantially affected by the deflation due to
roots of divisors. In this benchmark, we did not simplify qℓ,n in order to estimate the
effect of high-multiplicities on our algorithm.

First, we compute the finest level line Lλ0,Md with λ0 = 5, M = 8, d = 2n−1 for pn and
λ0 = 100, M = 8 and d = 2ℓ+n−1 for qℓ,n. According to Tables 3 and 4, this phase appears
to have a constant cost of about 50 Newton steps per root, regardless of the degree of the
polynomial. This indicate that the computation of the level line is essentially not affected
by the presence of roots with high multiplicities. The only exception occurs for mℓ,n and
ℓ+n ≥ 33 where a significant jump in the number of steps per roots is observed; it suggests
that the level λ0 = 100 may be slightly too low for those types (higher level curves are
easier to compute). Note that, for the computation of Lλ0,Md, we do not distinguish here
between steps taken in hardware or in high-precision arithmetic (see §6.4.3).

Next, we perform Newton descends that we initiate on the subset Lλ0,4d (i.e. we have 4
starting points per root). Each Newton descend can either end up as convergent towards
a new parameter (which is kept in the current raw*.nset file) or it can be discarded for
one the following reasons:
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• the descend converges towards a root that was already found in the current job,

• the descend converges towards a root that overlaps a neighboring job (early detection
of duplicates),

• the descend converges towards a root of a divisor,

• the descend is considered divergent and is interrupted, either because of a long-
distance jump (indicating the likely proximity of a critical point) or because it did
not converge in the allotted number of steps (timeout).

Again, we observe consistently that convergent descends take about 10-12 steps, most of
which can be performed entirely using hardware arithmetic. If one assumes that the level
line pn(z) = 10−5 is totally disconnected (i.e. it has one connected component in each
contracting Newton disk), the general considerations of Section 4 thus ensure a practical
upper bound of log 5×105 ∼ 13 Newton steps (up to some universal constant) during the
descend from the level line pn(z) = 5. This prediction is conform with our observations.

We have consistently observed that about 5 to 7 % of the roots of pn are real ones. For
mℓ,n, the proportion is asymptotically the same for large ℓ+n, even though the proportion
starts at a higher level (9 to 15% for 10 ≤ ℓ+ n ≤ 20).

6.4.3 Usage of high precision arithmetic
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Figure 22: Proportion of the computations for splitting pn that were performed using high-
precision arithmetic operations [MPFR]. The black dot represents the average value. The error
bars represent the variability between all raw search jobs.
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Tables 3 and 4 indicate that the total number of Newton steps for each stage of
our algorithm is relatively stable and scales linearly with the degree of the polynomial.
However, we have observed an extreme variability in job durations, even though each job
is calibrated to deal with the same number of points on the level line. It turns out that
the duration is mostly determined by the amount of computations of the level line that
need to be performed in high-precision arithmetic, with the MPFR library.

For our implementation, a practical rule of thumb is that the duration, in hours, of a
large raw search job is about 14×R+10 where R is the ratio of computations that require
high-precision. This ratio is illustrated on Figure 22. For period 33, most level lines can
be completed using hardware arithmetic. This proportion drops to 86% on average for
splitting p41, with some jobs (typically near the left-most tip, see Section 6.3.2) requiring
almost exclusively high-precision computations.

Note that, on the other hand, the proportion of MPFR computations in the Newton
descend is almost constant.

Overall, the benchmarks presented in §6.4.2-6.4.3 confirm that, even in the presence
of roots with high multiplicities, our algorithm based on level lines is really robust and
performs well. Its practical complexity remains O(d), even when d is pushed to the tera-
scale. Those observations concern the family of polynomials related to the Mandelbrot
set and we do not claim nor suggest that those exceptional performances will remain in
full generality.

6.4.4 Memory and hardware requirements

The raw search of roots was split into many independent jobs. Jobs where dimensioned
so that they would, on average, correspond to 1.1GB of data with a few exceptions near
z = −2 where the job size can raise up to a little more than 2GB. Two reasons prevailed
in favor of that choice.

First, the memory requirement for each job is fairly limited: each job compares the
new roots with the previous one (if pressent) so both are loaded in memory and eat up
4GB, plus the internal data structure can take up another 2GB. Overall, we were able to
run all our computations while requiring only 7GB of RAM per CPU. This limit happens
to roughly coincide with the average of RAM available on our cluster, when the total RAM
of each computing node is equally divided among all the cores of the node. The practical
consequence was that the scheduler was usually able to accommodate our requests for a
high number of parallel cores, which would not have been the case if a few CPU would
have eaten up the whole memory of a node.

Second, writing the final data back into a few files of 1TB did not strike us a good idea,
because few people have access to resources that allow them to handle such a monster file
reliably, while transferts of 2G files are common.

The second stage (counting that we have all roots and write the final files without
duplicates) is performed on a single CPU and requires as much memory as possible. For
hyperbolic periods 37 and up, we used 175GB of RAM which allowed most sort operations
to be performed without reloading the same file twice.
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Our implementation can accommodate tight memory limitations, though the time
required to sort and merge the entire database may improve significantly if multiple
reloads are necessary. For example, for Misiurewicz types of order ℓ+ n ≥ 32, we had to
reduce the memory per core to accommodate the growing number of subtypes13

Note that the loading time (waiting for fopen system calls) can be substantial. In
our case, depending on the ambient load on the file system, the loading times ranged
from 18% to 98% of the total computation time for the second stage. In some cases, we
where able to preload the caches with the upcoming files by running a side process that
would monitor the logs and cat file > /dev/null while the previous files where being
processed.

The third stage (certification) requires very little memory (no more than twice size of
a final nset file) so 5GB per CPU dedicated to a certification task is sufficient.

6.4.5 The jobs market

The raw search stage is embarrassingly parallel. However, the duration of the jobs
presents large variability even for a given hyperbolic period or a Misiurewicz sub-type:
it can range from half the average compute time up to 8 times the average duration
of the jobs that handle the same polynomial. This heterogeneity calls for a vertical
parallelism, where each compute node calls for a new task as soon as it becomes available,
asynchronously from the other nodes that remain busy.

The human task of submitting new jobs is also non trivial: to generate our database,
even without a single failure, 49 427 raw jobs are necessary (about 2/3 of them for Hyp(n)),
followed by 1202 jobs for the later phases (most of them for Mis(ℓ, n)). Identifying the raw
jobs that have crashed due to node failure, network saturation, disk lag (which happened
to be a common plague on our busy HPC center) or job timeout can easily turn into a
nightmare.

To optimise our use of HPC resources among heterogeneous jobs and automate the
task of submitting raw jobs, we developed our own task scheduler, which is a small Java
app, called job market. It records the progress of all computing tasks, distributes new
tasks asynchronously to each available computing node, recycles failed jobs and produces
useful statistics.

6.4.6 Use a GPU or not?

In order to keep our implementation as simple (and human readable) as possible, we
decided against a mixed code GPU/CPU. However, we may revisit this position in the
future. Here are a few thoughts about this choice.

For massively parallel computations, GPUs offers impressive performances. We briefly
explored this path; however, our algorithm reaches the limits of hardware arithmetic very

13For Mis(ℓ, n) with ℓ+ n = 33, we requested only 26GB for each of the 31 cores dedicated to the count,
instead of 73GB for the single core used for Hyp(33). Consequently, each file had to be reloaded about 2.5
times.
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quickly (see §6.3.2). For now, GPUs are essentially limited to FP64 arithmetic, which
gives a first objection against their usage for splitting polynomials of high degree, pending
a library that can emulate high-precision arithmetic.

The second objection is that the computational gain is not completely obvious because
it is not easy to predict how long the dynamics of the Newton map will take before the
algorithm can classify the starting point. It is silly to keep running Newton steps just
because other threads are still doing it; and it is equally counterproductive to cut an
iteration short just because the others are done. Considering that the main gain of GPUs
lies in running identical parallel threads, a naive implementation may therefore tend to
impose the worst case as the statistical norm, thus defeating the purpose of running on a
GPU.

Appendices

A Proof of the factorization theorem

Let us give here a direct proof of the factorization theorem (i.e. Theorem 2).

Proof. As mentioned above, thanks to [HT15], only the multiplicity of the hyperbolic
factors has to be established. For ℓ ∈ {0, 1}, the formula (13) boils down to (8) so we will
suppose ℓ ≥ 2 from now on.

The case of Hyp(1) = {0} is essentially based on the well known fact (proven by direct
induction) that the trailing coefficients of pn(z) stabilize as n grows; more precisely:

∀k ∈ N, pn(z) ≡ pn+k(z) mod zn+1, (51)

thus qℓ,n(z) ≡ 0 mod zℓ+1. On the other hand, one can check that

qℓ,n(z) ≡ 2ℓ−1zℓ+1 mod zℓ+2 (52)

so zero is exactly of multiplicity ℓ+ 1 = ηℓ(1).

Next, let us check that the multiplicities in (13) are consistent with deg qℓ,n, i.e. :

∑
k|n

ηℓ(k) |Hyp(k)|+
ℓ∑

j=2

|Mis(j, k)|

 = 2ℓ+n−1. (53)

Indeed, using (7) and (12) and a geometric sum, the left-hand side equals

∑
k|n

|Hyp(k)|

ηℓ(k) +

ℓ∑
j=2

Φ(j, k)


=

∑
k|n

∑
m|k

µ(k/m)2m−1

2ℓ +

⌊
ℓ− 1

k

⌋
−

ℓ∑
j=2

δk|j−1
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where δk|j−1 = 1 if k divides j − 1 and 0 otherwise. For any integers λ, k ∈ N∗, let us
observe that ⌊

λ

k

⌋
= |{j ∈ J1, λK ; k|j}| =

λ∑
j=1

δk|j . (54)

The claim (53) thus follows from Möbius inversion formula [Möb32]-[Rot63]:

∑
k|n

∑
m|k

µ(k/m)2m

 = 2n. (55)

Let us now consider the case of Hyp(k) for k|n and 1 < k ≤ n. Note that if n is
prime, there is only one hyperbolic factor left, namely k = n and the factorization (13)
follows from an argument of divisibility and the identity of degrees (53). We can however
treat the general case in a unified way, regardless of wether n is composite or not and
prove (13) by recurrence on ℓ. One has

qℓ,n(z) = pℓ+n(z)− pℓ(z)

= p2ℓ+n−1(z)− p2ℓ−1(z)

= qℓ−1,n(z)(pℓ+n−1(z) + pℓ−1(z)) (56)

= qℓ−1,n(z)(qℓ−1,n(z) + 2pℓ−1(z)).

The recurrence assumption reads

qℓ−1,n =
∏
k|n

h
ηℓ−1(k)
k

ℓ−1∏
j=2

mj,k

 (57)

and, from the hyperbolic case, we know that

pℓ−1 =
∏
j|ℓ−1

hj .

If k divides n but not ℓ− 1, then hk divides qℓ−1,n(z) but not pℓ−1 so hk does not divide
qℓ−1,n +2pℓ−1. Alternatively, if k divides both n and ℓ− 1 then hk divides qℓ−1,n +2pℓ−1.
However h2k does not because it is a factor of qℓ−1,n (see the Lemma 21 below) but not
of pℓ−1. Finally, the polynomials mℓ,k for k|n are known factors of qℓ,n that do not divide
qℓ−1,n; as qℓ,n/qℓ−1,n has simple roots, they are simple factors of qℓ,n. There are no other
Misiurewicz-type factors. We have thus established that:

qℓ,n =

 ∏
k| gcd(n,ℓ−1)

hk

∏
k|n

mℓ,k

 qℓ−1,n. (58)

Let us finally observe that, for ℓ, k ≥ 2:

ηℓ−1(k) =

{
ηℓ(k)− 1 if k|ℓ− 1,

ηℓ(k) else.
(59)
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Indeed, if k|ℓ−1 then (59) follows directly from (14); conversely, if k does not divide ℓ−1
then ℓ−1

k ∈ Z+ [ 1k , 1) and

ηℓ−1(k) =

⌊
ℓ− 1

k
− 1

k

⌋
+ 2 =

⌊
ℓ− 1

k

⌋
+ 2 = ηℓ(k).

Combining (57), (58) and (59) ensures that (13) holds for the next pre-period.

Remark 20. The previous proof establishes the following identity (see also (9)):

sℓ,n =
qℓ,n
qℓ−1,n

= pℓ+n−1 + pℓ−1 =

 ∏
k| gcd(n,ℓ−1)

hk

∏
k|n

mℓ,k

 . (60)

To illustrate our method, the simplest case of a composite period is:

q2,4(z) = p6(z)− p2(z) = p25(z)− p21(z) = q1,4(z)(p5(z) + p1(z)) = p24(z)(p
2
4(z) + 2z).

As p4 = h4h2h1, the polynomial q2,4 is divisible by h24 but not by h34. The expo-
nent of Hyp(4) is therefore exactly 2 and we are left with a single hyperbolic factor,
namely Hyp(2). Using the degree identity (53) thus ensures that

q2,4(z) = h31(z)h
2
2(z)h

2
4(z)m2,1(z)m2,2(z)m2,4(z).

The only check-up left is the following statement.

Lemma 21. If k ≥ 1 divides both ℓ ≥ 1 and n ≥ 1, then h2k is a factor of qℓ,n.

Proof. It is sufficient to establish the lemma for qk,jk with j ∈ N because

∀r, q ∈ N∗, qkr,kq = pk(q+r) − pk − pkr + pk = qk,k(q+r−1) − qk,k(r−1).

As qk,0 = 0, let us assume that j ≥ 1; using (56) repeatedly one has.

qk,jk = qk−1,jk × (p(j+1)k−1 + pk−1)

= qk−2,jk × (p(j+1)k−2 + pk−2)(p(j+1)k−1 + pk−1)

= . . .

= q1,jk × (p(j+1)k−2 + pk−2)(p(j+1)k−1 + pk−1) . . . (pjk+1 + p1)

Therefore, p2jk = q1,jk is a factor of qk,jk. As k|jk, then hk is itself a factor of pjk and so

h2k divides p2jk and consequently qk,jk too.

B Useful mathematical results

We expect our readers to have (like us authors) varied mathematical backgrounds.
For the convenience of all, we recall here briefly a few mathematical results that are quite
standard to the specialists, but might not be well known to all.

59



B.1 Localization of the roots of polynomials

To renormalize the roots of P ∈ C[z] within D(0, 1) one may consider P (z/ρ) where
ρ > r and r is given by the following statement.

Theorem 10 ([BE95, Theorem 1.2.4]). All the zeros of P (z) =
n∑

k=0

akz
k are located in

the disk D(0, r) where

r = inf
1
p
+ 1

q
=1

1 +

n−1∑
j=0

|aj |p

|an|p

q/p


1/q

and provided an ̸= 0 and p, q > 1.

Remark 22. For various classical results on this mater, see [Hen74, §6.4].

Small perturbations of analytic functions do not affect much the location of their roots,
as stated by Rouché’s theorem, stated here in its strong symmetric form.

Theorem 11 (Rouché-Estermann). Given two holomorphic functions f , g on a domain
G and a bounded region K ⊂ G with continuous boundary ∂K. If the following strict
inequality holds:

∀z ∈ ∂K, |f(z)− g(z)| < |f(z)|+ |g(z)|

then f and g have the same number of roots (counted with multiplicity) in K.

A common case of application is when |h(z)| < |f(z)| on ∂K. In that case, the theorem
can be applied with g = f + h and ensures that the perturbation h does not change the
number of roots of f .

B.2 Injectivity of analytic functions

The following result quantifies the local injectivity of analytic functions (see [CG93]).

Theorem 12 (Koebe’s lemma). If f : D(0, 1) → C is an injective analytic function, then
f(D(0, 1)) ⊃ D(f(0), |f ′(0)|/4) and, more generally:

∀r ∈ [0, 1), D

(
f(0),

r|f ′(0)|
(1 + r)2

)
⊂ f(D(0, r)) ⊂ D

(
f(0),

r|f ′(0)|
(1− r)2

)
. (61)

The universality of the constant 1/4 constitutes a radical breach between real and complex
analysis. The optimality of this constant can be checked on the function

f(z) =
z

(1− z)2

because f ′(0) = 1 but the value f(−1) = −1/4 ̸∈ f(D(0, 1)).

We also use of the following stronger result, based on the Bieberbach conjecture, which
was proven by de Branges [Bra85].
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Theorem 13. Given g : D(0, 1) → C an injective analytic function with g(0) = 0 and
g′(0) = 1 and f = g−1 its inverse, there exist universal constants ρ1 ≃ 0.121507 and β1 ≃
0.0987043 such that g(D(0, β1)) ⊂ D(0, ρ1), and D(0, ρ1) is contained in the immediate
basin of attraction of 0 for the Newton map Nf .

Proof. Let Ω = g(D(0, 1)), z ∈ Ω and y = f(z). Then, combining (15) and the chain rule
for derivatives:

|Nf (z)| = |g(y)− yg′(y)|.

A direct computation with the expansion g(y) = y + a2y
2 + a3y

3 + . . . gives

|g(y)− yg′(y)| ≤
∑
n≥2

(n− 1)|an|rn and |g(y)| ≥ r −
∑
n≥2

|an|rn ,

where r = |y|. In order to ensure |Nf (z)| < |z| = |g(y)|, it is therefore enough that∑
n≥2

n|an|rn < r.

By de Branges’s theorem [Bra85], one has |an| ≤ n for all n ≥ 2. Let β0 be the unique
positive solution of

x(x2 − 3x+ 4)

(1− x)3
=

∑
n≥2

n2xn−1 = 1,

which satisfies that β0 ≃ 0.164878 ∈ (164, 165)/1000. We have thus shown that r < β0
i.e. z ∈ g(D(0, β0)) ensures that |Nf (z)| < |z|. To ensure this property for subsequent
iterations, let us take z ∈ D(0, ρ1) with ρ1 = β0(1 + β0)

−2 ≃ 0.121507. Then (61) applied
to g guaranties that D(0, ρ1) ⊂ g(D(0, β0)) and the previous considerations give

Nf (z) ∈ D(0, |z|) ⊂ D(0, ρ1).

Consequently, by Montel’s theorem, the iterates of Nf on D(0, ρ1) form a normal familly,
which converges towards zero, the only zero of f in D(0, ρ1). Finally, taking β1 ≃
0.0987043 such that β1(1 − β1)

−2 = ρ1, the estimate (61) ensures that g(D(0, β1)) ⊂
D(0, ρ1) is also included in the immediate bassin of attraction of the origin for Nf .

Corollary 23. Under the assumptions of Theorem 13, there exists universal constants
ρ2 ≃ 0.110549 and β2 ≃ 0.091287 such that g(D(0, β2)) ⊂ D(0, ρ2) and if z ∈ D(0, ρ2),
then for any ϵ ∈ (0, 1/8) and

k ≥ 3 + log2 | log2 ϵ|,

the iterate Nk
f (z) ∈ D(0, ϵ). If ϵ > 1/8, then z is already in D(0, ϵ).

Proof. If |z| < ρ2, then r = |f(z)| ≤ r2 s.t. r2(1 + r2)
−2 = ρ2 and

|Nf (z)| ≤
∑
n≥2

n(n− 1)rn ≤ 8
(
r −

∑
n≥2

nrn
)2

≤ 8|z|2.
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The inequality in the middle comes from a direct majoration

∀r ∈ [0, r2],

∑
n≥2 n(n− 1)rn(

r −
∑

n≥2 nr
n
)2 =

2(1− r)

(2r2 − 4r + 1)2
≤ 2(1− r2)

(2r22 − 4r2 + 1)2
= 8.

This choice leads to the numerical values r2 ≃ 0.144910 and ρ2 ≃ 0.110549. In particular,
as ρ2 < ρ1, the disk D(0, ρ2) is stable under Nf and the iterates converge uniformly to
zero. Note that 8|z|2 < 0.9|z| because 8|z| ≤ 8ρ2 < 0.9. We thus have a bi-exponential
rate:

|Nk
f (z)| ≤

1

8
(8|z|)2n

and it takes at most log2

∣∣∣ log2 8ϵ
log2 8|z|

∣∣∣ ≤ log2
| log2 ϵ|

− log2 8ρ2
iterates to ensure that |Nk

f (z)| < ϵ.

Finally, taking β2 ≃ 0.091287 such that β2(1− β2)
−2 = ρ2, the estimate (61) ensures

that g(D(0, β2)) ⊂ D(0, ρ2).

B.3 Riemann map of the exterior of M

Theorem 14 ([Jun85]). There exists a sequence of analytic maps Φk : Mc → C such
that

∀k ≥ 3, Φk(c)
dk = pk(c) and Φk(c) ∼

|c|→∞
c (62)

with dk = 2k−1. The map Φk is one-to-one from Uk = {z ∈ C ; |pk+1(c)| > 2} onto the

outer disk {z ∈ C ; |z| > 22
−k}. The sequence converges uniformly on compact sets to the

Riemann map Mc ∪ {∞} → C̄\disk(0, 1)c.

Remark 24. The Riemann map is given by Φ(c) = φc(c) where φc is the map

φc(z) = z
∞∏
n=0

(
1 +

c

fn
c (z)

2

)2−n−1

= lim
n→∞

fn
c (z)

2−n

that conjugates the dynamics on f−1
c (C \D(0, |c|)) to that of z2, i.e.

fc(z) = φ−1
c (φc(z)

2).

It satisfies φc(z) = z + o(1) at infinity. The function Gc(z) = log |φc(z)| is the Green
function of the unbounded component of Fc, with pole at ∞.
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C Index of notations

We provide here a short index of our notations. By default, we use the American
standard names, notations and spellings.

About integer, real and complex numbers

k|n : the integer k is a divisor of the integer n.

Div(n) : set of all divisors of n ∈ N∗.

Div(n)∗ = Div(n)\{n} : strict divisors of n.

⌊x⌋ : floor function; ⌊x⌋ = k if k ∈ Z and x ∈ [k, k + 1).

I(x, r) = (x− r, x+ r) : open interval along the real line.

z = a+ ib ∈ C : complex numbers (with a, b ∈ R); the euclidian and ℓ1 norms are given by:

|z| =
√
x2 + y2 and |z|1 = |x|+ |y|.

D(z, r) = {z′ ∈ C ; |z′ − z| < r} : complex open disk.

C = C ∪ {∞} : the Riemann sphere.

UN =
{
e2ikπ/N ; 0 ≤ k < N

}
: the roots of unity of order N ∈ N∗.

◦
Ω, Ω : interior and closure of a subset Ω ∈ C.

About the Mandelbrot set

fc(z) = z2 + c : the fundamental map (3) for the dynamics associated to M.

pn and qℓ,n : hyperbolic (1) and Misiurewicz-Thurston (2) polynomials.

M = {c ∈ C ; ∀n ∈ N, |pn(c)| ≤ 2} : Mandelbrot set (Figure 1).

Hyp(n) : set of hyperbolic centers of order n, defined by (4).

Mis(ℓ, n) : set of pre-periodic (Misiurewicz-Thurston) parameters of type (ℓ, n), defined by (10).

hn, mℓ,n and sℓ,n : reduced polynomials (5), (11) and (9).

About polynomials and splitting algorithms

Crit(P ) : set of critical points of P , i.e. P ′(z) = 0.

NP : Newton map associated with a polynomial P (see Section 3.4).

ζ(t) : Newton’s flow defined by the ODE (24).

λ(t) : level line defined by the ODE (27).

Lλ0,N (P ) : discrete level line of P defined by (31) and central to our splitting algorithm.

εR, εN , εS : various radii related to the certification process (see Theorem 9).

Mr(d) : universal mesh of [HSS01] for splitting a polynomial of degree d (see Section 3.5).

About finite precision arithmetic

ZN : fundamental set (41) of floating points numbers with finite precision.

R̂N : (theoretical) set of all (40) floating points numbers with a given precision.

RN : (realistic) subset (42) of R̂N with limited exponents.

e(x) and ûlp(x) = 2e(x)−N : exponent of x ∈ R̂N\{0} and associated unit on last position (43).

R̂N : R → R̂N : rounding operator from the real line onto finite precision numbers.
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D Listing of tasks implemented in [Mandel]

In our implementation [Mandel], the tasks listed in this section are called in the com-
mand line with Mandelbrot -task [arguments]. Use -task -help for more detailed
informations. The core functions of the interface are listed here.

Tools for the inital setup14

-levelSets prepares the level sets for roots search
-misSets prepares the level sets for Misiurewicz points search
-misSimpleSets prepares the simple level sets for Misiurewicz points search

Tools for splitting pn and qℓ,n using FP80 hardware arithmetic
-hypQuick computes hyperbolic centers quickly, with low precision
-misQuick computes pre-periodic points quickly, with low precision
-misSimpleQuick computes pre-periodic points quickly, with low precision, using simplified poly-

nomials sℓ,n = pℓ+n−1 + pℓ−1

Tools for splitting pn using certifiable FP128 arithmetic
-hypRaw computes the hyperbolic centers, saves results in ∼1GB binary files
-hypRawCount counts the results of hypRaw
-hypCount counts and checks the unicity of hyperbolic centers
-hypProve re-proves the hyperbolic centers and the convergence of the Newton map

Tools for splitting qℓ,n using certifiable FP128 arithmetic
-misRaw computes the pre-periodic points, saves results in ∼1GB binary files
-misSimpleRaw computes pre-periodic points using simplified polynomials sℓ,n
-misRawCount counts the results of misRaw
-misCount counts and checks the unicity of Misiurewicz parameters
-misProve re-proves the Misiurewicz points and the convergence of the Newton map

Statistical and graphical tools for analyzing the database
-hypMinDist computes minimum distance between hyperbolic centers
-misMinDist computes minimum distance between pre-periodic points
-hypTree computes the maps of the hyperbolic centers with different resolutions
-misTree computes the maps of the Misiurewicz points with different resolutions
-bitmap renders the bitmaps described in the input file

Tools for handling csv files and our custom formats nset and mpv

-header explains the header of a nset file and check for basic file integrity
-nset2csv exports data from binary nset files to csv files
-csvCompare compare csv files with numerical values
-csv2mpv packs numbers from csv files to binary mpv files
-mpv2mpv exports and converts data from binary mpv files to mpv files
-mpvCompare compare the values stored in two binary mpv files

14If possible, those three tasks will be merged into one common interface in future versions.
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tions. Z. Wahrscheinlichkeitstheorie u. verw. Gebiete, 2:340–368, 1963.

[RR05] N. Revol and F. Rouillier. Motivations for an arbitrary precision interval arithmetic
and the MPFI library. Reliable Computing, 11:275–290, 2005.

[RSS17] M. Randig, D. Schleicher, and R. Stoll. Newton’s method in practice II: The iterated
refinement Newton method and near-optimal complexity for finding all roots of some
polynomials of very large degrees. arXiv:1703.05847, 2017.

[RSS20] B. Reinke, D. Schleicher, and M. Stoll. The weierstrass root finder is not generally
convergent. ArXiv:2004.04777, 2020.

[Sch23] D. Schleicher. On the efficient global dynamics of newton’s method for complex
polynomials. Nonlinearity, 36:1349–1377, 2023.

[SCR+20] S. Shemyakov, R. Chernov, D. Rumiantsau, D. Schleicher, S. Schmitt, and A. She-
myakov. Finding polynomial roots by dynamical systems – a case study. Discrete and
Continuous Dyn. Systems, 40(12):6945–6965, 2020.
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