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Finite-difference viscous filtering for
non-regular meshes

R. Perrin and E. Lamballais

1 Introduction

In a recent study [1], the authors have proposed a new solution filtering technique
for direct and large-eddy simulation (DNS/LES). This method can represent both
the molecular and artificial viscosity. It is particularly easy to code in a conventional
finite-difference framework where only the scheme coefficients have to be designed
to ensure the expected dissipation. The main strength of this viscous filtering tech-
nique lies in its numerical stability features. In this sense, it can be considered as a
simple and computationally efficient alternative to implicit time integration of the
viscous term.

The concept of viscous filtering and its advantages in the context of DNS/LES
are presented in [1]. However, as a limitation of the technique, only the case of a
regular mesh has been addressed. It was a way to design the coefficients for ensuring
favourable spectral features defined in the Fourier space. In particular, the accuracy
conditions are derived through Taylor’s expansions expressed in wavenumbers.

The purpose of this contribution is to extend this viscous filtering technique to
non-regular meshes. This generalization requires to express the expected features in
the physical space in order to obtain the various relations to reach a given order of
accuracy. The principles of these developments are first presented. Then, a prelim-
inary validation is shown for the Burgers equation. Finally, to assess the method in
a DNS/LES context, the case of a transitional boundary layer is considered with the
use of a highly stretched mesh in the near-wall region.
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2 Methodology

To present the general ideas of the approach, let us consider the simple one-
dimensional equation

∂u
∂ t

= F(u)+ν
∂ 2u
∂x2 (1)

where u(x, t) is the solution and ν the constant molecular viscosity. The basic prin-
ciple of the method is to split the time advancement into two steps with

u∗ = un +
∫ tn+∆ t

tn
F(u)dt (2)

un+1 = ũ∗ (3)

with un = u(x, tn) and un+1 = u(x, tn +∆ t). Step (2) consists in the time advance-
ment of the inviscid version of equation (1) where the integral can be evaluated for
instance by an Adams-Bashforth scheme. Step (3) corresponds to the application of
a spatial filter denoted .̃ to restore the influence of viscosity. For simplicity, the split-
ting error is ignored here, but it has been shown in [1] that this error is negligible for
typical DNS/LES while being removable if necessary.

The spatial discretization is based on a stretched mesh xi = h(si) where si =
(i−1)∆s corresponds to regularly distributed nodes on the computational coordinate
s. This coordinate transformation enables to write successive derivatives as

∂u
∂x

= g
∂u
∂ s

,
∂ 2u
∂x2 = g2 ∂ 2u

∂ s2 +gg′
∂u
∂ s

∂ 3u
∂x3 = g3 ∂ 3u

∂ s3 +3g2g′
∂ 2u
∂ s2 +

(
g2g(2)+gg′2

)
∂u
∂ s

,
∂ nu
∂xn = gn ∂ nu

∂ sn + ... (4)

where g = 1/h′. To mimic the contribution of this viscous term in step (3), a finite-
difference filter scheme of the form

αpũi+1 + ũi +αmũi−1 = aui +
bp

2
ui+1 +

bm

2
ui−1 +

cp

2
ui+2 +

cm

2
ui−2 (5)

is used where ui = u(xi, t). As it is usual in a finite-difference framework, Taylor’s
expansion in space

ui+k = ui +
n

∑
p=1

(k∆s)p

p!
∂ pu
∂ sp

∣∣∣∣
i
+O(∆sn+1)

∂ qu
∂ sq

∣∣∣∣
i+k

=
∂ qu
∂ sq

∣∣∣∣
i
+

n

∑
p=1

(k∆s)p

p!
∂ p+qu
∂ sp+q

∣∣∣∣
i
+O(∆sn+1) (6)

provides relation orders in ∆sn between the coefficients (αp,αm,a,bp,bm,cp,cm) in
(5). Then, by Taylor’s expansion in time
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ũi = ui +∆ t
∂u
∂ t

∣∣∣∣
i
+

∆ t2

2
∂ 2u
∂ t2

∣∣∣∣
i
+

∆ t3

3!
∂ 3u
∂ t3

∣∣∣∣
i
+O(∆ t4) (7)

while switching the time derivative by their spatial counterparts, requiring that step
(3) has to match a purely diffusive equation with

∂u
∂ t

= ν
∂ 2u
∂x2 ,

∂ 2u
∂ t2 = ν

2 ∂ 4u
∂x4 ,

∂ 3u
∂ t3 = ν

3 ∂ 6u
∂x6 , (8)

expansion (7) can also be written as

ũi = ui +F∆s2 ∂ 2u
∂x2

∣∣∣∣
i
+

F2∆s4

2
∂ 4u
∂x4

∣∣∣∣
i
+

F3∆s6

3!
∂ 6u
∂x6

∣∣∣∣
i
+O(F4

∆x8) (9)

where F = ν∆ t
∆s2 is the Fourier number based on the constant cell ∆s. To enable an

identification between the relation orders given by (6) and (9) in the scheme (5), a
conversion of the spatial derivatives from x to s is required. This can be done easily
through relations (4) so that a 7× 7 system MX = N can be obtained where the
component of X = (αp,αm,a,bp,bm,cp,cm)

T are the unknown scheme coefficients
of (5). This system can be solved analytically (using a symbolic calculation tool)
leading to extremely long expressions for each coefficient which is a function of F ,
g, g′, g′′, g(3), g(4) and g(5). More conveniently, the same can be done numerically
up to the machine accuracy before starting the simulation.

Specific versions of this new scheme have also been developed for performing
implicit LES. In that case, an artificial dissipation can be imposed by checking

a−
bp

2
− bm

2
+

cp

2
+

cm

2
−d = (1−αp−αm)exp

[
−π

2
(

ν0

ν
+1
)

g2F
]

(10)

where d = dp = dm is a stencil extension of the initial scheme (5) while ν0 is a
numerical viscosity chosen to ensure regularization as a substitute of subgrid-scale
modelling. The resulting 8×8 system can be solved as previously, leading to scheme
coefficients with an extra dependency on ν0.

Finally, the same methodology can be straightforwardly followed for the devel-
opment of one-sided schemes at the boundaries.

3 Validation for Burger’s equation

To validate this new type of filter scheme, Burgers’ equation has been solved,
namely F(u) = u∂u/∂x in (1). As explained in the previous section, every time
step, the inviscid Burger equation is solved and then, the viscous filter scheme (5)
is applied on the discrete solution to restore the influence of the viscosity. A time
interval after the shock formation is computed and the solution is compared to its
exact counterpart. The mesh, composed of N nodes, is regular when using the initial
scheme given in [1] whereas the mesh is stretched in the shock region when using
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the new scheme developed here. The sixth-order version is assessed, namely the
highest-order enabled by scheme (5) because of its compact stencil.

As expected, at low resolution using a regular mesh, the solution is subjected
to Gibbs’ phenomenon, leading to unphysical grid-to-grid oscillations in the near-
shock region as exhibited in figure 1-left. This problem can be fixed through the
increase of the resolution everywhere in the domain, which is computationally inef-
ficient. Alternatively, the use of a stretched grid enables us to remove the unphysical
oscillations without any increase of the computational cost (see figure 1-left for
N = 64).
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Fig. 1 Computation of a shocked Burgers’ solution. Top: solution at t = 0.05. Bottom: evolution
of L∞ with the number N of mesh nodes.

The numerical convergence analysis is based on the computation of L∞ to esti-
mate the numerical error defined by reference to the exact solution. Figure 1-right
shows that the expected sixth-order is correctly recovered for both the regular and
non-regular meshes, but only at high resolution for the former as the signature of
the Gibbs phenomenon at low resolution. The spectacular increase of the accuracy
provided by the use of a stretched mesh can be observed, with for the two largest
stretching parameters β = (0.05,0.025), a reduction by more than 2 orders of mag-
nitude of the maximum error located near the shock. For a constant error, the com-
putational saving corresponds to a factor of about 8 by comparison to a regular
mesh.

4 Assessment by implicit LES

For further validation, implicit LES of a spatially-evolving boundary layer subjected
to bypass transition has been carried out as in [2]. To handle the present flow config-
uration, a Cartesian mesh of (nx×ny×nz) = (961,411,156) nodes is used to cover
a computational domain (Lx× Ly× Lz) = (1500δ1,145δ1,125δ1) where δ1 is the
displacement thickness of the laminar boundary layer at the inlet of the computa-
tional domain and Re =U0δ1/ν = 300. The inlet boundary conditions are provided
by precursor simulations in which the flow in the leading edge region of the flat
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Fig. 2 Implicit LES of bypass transition of a boundary layer [2]. Maps of longitudinal and span-
wise velocities at y = δ1 and z = δ1 respectively. Q-criterion isosurface in grey.

plate is computed together with realistic free-stream turbulence outside the bound-
ary layer in order to trigger physically relevant bypass transition (see [2] for more
details). Based on the maximum friction velocity uτ , the resulting cell sizes in wall-
units are (∆x+,∆y+,∆z+) ≈ (23,1− 27,12) through the use of a highly stretched
mesh in the wall-normal direction y. The near-wall cell-size ∆y+ ≈ 1 is favourable
for accuracy but penalizing for numerical stability when using an explicit time ad-
vancement, in particular for the high value of numerical viscosity used here with
ν0/ν = 25. For the present second-order Adams-Bashforth (AB2) scheme, numer-
ical stability is ensured only if the maximum Fourier number Fmax = ν∆ t/∆ 2

min is
less than 3.910−3, imposing the use of a time step ∆ t reduced by a factor 18 by
comparison to its maximum value allowed by the CFL condition. To alleviate this
problem, the traditional approach is to make implicit the time integration of the vis-
cous term using for instance a Crank-Nicolson (CN) scheme, leading to an hybrid
AB2-CN time advancement. Here, the present viscous filtering (VF) technique is
proposed as a simpler alternative designated as AB2-VF.

It has been observed that both AB2-CN and AB2-VF strategies enable the use
of large time steps only restricted by the CFL condition while leading to virtually
identical instantaneous solutions as illustrated in figure 2 where significant differ-
ences are only observed in flow regions where the dynamics becomes chaotic. This
point can be confirmed by plotting time signals of velocity as shown in figure 3 for
deterministic (top-left) and intermitently chaotic (top-right) boundary-layer regions.
In the free-stream turbulence zone, the agreement is almost perfect up to the most
downstream region because of the low level of velocity fluctuations with respect to
the convection velocity U0. Similar agreements are observed for other quantities (not
shown for brevity) leading to the conclusion that AB2-CN and AB2-VF strategies
are equivalent in terms of numerical accuracy and stability.

5 Conclusion

The main conclusion of these one-dimensional and full-scale tests is that viscous
filtering can be extended to non-regular meshes while ensuring accuracy and quasi-
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Fig. 3 Time signals of the longitudinal velocity at (x,y) = (400δ1,0.8δ1,50δ1) left-top, (x,y) =
(700δ1,0.8δ1) right-top, (x,y) = (400δ1) left-bottom, (x,y) = (700δ1) right-bottom with z = 50δ1.

unconditional stability, as a valuable alternative to an implicit treatment of the vis-
cous term in time. By comparison to the latter, viscous filtering can easily handle
multidimensional problems thanks to its essentially explicit nature based on opera-
tor splitting. In particular, it does not require the use of sophisticated and iterative
methods to deal with large-size and sparse matrices while enabling the use of large
time steps not restricted by viscous numerical stability conditions. Among the per-
spectives of the present approach, one may refer to an adaptation for flows with
variable viscosity in space. The extension of the present concept of viscous filtering
to other frameworks of numerical methods such as finite volume/element would also
deserve further developements.
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