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Abstract: For grid stability, operation, and planning, solar irradiance forecasting is crucial. In this
paper, we provide a method for predicting the Global Horizontal Irradiance (GHI) mean values one
hour in advance. Sky images are utilized for training the various forecasting models along with
measured meteorological data in order to account for the short-term variability of solar irradiance,
which is mostly caused by the presence of clouds in the sky. Additionally, deep learning models like
the multilayer perceptron (MLP), convolutional neural networks (CNN), long short-term memory
(LSTM), or their hybridized forms are widely used for deterministic solar irradiance forecasting. The
implementation of probabilistic solar irradiance forecasting, which is gaining prominence in grid
management since it offers information on the likelihood of different outcomes, is another task we
carry out using quantile regression. The novelty of this paper lies in the combination of a hybrid deep
learning model (CNN-LSTM) with quantile regression for the computation of prediction intervals at
different confidence levels. The training of the different machine learning algorithms is performed
over a year’s worth of sky images and meteorological data from the years 2019 to 2020. The data were
measured at the University of French Polynesia (17.5770° S, 149.6092° W), on the island of Tahiti,
which has a tropical climate. Overall, the hybrid model (CNN-LSTM) is the best performing and
most accurate in terms of deterministic and probabilistic metrics. In addition, it was found that the
CNN, LSTM, and ANN show good results against persistence.

Keywords: short-term irradiance forecasting; neural networks; sky images; micro-grid; photovoltaics

1. Introduction

According to estimates, the amount of electricity produced by solar photovoltaics
(PVs) increased by 22% globally in 2021 and surpassed 1000 TWh. As a result, the global
electricity market share of solar PV is currently close to 3.6% [1]. Government support
programs, technological breakthroughs, and sharp cost reductions are all responsible for
this surge [2]. The intermittence, randomness, and volatility of PV power output is caused
by uncontrollable factors such as weather, seasonality, and climate [3]. These significant
constraints still hinder the large-scale integration of PVs into the power grid and interfere
with the reliability and stability of existing grid-connected power systems [4]. Therefore,
PV power predictions are essential to ensure the stability, reliability, and cost effectiveness
of the system [5]. Usually, PV power prediction can be achieved through the prediction
of global horizontal irradiance (GHI) or PV power output, with techniques applied to
forecast PV power production being an extension of those used for predicting GHI. Ac-
cording to forecast horizons and model types, solar irradiance forecasting models can be
broadly categorized [6]. Forecasting horizons can be categorized as short term [7], medium
term [8], and long term [9]. For the real-time optimization of various grid components
such as electrolyzers—which are essential for producing low-emission hydrogen—short-
term forecasting (a few minutes to an hour) is used. For intraday operation optimization,
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medium-term (1 h to 6 h) forecasting is used. For days-ahead optimization, long-term
forecasting (6 h to days ahead) is used. Furthermore, there are two main groups of solar
irradiance forecasting model types, i.e., physical methods and data-driven models [6].
Physical models use numerical weather predictions (NWPs), sky imagery, and satellite
imaging to obtain information on the physical state and dynamic motion of solar radiation
through the atmosphere [10,11]. Data-driven models, on the other hand, are based on his-
torical data and have the capacity to extract information from the data in order to forecast
time series [12]. Finally, data-driven models are further sub-categorized into statistical or
machine learning models. Statistical models include the autoregressive integrated moving
average (ARIMA) [13], the autoregressive moving average (ARMA) [14], and the coupled
autoregressive and dynamic system (CARD) [15]. Support-vector machines (SVMs) [8] and
feed-forward neural networks (FFNNs) [16] are examples of machine learning models, as
are convolutional neural networks (CNNSs) [7] and recurrent neural networks (RNNs) [17].
A wealth of studies demonstrate that machine learning algorithms are better than statistical
models for time series forecasting.

All-sky images can be used, coupled with meteorological data, to perform short-term
irradiance forecasting. These techniques are better suited for short-term forecasting since
they provide real-time information on the cloud cover above the considered site.

Peng et al. [18] employed sky images from numerous total sky imagers (TSIs) to detect
clouds more effectively and make up for incorrect or excessively exposed TSI images. This
technique, which is used for very-short-term forecasting (1 to 15 minutes in advance),
makes use of redundant data from numerous cameras’ overlapping views to figure out the
base heights and wind field of various layers. Under the majority of cloud situations, the
suggested methodology offers accurate 15 min forecasts.

Kuhn et al. [19] used multiple TSIs for temporal and spatial aggregation in order to
improve very-short-term solar irradiance forecasting. Those aggregation effects are relevant
only for large solar plants, covering several square kilometers. It is shown that considering
aggregation effects significantly reduces forecasting errors, especially spatial aggregation
that lowers the relative root mean square error from 30.9% to 23.5% on a day with variable
conditions for 1 min averages and a time horizon of 15 min.

Additionally, image processing and short-term irradiance forecasting can be performed
with a CNN. The 2D structure of images is utilized by this neural network to apply filters
and extract significant features. Ref. [20] employed the CNN model SUNSET for short-term
PV forecasting. For a 30 kW PV system, the model forecasts the PV power output 15 min
in advance with a 1 min resolution. The training was conducted on sky images captured
the course of a year and PV output power. Along with the SUNSET model, deeper and
more complicated CNN models were also used, as well as auto-regression techniques.
Mean square error (MSE) and forecast skill (%) were two metrics used to assess the models’
accuracy. With an MSE of 4.51 kW? and forecasting skill of 26.22% and 16.11% for bright
and cloudy days, respectively, the SUNSET model performs better than other models.

For very-short-term forecasting of solar irradiation, ref. [21] employed a hybrid model
combining a convolutional neural network and multilayer perceptron (CNN-MLP). Images
of the sky and weather data gathered from a ground meteorological station in Morocco
are processed using the suggested method. The CNN-MLP produces the best results with
an RMSE ranging from 13.05 W/m? to 49 W/m?, while the persistence model’s RMSE is
between 45.076 W/m? and 114.19 W/m?,

Other neural networks can also be used for medium-term forecasting, such as RNN,
which specializes in time-series forecasting. However, the vanishing gradient issue with
the classical RNN [22] makes it impossible to learn lengthy data sequences. This issue is
resolved using LSTM, a form of RNN, which enforces a continuous error flow (i.e., one that
is neither exploding nor disappearing) across the internal states of the neural network’s
cells [23]. Making the LSTM neural network appropriate for long time-series forecasting.
An RNN implemented by [17] can forecast over multiple time horizons at once, including
1h,2h,3h, and 4 h ahead. In parallel, four independent RNN models were developed for
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predictions thatare 1 h, 2 h, 3 h, and 4 h in advance. The models were trained with two years
(2010 and 2011) of meteorological data and tested on four different years (2009, 2015, 2016,
2017). With data collected at Bonville, USA, in 2009, the multi-horizon model produced
a mean RMSE (across the four time horizons) of 14.6 W/m?, while at the same location
and time, the four independent models” mean RMSE was 18.6 W/ m?2. The RMSE achieved
using the RNN models is lower than the RMSE for other machine learning methods, such as
random forests, support-vector machine, gradient boosting, and FFNN, described in [24].

Kumari and Toshniwal [25] used a hybrid CNN-LSTM model for estimating solar
irradiation. The model was trained using GHI values collected over a 12-year period
(2006-2018). The observations were made in Alice Spring, Australia, which is notable for
having a desert climate and 300 clear days per year. The models’ time horizon can be
adjusted from one day to one month in advance. The CNN-LSTM model was compared
with other standalone models such as CNN, LSTM, RNN, and deep neural network (DNN).
The mean absolute percentage error (MAPE) was found equal to 4.84%, 6.48%, 5.84%, and
6.56% for the CNN-LSTM, LSTM, CNN, and DNN, respectively, for all simulations over
one-day prediction. The results show that the hybrid CNN-LSTM model to be the best for
GHI forecasting.

Kumari and Toshniwal [26] proposed a hybrid deep learning CNN-LSTM model for
hourly GHI forecasting. The training was implemented at 23 locations in California, USA.
The historical data used for the training of the different forecasting models was composed
of meteorological data such as GHI, temperature, precipitation, cloud cover, etc. The
proposed method showed a forecast skill of about 37-45% over other standalone models
such as smart persistence, SVM, ANN, LSTM, and CNN. It suggests that the proposed
hybrid model is appropriate for short-term GHI forecasting, due to its high accuracy under
diverse climatic, seasonal, and sky conditions.

In summary, a CNN-LSTM hybrid model is an interesting and promising deep learning
model for deploying point forecasts of solar irradiance. The benefit of this model is that it
can simultaneously analyze sky images and meteorological data. In fact, combining feature
extraction from the CNN and the ability to detect long-term dependencies from the LSTM
ought to increase the accuracy of the implemented solar irradiance forecasts. In addition,
one of the disadvantages of GHI point forecasts (or deterministic forecasts) is that they do
not contain sufficient information about the errors that forecasting models may generate, as
well as the volatility and randomness of the solar irradiance. Point forecasts are insufficient
for optimizing the operation of power systems [27].

The objective of this paper is to implement hourly probabilistic forecasts through
combining quantile mapping with a hybrid model (CNN-LSTM). The analysis of hourly
residuals allows the computation of prediction intervals with varying levels of confidence.
The hybrid model is compared to other standalone models, namely ANN, CNN, and LSTM,
for comparative purposes.

The novelty of this paper resides in the residual modeling implemented with the
hybrid CNN-LSTM model to derive hourly GHI probabilistic forecasts. Through the
analysis of hourly residuals, also known as quantile mapping [28], probabilistic forecasts are
obtained through the computation of prediction intervals with various levels of confidence.
In this application, sky images, which are typically utilized for very-short-term forecasting
(1 to 15 min), are utilized for 1 h-ahead GHI forecasting. This paper’s probabilistic forecasts
account for the fact that approaching clouds are not yet visible to the TSI (on an hourly
timescale). Combining probabilistic forecasts with sky images is pertinent for hourly
predictions, which are typically made using satellite images [29,30].

In order to produce these forecasts, various forecasting tools are trained using histor-
ical meteorological data measured on site and sky images. The GHI forecasting models
are intended to control a combined cold and power generation system (isolated micro-
grid for electricity and cold production, such as air conditioning), with multiple energy
production and storage sub-systems, all of which are solar-powered. The RECIF project’s
(French acronym for micro-grid for electricity and cold cogeneration) electrolyzer must
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have sufficient power for at least one hour in order to function correctly and avoid potential
misfires, which would reduce the component’s lifetime. Consequently, the necessity and
implementation of the mean hourly forecasting models are presented in this paper. This
initiative was developed within the framework of a French National Agency for Research
(ANR)-funded project and is being carried out at the University of French Polynesia (UPF).

The paper is organized as follows: the data collection and data processing methods
are presented in Section 2.1, followed by the GHI forecasting models in Section 2.2. The
quantile mapping method for prediction interval computation is detailed in Section 2.3.
Section 3 details the different metrics and reference models used for the comparison
between the different deep learning algorithms. The results for point and probabilistic
forecasts are detailed in Section 4. Section 5 provides the main achievements of the study
in a summary form.

2. Materials and Methods
2.1. Data Collection

The various solar irradiance forecasting models were trained using one year’s worth
of meteorological data and sky images collected at the UPF in Tahiti. The images of the sky
were captured using a total sky imager consisting of a digital camera (Axis 212 PTZ) with a
fish-eye lens. The images were collected every 10 s with a resolution of 640 by 480 pixels
(Figure 1). The nighttime hours were removed from the historical meteorological data and
sky images; therefore, the forecasts are only available from 5 am to 8 pm. In addition, the
processed images were down-sampled to 64 x 64 pixels to decrease the training time for the
models. The edges of the images were also removed as they gave no relevant information
about the cloud cover. Finally, the 8-bit sky images, containing values ranging from 0 to
255, were normalized through dividing its values by 255 right before training the machine
learning models. Hence, the normalized images have pixel values ranging from 0 to 1.

Figure 1. Total sky imager with a digital camera Axis 212 PTZ (left). Sky image taken at the University
on 3 November 2019 (right).

Table 1 outlines the meteorological data used to train the various forecasting tools:
GHI (W/m?), temperature T (C°), relative humidity H (%), wind velocity WV (m/s), and
wind direction WD (°) with a 1 min time interval. The GHI is measured with an Apogee
Instruments-supplied pyranometer. In order to compute the theoretical values of GHI
under clear sky conditions, the clear sky model (CLS) is also used as an input by the
forecasting models. The Python implementation of [31] clear sky model was made possible
by means of the pvlib package. The turbidity (TL), which is correlated to the opacity of the
atmosphere, is an essential parameter for a precise clear sky model. Table 2 lists the values
of TL that have been employed.
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Table 1. Descriptive statistics including the mean, standard deviation (std), minimum /maximum
values, and the quantiles for each meteorological variable.

GHI Temperature Rel Humidity Wind Speed Wind Direction CLS
Count 243,011 243,011 243,011 243,011 243,011 243,011
Mean 326.0 27.2 73.6 1.9 146.2 487.5
Std 325.24 22 9.2 1.5 107.5 395.0
Min 0.0 20.2 47.5 0.0 0.0 0.0
25% 19.0 25.6 67.0 0.9 457 34.7
50% 235 27.5 72.9 1.7 116.7 497.4
75% 546 28.9 80.1 2.5 239.0 839.3
Max 1531 33.4 99.2 12.4 360.0 1167
Table 2. Linke turbidity values for each month [32].
Month  January February March April  May June July August  September October = November December
TL 3.3 3.6 3.3 3.2 3.2 32 2.8 2.8 32 2 35 3

Using the interquartile range method (IQR), outliers in the data were identified and
eliminated, along with other anomalous data such as Not a Number (or NaN values) or
negative values caused by technical glitches in the sensors. Between October 2019 and
September 2020, each measured meteorological variable was normalized between 0 and 1
using the following equation:

X = Xmin
Knorm Xmax — Xmin (1)

With Xpnin and Xmax representing the minimum and maximum values of the considered
variable, respectively. X and Xporm are the non-normalized and normalized value.

After normalization, the data were divided into training data (70%), validation data
(20%), and testing data (10%). This first test data will henceforth be referred to as test data
n°1. In addition, nine days with varying cloud cover were removed from the dataset and
used as second test data (designated test data n°2) to determine the efficacy of the models
with varying cloud cover. These nine days correspond to three clear-sky days, three partly
cloudy days, and three cloudy days.

The inputs for the implemented models include GHI, humidity, temperature, and
wind speed and direction. These variables have moderate correlations with GHI (Figure 2).
Using Pearson’s coefficient of correlation:

Ry
VI (6 - %2L (v~ 7)?

with x; and y;j being the i-th value of x and y, X and y the mean values of x and y.

@

2.2. GHI Predictions Algorithms

In order to train the various forecasting tools, 1 min time-step historical data is utilized.
Figure 3 depicts the calculation of the GHI’s autocorrelation up to a time-shift of 300 min
in order to determine how many lagged terms should be provided to the model in order
to yield a prediction. This graph demonstrates that a time-shift of 300 min still yields a
Pearson coefficient of r = 0.1, which is sufficient for training neural networks. Therefore,
300 min prior is regarded as the standard for constructing the input vectors for the various
forecasting models. To produce one prediction of the hourly mean value of GHI, forecasting
models require 300 meteorological data measurements with the corresponding sky images
and a 1 min time-step as input vectors.
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Figure 2. Pearson correlation test for the measured meteorological data.
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Figure 3. GHI autocorrelation using the Pearson correlation, for a time-shift ranging from 0 to 300 min.

Red cross representing the Pearson coefficient.

The initial model implemented was a conventional artificial neural network (ANN)
trained using only meteorological data. This neural network consisted of two hidden layers
containing 100 neurons each. In addition, every hidden layer was followed by a dropout
layer. Dropout layers permit the arbitrary removal of certain neurons with a specified
dropout rate (in our case, 10%). During a particular forward and reverse pass of the training
process, the discarded units were not considered. This prevents units from co-adapting
excessively. The inputs to this ANN were 300 previous meteorological measurements with
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a 1 min time-step. The predicted value was the hourly average irradiance. The second
model implemented was a CNN (Figure 4) that simultaneously takes meteorological
data and sky images as input for cloud monitoring. This CNN was directly influenced
by [20] SUNSET model implementation. Our proposed CNN possesses three convolutional-
pooling structures (conv-pool) consisting of two convolutional layers and a max-pooling
layer. In its two convolutional layers, the first structure has 64 filters, the second has
128 filters, and the third has 256 filters. These layers are used to extract features from
the images. The output of the convolution-pooling structures was concatenated with
meteorological data and then passed to an ANN with two fully connected layers. Each
layer contains 100 neurons and is followed by a dropout layer with a 10% dropout rate. The
CNN made an average hourly forecast through correlating 300 previous meteorological
measurements with their corresponding sky images.

Output (W/m?)

t

Fully conn. 100 Fully
connected

Fully conn. 100 layer

300 values GHI, CLS,
Flatten Measurements 4=  ftemperature, humidity,

i wind velocity and direction

2 x 2 Max pooling

3 x 3 conv, 256 filters Conv-pool
structure

3 x 3 convy, 256 filters

2 x 2 Max pooling

: Conv-pool
3 x 3 conv, 128 filters striiclure
3 x 3 conv, 128 filters
2 x 2 Max pooling
3 x 3 conv, 64 filters Conv-pool
structure

3 x 3 conv, 64 filters

t

Image sequence (64 x 64 x (3 x 300))

Figure 4. Implemented CNN, with inputs being image sequences and meteorological data. The
output is the predicted GHI for the next hour.

In addition, an LSTM has been implemented for mean hourly forecasting. Like
the ANN, this LSTM only accepts meteorological data as input. In our case, the input
is equivalent to 300 min of prior measurements. This LSTM consists of 4 layers, each
containing 200 neurons, followed by a dropout layer with a 10% dropout rate.
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Image (64x64x3)

Convolution (64)

Finally, a CNN-LSTM neural network (or hybrid model) was implemented (see
Figure 5). Indeed, the combination of the feature extraction through the processing of
sky images of the CNN and the learning of long-data sequences of LSTMs enables the
construction of a model capable of simultaneously taking sky images and meteorological
data to make accurate mean hourly forecasts. First, the CNN processes the sky images. The
output is then connected to an LSTM model with two layers of 200 neurons each, followed
by a dropout layer with a 10% dropout rate. In addition to the first LSTM, a second LSTM
with the same parameters processes the meteorological data. In order to make predictions,
the output of two LSTMs is concatenated into a dense layer with a single neuron. The
characteristics of the models are summarized in Table 3. The hybrid model was influenced
by [33], but with two convolutional layers in each conv-pool structure and only two LSTMs
to reduce training time. Another significant difference between our work and [33]’s is that
we implemented probabilistic forecasts with the considered hybrid model via quantile
mapping, as explained in the following subsection.

Maxpooling  Convolution (128)  Maxpooling Convolution (256)  Maxpooling

ho h1 h2

t ot 1

CNN —I—b ISTM —» LSTM —% LSTM
[~ —* GHl predictions
t t t ]
Meteorological
data

—I—P LSTM —® LSTM —» LSTM B
ense
, .

Figure 5. Implemented CNN-LSTM. The sky images are first processed by a CNN, then by an LSTM.
The meteorological data are only processed by the LSTM. The two LSTMs are concatenated into a
dense layer for GHI predictions.

Table 3. Models’ characteristics.

.. . Number of Number of Neurons
Training Time . . . . Number of
h Learning Rate Neurons in in Convolutional .
(min) . Trainable Parameters
Hidden Layers Layers

ANN 12 1x103to1 x 10710 2 x 100 0 10,901

CNN 340 1x103to1 x 10710 2 x 100 896 4,189,633

LST™M 45 1x103t01 x 10710 4 x 200 0 1,128,201
CNN-LSTM 1600 1x103to1 x 10710 4 % 200 896 7,013,233
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2.3. Residual Modeling

To enhance the accuracy of hourly microgrid management, probabilistic forecasts
based on modeling errors (or residuals) were implemented. A probabilistic forecast assigns
probabilities to all possible futures predicted by the model. This is in stark contrast to a
deterministic or point forecast, which provides no information regarding the probabilities of
the predicted outcome. This can be accomplished through calculating prediction intervals
(PIs), which represent a range of values with a specified probability of containing a new
measurement. This technique is based on the work of [28].

The model residuals can be calculated using the following equation:

ri=Yi —Yi ®)

with y; being the measurement, §j; representing the predicted value, and r; standing for the
corresponding residual.

We obtained residuals for each hour of the day in order to compute the hourly PIs of
the deep learning models. The residual distribution parameters were then estimated for
each hour of the day and are presented in Table 4. On Figure 6, the histograms for 10 am
and 3 pm, we can observe the following: Assuming that the distribution of the residuals
follows a symmetric normal distribution or a symmetric Laplacian distribution, the PIs can
be computed with a certain level of confidence from the hypothetical distributions.

Table 4. Mean values and variances for each hour of the day for the hybrid model.

Hour 6 7 8 9 10 11 12 13 14 15 16 17 18
OFS‘;"I:;‘;ZS 33 34 29 33 39 25 30 27 26 32 31 28 27
(W‘;mz) 157 4766 8206 1614 2911 2948 7765 622 —540 970  —20.87 —1622 —40.0
Gaussian
distribution o
Wymz) 993 4985 10782 12920 12669 16488 11180 12134 13666 10687 8853 3971 3064
(W*;mz) 0.6 336 6633 173 1409 2071 7186 —1045 —526 808 —13.11 —1947 —43.94
Laplacian
distribution o
Wymy 83 4011 7827 8673 8807 11458 9437 8416 99.63 8655 5799 2922 1822

Frequency
s ] = ]

v

=1

=300

=200

5

20

-
(v

Frequency

-
o

-200 0
residuals (W/m?) residuals (W/m?*)

=100 0 100 200 300 400

Figure 6. Distribution of residuals at 10 am (left) and 13 pm (right).

The mean values y and variances ¢ of the hourly normal distributions were calculated
from Equations (4) and (5) and summarized in the next table for each distribution:
Xy

_ =0
flx) = e @
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fla) = 5oe ) )
The parameter estimation results indicate that the variances of the Laplacian distribu-
tion are all smaller than those of the Gaussian distribution, which is expected given that
the Laplacian distribution is typically narrower than the Gaussian distribution. Comparing
variances alone is insufficient to determine which distribution best characterizes residuals
and ultimately provides the most accurate probabilistic predictions. In order to compare
the various Gaussian and Laplacian predictions, probabilistic metrics are employed and

presented in the following section.

2.4. Quantile Regression

The quantile regression method was used to compute the quantiles of the residuals.
The computed quantiles were taken as prediction intervals at different confidence levels.
To compute the different quantiles for all the considered distributions, we first needed to
consider their cumulative distribution function (cdf) Fresgus(x) as:

Vx € R, Fresidus(x) = P(Residus < x) (6)

The inverse of the cdf is called the percent point function or quantile function Q(g)
and is explicated below:

¥ € 0,1], Q(9) = Frosigus (¥) = inf{x € R, Fresiqus(x) > q} )

Q(0.25), Q(0.5), and Q(0.75) are, respectively, the first quantile, the median, and the
third quantile and were calculated according to the specific distribution (Gaussian or
Laplacian). To compute the PIs at 38%, 68%, 95%, and 99% confidence levels, we use the
next equations:

PI (38%) = 0 (o.s - 0238) Q(O.S + 0238) )
PI (68%) = -Q 0.5 — Ozﬁ ,Q 0.5+0‘2ﬁ _ ©)

PI (99%) = |Q( 0.5 — (11)

(09-55°) o(0s+%5)
PI (95%) = | O (0.5 _ 0295> Q(O.S + 0295) (10)
(09-557) (0s+%5)

3. Metrics and Reference Model

In this section, the deterministic and probabilistic metrics for accuracy assessment of
the different forecasting models are presented. The persistence model is also presented.
This model was used as a reference for comparison purposes.

3.1. Metrics for Deterministic Forecasting

In order to train and compare the precision of the different models applied to short-
term solar forecasting, we adopted four different deterministic metrics called mean square
error (MSE), mean absolute error (MAE), root mean square error (RMSE), and determination

coefficient (R?):
N

1 2
MSE = ﬁ Z(Ymeasured,i - Ypredicted,i) (12)

i=0

N

1 2
RMSE = \l N Z(:)(Ymeasured,i - yPredicted,i) (13)
i=
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1 N
MAE = N Z‘ymeasured,i - Ypredicted,i (14)
i=0

N 2
Z:i:O (Ymeasured,i - yPredicted,i)

RZ=1 (15)

ZQO (Ymeasured,i - ymeasured)2
where N is the number of observations, ymeasured,i i the i-th measurement, y ... ., is the
mean value of the measurements, and ypredicted,i is the predicted values.

RMSE is a quadratic scoring rule that assesses the average error magnitude. This
metric has the disadvantage of not distinguishing between numerous minor errors and
fewer but larger errors. In addition, since the errors are squared prior to being averaged,
this metric provides a disproportionately high weight to large errors. The MAE is a linear
score, meaning that all individual differences contribute equally to the mean. The MAE
and RMSE can be used in conjunction to diagnose the variance in the forecast error. RMSE
will always be greater than or equal to MAE. When RMSE and MAE are equal, all errors
have the same magnitude, whereas, the greater the difference between the two metrics, the
greater the variance in the individual errors in the sample.

For comparison purposes, the normalized mean absolute percentage (nMAP) metric is
used. The nMAP is explicated below:

. i
nMAP = —
1
N i=0 n Z:?:1 Ymeasured,i

‘Ymeasured,i - yPrediCted,i

x 100 (16)

3.2. Metrics for Probabilistic Forecasting

In order to quantify the quality of the probabilistic forecasts, we use three different
metrics. The first one is the prediction interval coverage percentage (PICP), the second one
is the prediction interval normalized average width (PINAW), and the third is the coverage
width-based criterion (CWC).

The PICP indicates how many real values lie within the bounds of the prediction
interval [28]:

1 N
PICP = N i;(si (17)
_JVifyie [L;, U
o= {0 if yi ¢ [L; Uj] 18)

where L; is the lower bound and U; is the upper bound of the prediction intervals. From
(16) and (17), we can deduce that the higher the value of PICP, the better the prediction
intervals are.

The PINAW quantitatively measures the width of the different PIs [28]:

1 N
PINAW = ~— i;(ui L) (19)

where R is a normalizing factor equal to the width of possible values taken from the
measurements. As the PINAW quantitatively represents the width of the PIs, a lower
value of PINAW represents a better confidence for the prediction intervals. However, a
model with low PINAW values can also perform poorly. This is why we used the coverage
width-based criterion.

The CWC combines the PICP and PINAW to optimally balance between probability
and coverage [28]:

CWC = PINAW [1 + y(PICP)e—P(PICP—@} (20)
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[0 ifPICP>€
7(PICP) = {1ifPICP<€ @

where € is the preassigned PICP that is to be satisfied, and p is the penalizing term (in
our case equal to 0.01). When the preassigned PICP is not satisfied (e.g., a PI with a 95%
confidence level containing only 93% of the measurement), the CWC increases exponentially.
The CWC is a negatively oriented metric, meaning lower values signify a better prediction.

3.3. Persistence Forecasting Model

The persistence model was also used as a reference to compare the errors of the
implemented models. This model assumes that the solar radiation at time t is equal to the
solar radiation measured at time t — T, T being the time horizon of the model. The model is
formulated below:

f(t) =f(t—T) (22)

In our case, the forecast parameter is the mean solar radiation averaged over a time
window from t to t + T and is equal to the mean solar radiation measured fromt — T to t.
The persistence model used here is shown in the next equation.

ft, t+T) =f(t—T, t) (23)

4. Results
4.1. Prediction Results

After training the forecasting models, they were evaluated on test data n°1 and n°2.
The results for all implemented models are presented in Table 5 with the deterministic
metrics for test data n°1, and in Table 6 for test data n°2. Table 7 presents the results for the
probabilistic forecasts.

Table 5. Deterministic metrics for all implemented models on test data n°1. Bold numbers represent
the best performance.

Model MAE (W/m?2) RMSE (W/m?) R?
ANN 85.89 118.04 0.80
CNN 74.53 109.47 0.83
LSTM 71.89 113.24 0.81
CNN-LSTM 66.09 100.58 0.85
Persistence 132.10 165.39 0.69

Table 6. Deterministic results of the implemented models for test data n°2. Bold numbers represent
the best performance.

RMSE (W/m?) MAE (W/m?) R?
Model Sunny Overcast Cloudy All Sunny Overcast Cloudy All  Sunny Overcast Cloudy All
ANN 7353 11580 13565 12155  59.97 80.08 9228 8259 095 0.42 0.55 0.77
CNN 69.61 83.04 118.50 100.89  54.58 67.85 9643 7036  0.95 0.70 0.66 0.84
LSTM 69.81 77.11 139.71 10573  50.61 57.07 116.01 7196  0.95 0.74 0.53 0.83
CNN-LSTM  45.09 61.09 113.44 91.73 35.82 52.05 91.69 60.46 0.98 0.84 0.69 0.87
Persistence ~ 131.02 11531 15949 165.39 109.73 81.75 134.84 13210 0.83 0.43 0.39 0.69
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Table 7. Results of the probabilistic forecasts for all implemented models for data testn°1. Highlighted
in black represents the best performance.

Models Prediction Gaussian Distribution Laplacian Distribution
Intervals PICP (%) PINAW (%) CWC (%) PICP (%) PINAW (%) CWC (%)
38% 39.69 8.54 8.54 43.81 8.8 8.81
Hybrid 68% 73.97 17.04 17.04 72.42 17.56 17.5
model 95% 95.10 33.37 91,75 33.80 67.60
99% 99.23 4797 97.68 48.07 96.15
38% 40.46 10.17 10.17 31.19 7.31 14.64
68% 70.62 20.30 20.30 65.98 17.52 35.06
ANN
95% 95.10 38.92 38.93 96.39 43.59 43.46
99% 99.74 55.08 55.08 99.74 62.34 62.34
38% 43.56 8.72 8.72 36.60 5.90 11.80
68% 77.06 17.9 17.9 65.98 14.06 28.12
CNN
95% 94.33 33.41 66.82 95.10 35.88 35.88
99% 99.23 48.08 48.08 99.48 52.14 52.14
38% 44.85 9.73 9.73 37.63 6.34 12.69
68% 74.74 19.21 19.21 67.27 15.02 30.05
LSTM
95% 93.56 36.38 72.76 94.59 37.86 75.73
99% 96.91 51.71 103.43 99.48 54.91 54.91

Table 5 demonstrates that the CNN-LSTM is the most precise model for point forecasts,
with MAE = 66.09 W/m?, RMSE = 100.58 W/m?, and R? = 0.85. The standalone LSTM
performs well with MAE = 71.89 W/ m?2, RMSE = 113.24 W/m?, and R? = 0.81. This demon-
strates that the addition of convolutional layers improves the accuracy of predictions. The
CNN also shows good results with R? = 0.83 against the ANN with R? = 0.80 and R? = 0.69
for the persistence model. The RMSE values are higher than the values of MAE for all
types of days and for both test datasets. This difference signifies a high variance in the
errors. Variance quantified using the previously computed prediction intervals. Despite
the forecast errors, the hybrid model is the most precise for each type of day and both
test datasets, with forecasts following the general trend of the measurements. This can
be seen in Figure 7, where the hybrid model is shown to be the most precise. Indeed, the
CNN-LSTM points are all converging well around the bisector (black line), which shows a
high precision of forecasts.

Table 6 shows that the best model is the CNN-LSTM with RMSE = 91.73 W/m?,
MAE = 60.46 W/m?2, and R? = 87 for test data n°2. The hybrid model also shows the best
results for each type of day, with a R? equal to 0.98, 0.84, and 0.69 for a clear, overcast, and
cloudy day, respectively. The CNN is second best with R? = 0.84, followed by the LSTM
and ANN. This demonstrates that the processing of sky images through convolutional
layers is effective at increasing the accuracy of short-term solar irradiance forecasting.

For the probabilistic forecasts, the PICP, PINAW, and CWC values were computed
for all forecasting models. The best CWC values for 38%, 68%, 95%, and 99% PIs are
highlighted in black in Table 7. The best model for probabilistic forecasting is the CNN-
LSTM with CWC values equal to 8.54, 17.04, 33.37, and 47.98 for PI1(38%), P1(68%), P1(95%),
and PI(99%), respectively. The best performance is obtained with a Gaussian distribution
for all prediction intervals. The probabilistic forecasts are shown in Figure 8.

In summary, the hybrid model is the best for all testing data (test data n°1 and n°2)
for each type of day and for both point and probabilistic forecasting. The implemented
forecasting models were implemented with Python 3.7, with the Keras 2.3.0 and Tensorflow
2.2.0 packages.
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Figure 7. GHI measurements versus predictions for data test n°1.
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Figure 8. Probabilistic predictions for the hybrid model for P1(38%), P1(68%), P1(95%), and P1(99%).

A comparison of the results from the implemented hybrid model for deterministic
hourly predictions in terms of nMAP is given in Table 8. We can see that when the sun
is low (early and late hours), the nMAP values are high, which can be explained by the
low luminosity and high saturation of the corresponding sky images, whereas during
sunny hours, the errors range from 11% to 36%, which correspond to high luminosity and
intermediate saturation in sky images, situations that are handled better by the hybrid
model. In the best case (Colorado dataset), ref. [33] obtained nMAP values ranging from
15% to 20%. The results obtained in this paper by our hybrid model are comparable
but slightly higher to those obtained by Siddiqui’s model. This can be explained by the
high variability that characterizes Tahiti’s weather, which is strongly correlated with the
orography of the island.
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Table 8. Hourly nMAP values for the implemented hybrid model for data test n°1.

Hour

4h 5h

6h

7h  8h 9h 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h

nMAP (%)

1457 909

31

36 34 21 17 19 17 17 25 24 20 33 213 1973

4.2. Perspectives and Future Research

For solar irradiance forecasting, ref. [34] implemented a novel method incorporating
LSTM and metaheuristic models. Simultaneously, the metaheuristic chicken swarm op-
timization (CSO) and grey wolf optimization (GWO) models were used to optimize the
LSTM'’s parameters. The proposed hybrid model outperformed other reference models and
demonstrated consistent performance for forecasting at all scales with enhanced metric
results. Using a metaheuristic model (or combining two metaheuristic models) to optimize
the CNN-LSTM and other isolated models” parameters could be a strategy for improving
the results presented in this article.

Implementing probabilistic forecasts, ref. [27] utilized kernel density estimation (KDE).
For the 90% prediction interval, this method produced PINAW values of 19.55. This appears
to be a suitable method for narrowing the prediction intervals computed in this article,
which derived a PINAW value of 33.37 for the CNN-LSTM for the 95% prediction interval.

The probabilistic forecast could also be improved through training a neural network
to directly predict the various quantiles of the obtained residuals. Encoder-decoder archi-
tecture was utilized by [35] for quantile regression. This method enhances the accuracy of
forecasts while remaining computationally efficient.

5. Conclusions

In this article, we implemented a hybrid deep learning model for mean hourly forecast-
ing, using convolutional layers for feature extraction from images and LSTM technology
for meteorological data processing and time-series forecasting. The performance of the
hybrid model was compared to the performance of three other neural nets, specifically,
ANN, CNN, and LSTM. The persistence model was compared to each of the implemented
models. The novelty of this study resides in the residual modeling implemented with the
CNN-LSTM model, which enables us to generate probabilistic forecasts from the statistical
models. Overall, the testing data, for each type of day, and for all the deterministic and
probabilistic metrics, the hybrid model was found to be the best performing and most
accurate. Indeed, the RMSE, MAE, and R? for the CNN-LSTM were equal to 100.58 W/ m2,
66.09 W/m?2, and 0.85, respectively, which is better than the other benchmark models. For
probabilistic forecasts, the CNN-LSTM has the best CWC values with 8.54, 17.04, 33.37, and
4798, respectively, for PI(38%), P1(68%), P1(95%), and P1(99%).
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Nomenclature
ANN Artificial Neural Networks
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive Moving Average
CARD Coupled Autoregressive and Dynamic System
CNN Convolutional Neural Network
DNN Deep Neural Network
DHI Diffuse Horizontal Irradiance
DNI Direct Normal Irradiance
FFNN Feed Forward Neural Network
GHI Global Horizontal Irradiance
LM-BP Levenberg-Marquardt Backpropagation
LSTM Long Short-Term Memory
MAE Mean Absolute Error
Max-pooling layer = Layer that selects the maximum feature in a patch of the extracted feature map
MSE Mean Square Error
NWP Numerical Weather Predictions
RMSE Root Mean Square Error
RNN Recurrent Neural Network
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